5V49EE502NLGI [IDT]

EEPROM PROGRAMMABLE CLOCK GENERATOR;
5V49EE502NLGI
型号: 5V49EE502NLGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

EEPROM PROGRAMMABLE CLOCK GENERATOR

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 驱动 逻辑集成电路
文件: 总34页 (文件大小:386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
5V49EE502  
Description  
Features  
The 5V49EE502 is a programmable clock generator  
intended for high performance data-communications,  
telecommunications, consumer, and networking  
applications. There are four internal PLLs, each individually  
programmable, allowing for four unique non-integer-related  
frequencies. The frequencies are generated from a single  
reference clock. The reference clock can come from one of  
the two redundant clock inputs. Automatic or manual  
switchover function allows any one of the redundant clocks  
to be selected during normal operation.  
Four internal PLLs  
Internal non-volatile EEPROM  
2
Fast (400kHz) mode I C serial interface  
Input frequency range: 1MHz to 200MHz  
Output frequency range: 4.9kHz to 500MHz  
Reference crystal input with programmable linear load  
capacitance  
— Crystal frequency range: 8MHz to 50MHz  
The 5V49EE502 is in-system, programmable and can be  
2
Two independently controlled VDDO (1.8V to 3.3V)  
programmed through the use of I C interface. An internal  
Each PLL has a 7-bit reference divider and a 12-bit  
feedback-divider  
EEPROM allows the user to save and restore the  
configuration of the device without having to reprogram it on  
power-up.  
8-bit output-divider blocks  
Fractional division capability on one PLL  
Each of the four PLLs has an 7-bit reference divider and a  
12-bit feedback divider. This allows the user to generate  
four unique non-integer-related frequencies. The PLL loop  
bandwidth is programmable to allow the user to tailor the  
PLL response to the application. For instance, the user can  
tune the PLL parameters to minimize jitter generation or to  
maximize jitter attenuation. Spread spectrum generation  
and/or fractional divides are allowed on two of the PLLs.  
Two of the PLLs support spread spectrum generation  
capability  
I/O standards:  
— Outputs: 1.8V to 3.3 V LVTTL/ LVCMOS  
— Outputs: LVPECL, LVDS and HCSL  
— Inputs: 3.3 V LVTTL/ LVCMOS  
Programmable slew rate control  
Programmable loop bandwidth  
There are a total of four 8-bit output dividers. Each output  
bank can be configured to support LVTTL, LVPECL, LVDS  
or HCSL logic levels. Out0 (Output 0) supports 3.3V  
single-ended standard only. The outputs are connected to  
the PLLs via a switch matrix. The switch matrix allows the  
user to route the PLL outputs to any output bank. This  
feature can be used to simplify and optimize the board  
layout. In addition, each output's slew rate and  
Programmable output inversion to reduce bimodal jitter  
Redundant clock inputs with auto and manual switchover  
options  
Individual output enable/disable  
Power-down mode  
enable/disable function is programmable.  
3.3V core V  
DD  
Available in 24-QFN package  
-40° to +85°C industrial temperature operation  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
1
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Block Diagram  
S
R
C
0
OUT0  
XIN/REF  
XOUT  
S
R
C
1
S1  
PLL0 (SS)  
/DIV1  
/DIV2  
OUT1  
OUT2  
S
R
C
2
CLKIN  
PLL1  
PLL2  
CLKSEL  
S
R
C
3
S3  
/DIV3  
/DIV6  
PLL3 (SS)  
OUT3  
OUT6  
S
R
C
6
SD/OE  
SDA  
SCL  
Control  
Logic  
SEL[2:0]  
1. OUT1 & OUT2 and OUT3 & OUT6 pairs can be configured to be LVDS, LVPECL or HCSL, or two single-ended LVTTL outputs.  
2. CLKIN, CLKSEL, SD/OE and SEL[2:0] have pull down resistors.  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
2
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Pin Configuration  
19  
1
VDDO3  
OUT3  
VDD  
XOUT  
OUT6  
XIN/REF  
VDDx  
GND  
CLKIN  
AVDD  
CLKSEL  
13  
GND  
7
24-pin QFN  
Pin Descriptions  
Pin#  
Pin Name  
VDD  
I/O  
Pin Type  
Power  
Pin Description  
Device power supply. Connect to 3.3V.  
1
2
3
XOUT  
O
I
LVTTL  
CRYSTAL_OUT – Reference crystal feedback.  
XIN / REF  
LVTTL  
CRYSTAL_IN – Reference crystal input or external reference clock  
input.  
4
Power  
Crystal oscillator power supply. Connect to 3.3V through 5  
resistor. Use filtered analog power supply if available.  
VDDx  
5
6
7
8
9
CLKIN  
GND  
I
LVTTL  
Power  
Input clock. Weak internal pull down resistor.  
Connect to Ground.  
OUT1  
O
O
Adjustable1  
Adjustable1  
Power  
Configurable clock output 1.  
Configurable clock output 2.  
OUT2  
Device power supply. Connect to 1.8 to 3.3V. Sets output voltage  
levels for OUT1and OUT2.  
VDDO1  
10  
11  
VDD  
Power  
Device power supply. Connect to 3.3V.  
SDAT  
I/O  
Open Drain  
Bidirectional I2C data. An external pull-up resistor is required. See  
I2C specification for pull-up value recommendation.  
12  
SCLK  
I
I
LVTTL  
I2C clock. An external pull-up resistor is required. See I2C  
specification for pull-up value recommendation.  
13  
14  
CLKSEL  
AVDD  
LVTTL  
Power  
Input clock selector. Weak internal pull down resistor.  
Device analog power supply. Connect to 3.3V. Use filtered analog  
power supply if available.  
15  
16  
GND  
Power  
Connect to Ground.  
OUT6  
O
Adjustable1  
Configurable clock output 6.  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
3
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Pin#  
17  
Pin Name  
OUT3  
I/O  
Pin Type  
Adjustable1  
Power  
Pin Description  
O
Configurable clock output 3.  
18  
Device power supply. Connect to 1.8 to 3.3V. Sets output voltage  
levels for OUT3 and OUT6.  
VDDO3  
19  
20  
21  
22  
SEL2  
SEL1  
I
I
I
I
LVTTL  
LVTTL  
LVTTL  
LVTTL  
Configuration select pin. Weak internal pull down resistor.  
Configuration select pin. Weak internal pull down resistor.  
Configuration select pin. Weak internal pull down resistor.  
SEL0  
SD/OE  
Enables/disables the outputs or powers down the chip. The SP bit  
(0x02) controls the polarity of the signal to be either active HIGH or  
LOW. (Default is active LOW.) Weak internal pull down resistor.  
23  
24  
OUT0  
GND  
O
Adjustable1  
Power  
Configurable clock output 0.  
Connect to Ground.  
1.Outputs are user programmable to drive single-ended 3.3-V LVTTL, or differential LVDS, LVPECL or HCSL interface levels  
2. Analog power plane should be isolated from a 3.3V power plane through a ferrite bead.  
3. Each power pin should have a dedicated 0.01µF de-coupling capacitor. Digital VDDs may be tied together.  
4. Unused clock inputs (REFIN or CLKIN) must be pulled high or low - they cannot be left floating. If the crystal oscillator is not used, XOUT must be left floating.  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
4
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
PLL Features and Descriptions  
7-bit  
D
VCO  
4-bit  
A
12-bit  
N
Sigma-Delta  
Modulator  
PLL0 Block Diagram  
7-bit  
D
VCO  
12-bit  
N
PLL1, PLL2 and PLL3 Block Diagram  
Pre-Divider  
Multiplier  
Programmable  
Spread Spectrum  
(D)1 Values (M)2 Values Loop Bandwidth Generation Capability  
PLL0  
PLL1  
PLL2  
PLL3  
1 - 127  
1 - 127  
1 - 127  
3 - 127  
10 - 8206  
1 - 4095  
1 - 4095  
12 - 4095  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
Yes  
1.For PLL0, PLL1 and PLL2, D=0 means PLL power down. For PLL3, 0, 1, and 2 are DNU (do not use)  
2.For PLL0, M = 2*N + A + 1 (for A > 0); M = 2*N (for A = 0); A < N-1. For PLL1, PLL2 and PLL3, M=N.  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
5
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
XTAL load cap = 3.5pF + XTAL[4:0] * 0.125pF (Eq. 1)  
Reference Clock Input Pins and  
Selection  
Parameter  
Bits  
Step (pF)  
Min (pF)  
Max (pF)  
The 5V49EE502 supports up to two clock inputs. One of the  
clock inputs (XIN/ REF) can be driven by either an external  
crystal or a reference clock. The second clock input (CLKIN)  
can only be driven from an external reference clock. The  
CLKSEL pin selects the input clock from either XTAL/REF or  
CLKIN.  
XTAL  
8
0.125  
0
4
When using an external reference clock instead of a crystal  
on the XTAL/REF pin, the input load capacitors may be  
completely bypassed. This allows for the input frequency to  
be up to 200MHz. When using an external reference clock,  
the XOUT pin must be left floating, XTAL must be  
programmed to the default value of “00h”, and the crystal  
drive strength bit, XDRV (0x06), must be set to the default  
value of “11h”.  
Either clock input can be set as the primary clock. The  
primary clock designation is to establish which is the main  
reference clock to the PLLs. The non-primary clock is  
designated as the secondary clock in case the primary clock  
