5V9888PFGI [IDT]

Clock Generator, PQFP32;
5V9888PFGI
型号: 5V9888PFGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, PQFP32

文件: 总37页 (文件大小:340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IDT5V9888  
3.3V EEPROM  
PROGRAMMABLE CLOCK  
GENERATOR  
FEATURES:  
DESCRIPTION:  
• Three internal PLLs  
The IDT5V9888 is a programmable clock generator intended for high  
performancedata-communications,telecommunications,consumer,and  
networking applications. There are three internal PLLs, each individually  
programmable,allowingforthreeuniquenon-integer-relatedfrequencies.  
The frequencies are generated from a single reference clock. The  
reference clock can come from one of the two redundant clock inputs. A  
glitchless automatic or manual switchover function allows any one of the  
redundant clocks to be selected during normal operation.  
• Internal non-volatile EEPROM  
• JTAG and FAST mode I2C serial interfaces  
• Input Frequency Ranges: 1MHz to 400MHz  
• Output Frequency Ranges:  
LVTTL: up to 200MHz  
LVPECL/ LVDS: up to 500MHz  
• Reference Crystal Input with programmable oscillator gain and  
programmable linear load capacitance  
Crystal Frequency Range: 8MHz to 50MHz  
• Each PLL has an 8-bit pre-scaler and a 12-bit feedback-divider  
• 10-bit post-divider blocks  
• Fractional Dividers  
• Two of the PLLs support Spread Spectrum Generation  
capability  
• I/O Standards:  
Outputs - 3.3V LVTTL/ LVCMOS, LVPECL, and LVDS  
Inputs - 3.3V LVTTL/ LVCMOS  
• Programmable Slew Rate Control  
• Programmable Loop Bandwidth Settings  
• Programmable output inversion to reduce bimodal jitter  
• Redundant clock inputs with glitchless auto and manual  
switchover options  
TheIDT5V9888canbeprogrammedthroughtheuseoftheI2CorJTAG  
interfaces. The programming interface enables the device to be pro-  
grammedwhenitisinnormaloperationorwhatiscommonlyknownasin-  
systemprogrammable. AninternalEEPROMallowstheusertosaveand  
restore the configuration of the device without having to reprogram it on  
power-up. JTAG boundary scan is also implemented.  
Each of the three PLLs has an 8-bit pre-scaler and a 12-bit feedback  
divider. Thisallowstheusertogeneratethreeuniquenon-integer-related  
frequencies. The PLL loop bandwidth is programmable to allow the user  
totailorthePLLresponsetotheapplication. Forinstance,theusercantune  
the PLL parameters to minimize jitter generation or to maximize jitter  
attenuation. Spread spectrum generation and fractional divides are  
allowed on two of the PLLs.  
Thereare10-bitpostdividersonfiveofthesixoutputbanks. Twoofthe  
six output banks are configurable to be LVTTL, LVPECL, or LVDS. The  
otherfouroutputbanksareLVTTL. TheoutputsareconnectedtothePLLs  
via the switch matrix. The switch matrix allows the user to route the PLL  
outputstoanyoutputbank. Thisfeaturecanbeusedtosimplifyandoptimize  
the board layout. In addition, each output's slew rate and enable/disable  
function can be programmed.  
• JTAG Boundary Scan  
• Individual output enable/disable  
• Power-down mode  
• 3.3VVDD  
• Available in TQFP and VFQFPN packages  
TheIDTlogoisaregisteredtrademarkofIntegratedDeviceTechnology,Inc.  
INDUSTRIAL TEMPERATURE RANGE  
OCTOBER 2007  
1
c
2007 Integrated Device Technology, Inc.  
DSC 7044/13  
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
FUNCTIONALBLOCKDIAGRAM  
XTALOUT  
OSC.  
XTALIN/REFIN  
OUT1  
P2 Divider  
10-Bit  
/2  
/2  
OUT2  
OUT3  
P3 Divider  
10-Bit  
PLL 0  
CLKIN  
OUT4 (1)  
OUT4 (1)  
P4 Divider  
10-Bit  
PLL 1  
PLL 2  
/2  
OUT5(1)  
OUT5 (1)  
P5 Divider  
10-Bit  
SHUTDOWN/OE  
WRITE ENABLE  
/2  
/2  
P6 Divider  
10-Bit  
EEPROM  
OUT6  
GOUT0/TDO/  
LOSS_LOCK  
GIN4/CLK_SEL  
I 2 C/JTAG  
Control Block for  
Multi-Purpose I/O, Programming, Features  
GOUT1/  
LOSS_CLKIN  
NOTE:  
1. OUT4 and OUT5 pairs can be configured to be LVDS, LVPECL, or two single-ended LVTTL outputs. As LVTTL, OUT4 and OUT5 can be configured to be non-inverting.  
2
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
PINCONFIGURATION  
32 31 30 29 28 27 26 25  
28 27 26 25 24 23 22  
CLKIN  
GND  
GIN2/TMS  
VDD  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
21  
20  
19  
18  
17  
16  
15  
CLKIN  
GND  
GIN2/TMS  
VDD  
1
2
3
4
5
6
7
GOUT1/LOSS_CLKIN  
XTALIN/REFIN  
I 2C/JTAG  
GOUT1/LOSS_CLKIN  
XTALIN/REFIN  
I 2C/JTAG  
GIN4/CLK_SEL  
GND  
GIN4/CLK_SEL  
XTALOUT  
OUT1  
VDD  
GIN1/SCLK/TCLK  
GIN0/SDA/TDI  
GND  
XTALOUT  
OUT1  
GIN1/SCLK/TCLK  
GIN0/SDA/TDI  
VDD  
OUT3  
VDD  
OUT3  
8
9
10 11 12 13 14  
9
10 11 12 13 14 15 16  
VFQFPN  
TQFP  
TOP VIEW  
TOP VIEW  
3
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
PINDESCRIPTION  
PF32  
Pin#  
NL28  
Pin#  
Pin Name  
CLKIN  
I/O  
Type  
LVTTL  
Description  
1
4
1
4
I
I
InputClock  
XTALIN/REFIN  
XTALOUT  
LVTTL  
CRYSTAL_IN-Referencecrystalinputorexternalreferenceclockinput  
5
5
O
I
LVTTL  
CRYSTAL_OUT-Referencecrystalfeedback  
GIN0/SDAT/TDI  
GIN1/SCLK/TCK  
GIN2/TMS  
19  
20  
24  
27  
16  
17  
21  
24  
LVTTL(3)  
LVTTL(3)  
LVTTL(3)  
LVTTL(3)  
Multi-purposeinputs. CanbeusedforFrequencyControl,SDAT(I2C),orTDI(JTAG).  
Multi-Purposeinputs. CanbeusedforFrequencyControl,SCLK(I2C),orTCK(JTAG).  
Multi-Purpose inputs. Can be used for Frequency Control or TMS (JTAG).  
I
I
WRITE ENABLE  
I
Write Enable pin. This pin must be pulled HIGH during normal operation. HIGH =  
normal operation, LOW = Enable writing to internal EEPROM.  
GIN3/TRST  
GIN4/CLK_SEL  
SHUTDOWN/OE  
25  
21  
28  
22  
18  
23  
I
I
I
LVTTL(3)  
LVTTL(3)  
LVTTL(3)  
Multi-Purpose inputs. Can be used for Frequency Control or TRST (JTAG).  
Multi-Purposeinputs. CanbeusedforFrequencyControlorinputclockselector.  
Enables/disablestheoutputsorpowersdownthechip.TheSPbit(0x1C)controlsthe  
polarity of the signal to be either active HIGH or LOW. (Default is active HIGH.)  
I2C/JTAG  
OUT1  
22  
6
19  
6
I
3-level(2)  
LVTTL  
I2C (HIGH) or MFC Mode (MID) or JTAG Programming (LOW).  