goes absent and a backup is needed. The PRIMSRC bit  
(0xBE through 0xC3) determines which clock input will be  
selected as primary clock. When PRIMSRC bit is “0”,  
XIN/REF is selected as the primary clock, and when “1”,  
CLKIN as the primary clock.  
Switchover Modes  
The 5V49EE502 features redundant clock inputs which  
supports both Automatic and Manual switchover mode.  
These two modes are determined by the configuration bits,  
SM (0xBE through 0xC3). The primary clock source can be  
programmed, via the PRIMSRC bit, to be either XIN/REF or  
CLKIN. The other clock input will be considered as the  
secondary source. Note that the switchover modes are  
asynchronous. If the reference clocks are directly routed to  
OUTx with no phase relationship, short pulses can be  
generated during switchover. The automatic switchover  
mode will work only when the primary clock source is  
XIN/REF. Switchover modes are not supported for crystal  
input configurations.  
The two external reference clocks can be manually selected  
using the CLKSEL pin. The SM bits (0xBE through 0xC3)  
must be set to "0x" for manual switchover which is detailed  
in SWITCHOVER MODES section.  
Crystal Input (XIN/REF)  
The crystal used should be a fundamental mode quartz  
crystal; overtone crystals should not be used.  
When the XIN/REF pin is driven by a crystal, it is important  
to set the internal inverter oscillator drive strength and  
tuning/load capacitor values correctly to achieve the best  
clock performance. These values are programmable  
Manual Switchover Mode  
When SM[1:0] is "0x", the redundant inputs are in manual  
switchover mode. In this mode, CLKSEL pin is used to  
switch between the primary and secondary clock sources.  
As previously mentioned, the primary and secondary clock  
source setting is determined by the PRIMSRC bit. During  
the switchover, no glitches will occur at the output of the  
device, although there may be frequency and phase drift,  
depending on the exact phase and frequency relationship  
between the primary and secondary clocks.  
2
through I C interface to allow for maximum compatibility  
with crystals from various manufacturers, processes,  
performances, and qualities. The internal load capacitors  
are true parallel-plate capacitors for ultra-linear  
performance. Parallel-plate capacitors were chosen to  
reduce the frequency shift that occurs when non-linear load  
capacitance interacts with load, bias, supply, and  
temperature changes. External non-linear crystal load  
capacitors should not be used for applications that are  
sensitive to absolute frequency requirements. The value of  
the internal load capacitors are determined by XTAL[4:0]  
bits. The load capacitance can be set with a resolution of  
0.125pF for a total crystal load ranging from 3.5pF to 7.5pF.  
Check with the crystal vendor's load capacitance  
specification for the exact setting to tune the internal load  
capacitor. The following equation governs how the total  
internal load capacitance is set.  
Automatic Switchover Mode  
The redundant inputs are in automatic switchover mode.  
Automatic switchover mode has revertive functionality. The  
input clock selection will switch to the secondary clock  
source when there are no transitions on the primary clock  
source for two secondary clock cycles. If both reference  
clocks are at different frequencies, the device will always  
remain on the primary clock unless it is absent for two  
secondary clock cycles. The secondary clock must always  
run at a frequency less than or equal to the primary clock  
frequency.  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
6
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Reference Divider, Feedback Divider, and  
Output Divider  
Q[6:0]  
PM  
0
Output Divider  
Each PLL incorporates a 7-bit reference divider (D[6:0]) and  
a 12-bit feedback divider (N[11:0]) that allows the user to  
generate four unique non-integer-related frequencies. Each  
output divide supports 8-bit output-divider (PM and Q[7:0]).  
The following equation governs how the output frequency is  
calculated.  
111 1111  
Disabled  
1
/1  
<111 1111  
0
/2  
1
/((Q[6:0] + 2) * 2)  
M
Note that the actual 7-bit Q-divider value has a 2 added to  
the integer value Q and the outputs are routed through  
another div/2 block. The output divider should never be  
disabled unless the output bank will never be used during  
normal operation. The output frequency range for LVTTL  
outputs are from 4.9kHz to 200MHz. The output frequency  
for LVPECL/LVDS/HCSL outputs range from 4.9kHz to  
500MHz.  
F *  
=
FOUT  
( D )  
IN  
(Eq. 1)  
ODIV  
Where FIN is the reference frequency, M is the total  
feedback-divider value, D is the reference divider value,  
ODIV is the total output-divider value, and FOUT is the  
resulting output frequency.  
For PLL0,  
Spread Spectrum Generation (PLL0)  
PLL0 supports spread spectrum generation capability,  
which users have the option of turning on or off. Spread  
spectrum profile, frequency, and spread amplitude are fully  
programmable. The programmable spread spectrum  
generation parameters are TSSC[3:0], NSSC[2:0],  
SS_OFFSET[5:0], SD[3:0], DITH, and X2 bits. These bits  
are in the memory address from 0xAC to 0xBD for PLL0.  
The spread spectrum generation on PLL0 can be  
enabled/disabled using the TSSC[3:0] bits. To enable  
spread spectrum, set TSSC > '0' and set NSSC[2:0],  
SS_OFFSET[5:0], SD[3:0], and the A[3:0] (in the total M  
value) accordingly. To disable spread spectrum generation,  
set TSSC = '0'.  
M = 2 * N + A + 1 (for A>0)  
M = 2 * N (for A = 0)  
For PLL1, PLL2 and PLL3,  
M = N  
PM and Q[6:0] are the bits used to program the 8-bit  
output-dividers for outputs OUT1-6. OUT0 does not have  
any output divide along its path. The 8-bit output-dividers  
will bypass or divide down the output banks' frequency with  
even integer values ranging from 2 to 256.  
TSSC[3:0]  
There is the option to choose between disabling the  
output-divider, utilizing a div/1, a div/2, or the 7-bit Q-divider  
by using the PM bit. If the output is disabled, it will be driven  
High, Low or High Impedance, depending on OEM[1:0].  
Each bank, except for OUT0, has a PM bit. When disabled,  
no clocks will appear at the output of the divider, but will  
remain powered on. The output divides selection table is  
shown below.  
These bits are used to determine the number of  
phase/frequency detector cycles per spread spectrum cycle  
(ssc) steps. The modulation frequency can be calculated  
with the TSSC bits in conjunction with the NSSC bits. Valid  
TSSC integer values for the modulation frequency range  
from 5 to 14. Values of 0 – 4 and 15 should not be used.  
NSSC[2:0]  
These bits are used to determine the number of  
delta-encoded samples used for a single quadrant of the  
spread spectrum waveform. All four quadrants of the spread  
spectrum waveform are mirror images of each other. The  
modulation frequency is also calculated based on the NSSC  
bits in conjunction with the TSSC bits. Valid NSSC integer  
values range from 1 to 6. Values of 0 and 7 should not be  
used.  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
7
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
SS_OFFSET[5:0]  
Modulation frequency:  
These bits are used to program the fractional offset with  
respect to the nominal M integer value. For center spread,  
the SS_OFFSET is set to '0' so that the spread spectrum  
waveform is centered about the nominal M (Mnom) value.  
For down spread, the SS_OFFSET > '0' such the spread  
spectrum waveform is centered about the (Mideal -1  
+SS_Offset) value. The downspread percentage can be  
thought of in terms of center spread. For example, a  
downspread of -1% can also be considered as a center  
spread of 0.5% but with Mnom shifted down by one and  
offset. The SS_OFFSET has integer values ranging from 0  
to 63.  
FPFD = FIN / D (Eq. 6)  
FVCO = FPFD * MNOM (Eq. 7)  
FSSC = FPFD / (4 * Nssc * Tssc) (Eq. 8)  
Spread:  
= SD0 + SD1 + SD2 + + SD11  
the number of samples used depends on the NSSC value  
 63 - SS_OFFSET  
SD[3:0]  
Spread% = (* 100)/(64 * (2*N[11:0] + A[3:0] + 1) (Eq. 9)  
Max Spread% / 100 = 1 / MNOM or 2 / MNOM (X2=1)  
These bits are used to shape the profile of the spread  
spectrum waveform. These are delta-encoded samples of  
the waveform. There are twelve sets of SD samples. The  
NSSC bits determine how many of these samples are used  
for the waveform. The sum of these delta-encoded samples  
(sigma delta- encoded samples) determine the amount of  
spread and should not exceed (63 - SS_OFFSET). The  
maximum spread is inversely proportional to the nominal M  
integer value.  