Configurableclockoutput1.Canalsobeusedtobufferthereferenceclock.  
Configurableclockoutput2  
O
O
O
O
O
OUT2  
29  
8
25  
7
LVTTL  
OUT3  
LVTTL  
Configurableclockoutput3  
OUT4  
10  
11  
8
Adjustable(1)  
Adjustable(1)  
Configurableclockoutput4,Single-EndedorDifferentialwhencombinedwithOUT4  
OUT4  
9
Configurable complementary clock output 4, Single-Ended or Differential when  
combinedwithOUT4  
OUT5  
15  
16  
13  
14  
O
O
Adjustable(1)  
Adjustable(1)  
Configurableclockoutput5,Single-EndedorDifferentialwhencombinedwithOUT5  
OUT5  
Configurable complementary clock output 5, Single-Ended or Differential when  
combinedwithOUT5  
OUT6  
13  
31  
11  
27  
O
O
LVTTL  
LVTTL(3)  
Configurableclockoutput6  
GOUT0/TDO/LOSS_LOCK  
Multi-PurposeOutput.CanbeprogrammedtouseasPLLLOCKsignal,LOSS_LOCK  
or TDO in JTAG mode.  
GOUT1/LOSS_CLKIN  
3
3
O
LVTTL  
Multi-Purpose Output. Can be programmed to use as LOSS_CLKIN.  
3.3V Power Supply  
VDD  
7,12,17, 10,15,20  
23,26,32  
28  
GND  
2,9,14,  
18,30  
2,12,26  
Ground  
NOTES:  
1. Outputs are user programmable to drive single-ended 3.3V LVTTL, differential LVDS, or differential LVPECL interface levels.  
2. 3-level inputs are static inputs and must be tied to VDD or GND or left floating. These inputs are internally biased to VDD/2. They are not hot-insertable or over voltage tolerant.  
3. The JTAG (TDO, TMS, TCLK, TRST, and TDI) and I2C (SCLK and SDAT) signals share the same pins with GIN signals.  
4
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
PLLFEATURESANDDESCRIPTIONS  
D0 Divider  
VCO  
M0 Multiplier  
Spread  
Spectrum  
Modulation  
PLL0 Block Diagram  
D1 Divider  
VCO  
M1 Multiplier  
Spread  
Spectrum  
Modulation  
PLL1 Block Diagram  
D2 Divider  
VCO  
M2 Multiplier  
PLL2 Block Diagram  
5
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
Spread Spectrum  
Pre-Divider (D) Values  
Multiplier (M) Values  
Programmable Loop Bandwidth  
GenerationCapability  
PLL0  
PLL1  
PLL2  
1 - 255  
1 - 255  
1 - 255  
2 - 8190  
2 - 8190  
1 - 4095  
yes  
yes  
yes  
yes  
yes  
no  
XTAL load cap = 3.5pF + XTALCAP[7:0] * 0.125pF (Eq. 1)  
REFERENCE CLOCK INPUT PINS AND  
SELECTION  
Parameter  
Bits  
Step  
Min  
Max  
Units  
XTALCAP  
8
0.125  
0
32  
pF  
The5V9888supportsuptotwoclockinputs.Oneoftheclockinputs(XTALIN/  
REFIN) can be driven by either an external crystal or a reference clock. The  
secondclockinput(CLKIN)canonlybedrivenfromanexternalreferenceclock.  
Either clock input can be set as a the primary clock. The primary clock  
designation istoestablishwhichisthemainreferenceclocktothePLLs. The  
non-primaryclockisdesignatedasthesecondaryclockincasetheprimaryclock  
goes absent and a backup is needed. The PRIMCLK bit (0x34) determines  
whichclockinputwillbetheprimaryclock. WhenPRIMCLKbitis"0",itwillselect  
XTALIN/REFINastheprimary,andwhen"1",itwillselectCLKINastheprimary.  
Thetwoexternalreferenceclockscanbemanuallyselected using theGIN4/  
CLK_SEL pin, except in Manual Frequency Control (MFC) mode 2, or via  
programmingbyhardwiringtheCLK_SELpinandtogglingthePRIMCLKbit.  
For more details on the MFC modes, refer to the CONFIGURING MULTI-  
PURPOSEI/Ossection. WhenCLK_SELisLOW,theprimaryclockisselected  
andwhenHIGH,thesecondaryclockisselected. TheSMbits(0x34)mustbe  
setto"0x"formanualswitchoverwhichisdetailedinSWITCHOVERMODES  
section.  
When using an external reference clock instead of a crystal on the XTAL/  
REFINpin,theinputloadcapacitorsmaybecompletelybypassed.Thisallows  
fortheinputfrequencytobeupto200MHz. Whenusinganexternalreference  
clock,theXTALOUTpinmustbeleftfloating,XTALCAPmustbeprogrammed  
to the default value of "0", and crystal drive strength bit, XDRV (0x06), must  
be set to the default value of "11".  
CLKIN Pin  
CLKIN pin is a regular clock input pin, and can be driven up to 400MHz.  
PRE-SCALER,FEEDBACK-DIVIDER,AND  
POST-DIVIDER  
Each PLL incorporates an 8-bit pre-scaler and a 12-bit feedback divider  
whichallowstheusertogeneratethreeuniquenon-integer-relatedfrequencies.  
For output banks OUT2-OUT6, each bank has a 10-bit post-divider. The  
following equation governs how the frequency on output banks OUT2-6 is  
calculated.  
GIN4/CLK_SEL  
Selected Clock Input  
L
Primary  
FOUT = FIN *(MD )  
H
Secondary  
(Eq. 2)  
P * 2  
WhereFIN isthereferencefrequency,Misthetotalfeedback-dividervalue,  
Disthepre-scalervalue,Pisthetotalpost-dividervalue,andFOUTistheresulting  
output bank frequency. The value 2 in the denominator is due to the divide-  
by-2oneachoftheoutputbanksOUT2-6. NotethatOUT1doesnothaveany  
typeofpost-divider. Also,programminganyofthedividersmaycauseglitches  
ontheoutputs.  
Crystal Input (XTALIN/REFIN)  
Thecrystaloscillatorsshouldbefundamentalmodequartzcrystals:overtone  
crystals are not suitable. Crystal frequency should be specified for parallel  
resonancewith50Ωmaximumequivalentseriesresonance.  
WhentheXTALIN/REFINpinisdrivenbyacrystal,itisimportanttosetthe  
internal oscillator inverter drive strength and internal tuning/load capacitor  
values correctly to achieve the best clock performance. These values are  
programmable through either I2C or JTAG interface to allow for maximum  
compatibilitywithcrystalsfromvariousmanufacturers,processes,performances,  
andqualities.Theinternalloadcapacitorsaretrueparallel-platecapacitorsfor  
ultra-linearperformance. Parallel-platecapacitorswerechosentoreducethe  
frequencyshiftthatoccurswhennon-linearloadcapacitanceinteractswithload,  
bias, supply, and temperature changes. External non-linear crystal load  
capacitors should not be used for applications that are sensitive to absolute  
frequencyrequirements.Thevalueoftheinternalloadcapacitorsaredetermined  
byXTALCAP[7:0]bits,(0x07).Theloadcapacitancecanbesetwitharesolution  
of 0.125 pF for a total crystal load range of 3.5pF to 35.4pF. Check with the  
vendor'scrystalloadcapacitancespecificationfortheexactsettingtotunethe  
internalloadcapacitor. Thefollowingequationgovernshowthetotalinternal  
loadcapacitanceisset.  
Pre-Scaler  
D[7:0] are the bits used to program the pre-scaler for each PLL, D0 for  
PLL0, D1 for PLL1, and D2 for PLL2. The pre-scalers divide down the  
referenceclockwithintegervaluesrangingfrom1to255. Tomaintainlowjitter,  
thedivideddownclockmustbehigherthan400KHz;itisbesttousethesmallest  
Ddividervaluepossible. IfDissetto'0x00',thenthiswillpowerdownthePLL  
andalltheoutputsassociatedwiththatPLL.  
6
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
Feedback-Divider  
N[11:0]andA[3:0]arethebitsusedtoprogramthefeedback-dividerforPLL0(N0andA0)andPLL1(N1andA1). Ifspreadspectrumgenerationisenabled  
foreitherPLL0orPLL1,thenthe SS_OFFSET[5:0]bits(0x61,0x69)wouldbefactoredintotheoverallfeedbackdividervalue. SeetheSPREADSPECTRUM  
GENERATIONsectionformoredetailsonhowtoconfigurePLL0andPLL1whenspreadspectrumisenabled. ThetwoPLLscanalsobeconfiguredforfractional  
divideratios. SeeFRACTIONALDIVIDERformoredetails. ForPLL2,onlytheN[11:0]bits(N2)areusedtoprogramitsfeedbackdividerandthereisnospread  
spectrumgenerationandfractionaldividescapability. The12-bitfeedback-dividerintegervaluesrangefrom1to4095.  
The following equations govern how the feedback divider value is set. Note that the equations are different for PLL0/PLL1 and PLL2  
PLL0 and PLL1:  
M = 2*N[11:0] + A[3:0] + 1 + SS_OFFSET[5:0] * 1/64  
M = 2*N[11:0] + A[3:0] + 1 (spread spectrum disabled)  
(Eq. 3)  
(Eq. 4)  
A[3:0] = 0000 = -1  
= 0001 = 1  
= 0010 = 2  
= 0011 = 3  
.
.
.
= 1111 = 15  
Note: A[3:0] < (N[11:0] - 5), must be met when using A. N cannot be programmed with a value of 4, 8, or 16 when using A.  
PLL2:  
M = N[11:0]  
(Eq. 5)  
TheusercanachieveanevenoroddintegerdivideratioforbothPLL0andPLL1bysettingtheA[3:0]bitsaccordinglyanddisablingthespreadspectrum.  
AfractionaldividecanalsobesetforPLL0andPLL1byusingtheA[3:0]bitsinconjunctionwiththeSS_OFFSET[5:0]bits,whichisdetailedintheFRACTIONAL  
DIVIDERsection. NotethattheVCOhasafrequencyrangeof10MHzto1200MHz. To maintainlowjitter,itisbesttomaximizetheVCOfrequency. Forexample,  
if thereferenceclockis100MHzanda200MHzclockisrequired,toachievethebestjitterperformance,multiplythe100MHzby12togettheVCOrunningat  
thehighestpossiblefrequencyof1200MHzandthendivideitdowntoget200MHz. Orifthereferenceclockis25MHzand20MHzistherequiredclock,multiply  
the25MHzby40togettheVCOrunningat1000MHzandthendivideitdowntoget20MHz. IfNissetto'0x00', theVCOwillslewtotheminimumfrequency.  
Post-Divider  
Q[9:0] are the bits used to program the 10-bit post-dividers on output banks OUT2-6. OUT1 bank does not have a 10-bit post-divider or any other post-  
divide along its path. The 10-bit post-dividers will divide down the output banks' frequency with integer values ranging from 1 to 1023.  
Thereistheoptiontochoosebetweendisablingthepost-divider, utilizingadiv/1, adiv/2, orthe10-bitpost-dividerbyusingthePM[1:0]bits.. Eachbank,  
exceptforOUT1,hasasetofPMbits. Whendisablingthepost-divider,noclockwillappearattheoutputs,butwillremainpoweredon. Thevaluesarelisted  
inthetablebelow.  
P
00  
01  
PM[1:0]  
00  
P Post-Divider  
disabled  
To Outputs  
VCO  
/2  
10  
11  
/2  
01  
div/1  
/ (Q+2)  
10  
div/2  
11  
Q[9:0] + 2 (Eq. 6)  
PM[1:0]  
Post-Divider Diagram  
7
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
Notethattheactual10-bitpost-dividervaluehasa2addedtotheintegervalueQandtheoutputsareroutedthroughanotherdiv/2block. Thepost-divider  
shouldneverbedisabledunlesstheoutputbankwillneverbeusedduringnormaloperation. TheoutputfrequencyrangeforLVTTLoutputsarefrom4.9KHz  
to 200MHz. The output frequency range for LVPECL/LVDS outputs are from 4.9KHz to 500MHz.  
SPREADSPECTRUMGENERATION  
PLL0andPLL1supportspreadspectrumgenerationcapability,whichusershavetheoptionofturningonandoff. Spreadspectrumprofile,frequency,and  
spreadarefullyprogrammable(withinlimits). TheprogrammablespreadspectrumgenerationparametersareTSSC[3:0], NSSC[3:0], SS_OFFSET[5:0],  
SD[3:0],DITH,andX2bits. Thesebitsareinthememoryaddressrangeof0x60to0x67forPLL0and0x68to0x6FforPLL1. Thespreadspectrumgeneration  
on PLL0 & PLL1 can be enabled/disabled using the TSSC[3:0] bits. To enable spread spectrum, set TSSC > '0' and set NSSC, SD[3:0], SD[5:0], and the  
A[3:0] in the total M value accordingly. And to disable, set TSSC = '0'.  
TSSC[3:0]  
Thesebitsareusedtodeterminethenumberofphase/frequencydetectorcyclesperspreadspectrumcycle(ssc)steps. Themodulationfrequencycanbe  
calculatedwiththeTSSCbitsinconjunctionwiththeNSSCbits. ValidTSSCintegervaluesforthemodulationfrequencyrange from5to14.  
NSSC[3:0]  
Thesebitsareusedtodeterminethenumberofdelta-encodedsamplesusedforasinglequadrantof thespreadspectrumwaveform. Allfourquadrants  
ofthespreadspectrumwaveformaremirrorimagesofeachother. ThemodulationfrequencyisalsocalculatedbasedofftheNSSCbitsinconjunctionwiththe  
TSSC bits. Valid NSSC integer values range from 1 to 6.  
SS_OFFSET[5:0]  
ThesebitsareusedtoprogramthefractionaloffsetwithrespecttothenominalMintegervalue. Forcenterspread,theSS_OFFSETshouldbesetto'0'so  
thespreadspectrumwaveformisaboutthenominalM(Mnom)value. Fordownspread,theSS_OFFSET>'0'sothespreadspectrumwavformisaboutthe  
(Mideal-1=Mnom)value. Thedownspreadpercentagecanbethoughtofintermsofcenterspread. Forexample,adownspreadof-1%canalsobeconsidered  
as a center spread of ±0.5% but with Mnom shifted down by one and offset. The SS_OFFSET has integer values ranging from 0 to 63.  
SD[3:0]  
Thesebitsareusedtoshapetheprofileofthespreadspectrumwaveform. Thesearedelta-encodedsamplesofthewaveform. Therearetwelvesetsof  
SDsamplesforeachPLL. TheNSSCbitsdeterminehowmanyofthesesamplesareusedforthewaveform. Thesumofthesedelta-encodedsamples(sigma-  
delta-encodedsamples)determinetheamountofspreadandshouldnotexceed(63-SS_OFFSET). Themaximumspreadisinversely proportionaltothe  
nominalMintegervalue.  
DITH  
Thisbitisforditheringthesigma-delta-encodedsamples. Thiswillrandomizetheleast-significantbitoftheinputtothespreadspectrummodulator. Setthe  
bitto'1'toenabledithering.  
X2  
Thisbitwilldoublethetotalvalueofthesigma-delta-encoded-sampleswhichwillincreasetheamplitudeofthespreadspectrumwaveformbyafactoroftwo.  
WhenX2is'0', theamplituderemainsnominalbutifsetto'1', theamplitudeisincreasedbyx2.  