DITH  
This bit is used for dithering the sigma-delta-encoded  
samples. This will randomize the least-significant bit of the  
input to the spread spectrum modulator. Set the bit to '1' to  
enable dithering.  
X2  
This bit will double the total value of the  
sigma-delta-encoded-samples which will increase the  
amplitude of the spread spectrum waveform by a factor of  
two. When X2 is '0', the amplitude remains nominal but if set  
to '1', the amplitude is increased by x2. The following  
equations govern how the spread spectrum is set:  
TSSC = TSSC[3:0] + 2 (Eq. 2)  
NSSC = NSSC[2:0] * 2 (Eq. 3)  
SD[3:0]K = SJ+1(unencoded) - SJ(unencoded) (Eq. 4)  
where SJ is the unencoded sample out of a possible 12 and  
SDK is the delta-encoded sample out of a possible 12.  
Amplitude = ((2*N[11:0] + A[3:0] + 1) * Spread% / 100) /2  
(Eq. 5)  
if 1 < Amplitude < 2, then set X2 bit to '1'.  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
8
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Tssc = 14 + 2 = 16  
Nssc = 6 × 2 = 12  
Nssc × Tssc = 192  
Profile:  
Waveform starts with SS_OFFSET, SS_OFFSET + SDJ,  
SS_OFFSET + SDJ+1, etc.  
Spread Spectrum Using Sinusoidal Profile  
Use Eq.10 to determine the value of the  
sigma-delta-encoded samples.  
2% = * 100)/(64 × 48)  
= 61.4  
Either round up or down to the nearest integer value.  
Therefore, we end up with 61 or 62 for sigma-delta-encoded  
samples. Since the sigma-delta-encoded samples must not  
exceed 63 with SS_OFFSET set to '0', 61 or 62 is well within  
the limits. It is the discretion of the user to define the shape  
of the profile that is better suited for the intended application.  
Using Eq. 9 again, the actual spread for the  
sigma-delta-encoded samples of 56 and 57 are 1.99% and  
2.02%, respectively.  
Use Eq.10 to determine if the X2 bit needs to be set;  
Amplitude = 48 × (1.99 or 2.02) / 100/2 = 0.48 < 1  
Therefore, the X2 = '0 '. The dither bit is left to the discretion  
of the user.  
Example  
FIN = 25MHz, FOUT = 100MHz, Fssc = 33kHz with center  
spread of 2%. Find the necessary spread spectrum  
register settings.  
The example above was of a center spread using spread  
spectrum. For down spread, the nominal M value can be set  
one integer value lower to 47.  
Since the spread is center, the SS_OFFSET can be set to  
'0'. Solve for the nominal M value; keep in mind that the  
nominal M should be chosen to maximize  
Note that the 5V49EE502 should not be programmed with  
TSSC > '0', SS_OFFSET = '0', and SD = '0' in order to  
prevent an unstable state in the modulator.  
the VCO. Start with D = 1, using Eq.6 and Eq.7.  
MNOM = 1200MHz / 25MHz = 48  
The PLL loop bandwidth must be at least 10x the  
modulation frequency along with higher damping (larger  
uz) to prevent the spread spectrum from being filtered and  
reduce extraneous noise. Refer to the LOOP FILTER  
section for more detail on uz. The A[3:0] must be used for  
spread spectrum, even if the total multiplier value is an even  
integer.  
Using Eq.4, we arbitrarily choose N = 22, A = 3. Now that we  
have the nominal M value, we can determine TSSC and  
NSSC by using Eq.8.  
Nssc × Tssc = 25MHz / (33kHz × 4) = 190  
However, using Eq. 2 and Eq.3, we find that the closest  
value is when TSSC = 14 and NSSC = 6. Keep in mind to  
maximize the number of samples used to enhance the  
profile of the spread spectrum waveform.  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
9
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Zero capacitor (Cz) = 196pF + CZ × 217pF  
Pole capacitor (Cp) = 15pF  
Spread Spectrum Generation (PLL3)  
PLL3 support spread spectrum generation capability, which  
users have the option of turning on and off. Spread  
spectrum profile, frequency, and spread are fully  
programmable (within limits). The technique is different from  
that used in PLL0. The programmable spread spectrum  
generation parameters are SS_D3[7:0], SSVCO[15:0],  
SSENB, IP3[4:0] and RZ3[3:0] bits. These bits are in the  
memory address range of 0x4C to 0x85 for PLL3. The  
spread spectrum generation on PLL3 can be  
Charge pump (Ip) = 6 × (IP[0] + 2 × IP[1]+4 × IP[2]) uA  
VCO gain (KVCO) = 900 MHz/V × 2  
The following equations govern how the loop filter is set for  
PLL3:  
enabled/disabled using the SSENB bit. To enable spread  
spectrum, set SSENB = '1'.  
For Non-Spread Spectrum Operation:  
(12.5 + 12.5*(RZ[1] + 2*RZ[2] + 4*RZ[3]))  
Resistor(Rz)=  
kOhms (Eq. 12)  
kOhms (Eq. 13)  
* RZ[0] +6*(1RZ[0])  
For Spread Enabled:  
Spread spectrum is configured using SS_D3(spread  
spectrum reference divide)  
For Spread Spectrum Operation:  
(62.5 + 12.5*(RZ[1] + 2*RZ[2] + 4*RZ[3]))  
F
IN  
(Eq. 10)  
=
SS_D3  
Resistor(Rz)=  
4 * F  
* RZ[0] +6*(1RZ[0])  
MOD  
and SSVCO (spread spectrum loop feedback counter).  
Zero capacitor (Cz) = 250pF  
Pole capacitor (Cp) = 15pF  
F
VCO  
( 1 + SS/400) + 5]  
(Eq. 11)  
SSVCO [0.5 *  
*
=
F
MOD  
For Non-Spread Spectrum Operation:  
SS is the total Spread Spectrum amount (I.e. center spread  
+0.5% has a total spread of 1.0% and down spread -0.5%  
has a total spread of 0.5%.)  
24* (1+(2* IP[0]) +(4* IP[1]) +(8* IP[2]))  
Charge  
A (Eq. 14)  
A (Eq. 14)  
=
pump (Ip)  
3+(5* IP[3]) +(11* IP[4])  
Loop Filter  
For Spread Spectrum Operation:  
The loop filter for each PLL can be programmed to optimize  
the jitter performance. The low-pass frequency response of  
the PLL is the mechanism that dictates the jitter transfer  
characteristics. The loop bandwidth can be extracted from  
the jitter transfer. A narrow loop bandwidth is good for jitter  
attenuation while a wide loop bandwidth is best for low-jitter  
frequency generation. The specific loop filter components  
that can be programmed are the resistor via the RZ[3:0] bits,  
zero capacitor via the CZ bit (for PLL0, PLL1 and PLL2), and  
the charge pump current via the IP[2:0] bits (for PLL0, PLL1  
and PLL2) or IP[3:0] (for PLL3).  
12* (1+(2* IP[0]) +(4* IP[1]) +(8* IP[2]))  
Charge  
pump (Ip)  
=
27+(5* IP[3]) +(11* IP[4])  
VCO gain (KVCO) = 900 MHz/V × 2  
The following equations govern how the loop filter is set for  
PLL0 - PLL2:  
Resistor (Rz) = (RZ[0] + 2 × RZ[1]+4 × RZ[2] + 8 × RZ[3]) ×  
4.0kOhm  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
10  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
PLL Loop Bandwidth:  
Charge pump gain (K) = Ip / 2  
VCO gain (KVCO) = 900 MHz/V × 2  
M = Total multiplier value (See the Reference Divider,  
Feedback Divider and Output Divider section for more  
detail)  
c = (Rz × K× KVCO × Cz)/(M × (Cz + Cp))  
Fc = c / 2  
Note, the phase/frequency detector frequency (FPFD) is  
typically seven times the PLL closed-loop bandwidth (Fc)  
but too high of a ratio will reduce the phase margin thus  
compromising loop stability.  
To determine if the loop is stable, the phase margin (m)  
needs to be calculated as follows.  
Phase Margin:  
z = 1 / (Rz × Cz)  
p = (Cz + Cp)/(Rz × Cz × Cp)  
m = (360 / 2) * [tan-1(c/ z) - tan-1(c/ p)]  
To ensure stability in the loop, the phase margin is  
recommended to be > 60° but too high will result in the lock  
time being excessively long. Certain loop filter parameters  
would need to be compromised to not only meet a required  
loop bandwidth but to also maintain loop stability.  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
11  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
SEL[2:0] Function  
The 5V49EE502 can support up to six unique  
configurations. Users may pre-programmed all these  
configurations, and select the configurations using SEL[2:0]  
pins. Alternatively, users may use I C interface to configure  
these registers on-the-fly.  
SD/OE Pin Function  
The polarity of the SD/OE signal pin can be programmed to  
be either active HIGH or LOW with the SP bit (0x02). When  
SP is “0” (default), the pin becomes active LOW and when  
SP is “1”, the pin becomes active HIGH. The SD/OE pin can  
be configured as either to shutdown the PLLs or to  
enable/disable the outputs.  
2
SEL2 SEL1 SEL0  
Configuration Selections  
Select CONFIG0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
OUTn  
Select CONFIG1  
Select CONFIG2  
Select CONFIG3  
Select CONFIG4  
Select CONFIG5  
Reserved (Do not use)  
Reserved (Do not use)  
SP  
SD/OE Input  
OE  
OS  
Global Shutdown  
SH  
Truth Table  
SH bit SP bit OSn bit OEn bit SD/OE  
OUTn  
High-Z2  
Enabled  
Enabled  
Suspended  
Crystal/Clock Selection  
0
0
0
0
0
0
0
0
0
1
1
1
x
0
1
1
x
x
0
1
XTCLKSEL bit is used to bypass a crystal oscillator circuit  
when external clock source is used.  
PRIMSRC bit is used to select a primary clock from  
XIN/REF and CLKIN.  
0
0
0
0
1
1
1
1
0
1
1
1
x
0
1
1
x
x
0
1
High-Z2  
Enabled  
Suspended  
Enabled  
High-Z2  
Enabled  
Enabled  
High-Z2  
Enabled  
Suspended  
Suspended 1  
PRIMSRC bit Primary Secondary  
0
1
XIN/REF CLKIN  
1
1
1
0
0
0
0
1
1
x
0
1
0
0
0
CLKIN  
XIN/REF  
CLKSEL input  
Clock Source  
1
1
1
1
1
1
0
1
1
x
0
1
0
0
0
0
1
Primary Clock Source  
Secondary Clock Source  
1
x
x
x
1
CLKSEL  
PRIMSRC Reference Clock  
0
0
1
1
0
1
0
1
XIN/REF  
CLKIN  
CLKIN  
Note 1 : Global Shutdown  
Note 2 : Hi-Z regardless of OEM bits  
XIN/REF  
Configuration OUTx IO Standard  
Primary to Secondary to  
Secondary Primary  
SMx[1:0] Switching Mode  
Users can configure the individual output IO standard from  
a specified 1.8V to 3.3V power supplies. Each output can  
support 1.8V to 3.3V LVTTL. Each output pair can support  
LVDS, LVPECL or HCSL from the specified 3.3V power  
supply. OUT0 can only be 3.3V single-ended output.  
0x  
10  
11  
Manual  
Auto  
Auto-Revertive  
No  
Yes  
Yes  
No  
No  
Yes  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
12  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
The frame formats are shown in the following illustration.  
Programming the Device  
2
I C may be used to program the 5V49EE502.  
– Device (slave) address = 7'b1101010  
I2C Programming  
2
The 5V49EE502 is programmed through an I C-Bus serial  
2
interface, and is an I C slave device. The read and write  
transfer formats are supported. The first byte of data after a  
write frame to the correct slave address is interpreted as the  
register address; this address auto-increments after each  
byte written or read.  
Framing  
Each frame starts with a “Start Condition” and ends with an “End Condition”. These are both generated by the Master  
device.  
MSB  
LSB  
1
1
0
1
0
1
0
R/W  
7-bit slave address  
R/W  
0 – Slave will be written by master  
1 – Slave will be read by master  
ACK from Slave  
The first byte transmitted by the Master is the Slave Address followed by the R/W bit.  
The Slave acknowledges by sending a “1” bit.  
2
First Byte Transmitted on I C Bus  
External I2C Interface Condition  
KEY:  
From Master to Slave  
From Master to Slave, but can be omitted if followed by the correct sequence  
Normally, data transfer is terminated by a STOP condition generated by the Master. However, if the Master still wishes to communicate on the bus, it can  
generate a separate START condition, and address another Slave address without first generating a STOP condition.  
From Slave to Master  
SYMBOLS:  
ACK - Acknowledge (SDAT LOW)  
NACK – Not Acknowledge (SDAT HIGH)  
SR – Repeated Start Condition  
S – START Condition  
P – STOP Condition  
Progwrite  
S
Address R/W  
7-bits  
ACK Command Code ACK  
1-bit 8-bits: xxxx xx00 1-bit  
Register  
ACK  
Data ACK  
P
0
8-bits  
1-bit  
8-bits 1-bit  
Progwrite Command Frame  
Writes can continue as long as a Stop condition is not sent and each byte will increment the register address.  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
13  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Progread  
Note: If the expected read command is not from the next higher register to the previous read or write command, then set a  
known “read” register address prior to a read operation by issuing the following command:  
S
Address R/W  
7-bits  
ACK Command Code ACK  
1-bit 8-bits: xxxx xx00 1-bit  
Register  
ACK  
P
0
8-bits  
1-bit  
Prior to Progread Command Set Register Address  
The user can ignore the STOP condition above and use a repeated START condition instead, straight after the slave  
acknowledgement bit (i.e., followed by the Progread command):  
S
Address R/W ACK ID Byte ACK Data_1 ACK Data_2 ACK Data_last NACK  
7-bits 1-bit 8-bits 1-bit 8-bits 1-bit 8-bits 1-bit 8-bits 1-bit  
P
1
Progread Command Frame  
Progsave  
S
Address R/W  
7-bits  
ACK Command Code ACK  
1-bit 8-bits: xxxx xx01 1-bit  
P
0
Note:  
PROGWRITE is for writing to the 5V49EE502 registers.  
PROGREAD is for reading the 5V49EE502 registers.  
PROGSAVE is for saving all the contents of the 5V49EE502 registers to the EEPROM.  
PROGRESTORE is for loading the entire EEPROM contents to the 5V49EE502 registers.  
Progrestore  
S
Address R/W  
7-bits  
ACK Command Code ACK  
1-bit 8-bits: xxxx xx10 1-bit  
P
0
EEPROM Interface  
The 5V49EE502 can also store its configuration in an internal EEPROM. The contents of the device's internal programming  
registers can be saved to the EEPROM by issuing a save instruction (ProgSave) and can be loaded back to the internal  
programming registers by issuing a restore instruction (ProgRestore).  
2
To initiate a save or restore using I C, only two bytes are transferred. The Device Address is issued with the read/write bit  
set to “0”, followed by the appropriate command code. The save or restore instruction executes after the STOP condition is  
issued by the Master, during which time the 5V49EE502 will not generate Acknowledge bits. The 5V49EE502 will  
2
acknowledge the instructions after it has completed execution of them. During that time, the I C bus should be interpreted  
as busy by all other users of the bus.  
On power-up of the 5V49EE502, an automatic restore is performed to load the EEPROM contents into the internal  
programming registers. The 5V49EE502 will be ready to accept a programming instruction once it acknowledges its 7-bit I C  
address.  
2
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
14  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
I2C Bus DC Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
V
Input HIGH Level  
0.7xV  
IH  
DD  
V
Input LOW Level  
0.3xV  
V
IL  
DD  
V
Hysteresis of Inputs  
Input Leakage Current  
Output LOW Voltage  
0.05xV  
V
HYS  
DD  
I
1.0  
0.4  
µA  
V
IN  
V
I
= 3 mA  
OL  
OL  
I2C Bus AC Characteristics for Standard Mode  
Symbol  
Parameter  
Serial Clock Frequency (SCL)  
Bus free time between STOP and START  
Setup Time, START  
Min  
0
Typ  
Max  
Unit  
F
100  
kHz  
µs  
µs  
µs  
ns  
µs  
µs  
pF  
ns  
ns  
µs  
µs  
µs  
SCLK  
t
4.7  
4.7  
4
BUF  
t
SU:START  
HD:START  
t
Hold Time, START  
t
Setup Time, data input (SDA)  
250  
0
SU:DATA  
1
t
Hold Time, data input (SDA)  
HD:DATA  
t
Output data valid from clock  
Capacitive Load for Each Bus Line  
Rise Time, data and clock (SDAT, SCLK)  
Fall Time, data and clock (SDAT, SCLK)  
HIGH Time, clock (SCLK)  
3.45  
400  
OVD  
C
B
t
1000  
300  
R
t
F
t
4
4.7  
4
HIGH  
t
LOW Time, clock (SCLK)  
LOW  
t
Setup Time, STOP  
SU:STOP  
Note 1: A device must internally provide a hold time of at least 300 ns for the SDAT signal (referred to the V (MIN)  
IH  
of the SCLK signal) to bridge the undefined region of the falling edge of SCLK.  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
15  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
I2C Bus AC Characteristics for Fast Mode  
Symbol  
Parameter  
Serial Clock Frequency (SCL)  
Bus free time between STOP and START  
Setup Time, START  
Min  
0
Typ  
Max  
Unit  
kHz  
µs  
F
400  
SCLK  
t
1.3  
0.6  
0.6  
100  
0
BUF  
t
µs  
SU:START  
HD:START  
t
Hold Time, START  
µs  
t
Setup Time, data input (SDA)  
ns  
SU:DATA  
1
t
Hold Time, data input (SDA)  
µs  
HD:DATA  
t
Output data valid from clock  
Capacitive Load for Each Bus Line  
Rise Time, data and clock (SDA, SCL)  
Fall Time, data and clock (SDA, SCL)  
HIGH Time, clock (SCL)  
0.9  
400  
300  
300  
µs  
OVD  
C
pF  
ns  
B
t
20 + 0.1xC  
20 + 0.1xC  
0.6  
R
B
t
ns  
F
B
t
µs  
HIGH  
t
LOW Time, clock (SCL)  
1.3  
µs  
LOW  
t
Setup Time, STOP  
0.6  
µs  
SU:STOP  
Note 1: A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the V (MIN)  
IH  
of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
16  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Absolute Maximum Ratings  
Stresses above the ratings listed below can cause permanent damage to the 5V49EE502. These ratings, which are  
standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any  
other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only  
over the recommended operating temperature range.  
Symbol  
Description  
Min  
-0.5  
-0.5  
-0.5  
Max  
+4.6  
+4.6  
Unit  
V
V
Internal Power Supply Voltage  
DD  
1
V
Input Voltage  
V
I
1
V
Output Voltage (not to exceed 4.6V)  
Junction Temperature  
V
+0.5  
DD  
V
O
T
150  
°C  
°C  
J
T
Storage Temperature  
-65  
150  
STG  
1.Input negative and output voltage ratings may be exceeded if the input and output current ratings are observed.  
Recommended Operation Conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
V
Power supply voltage for V pins supporting core and  
DD  
outputs  
3.135  
3.3  
3.465  
V
V
V
DD  
V
Power supply voltage for crystal oscillator. Use filtered  
analog power supply if available.  
3.135  
3.135  
3.3  
3.3  
3.465  