Thefollowingequationsgovernhowthespreadspectrumisset:  
TSSC = TSSC[3:0] + 2 (Eq. 7)  
NSSC = NSSC[3:0] * 2 (Eq. 8)  
SD[3:0]K = SJ+1(unencoded) - SJ(unencoded) (Eq. 9)  
where SJ is the unencoded sample out of a possible 12 and SDK is the delta-encoded sample out of a possible 12.  
Amplitude = (2*N[11:0] + A[3:0] + 1) * Spread% / 100  
(Eq. 10)  
2
if 1 < Amp < 2, then set X2 bit to '1'.  
8
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
Modulation frequency:  
FPFD = FIN / D (Eq. 11)  
FVCO = FPFD * MNOM (Eq. 12)  
FSSC = FPFD / (4 * Nssc * Tssc)  
(Eq. 13)  
Spread:  
ΣΔ = SD0 + SD1 + SD2 + … + SD11  
the number of samples used depends on the NSSC value  
ΣΔ ≤ 63 - SS_OFFSET  
±Spread% =  
ΣΔ * 100  
64 * (2*N[11:0] + A{3:0} + 1)  
(Eq. 14)  
±Max Spread% / 100 = 1 / MNOM or 2 / MNOM (X2=1)  
Profile:  
WaveformstartswithSS_OFFSET, SS_OFFSET+SDJ, SS_OFFSET+SDJ+1, etc.  
Spread Spectrum Using Sinusoidal Profile  
9
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
Example  
FIN = 25MHz, FOUT = 100MHz, Fssc = 33KHz with center spread of ±2%. Find the necessary spread spectrum register settings.  
Sincethespreadiscenter,theSS_OFFSETcanbesetto'0'. SolveforthenominalMvalue;keepinmindthatthenominalMshouldbechosentomaximize  
the VCO. Start with D = 1, using Eq.10 and Eq.11.  
MNOM = 1100MHz / 25MHz = 44  
Using Eq.4, we arbitrarily choose N = 20, A = 3. Now that we have the nominal M value, we can determine TSSC and NSSC by using Eq.12.  
Nssc * Tssc = 25MHz / (33KHz * 4) = 190  
However, using Eq. 7 and Eq.8, we find that the closest value is when TSSC = 14 and NSSC = 6. Keep in mind to maximize the number of samples used  
toenhancetheprofileofthespreadspectrumwaveform.  
Tssc = 14 + 2 = 16  
Nssc = 6 * 2 = 12  
Nssc * Tssc = 192  
UseEq.14todeterminethevalueofthesigma-delta-encodedsamples.  
±2% = ΣΔ * 100  
64 * 44  
ΣΔ = 56.32  
Eitherroundupordowntothenearestintegervalue. Therefore,weendupwith56or57forsigma-delta-encodedsamples. Sincethesigma-delta-encoded  
samplesmustnotexceed63with SS_OFFSETsetto'0', 56or57iswellwithinthelimits. Itisthediscretionoftheuserto definetheshapeof theprofilethat  
isbettersuitedfortheintendedapplication.  
Using Eq.14 again, the actual spread for the sigma-delta-encoded samples of 56 and 57 are ±1.99% and ±2.02%, respectively.  
UseEq.10todetermineiftheX2bitneedstobeset;  
Amplitude = 44 * (1.99 or 2.02) / 100 = 0.44 < 1  
2
Therefore, the X2 = '0 '. The dither bit is left to the discretion of the user.  
The example above was of a center spread using spread spectrum. For down spread, the nominal M value can be set one integer value lower to 43.  
Notethatthe5V9888shouldnotbeprogrammedwithTSSC>'0',SS_OFFSET='0',andSD='0'inordertopreventanunstablestateinthemodulator. The  
PLLloopbandwidthmustbeatleast10xthemodulationfrequencyalongwithhigherdamping(largerωuz)topreventthespreadspectrumfrombeingfiltered  
andreduceextraneousnoise. RefertotheLOOPFILTERsectionformoredetailonωuz.TheA[3:0]mustbeusedforspreadspectrum,evenifthetotalmultiplier  
value is an even integer.  
FRACTIONALDIVIDER  
There is the option for the feedback-divider to be programmed as a fractional divider for only PLL0 and PLL. By setting TSSC > '0' and SD bits to '0', the  
SS_OFFSETbitswoulddeterminethefractionaldividevalue.SeetheSPREADSPECTRUMGENERATIONsectionformoredetailsontheTSSC,SD,and  
SS_OFFSET bits. The following equation governs how the fractional divide value is set.  
M = 2*N[11:0] + A[3:0] + 1 + SS_OFFSET[5:0] *1/64  
10  
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
Thespreadspectrumparameterssuchasthemodulationfrequencyandprofilewillnotbeenablednorwillithaveanyimpacton thePLLoutputwhenthe  
PLLisprogrammedforfractionaldivide.  
Thefollowingisanexampleofhowtosetthefractionaldivider.  
Example  
FIN = 20MHz, FOUT1 = 168.75MHz, FOUT2 = 350MHz  
Solving for 350MHz using Eq.2 and Eq.3 with PLL0 and spread spectrum off,  
350MHz = 20MHz * (M / D)  
P * 2  
Forbetterjitterperformance,keepDassmallaspossible  
350MHz * 2 = M = 35  
20MHz  
P
1
Therefore, we have D = 1, M = 35 (N = 16, A = 2) for PLL0 with P = 1 on output bank4 resulting in 350MHz.  
Solving for 168.75MHz with PLL1 and fractional divide enabled:  
168.75MHz = 20MHz * (M / D)  
P * 2  
168.75MHz * 2 = M = 16.875 or 33.75  
20MHz  
P
1
2
The 33.75 value is chosen to achieve the highest VCO frequency possible. Next step is to figure out the setting for the fractional divide using Eq.3.  
33.75 = 2*N + A + 1 + SS_OFFSET * 1/64  
Integer value 33 can be determined by N and A, thus leaving 0.75 left to be solved.  
2*N + A + 1 = 33  
SS_OFFSET = 64 * 0.75 = 48  
Therefore, we have D=1, M=33.75 (N=15, A=2, SS_OFFSET=48) for PLL1 with P=2 on an output bank resulting in 168.75MHz.  
Thefractionaldividercanbedeterminedifitisneededbyfollowingthestepsinthepreviousexample. Notethatthe5V9888shouldnotbeprogrammedwith  
TSSC > '0', SS_OFFSET = '0', and SD = '0' in order to prevent an unstable state in the modulator. The A[3:0] must be used and set to be greater than '2' for  
amoreaccuratefractionaldivide.  
11  
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
LOOPFILTER  
TheloopfilterforeachPLLcanbeprogrammedtooptimizethejitterperformance. Thelow-passfrequencyresponseofthePLListhemechanismthatdictates  
thejittertransfercharacteristics. Theloopbandwidthcanbeextractedfromthejittertransfer. Anarrowloopbandwidthisgoodforjitterattenuationwhileawide  
loopbandwidthisbestforlowjittergeneration. ThespecificloopfiltercomponentsthatcanbeprogrammedaretheresistorviatheRZ[3:0]bits,polecapacitor  
via the CZ[3:0] bits, zero capacitor via the CP[3:0] bits, and the charge pump current via the IP[2:0] bits.  
Thefollowingequationsgovernhowtheloopfilterisset.  
VDD  
Ip  
UP  
To VCO  
From PFD  
DOWN  
Rz  
Ip  
Cp  
Cz  
Charge Pump and Loop Filter Configuration  
Resistor (Rz) = 0.3KΩ + RZ[3:0] * 1KΩ  
(Eq. 15)  
Zero capacitor (Cz) = 6pF + CZ[3:0] * 27.2pF (Eq. 16)  
Pole capacitor (Cp) = 1.3pF + CP[3:0] * 0.75pF (Eq. 17)  
Charge pump current (Ip) = 5 * 2IP[2:0] μA  
(Eq. 18)  
Parameter  
Bits  
4
Step  
Min  
0.3  
6
Max  
15.3  
414  
Units  
K Ω  
pF  
RZ  
CZ  
C P  
IP  
1
4
27.2  
0.75  
2n  
4
1.3  
5
12.55  
640  
pF  
3
μA  
PLLloopfilterdesignisbeyondthescopeofthisdatasheet. Refertodesignproceduresfor3-ordercharge-pumpbasedPLLs. Forthesakeofsimplicity,  
thefastestandeasiestwaytocalculatethePLLloopbandwidth(Fc)giventheprogrammableloopfilterparametersisasfollows.  
PLL Loop Bandwidth:  
Charge pump gain (Kφ) = Ip / 2π  
(Eq. 19)  
VCO gain (KVCO) = 950MHz/V * 2π (Eq. 20)  
M=Totalmultipliervalue(SeethePRE-SCALERS, FEEDBACK-DIVIDERS, POST-DIVIDERSsectionformoredetail)  
ωc = Rz * Kφ * KVCO * Cz (Eq. 21)  
M * (Cz + Cp)  
Fc = ωc / 2π  
(Eq. 22)  
Note, the phase/frequency detector frequency (FPFD) is typically seven times the PLL closed-loop bandwidth (Fc) but too high of a ratio will reduce your  
phasemarginthuscompromisingloopstability.  
12  
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
Todetermineiftheloopisstable, thephasemargin(ωm)wouldneedtobecalculatedasfollows.  
Phase Margin:  
ωz = 1 / (Rz * Cz)  
ωp = Cz + Cp  
Rz * Cz * Cp  
(Eq. 23)  
(Eq. 24)  
φm = (360 / 2π ) * [tan-1(ωc/ ωz) - tan-1(ωc/ ωp)]  
(Eq. 25)  
Toensurestabilityintheloop,thephasemarginisrecommendedtobe>60°buttoohighwillresultinthelocktimebeingexcessivelylong. Certainloopfilter  
parameterswouldneedtobecompromisedtonotonlymeetarequiredloopbandwidthbuttoalsomaintainloopstability.  
Example  
Fc=150KHzisthedesiredloopbandwidth. ThetotalMvalueis850. Theratioofωp/ωc shouldbeatleast4. Aruleofthumbthatwillhelptoaidtheway,  
theωp/ωcratioshouldbeatleast4. GivenFcandM,anoptimalloopfiltersettingneedstobesolvedforthatwillmeetboththePLLloopbandwidthandmaintain  
loopstability.  
The charge pump gain should be relatively small as possible to achieve a low loop bandwidth.  
Ip = 40uA .  
Kφ * KVCO = 950MHz/V * 40uA = 38000A/Vs  
LoopBandwidths  
ωc = 2π * Fc = 9.42x105 s-1  
ωuz = ωp / ωc = 4  
ωc2 = ωp * ωz  
(Eq. 26)  
(Eq. 27)  
ωp = Cz + Cp = ωz (1 + Cz / Cp)  
Rz * Cz * Cp  
Solving for Cz, Cp, and Rz  
Knowing ωc = Rz * Kφ * KVCO * Cz and substituting in the equations from above,  
M * (Cz + Cp)  
Cz >>> Cp, therefore, we can easily derive Cp to be  
Cp = Kφ * KVCO  
= 12.60pF  
M * ωc2 * ωuz  
Similarly for Cz and Rz  
Cz = Kφ * KVCO * (ωuz2 - 1) = Cp * (ωuz2 - 1) = 189pF  
M * ωc2 * ωuz  
Rz =  
M * ωc * ωuz2  
= 22.48KΩ  
Kφ * KVCO * (ωuz2 - 1)  
Basedontheloopfilterparameterequationsfromabove,sincetherearenopossiblevaluesof12.60pFforCp,189pFforCz,and22.48KΩforRz,thenext  
possiblevalueswithintheloopfiltersettingsare12.55pF(CP[3:0]=1111),196.4pF(CZ[3:0]=0111),and15.3KΩ(RZ[3:0]=1111),respectively. Thisloopfilter  
settingwillyieldaloopbandwidthofabout102KHz. Thephasemarginmustbecheckedforloopstability.  
φm = (360 / 2π ) * [tan-1 (6.41x105 s-1 / 3.33x105 s-1) - tan-1 (6.41x105 s-1 / 5.54x106 s-1)] = 56°  
Althoughslightlybelow60°, thephasemarginwouldbeacceptablewithafairlystableloop.  
13  
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
CONFIGURINGTHEMULTI-PURPOSEI/Os  
The 5V9888 can operate in four distinct modes. These modes are controlled by the MFC bit (0x04) and the I2C/JTAG pin. The general purpose I/O pins  
(GIN0, GIN1, GIN2, GIN3, GIN4) have different uses depending on the mode of operation. The four available modes of operation are:  
1)  
2)  
3)  
4)  
Manual Frequency Control (MFC) Mode for PLL0 Only  
Manual Frequency Control (MFC) Mode for all three PLLs  
I2CProgrammingMode  
JTAGProgrammingMode  
AlongwiththeGINxpinsarealsoGOUTxoutputpinsthatcantakeupadifferentfunctiondependingonthemodeofoperation. Seetablebelowfordescription.  
Multi-Purpose Pins  
GIN0  
Other Signal Functions  
SDAT / TDI  
Signal Description  
I2C serial data input / JTAG serial data input  
I2C clock input / JTAG clock input  
GIN1  
SCLK / TCK  
TMS  
GIN2  
JTAGcontrolsignaltotheTAPcontrollerstatemachine  
JTAG active LOW input to asynchronously reset the BST  
Reference clock select between XTALIN/REFIN and CLKIN  
JTAG serial data output / Detects loss of PLL lock(1)  
Detectslossoftheselectedclocksource(1)  
GIN3  
TRST  
CLK_SEL  
GIN4  
GOUT0  
GOUT1  
TDO / LOSS_LOCK  
LOSS_CLKIN  
NOTE:  
1. LOSS_LOCK and LOSS_CLKIN cannot be used as reliable inputs to other devices.  
EachPLL'sprogrammingregisterscanstoreuptofourdifferentDxandMxconfigurationsincombinationwithtwodifferent PconfigurationsinMFCmodes.  
The post-divider should never be disabled in any of the two P configurations unless the output bank will never be used during normal operation. The PLL's  
loopfiltersettingsalsohasfourdifferentconfigurationstostoreandselectfrom. ThiswillbeexplainedintheMODE1andMODE2sections. TheuseoftheGINx  
pinsinMFCmodecontroltheselectionoftheseconfigurations.  
MODE1 - Manual Frequency Control (MFC) Mode for PLL0 Only  
Inthismode,onlytheconfigurationofPLL0canbechangedduringoperation.. PLL1andPLL2haveonlyonefixedconfigurationinthismode. TheGIN0,  
GIN1andGIN2pinscontroltheselectionofuptoeightdifferentD0, M0, P, RZ0, CZ0, PZ0, andIP0storedconfigurations. GIN3isnotavailabletousersand  
GIN4 becomes CLK_SEL pin. The output GOUT0 will become an indicator for loss of PLL lock (LOSS_LOCK).  
GOUT1pinwillbecomeanindicatorforlossoftheselectedclock(LOSS_CLKIN).  
PLL0itselfonlyhasfourdifferentconfigurationstochoosefrombutinthismode,itborrowstwoconfigurations(Config2andConfig3)frombothPLL1andPLL2,  
toprovideeightdifferentstoredconfigurations. PLL1andPLL2willstillbefullyoperationalbutthedefaultconfigurationwillbeConfig0. Theoutputbankswill  
eachhavetwoPconfigurationsthatcanbeassociatedwitheachofthePLLconfigurations. EachofthetwoPconfigurationshasitsownsetofPMbits(Seethe  
PRE-SCALERS,FEEDBACK-DIVIDERS,POST-DIVIDERSsectionformoredetailonthePMbits). UsetheODIVbittochoosewhichpost-dividerconfiguration  
toassociatewithaspecificPLLconfiguration. Forexample,ifODIV0_CONFIG0=1,thenwhenConfig0isselectedQx[9:0]_CONFIG1isselectedasthepost-  
dividervaluetobeused. OrifODIV2_CONFIG3=0,thenwhenCONFIG7isselected,Qx[9:0]_CONFIG0isselected. NotethatthereisanODIVxbitforeach  
ofthePLLconfigurations. Inthisway, thepost-dividervaluescanchangewiththeconfiguration.  