3.465  
DDX  
AV  
Analog power supply voltage. Use filtered analog  
power supply if available.  
DD  
V
3.3V VDDO Range  
3.0  
2.25  
1.7  
3.3  
2.5  
1.8  
3.3  
3.6  
2.75  
1.9  
V
V
V
V
DDOX  
2.5V VDDO Range for 2.5V LVTTL  
1.8V VDDO Range for 1.8V LVTTL  
Power supply voltage for V pins supporting  
DD  
LVDS/LVPECL/HCSL outputs  
3.135  
3.465  
T
Operating temperature, ambient  
-40  
+85  
15  
8
°C  
pF  
A
C
Maximum load capacitance (3.3V LVTTL only)  
Maximum load capacitance (1.8V/2.5V LVTTL only)  
External reference crystal  
LOAD_OUT  
pF  
F
8
1
50  
200  
5
MHz  
IN  
External reference clock CLKIN  
t
Power up time for all V s to reach minimum specified  
DD  
voltage (power ramps must be monotonic)  
0.05  
ms  
PU  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
17  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Capacitance (T = +25 °C)  
A
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
C
Input Capacitance (CLKIN, CLKSEL, SD/OE,  
SDA, SCL, SEL[2:0])  
3
7
pF  
IN  
Pull-down  
Resistor  
CLKIN, CLKSEL, SD/OE, SEL[2:0]  
180  
k  
Crystal Specifications  
XTAL_FREQ Crystal frequency  
8
50  
MHz  
pF  
pF  
V
XTAL_MIN  
Minimum crystal load capacitance  
3.5  
XTAL_MAX Maximum crystal load capacitance  
35.5  
3.2  
XTAL_V  
Voltage swing (peak-to-peak, nominal)  
1.5  
2.3  
PP  
DC Electrical Characteristics for 3.3-V LVTTL 1  
Symbol  
Parameter  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
V
2.4  
V
DD  
OH  
V
0.4  
V
OL  
V
2
V
IH  
V
0.8  
10  
V
IL  
OZDD  
I
Output Leakage Current 3-state outputs. V = V or GND,  
DD  
µA  
O
V
= 3.6V  
DD  
Note 1: See “Recommended Operating Conditions” table.  
Power Supply Characteristics for PLLs and LVTTL Outputs  
Total Supply Current Vs PLL Frequency  
Supply current Vs Output Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
0
200  
400  
600  
800  
1000  
1200  
0
25  
50  
75  
100  
125  
150  
175  
200  
PLL Frequency(MHz)  
Output Frequency(MHz)  
No outputs  
4 outputs on  
REF output on  
5 outputs on  
2 outputs on  
3 outputs on  
PLL0 ON IDD(mA)  
PLL0+PLL1 On IDD(mA)  
All Plls ON IDD(mA)  
PLL0+PLL1+PLL2 on IDD(mA)  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
18  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
DC Electrical Characteristics for LVDS  
Symbol  
Parameter  
Min  
247  
Typ  
Max  
454  
-454  
50  
Unit  
mV  
mV  
mV  
V
V
(+) Differential Output Voltage for the TRUE binary state  
(-) Differential Output Voltage for the FALSE binary state  
OT  
V
-247  
OT  
V
Change in V between Complimentary Output States  
OT  
OT  
V
Output Common Mode Voltage (Offset Voltage)  
1.125  
1.2  
1.375  
50  
OS  
V
Change in V between Complimentary Output States  
OS  
mV  
mA  
mA  
OS  
I
Outputs Short Circuit Current, V  
+ or V  
- = 0V or V  
+ = V  
9
6
24  
OS  
OUT  
OUT  
DD  
I
Differential Outputs Short Circuit Current, V  
-
12  
OSD  
OUT  
OUT  
Power Supply Characteristics for LVDS Outputs 1  
Symbol  
Parameter  
Test Conditions 2  
Typ  
Max  
Unit  
I
Quiescent V Power  
DD  
Supply Current  
REF = LOW  
Outputs enabled, all outputs unloaded  
68  
90  
mA  
µA/MHz  
mA  
DDQ  
I
Dynamic V Power Supply  
DD  
Current per Output  
V
= Max., C = 0pF  
DD L  
30  
45  
DDD  
I
Total Power V Supply  
DD  
Current  
F
= 100MHz, C = 2pF  
L
86  
130  
150  
190  
TOT  
REFERENCE CLOCK  
REFERENCE CLOCK  
REFERENCE CLOCK  
F
F
= 200MHz, C = 2pF  
L
100  
122  
= 400MHz, C = 2pF  
L
Note 1: Output banks 4 and 5 are toggling. Other output banks are powered down.  
Note 2: The termination resistors are excluded from these measurements.  
DC Electrical Characteristics for LVPECL  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
V
Output Voltage HIGH, terminated through 50tied to V - 2V  
DD  
V
- 1.2  
V - 0.9  
DD  
V
V
V
OH  
DD  
V
Output Voltage LOW, terminated through 50tied to V - 2V  
DD  
V
- 1.95  
V
- 1.61  
DD  
OL  
DD  
V
Peak-to-Peak Output Voltage Swing  
0.55  
0.93  
SWING  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
19  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Power Supply Characteristics for LVPECL Outputs 1  
Symbol  
Parameter  
Test Conditions 2  
Typ  
Max  
Unit  
I
Quiescent V Power  
DD  
Supply Current  
REF = LOW  
Outputs enabled, all outputs unloaded  
86  
110  
mA  
DDQ  
I
Dynamic V Power Supply  
DD  
Current per Output  
V
= Max., C = 0pF  
L
35  
50  
µA/MHz  
mA  
DDD  
DD  
I
Total Power V Supply  
DD  
Current  
F
F
F
= 100MHz, C = 2pF  
L
120  
130  
140  
180  
190  
210  
TOT  
REFERENCE CLOCK  
REFERENCE CLOCK  
REFERENCE CLOCK  
= 200MHz, C = 2pF  
L
= 400MHz, C = 2pF  
L
Note 1: Output banks 4 and 5 are toggling. Other output banks are powered down.  
Note 2: The termination resistors are excluded from these measurements.  
DC Electrical Characteristics for HCSL  
Symbol  
Parameter  
Min  
660  
-150  
250  
Typ  
Max  
Unit  
mV  
V
Output Voltage HIGH  
Output Voltage LOW  
Absolute  
700  
0
850  
27  
OH  
V
mV  
OL  
Crossing Point  
Voltage  
350  
550  
mV  
Power Supply Characteristics for HCSL Outputs 1  
Symbol  
Parameter  
Test Conditions 2  
Typ  
Max  
Unit  
I
Quiescent V Power  
DD  
Supply Current  
REF = LOW  
Outputs enabled, all outputs unloaded  
68  
90  
mA  
DDQ  
I
Dynamic V Power Supply  
DD  
Current per Output  
V
= Max., C = 0pF  
L
30  
45  
µA/MHz  
mA  
DDD  
DD  
I
Total Power V Supply  
DD  
Current  
F
= 100MHz, C = 2pF  
L
86  
130  
150  
190  
TOT  
REFERENCE CLOCK  
REFERENCE CLOCK  
REFERENCE CLOCK  
F
F
= 200MHz, C = 2pF  
L
100  
122  
= 400MHz, C = 2pF  
L
Note 1: Output banks 4 and 5 are toggling. Other output banks are powered down.  
Note 2: The termination resistors are excluded from these measurements.  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
20  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
AC Timing Electrical Characteristics  
(Spread Spectrum Generation = OFF)  
Symbol  
Parameter  
Test Conditions  
Input frequency limit (CLKIN)  
Min. Typ. Max. Units  
1
fIN  
1
200  
100  
200  
500  
MHz  
MHz  
MHz  
Input Frequency  
Input frequency limit (XIN/REF)  
Single ended clock output limit (LVTTL)  
8
1 / t1  
Output Frequency  
0.001  
0.001  
Differential clock output limit (LVPECL/  
LVDS/HCSL)  
fVCO  
fPFD  
fBW  
VCO Frequency  
PFD Frequency  
Loop Bandwidth  
VCO operating frequency range  
PFD operating frequency range  
100  
0.5 1  
0.01  
1200  
100  
10  
MHz  
MHz  
MHz  
Based on loop filter resistor and capacitor  
values  
t2  
t3  
Input Duty Cycle  
Duty Cycle for input  
40  
45  
60  
55  
%
%
Output Duty Cycle  
Measured at V /2, all outputs except  
DD  
Reference output  
Measured at V /2, Reference output  
DD  
40  
60  
%
t4 2  
Slew Rate, SLEW[1:0] = 00  
Slew Rate, SLEW[1:0] = 01  
Slew Rate, SLEW[1:0] = 10  
Slew Rate, SLEW[1:0] = 11  
Single-ended 3.3V LVCMOS output clock rise  
and fall time, 20% to 80% of V  
(Output Load = 5pF)  
3.5  
2.75  
2
V/ns  
DD  
Single-ended 3.3V LVCMOS output clock rise  
and fall time, 20% to 80% of V  
(Output Load = 5pF)  
DD  
Single-ended 3.3V LVCMOS output clock rise  
and fall time, 20% to 80% of V  
(Output Load = 5pF)  
DD  
Single-ended 3.3V LVCMOS output clock rise  
and fall time, 20% to 80% of V  
(Output Load = 5pF)  
1.25  
DD  
t5  
Rise Times  
Fall Times  
Rise Times  
Fall Times  
Rise Times  
Fall Times  
Clock Jitter 6  
LVDS, 20% to 80%  
600  
600  
600  
600  
400  
400  
80  
ps  
ps  
ps  
LVDS, 80% to 20%  
LVPECL, 20% to 80%  
LVPECL, 80% to 20%  
HCSL, From 0.175 V to 0.525 V  
HCSL, From 0.525 V to 0.175 V  
175  
175  
700  
700  
100  
t7  
Peak-to-peak period jitter, 1PLL, multiple  
output frequencies switching, LVTTL outputs  
ps  
ps  
ps  
Peak-to-peak period jitter, all 4 PLLs on,  
LVTTL outputs3  
200  
60  
270  
80  
Peak-to-peak period jitter, 1PLL, multiple  
output frequencies switching, LVPECL, LVDS  
or HCSL outputs  
Peak-to-peak period jitter, all 4 PLLs on,  
LVPECL, LVDS or HCSL outputs  
120  
160  
ps  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
21  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Symbol  
Parameter  
Test Conditions  
Min. Typ. Max. Units  
t8  
Output Skew  
Skew between output to output on the same  
bank  
75  
ps  
t9 4  
Lock Time  
Lock Time  
PLL lock time from power-up  
10  
20  
2
ms  
ms  
t10 5  
PLL lock time from shutdown mode  
1.Practical lower frequency is determined by loop filter settings.  
2.A slew rate of 2.75V/ns or greater should be selected for output frequencies of 100MHz or higher.  
3.Jitter measured with clock outputs of 27MHz, 48MHz, 24.576MHz, 74.25MHz and 25MHz.  
4.Includes loading the configuration bits from EEPROM to PLL registers. It does not include EEPROM programming/write time.  
5.Actual PLL lock time depends on the loop configuration.  
6. Not guaranteed until customer specific configuration is approved by IDT.  
Spread Spectrum Generation Specifications  
Symbol  
Parameter  
Description  
Min Typ Max  
Unit  
MHz  
kHz  
1
f
Input Frequency Input Frequency Limit  
Mod Frequency Modulation Frequency  
1
400  
120  
-4.0  
2.0  
IN  
f
33  
MOD  
2
f
Spread Value  
Amount of Spread Value (programmable) – Down Spread  
Amount of Spread Value (programmable) – Center Spread  
-0.5  
%f  
OUT  
SPREAD  
0.25  
1.Practical lower frequency is determined by loop filter settings.  
2. Not guaranteed until customer specific configuration is approved by IDT.  
Test Circuits and Conditions  
VDDOx  
VDD  
0.1µF  
OUTx  
CLKOUT  
0.1µF  
CL  
GND  
Test Circuits for DC Outputs  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
22  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Other Termination Scheme (Block Diagram)  
2 pF  
CLKOUT  
OUTx  
OUTx  
CLKOUT  
5 pF  
CLKOUT  
2 pF  
GND  
GND  
LVTTL: 5 pF for each output  
LVDS: 100between differential outputs  
VDD-2V  
49.9 Ohm  
2 pF  
33 Ohm  
49.9 Ohm  
2 pF  
CLKOUT  
CLKOUT  
OUTx  
OUTx  
33 Ohm  
CLKOUT  
2 pF  
CLKOUT  
2 pF  
49.9 Ohm  
49.9 Ohm  
GND  
GND  
GND  
VDD-2V  
LVPECL  
HCSL  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
23  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Programming Registers Table  
Default  
Register  
Addr  
Bit #  
Description  
Hex  
Value  
00  
7
6
5
4
3
2
1
0
Reserved  
HW/SW  
0x00  
0x01  
0x02  
Hardware/Software Mode control  
HW/SW - 0=HW, 1=SW  
Reserved  
OE5  
SEL[2:0]  
OE1  
00  
02  
SEL[2:0] - selects configuration in  
SW mode  
SP  
OE6  
OE4  
OE3  
OE2  
OE0  
OEx=Output Power Suspend  
function for OUTx (‘1’=OUTx will be  
suspended on SD/OE pin. Disable  
mode is defined by OEMx bits),  
‘0’=outputs enabled and no  
association with OE pin (default).  
Reserved  
SH  
0x03  
0x04  
02  
0F  
OS*[6:0]  
OS*[6:0] - output suspend, active  
low. Overwrites OE setting.  
Reserved  
PLLS*[3:0]  
PLLS*[3:0] - PLL Suspend, active  
low  
SH - shutdown/OE configuration  
Reserved  
Reserved  
XTCLKSEL  
Reserved  
0x05  
04  
XTCLKSEL - crystal/clock select.  
0=crystal, 1=ICLK  
Reserved  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
00  
00  
00  
00  
10  
10  
10  
10  
10  
10  
00  
00  
00  
00  
00  
00  
01  
01  
01  
01  
01  
01  
00  
00  
00  
00  
00  
00  
10  
10  
10  
10  
10  
10  
XTAL[4:0]  
XTAL[4:0] - crystal cap  
PLL0 loop parameter  
Reserved  
Reserved  
CZ0_CFG4  
CZ0_CFG5  
CZ0_CFG0  
CZ0_CFG1  
CZ0_CFG2  
CZ0_CFG3  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
IP0[2:0]_CFG4  
IP0[2:0]_CFG5  
IP0[2:0]_CFG0  
IP0[2:0]_CFG1  
IP0[2:0]_CFG2  
IP0[2:0]_CFG3  
RZ0[3:0]_CFG4  
RZ0[3:0]_CFG5  
RZ0[3:0]_CFG0  
RZ0[3:0]_CFG1  
RZ0[3:0]_CFG2  
RZ0[3:0]_CFG3  
D0[6:0]_CFG0  
PLL0 input divider and input sell  
D0[6:0] - 127 step Ref Div  
D0 = 0 means power down.  
D0[6:0]_CFG1  
D0[6:0]_CFG2  
D0[6:0]_CFG3  
D0[6:0]_CFG4  
D0[6:0]_CFG5  
N0[7:0]_CFG4  
N - Feedback Divider  
2 - 4095 (values of “0” and “1” are  
not allowed) Total feedback with A,  
using provided calculation  
N0[7:0]_CFG5  
N0[7:0]_CFG0  
N0[7:0]_CFG1  
N0[7:0]_CFG2  
N0[7:0]_CFG3  
A0[3:0]_CFG0  
N0[11:8]_CFG0  
N0[11:8]_CFG1  
N0[11:8]_CFG2  
N0[11:8]_CFG3  
N0[11:8]_CFG4  
N0[11:8]_CFG5  
RZ1[3:0]_CFG4  
RZ1[3:0]_CFG5  
RZ1[3:0]_CFG0  
RZ1[3:0]_CFG1  
RZ1[3:0]_CFG2  
RZ1[3:0]_CFG3  
A0[3:0]_CFG1  
A0[3:0]_CFG2  
A0[3:0]_CFG3  
A0[3:0]_CFG4  
A0[3:0]_CFG5  
CZ1_CFG4  
CZ1_CFG5  
CZ1_CFG0  
CZ1_CFG1  
CZ1_CFG2  
CZ1_CFG3  
IP1[2:0]_CFG4  
PLL1 Loop Parameter  
IP1[2:0]_CFG5  
IP1[2:0]_CFG0  
IP1[2:0]_CFG1  
IP1[2:0]_CFG2  
IP1[2:0]_CFG3  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
24  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Default  
Register  
Bit #  
Addr  
Description  
Hex  
Value  
00  
00  
00  
00  
00  
00  
01  
01  
01  
01  
01  
01  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
01  
01  
01  
01  
01  
01  
80  
80  
80  
80  
80  
80  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
D1[6:0]_CFG0  
D1[6:0]_CFG1  
D1[6:0]_CFG2  
D1[6:0]_CFG3  
D1[6:0]_CFG4  
D1[6:0]_CFG5  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
PLL1 input divider and input sel  
D1[6:0] - 127 step Ref Div  
D1 = 0 means power down.  
N1[7:0]_CFG4  
N - Feedback Divider  
2 - 4095 (value of “0” is not allowed)  
Total feedback with A, using  
provided calculation  
N1[7:0]_CFG5  
N1[7:0]_CFG0  
N1[7:0]_CFG1  
N1[7:0]_CFG2  
N1[7:0]_CFG3  
N3[11:8]_CFG0  
N1[11:8]_CFG0  
N1[11:8]_CFG1  
N1[11:8]_CFG2  
N1[11:8]_CFG3  
N1[11:8]_CFG4  
N1[11:8]_CFG5  
RZ2[3:0]_CFG4  
RZ2[3:0]_CFG5  
RZ2[3:0]_CFG0  
RZ2[3:0]_CFG1  
RZ2[3:0]_CFG2  
RZ2[3:0]_CFG3  
PLL3 Feedback Divider  
N3[11:8]_CFG1  
N3[11:8]_CFG2  
N3[11:8]_CFG3  
N3[11:8]_CFG4  
N3[11:8]_CFG5  
CZ2_CFG4  
CZ2_CFG5  
CZ2_CFG0  
CZ2_CFG1  
CZ2_CFG2  
CZ2_CFG3  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
IP2[2:0]_CFG4  
PLL2 Loop Parameter  
IP2[2:0]_CFG5  
IP2[2:0]_CFG0  
IP2[2:0]_CFG1  
IP2[2:0]_CFG2  
IP2[2:0]_CFG3  
D2[6:0]_CFG0  
PLL2 Reference Divide and Input  
Select  
D2[6:0] - 127 step Ref Div  
D2 = 0 means power down.  
D2[6:0]_CFG1  
D2[6:0]_CFG2  
D2[6:0]_CFG3  
D2[6:0]_CFG4  
D2[6:0]_CFG5  
N2[7:0]_CFG4  
N2[7:0] - PLL2 Feedback Divider  
2 - 4095 (value of “0” is not  
allowed).  
N2[7:0]_CFG5  
N2[7:0]_CFG0  
N2[7:0]_CFG1  
N2[7:0]_CFG2  
N2[7:0]_CFG3  
(See Addr 0x4C:0x51 for N2[15:8])  
SSENB_CFG0  
SSENB_CFG1  
SSENB_CFG2  
SSENB_CFG3  
SSENB_CFG4  
SSENB_CFG5  
0
0
0
0
0
0
0
0
0
0
0
0
N2[11:8]_CFG0  
N2[11:8]_CFG1  
N2[11:8]_CFG2  
N2[11:8]_CFG3  
N2[11:8]_CFG4  
N2[11:8]_CFG5  
IP3[4]_CFG0  
IP3[4]_CFG1  
IP3[4]_CFG2  
IP3[4]_CFG3  
IP3[4]_CFG4  
IP3[4]_CFG5  
N2[11:8] - PLL2 Feedback Divide  
PLL3 Spread Spectrum  
SSENB - Spread Spectrum Enable  
SSENB = 1 means ON  
IP3[4:0] - PLL3 Charge Pump  
Current.  
1
Reserved  
XX  
1
Reserved  
Reserved  
Reserved  
XX  
1
XX  
1
XX  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
25  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Default  
Register  
Bit #  
Addr  
Description  
Hex  
Value  
00  
7
6
5
4
3
2
1
0
IP3[3:0]_CFG4  
RZ3[3:0]_CFG4  
RZ3[3:0]_CFG5  
RZ3[3:0]_CFG0  
RZ3[3:0]_CFG1  
RZ3[3:0]_CFG2  
RZ3[3:0]_CFG3  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
PLL3 Loop Parameter  
IP3[3:0]_CFG5  
IP3[3:0]_CFG0  
IP3[3:0]_CFG1  
IP3[3:0]_CFG2  
IP3[3:0]_CFG3  
00  
00  
00  
00  
00  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
D3[6:0]_CFG0  
D3[6:0]_CFG1  
D3[6:0]_CFG2  
D3[6:0]_CFG3  
D3[6:0]_CFG4  
D3[6:0]_CFG5  
03  
PLL3 Reference Divide and input  
sel  
D3[6:0] - 127 step Ref Div  
D3 = 0 means power down.  
03  
03  
03  
03  
03  
N3[7:0]_CFG4  
0C  
0C  
0C  
0C  
0C  
0C  
00  
N - Feedback Divider  
12 - 4095 (values of “0” through “11”  
are not allowed)  
N3[7:0]_CFG5  
N3[7:0]_CFG0  
N3[7:0]_CFG1  
N3[7:0]_CFG2  
N3[7:0]_CFG3  
SSVCO[7:0]_CFG0  
SSVCO[7:0]_CFG1  
SSVCO[7:0]_CFG2  
SSVCO[7:0]_CFG3  
SSVCO[7:0]_CFG4  
SSVCO[7:0]_CFG5  
SS_D3[7:0]_CFG4  
SS_D3[7:0]_CFG5  
SS_D3[7:0]_CFG0  
SS_D3[7:0]_CFG1  
SS_D3[7:0]_CFG2  
SS_D3[7:0]_CFG3  
Reserved  
SSVCO[7:0] - PLL3 Spread  
Spectrum Loop Feedback Counter  
See Addr 0x80:0x85 for  
SSVCO[15:8]  
00  
00  
00  
00  
00  
00  
SS_D[7:0] - PLL3 Spread Spectrum  
Reference Divide  
00  
00  
00  
00  
00  
01  
Reserved  
OEM0[1:0]  
SLEW0[1:0]  
INV0  
Reserved  
S1  
S3  
03  
Output Controls  
S1=1 - OUT1/OUT2 are from  
DIV1/DIV2 respectively  
S1=0 - Both from DIV2  
S3 =1 - OUT3/OUT6 are from  
DIV3/DIV6  
S3=0 - Both from DIV6  
SLEW# - LVTTL only  
OEM#–output enable mode  
x0 - tristated  
01 - park low  
11 - park high  
OEM0 controls OUT0 only  
OEM1[1:0]  
SLEW1[1:0]  
INV1[1:0]  
LVL1[1:0]  
0x76  
00  
Output Controls  
LVL1[1:0] - output pair OUT1/OUT2  
[00] - LVTTL  
[01] - LVDS  
[10] - LVPECL  
[11] - HCSL  
INV1 [CLK1, CLK2]  
[0] - normal  
[1] - invert clock  
OEM1 controls OIT1/OUT2  
SLEW2[1:0]  
CMEN3  
CMEN1  
0x77  
00  
CMEN# - common mode enable  
Set to 1 for LVDS  
Set to 0 for LVTTL, LVPECL, HCSL  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
26  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Default  
Register  
Bit #  
Addr  
Description  
Hex  
Value  
00  
7
6
5
4
3
2
1
0
OEM3[1:0]  
SLEW3[1:0]  
SLEW6[1:0]  
INV3[1:0]  
LVL3[1:0]  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
0x9A  
0x9B  
0x9C  
0x9D  
0x9E  
0x9F  
0xA0  
0xA1  
0xA2  
0xA3  
0xA4  
0xA5  
0xA6  
OEM3 controls OUT3 and OUT6  
Reserved  
Reserved  
Reserved  
00  
00  
Reserved  
CMEN5  
CMEN4  
00  
1
Reserved  
Reserved  
Reserved  
Reserved  
XX  
Reserved  
Reserved  
Reserved  
Reserved  