Toenterthismode, usersmustsetMFCbitto"1", andI2C/JTAGpinmustbeleftfloating.  
GIN2 Pin  
GIN1 Pin  
GIN0 Pin  
PLL0 Configuration Selection (Mode 1)  
0
0
0
Configuration 0: D0_CONFIG0, M0_CONFIG0, and ODIV0_CONFIG0  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
Configuration 1: D0_CONFIG1, M0_CONFIG1, and ODIV0_CONFIG1  
Configuration 2: D0_CONFIG2, M0_CONFIG2, and ODIV0_CONFIG2  
Configuration 3: D0_CONFIG3, M0_CONFIG3, and ODIV0_CONFIG3  
Configuration 4: D1_CONFIG2, M1_CONFIG2, and ODIV1_CONFIG2  
Configuration 5: D1_CONFIG3, M1_CONFIG3, and ODIV1_CONFIG3  
Configuration 6: D2_CONFIG2, M2_CONFIG2, and ODIV2_CONFIG2  
Configuration 7: D2_CONFIG3, M2_CONFIG3, and ODIV2_CONFIG3  
14  
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
MODE2 - Manual Frequency Control (MFC) Mode for all PLLs  
Inthismode,theconfigurationofPLL0,PLL1,andPLL2canbechangedduringoperation. TheGINxpinsareusedtocontroltheselectionofuptofourdifferent  
Dx,Mx,P,RZx,CZx,CPx,andIPxconfigurationsforeachPLL.GIN0andGIN1becomeconfigurationselectionpinsforD0andM0ofPLL0,GIN2andGIN3  
becomeconfigurationselectionpinsforD1andM1ofPLL1,andGIN3andGIN4becomeconfigurationselectionpinsforD2andM2ofPLL2. TheoutputGOUT0  
willbecomeanindicatorforlossofPLLlock(LOSS_LOCK). GOUT1pinwillbecomeanindicatorforlossoftheselectedclock(LOSS_CLKIN).  
TheoutputbankswillhavetwodifferentPconfigurationstochoosefromforeachofthefourPLLconfigurations. EachofthetwoPconfigurationshasitsown  
setofPMbits(SeethePRE-SCALERS,FEEDBACK-DIVIDERS,POST-DIVIDERSsectionformoredetailonthePMbits). UsetheODIVbittochoosewhich  
post-dividerconfigurationtoassociatewithaspecificPLLconfiguration. Forexample,ifODIV2_CONFIG2=1,thenwhenConfig2isselectedQx[9:0]_CONFIG1  
isselectedasthepost-dividervaluetobeused. NotethatthereisanODIVxbitforeachofthePLLconfigurations. Inthisway,thepost-dividervaluescanchange  
withtheconfiguration.  
Toenterthismode, usersmustsetMFCbitto"0", andI2C/JTAGpinmustbeleftfloating.  
GIN4 Pin GIN3 Pin  
PLL2 Configuration Selection (Mode 2)  
Configuration0  
GIN1 Pin GIN0 Pin  
PLL0 Configuration Selection (Mode 2)  
Configuration0  
0
0
1
1
0
1
0
1
0
0
1
1
0
1
0
1
Configuration1  
Configuration1  
Configuration2  
Configuration2  
Configuration3  
Configuration3  
GIN2 Pin  
PLL1 Configuration Selection (Mode 2)  
Configuration0  
0
1
Configuration1  
MODE3 - I2C Programming Mode  
Inthismode, GIN0, GIN1, andGIN4becomeSDAT(I2Cdata), SCLK(I2Cclock),andCLK_SELsignalpins,respectively.TheoutputGOUT0willbecome  
an indicator for loss of PLL lock (LOSS_LOCK). GOUT1 pin will become an indicator for loss of the selected clock (LOSS_CLKIN). GIN2 and GIN3 are not  
availabletousers.  
To enter this mode, I2C/JTAG pin must be set HIGH.  
MODE4 - JTAG Programming Mode  
Inthismode,GIN0,GIN1,GIN2,GIN3,andGIN4willbecomeTDI(JTAGdatain),TCK(JTAGclock),TMS(JTAGcontrolsignal),TRST(JTAGreset)and  
CLK_SELsignalpins,respectively.TheoutputGOUT0willbecomeJTAGTDOsignal,andGOUT1willbeanindicatorforlossoftheselectedclock(LOSS_CLKIN).  
Toenterthismode, I2C/JTAGpinmustbesetLOW.  
Manual Frequency Control modes  
Multi-Purpose pins  
GIN0  
Mode1  
GIN0  
Mode2  
GIN0  
JTAG  
TDI  
I2C  
SDAT  
GIN1  
GIN1  
GIN1  
TCK  
SCLK  
GIN2  
GIN2  
GIN2  
TMS  
n/a  
GIN3  
n/a  
GIN3  
GIN4(1)  
TRST  
CLK_SEL  
n/a  
GIN4  
CLK_SEL  
LOSS_LOCK  
LOSS_CLKIN  
CLK_SEL  
LOSS_LOCK  
LOSS_CLKIN  
GOUT0  
GOUT1  
LOSS_LOCK  
LOSS_CLKIN  
TDO  
LOSS_CLKIN  
NOTE:  
1. The PLL(s) will lock onto the primary clock and the manual switchover can be controlled by the PRIMCLK bit.  
15  
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
Understanding the GIN Signals  
Duringpowerup,thepartwillvirtuallybeinMFCmode2,therefore,thevaluesofGIN3,GIN2,GIN1andGIN0willbelatchedandusedforPLLconfiguration  
selection,regardlessofthestateoftheI2C/JTAG pin. GIN4isnotlatched,andwillassumetheLOWstateinternallywheninprogrammingmode. Thismeans  
thatwheninprogrammingmode,thePLLconfigurationcanonlybechangedbywritingdirectlytotheregistersofthecurrentlyselectedconfiguration.When  
inMFCmode2, configuration0or1(GIN4=0)shouldbeselectedifyoudonotwanttochangeconfigurationswhenenteringorleavingprogrammingmode.  
The GIN pins should be held LOW during power up to select configuration0 as default.  
When not in programming mode, the GIN inputs directly control the selected configuration. The internal GINx signals can be individually disabled via  
programmingtheGINENbits(0x06). WhendisabledbysettingGINENxto"0",theGINxinputsmaybeleftfloating,butduringpowerup,theGINpinswillstill  
latch. DisabledinputsareinterpretedasLOWbytheinternalstatemachines. Evenifdisabled, GIN2, GIN1, GIN0andGIN3pins willbeenabledifrequired  
forI2CorJTAGprogrammingfunctionswheninprogrammingmode. TheCLK_SELfunctionontheGIN4pinwillberenderedcompletelynon-functionalwhen  
disabled.  
SHUTDOWN/ENABLEOFOUTPUTS  
TheSHUTDOWN/OEpin,alongwithinternalbits,controlstheenabling/disablingoftheoutputbanks. TheSHUTDOWN/OEpincanbeprogrammedtofunction  
asanoutputenableorglobalshutdown. ThepolarityoftheSHUTDOWN/OEsignalpincanbeprogrammedtobeeitheractiveHIGHorLOWwiththeSPbit  
(0x1C). When SP is "0", the pin becomes active HIGH and when SP is "1", the pin becomes active LOW. The SH bit(0x1C) determines the function of the  
SHUTDOWN/OEsignalpin. IfSHis"1", thesignalpinisSHUTDOWNand functionsasaglobalshutdown. ThiswilloverridetheOEx(0x1C), OSx(0x1D),  
and PLLSx (0x1E) bits. If SH is "0", the signal pin is OE and functions as an enable/disable of the output banks. If used as an output enable/disable, each  
outputbankcanbeindividuallyprogrammedtobeenabledordisabledbytheOEpin.bysettingOExbitsto"1". IftheOEsignalpinisasserted,theoutputbanks  
thathastheircorrespondingOExbitsetto"1"willbedisabled.TheOEMxbitsdeterminetheoutputs'disablestate. Whensetto"0x"theoutputswillbetristated.  
Whensetto"10", theoutputswillbepulledlow. Whensetto"11", theoutputswillbepulledhigh. Invertedoutputswillbe parkedintheoppositestate. Ifthe  
OExbitsaresetto"0",thestatesofthecorrespondingoutputbankswillnotbeimpactedbythestateoftheOEpin. Toindividuallyenable/disableviaprogramming  
insteadoftheOEpin,hardwiretheOEpintoVddorGND(dependingifitisactiveHIGHorLOW)asiftodisabletheoutputs. ThentoggletheOExbitstoeither  
"0" to enable or "1" to disable.  
When the chip is in shutdown, the outputs, the reference oscillator, and the I2C /JTAG pin are powered down. The outputs will be tristated and the I2C  
/JTAGpinwillbesettoMFCmode(MIDlevel). Programmingwillnotbeallowed. TheGINxpinsandclockinputsremainoperational. ThePLLisnotdisabled.  
The SHUTDOWN pin must be reasserted in order to program the part or to resume operation.  
16  
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
MANUALFREQUENCYCONTROL(MFC)BLOCKDIAGRAM  
OUTPUT MUX  
PLL0  
Prescaler "D"  
CONFIG0  
VCO  
CONFIG1  
CONFIG2  
CONFIG3  
Output Divider P2  
CONFIG0  
CONFIG1  
Multiplier "M"  
CONFIG0  
CONFIG1  
CONFIG2  
CONFIG3  
ODIV  
ODIV  
ODIV  
ODIV  
ODIV  
Output Divider P3  
CONFIG0  
CONFIG1  
PLL1  
ODIV  
Prescaler "D"  
CONFIG0  
CONFIG1  
CONFIG2  
CONFIG3  
VCO  
Multiplier "M"  
CONFIG0  
ODIV  
ODIV  
CONFIG1  
PLL2  
Prescaler "D"  
CONFIG0  
CONFIG1  
CONFIG2  
CONFIG3  
VCO  
Multiplier "M"  
CONFIG0  
CONFIG1  
CONFIG2  
CONFIG3  
ODIV  
ODIV  
ODIV  
ODIV  
MFC = 0  
NOTES:  
This illustration shows how the configurations are arranged for each PLL. There is an ODIV bit associated with each of the four configurations.  
-
-
-
-
GIN0 and GIN1 control four configurations from PLL0.  
GIN2 controls four configurations from PLL1.  
GIN3 and GIN4 control four configurations from PLL2.  
ODIV from each configuration determines the selection of two Output Divider Px Configurations.  
17  
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
MANUALFREQUENCYCONTROL(MFC)BLOCKDIAGRAM  
OUTPUT MUX  
PLL0  
Prescaler "D"  
CONFIG0  
VCO  
CONFIG1  
CONFIG2  
CONFIG3  
Output Divider P2  
CONFIG0  
CONFIG1  
Multiplier "M"  
CONFIG0  
CONFIG1  
CONFIG2  
CONFIG3  
ODIV  
ODIV  
ODIV  
ODIV  
ODIV  
Output Divider P3  
CONFIG0  
CONFIG1  
PLL1  
ODIV  
Prescaler "D"  
CONFIG0  
VCO  
CONFIG4  
CONFIG5  
Multiplier "M"  
CONFIG0  
ODIV  
CONFIG4  
CONFIG5  
ODIV  
ODIV  
PLL2  
Prescaler "D"  
CONFIG0  
VCO  
CONFIG6  
CONFIG7  
Multiplier "M"  
CONFIG0  
ODIV  
CONFIG6  
CONFIG7  
ODIV  
ODIV  
MFC = 1  
NOTES:  
This illustration shows how the configurations are arranged for PLL0. Config_4 and Config_5 are taken from PLL1, and Config_6 and Config_7 are taken from PLL2. There is an  
ODIV bit associated with each of the four configurations.  
-
-
GIN0, GIN1, and GIN2 control eight shaded configurations for PLL0.  
ODIV from each configuration determines the selection of two Output Divider Px Configurations.  
18  
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
BLOCKDIAGRAMFORSHUTDOWN/OECONTROLSIGNAL  
OUT1  
OUT2  
PM2  
OE1  
01  
10  
11  
/2  
/2  
Q2  
+ 2  
OE2  
01  
10  
11  
/2  
/2  
OUT3  
OUT4  
Q3  
+ 2  
OE3  
PM3  
MUX  
01  
10  
11  
/2  
/2  
Q4  
+ 2  
OUT4  
OUT5  
PM4  
OE4  
PM5  
01  
10  
11  
/2  
/2  
Q5  
+ 2  
OUT5  
PM6  
OE5  
01  
10  
11  
/2  
OUT6  
/2  
Q6  
+ 2  
OE6  
OE MODE  
SHUTDOWN/OE  
Global SHUTDOWN Mode:  
Assert to Shutdown power on the outputs  
and 3-Level Pin  
SP  
SH  
NOTE:  
This illustration shows the internal logic behind the SHUTDOWN/OE pin and the bits associated with it.  
19  
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
POWER UP AND POWER SAVING FEATURES  
Ifaglobalshutdownisenabled,SHUTDOWNpinasserted,mostofthechipexceptforthePLLswillbepowereddown. Notethattheregisterbitswillnotlose  
theirstateintheeventofachippower-down. Theonlypossibilitythattheregisterbitswilllosetheirstateisifthepartwaspower-cycled. Aftercomingoutof shutdown  
mode,thePLLswillrequiretimetorelock.  
Duringpowerup,thevaluesofGIN3,GIN2,GIN1andGIN0willbelatchedandusedforPLLconfigurationselection,regardlessofthestateoftheI2C/JTAG  
pinandGINxbeingdisabledviatheGINENxbits. GIN4willhaveaninternalstateofLOW. TheGINpinsshouldbeheldLOWduringpoweruptoselectconfiguration0  
as default. The output levels will be at an undefined state during power up.  
Thepost-dividershouldneverbedisabledviaPMbitsafter powerup, orelseitwillrendertheoutputbankcompletelynon-functionalduringnormaloperation,  
(unlesstheoutputbankitselfwillnotbeusedatall).  
Duringpowerup, theVDD rampmustbemonotonic.  
LOSS OF LOCK AND INPUT CLOCK  
Thedeviceemploysalossoflockandlossofinputclockdetectioncircuitry. TheGIN0/LOSS_LOCKandGIN1/LOSS_CLKINaretheoutputsthatindicate  
such failures. LOSS_LOCK signal will be asserted if any of the three powered up PLLs loses frequency lock for any event other than PLL shutdown. Lock  
isdeterminedbycheckingthatthereferenceandfeedbackclocksarewithin1/2periodofeachother. LOSS_LOCKisalsoassertedforatleasttwoclockcycles  
ofthenewlyselectedclockwhenswitchingovertoadifferentclocksource(manualorautomatic).  
LOSS_CLKINisassertedwhenthecurrentlyselectedclockislostorisassertedwhenbothclocksarelost. Intheeventoftheselectedclockbeingabsent  
uponpowerup,thelossoftheselectedclockdetectioncircuitrywillreferenceaninternaloscillator. LOSS_LOCKandLOSS_CLKINcannotbeusedasreliable  
inputstootherdevices.  