1
XX  
1
XX  
1
XX  
SSVCO[15:8]_CFG0  
SSVCO[15:8]_CFG1  
SSVCO[15:8]_CFG2  
SSVCO[15:8]_CFG3  
SSVCO[15:8]_CFG4  
SSVCO[15:8]_CFG5  
Reserved  
00  
00  
00  
00  
00  
00  
00  
00  
FF  
FF  
FF  
FF  
FF  
FF  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
7F  
PLL3 Spread Spectrum Feedback  
Counter  
Reserved  
Reserved  
Reserved  
PM1_CFG0  
PM1_CFG1  
PM1_CFG2  
PM1_CFG3  
PM1_CFG4  
PM1_CFG5  
PM2_CFG4  
PM2_CFG5  
PM2_CFG0  
PM2_CFG1  
PM2_CFG2  
PM2_CFG3  
PM3_CFG0  
PM3_CFG1  
PM3_CFG2  
PM3_CFG3  
PM3_CFG4  
PM3_CFG5  
PM4_CFG4  
PM4_CFG5  
PM4_CFG0  
PM4_CFG1  
PM4_CFG2  
PM4_CFG3  
PM5_CFG0  
PM5_CFG1  
PM5_CFG2  
PM5_CFG3  
PM5_CFG4  
PM5_CFG5  
PM6_CFG4  
Q1[6:0]_CFG0  
Output Divides  
for Q<>111111,  
PM=0 - Divide by 2  
PM=1, (Q+2)*2  
for Q=1111111  
PM=0, disable the output divider  
PM=1, bypass the output divide,  
(divide by 1)  
Q1[6:0]_CFG1  
Q1[6:0]_CFG2  
Q1[6:0]_CFG3  
Q1[6:0]_CFG4  
Q1[6:0]_CFG5  
Q2[6:0]_CFG4  
Q2[6:0]_CFG5  
Q2[6:0]_CFG0  
Q2[6:0]_CFG1  
Q2[6:0]_CFG2  
Q2[6:0]_CFG3  
Q3[6:0]_CFG0  
Q3[6:0]_CFG1  
Q3[6:0]_CFG2  
Q3[6:0]_CFG3  
Q3[6:0]_CFG4  
Q3[6:0]_CFG5  
Q4[6:0]_CFG4  
Q4[6:0]_CFG5  
Q4[6:0]_CFG0  
Q4[6:0]_CFG1  
Q4[6:0]_CFG2  
Q4[6:0]_CFG3  
Q5[6:0]_CFG0  
Q5[6:0]_CFG1  
Q5[6:0]_CFG2  
Q5[6:0]_CFG3  
Q5[6:0]_CFG4  
Q5[6:0]_CFG5  
Q6[6:0]_CFG4  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
27  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Default  
Register  
Bit #  
Addr  
Description  
Hex  
Value  
7F  
7
6
5
4
3
2
1
0
PM6_CFG5  
PM6_CFG0  
PM6_CFG1  
PM6_CFG2  
PM6_CFG3  
Q6[6:0]_CFG5  
Q6[6:0]_CFG0  
Q6[6:0]_CFG1  
Q6[6:0]_CFG2  
Q6[6:0]_CFG3  
0xA7  
0xA8  
0xA9  
0xAA  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
0xB5  
0xB6  
0xB7  
0xB8  
0xB9  
0xBA  
0xBB  
0xBC  
0xBD  
0xBE  
0xBF  
7F  
7F  
7F  
7F  
TSSC[3:0]_CFG0  
TSSC[3:0]_CFG1  
TSSC[3:0]_CFG2  
TSSC[3:0]_CFG3  
TSSC[3:0]_CFG4  
TSSC[3:0]_CFG5  
NSSC[3:0]_CFG0  
NSSC[3:0]_CFG1  
NSSC[3:0]_CFG2  
NSSC[3:0]_CFG3  
NSSC[3:0]_CFG4  
NSSC[3:0]_CFG5  
00  
PLL0 Spread Spectrum Control  
00  
00  
00  
00  
00  
DITH_CFG4  
DITH_CFG5  
DITH_CFG0  
DITH_CFG1  
DITH_CFG2  
DITH_CFG3  
X2_CFG4  
SSOFFSET[5:0]_CFG4  
SSOFFSET[5:0]_CFG5  
SSOFFSET[5:0]_CFG0  
SSOFFSET[5:0]_CFG1  
SSOFFSET[5:0]_CFG2  
SSOFFSET[5:0]_CFG3  
00  
X2_CFG5  
X2_CFG0  
X2_CFG1  
X2_CFG2  
X2_CFG3  
00  
00  
00  
00  
00  
SD1[3:0]_CFG0  
SD0[3:0]_CFG0  
11  
SD1[3:0]_CFG1  
SD1[3:0]_CFG2  
SD1[3:0]_CFG3  
SD1[3:0]_CFG4  
SD1[3:0]_CFG5  
SD0[3:0]_CFG1  
SD0[3:0]_CFG2  
SD0[3:0]_CFG3  
SD0[3:0]_CFG4  
SD0[3:0]_CFG5  
SM[1:0]_CFG4  
SM[1:0]_CFG5  
11  
11  
11  
11  
11  
SRC1[1:0]_CFG4  
SRC0[1:0]_CFG4  
SRC0[1:0]_CFG5  
PDPL3_CFG4  
PDPL3_CFG5  
PRIMSRC_CFG4  
PRIMSRC_CFG5  
AE  
AE  
Output Divide Source Selection  
SRC1[1:0]_CFG5  
PRIMSRC - primary source - crystal  
or ICLOCK  
0 = crystal/REFIN  
1 = CLKIN  
SRC1[1:0]_CFG0  
SRC0[1:0]_CFG0  
PDPL3_CFG0  
SM[1:0]_CFG0  
PRIMSRC_CFG0  
0xC0  
AE  
SM = switch mode  
0x = manual  
10 = reserved  
11 = auto-revertive  
SRC1[1:0]_CFG1  
SRC1[1:0]_CFG2  
SRC0[1:0]_CFG1  
SRC0[1:0]_CFG2  
PDPL3_CFG1  
PDPL3_CFG2  
SM[1:0]_CFG1  
SM[1:0]_CFG2  
PRIMSRC_CFG1  
PRIMSRC_CFG2  
0xC1  
0xC2  
AE  
AE  
PDPL3 - PLL3 shutdown  
0 = normal  
1 = shut down  
SRC = MUX control bit prior to DIV#  
SRC0[1:0]  
00 - DIV1  
01 - DIV3  
10 - Reference input  
SRC1[1:0]_CFG3  
SRC0[1:0]_CFG3  
PDPL3_CFG3  
SM[1:0]_CFG3  
PRIMSRC_CFG3  
SRC1[2]_CFG0  
0xC3  
0xC4  
AE  
24  
SRC4[0]_CFG  
0
SRC3[2:0]_CFG0  
SRC2[2:0]_CFG0  
SRC1/SRC2/SRC3.SRC5  
000 - DIV1  
001 - DIV3  
010 - Reference input  
011 - Reserved  
100 - PLL0  
101 - PLL1  
110 - PLL2  
111 - PLL3  
SRC4[0]_CFG  
1
SRC3[2:0]_CFG1  
SRC3[2:0]_CFG2  
SRC3[2:0]_CFG3  
SRC3[2:0]_CFG4  
SRC3[2:0]_CFG5  
SRC2[2:0]_CFG1  
SRC2[2:0]_CFG2  
SRC2[2:0]_CFG3  
SRC2[2:0]_CFG4  
SRC2[2:0]_CFG5  
SRC1[2]_CFG1  
SRC1[2]_CFG2  
SRC1[2]_CFG3  
SRC1[2]_CFG4  
SRC1[2]_CFG5  
0xC5  
0xC6  
0xC7  
0xC8  
0xC9  
24  
24  
24  
24  
24  
SRC4[0]_CFG  
2
SRC4[0]_CFG  
3
SRC4[0]_CFG  
4
SRC4[0]_CFG  
5
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
28  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Default  
Register  
Bit #  
Addr  
Description  
Hex  
Value  
49  
7
6
5
4
3
2
1
0
SRC6[2:0]_CFG4  
SRC6[2:0]_CFG5  
SRC6[2:0]_CFG0  
SRC6[2:0]_CFG1  
SRC6[2:0]_CFG2  
SRC6[2:0]_CFG3  
SRC5[2:0]_CFG4  
SRC5[2:0]_CFG5  
SRC5[2:0]_CFG0  
SRC5[2:0]_CFG1  
SRC5[2:0]_CFG2  
SRC5[2:0]_CFG3  
SRC4[2:1]_CFG4  
SRC4[2:1]_CFG5  
SRC4[2:1]_CFG0  
SRC4[2:1]_CFG1  
SRC4[2:1]_CFG2  
SRC4[2:1]_CFG3  
0xCA  
0xCB  
0xCC  
0xCD  
0xCE  
0xCF  
SRC6  
000 - Reserved  
001 - Reserved  
010 - Reference input  
011 - Reserved  
100 - Reserved  
101 - PLL1  
110 - Reserved  
111 - Reserved  
Quiet MUX  
49  
49  
49  
49  
49  
Default Configuration: OUT1 = Reference Clock output, all other outputs turned off.  
1
. Memory bytes do not exist. Readback will be last value in shift register. If reading sequentially, value in 0x51 will be  
returned.  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
29  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Marking Diagram  
4502LI  
#YYWW$  
Notes:  
1. “#” is the lot number.  
2. YYWW is the last two digits of the year and week that the part was assembled.  
3. “$” is the assembly mark code.  
4. “I” indicates industrial temperature range.  
Thermal Characteristics for 24-QFN  
Parameter  
Symbol  
Conditions  
Min.  
Typ.  
47.6  
42.4  
39.9  
60.7  
Max.  
Units  
C/W  
C/W  
C/W  
C/W  
Thermal Resistance Junction to  
Ambient  
Still air  
JA  
JA  
JA  
JC  
1 m/s air flow  
2.5 m/s air flow  
Thermal Resistance Junction to Case  
Package Outline Drawings  
The package outline drawings are appended at the end of this document and are accessible from the link below. The  
package information is the most current data available.  
www.idt.com/document/psc/nlnlg24p1-package-outline-40-x-40-mm-body-05-mm-pitch-qfn-epad-size-245-x-245-mm  
Ordering Information  
Part / Order Number  
5V49EE502NLGI  
Shipping Packaging  
Package  
4 × 4 mm 24-QFN  
4 × 4 mm 24-QFN  
Temperature  
-40 to +85C  
-40 to +85C  
Tray  
Reel  
5V49EE502NLGI8  
“G” after the two-letter package code denote Pb-Free configuration, RoHS compliant.  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
30  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
Revision History  
Date  
Description of Change  
September 24, 2012 Change differential outputs from 5pF loads to 2pF loads so that they are consistent with the industry.  
Capacitive loads were also added to the test circuit diagrams for HCSL outputs. Slew Rate (t4) Output Load  
test conditions were changed from 15pF to 5pF.  
July 10. 2015  
Added the following note under AC Timing Electrical Characteristics table:  
“Not guaranteed until customer specific configuration is approved by IDT.”  
August 3, 2016  
June 18, 2018  
Changed 5V49EE502NLGI shipping packaging from tray to tube.  
1. Changed shipping packaging from tube to tray.  
2. Updated package outline drawings.  
3. Updated legal disclaimer.  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
31  
5V49EE502  
JUNE 18, 2018  
5V49EE502  
EEPROM PROGRAMMABLE CLOCK GENERATOR  
CLOCK SYNTHESIZER  
w w w .IDT.com  
Sales  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
Tech Support  
www.IDT.com/go/support  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138 USA  
www.idt.com  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as “IDT”) reserve the right to modify the products  
and/or specifications described herein at any time, without notice, at IDT’s sole discretion. Performance specifications and operating parameters of the  
described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The  
information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of  
others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where  
the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product  
in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other  
countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of  
common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc. All rights reserved.  
IDT® EEPROM PROGRAMMABLE CLOCK GENERATOR  
32  
5V49EE502  
JUNE 18, 2018  
24-VFQFPN, Package Outline Drawing  
4.0 x 4.0 x 0.90 mm Body,0.50mm Pitch,Epad 2.45 x 2.45 mm  
NLG24P1, PSC-4192-01, Rev 02, Page 1  
© Integrated Device Technology, Inc.  
24-VFQFPN, Package Outline Drawing  
4.0 x 4.0 x 0.90 mm Body,0.50mm Pitch,Epad 2.45 x 2.45 mm  
NLG24P1, PSC-4192-01, Rev 02, Page 2  
Package Revision History  
Description  
Date Created Rev No.  
Sept 9, 2016  
Rev 01 Add Chamfer on Epad  
Sept 13, 2018 Rev 02 New Format, Recalculate Land Pattern Change QFN to VFQFPN  
© Integrated Device Technology, Inc.  

相关型号:

5V49EE502NLGI8

EEPROM PROGRAMMABLE CLOCK GENERATOR
IDT

5V49EE503NLGI

EEPROM PROGRAMMABLE CLOCK GENERATOR
IDT

5V49EE503NLGI8

EEPROM PROGRAMMABLE CLOCK GENERATOR
IDT

5V49EE504NLGI

EEPROM PROGRAMMABLE CLOCK GENERATOR
IDT

5V49EE504NLGI8

EEPROM PROGRAMMABLE CLOCK GENERATOR
IDT

5V49EE702NDGI

EEPROM PROGRAMMABLE CLOCK GENERATOR
IDT

5V49EE702NDGI8

EEPROM PROGRAMMABLE CLOCK GENERATOR
IDT

5V49EE703NDGI

EEPROM PROGRAMMABLE CLOCK GENERATOR
IDT

5V49EE703NDGI8

EEPROM PROGRAMMABLE CLOCK GENERATOR
IDT

5V49EE704NDGI

EEPROM PROGRAMMABLE CLOCK GENERATOR
IDT

5V49EE704NDGI8

EEPROM PROGRAMMABLE CLOCK GENERATOR
IDT

5V49EE901NLGI

EEPROM PROGRAMMABLE CLOCK GENERATOR
IDT