SWITCHOVERMODES  
TheIDT5V9888featuresredundantclockinputswhichsupportsbothAutomaticandManualswitchovermode. Thesetwomodesaredeterminedbythe  
configurationbits,SM(0x34). Theprimaryclocksourcecanbeprogrammed,viathePRIMCLKbit,tobeeitherXTALIN/REFINorCLKIN,whichisdetermined  
bythePRIMCLKbit.Theotherclocksourceinputwillbeconsideredasthesecondarysource. Thisismoredetailedinthe'REFERENCECLOCKINPUTPINS  
ANDSELECTION'. Notethattheswitchovermodesareasynchronous. IfthereferenceclocksaredirectlyroutedtoOUTxwithnophaserelationship, short  
pulses can be generated during switchover. The automatic switchover mode will work only when the primary clock source is XTALIN/REFIN.  
MANUAL SWITCHOVER MODE  
WhenSM[1:0]is"0x",theredundantinputsareinmanualswitchovermode. Inthismode, CLK_SELpinisusedtoswitchbetweentheprimaryandsecondary  
clocksources.Aspreviouslymentioned,theprimaryandsecondaryclocksourcesettingisdeterminedbythePRIMCLKbit.Duringtheswitchover,noglitches  
willoccurattheoutputofthedevice,althoughtheremaybefrequencyandphasedrift,dependingontheexactphaseandfrequencyrelationshipbetweenthe  
primaryandsecondaryclocks.TheLOSS_LOCKsignalwillbeassertedforaminimumoftwoinputclockcyclesofthenewlyselectedclock,evenifthetwoinputs  
areexactlyinphase. GOUT1isusedasLOSS_CLKIN, whichindicatesthelossofthecurrentlyusedselectedclock.  
AUTOMATICSWITCHOVERMODE  
When SM[1:0] is "1x", the redundant inputs are in automatic switchover mode. Automatic switchover mode supports both revertive and non-revertive  
functionalities. These two functions are determined by the SM bits being set to "10" for non-revertive and "11" for revertive.  
Non-Revertive  
Theinputclockselectionwillswitchtothesecondaryclocksourcewhentherearenotransitionsontheprimaryclocksourcefortwosecondaryclockcycles.  
LOSS_LOCKandLOSS_CLKINsignalswillbeassertedforaminimumoftwosecondaryclockcycles.LOSS_LOCKwillremainasserteduntilthePLLachieves  
lock,aspreviouslydefined,tothenewinputclock. Iftherearenotransitionsonbothclocksources,theLOSS_LOCKsignalandLOSS_CLKINsignalwillbe  
asserted. Inthismode,oncethesecondaryclockisselected,itwillnotautomaticallyre-selecttheprimaryclockastheinputclock,evenifthesecondaryclock  
goes away and the primary clock is functional. The CLK_SEL pin must be toggled to re-select the primary clock source as the input clock.  
20  
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
Revertive  
Theinputclockselectionwillswitchtothesecondaryclocksourcewhentherearenotransitionsontheprimaryclocksourcefortwosecondaryclockcycles.  
LOSS_LOCKandLOSS_CLKINsignalswillbeasserted. LOSS_LOCKwillremainasserteduntilthePLLachieveslock,aspreviouslydefined,tothenewinput  
clock. Iftherearenotransitionsonbothclocksources,theLOSS_LOCKsignalandLOSS_CLKINsignalwillbeasserted. Afterastableandvalidprimaryclock  
sourceispresentforeither8or1024primaryclockcycles,theinputclockselectionwillautomaticallyswitchbacktotheprimaryclocksourceandLOSS_CLKIN  
signalwillbedeasserted.TheCLK_SELpincanbeleftfloatinginthisauto-revertivemode. TheOKCbit(0x1D)determinesthenumberofvalidprimaryclock  
cycles of either 8 or 1024 before switching back to the primary clock source. If OKC is set to "0", the primary clock will be re-selected as the input clock if the  
primaryclockispresentfor8primaryclockcycles. IfOKCissetto"1",there-selectthresholdis1024primaryclockcycles. (Actualswitchovertimeswillvary.)  
Notethatbothclockinputsmustbeatthesamefrequencyinorderfortheauto-revertiveswitchovertofunctionproperly. Ifbothreferenceclocksareatdifferent  
frequencies, thedevicewillalwaysremainontheprimaryclockunlessitisabsentfortwosecondaryclockcycles.  
Inallswitchovermodes,LOSS_LOCKsignalisassertedforatleasttwoinputclockcyclesofthenewlyselectedclockwhenswitchingclocksources(manually  
orautomatic).  
CLOCK SWITCH MATRIX AND OUTPUTS  
AllthreePLLoutputsandthecurrentlyselectedinputclocksourceareroutedintoandthroughaclockmatrix.TheuserisabletoselectwhichPLLoutputand  
clock source is routed to which output bank via the SRCx bits (0x34, 0x35). Each output bank has its own set of SRC bits. Refer to the RAM table for more  
information. NotethatOUT1willbebasedoffthereferenceclockandtheonlyoutputbanktogglingunderthedefaultRAMbitsettings.  
Outputs 1, 2 and 3 are 3.3V LVTTL. Outputs banks 4 and 5 can be 3.3V LVTTL, LVPECL or LVDS. The LVDS and LVPECL selection is determined by  
theLVLxbits(0x54,0x58). Eachoutputbankhasindividualslew-ratecontrol(SLEWxbits). Eachoutputcanbeindividuallyinverted(INVxbits);whenusing  
LVPECLorLVDSmodes,oneoftheoutputsineachLVPECL/LVDSpairshouldbeinverted. AlloutputbanksexceptOUT1haveaprogrammable10-bitpost-  
divider(Qxbits)withtwoselectabledivideconfigurationsviatheODIVxbits.  
Therearefoursettingsfortheprogrammableslewrate,0.7V/ns,1.25V/ns,2V/ns,and2.75V/ns;thisonlyappliestothe3.3VLVTTLoutputs. Thedifferential  
outputsarenotslewrateprogrammable inLVPECLorLVDSmodes. SLEW4and/orSLEW5mustbesetto2.75V/nsforstableoutputoperation. ForLVTTL  
outputfrequencyrateshigherthan100MHz, aslewrateof2V/nsorgreatershouldbeselected. Thepost-dividerscanbedisabledusingthePMxbit, which  
isdescribedinthePRE-SCALER,FEEDBACK-DIVIDER,ANDPOST-DIVIDERsection. Eachoutputcanalsobeenabled/disabled,whichisdescribedinthe  
'SHUTDOWN/ENABLEof OUTPUTS'section. RefertotheRAMtableforallbinarysettings.  
HIGH LEVEL BLOCK DIAGRAM FOR CONFIGURATION SCHEME  
I/Os  
I/Os  
Non-Volatile  
Configuration  
PLLs and Control  
Blocks  
EEPROM  
Cell  
Volatile  
Configuration  
I 2C or JTAG  
interface  
Write Enable  
Programming  
Interface Block  
NOTE: Diagram does not represent actual number of die on chip.  
21  
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
PROGRAMMINGTHEDEVICE  
I2C and JTAG may be used to program the 5V9888. The I2C/JTAG pin selects the I2C when HIGH and JTAG when LOW. Note that the TRST pin needs  
to be LOW for I2C mode.  
Hardwired Parameters for the IDT5V9888  
JTAGidentificationnumber=32'b0000_0000001110101100_00000110011_1  
Device (slave) address = 7'b1101010  
ID Byte for the 5V9888 = 8'b00010000  
I2C PROGRAMMING  
The 5v9888 is programmed through an I2C-Bus serial interface, and is an I2C slave device. The read and write transfer formats are supported. The first  
byteofdataafterawriteframetothecorrectslaveaddressisinterpretedastheregisteraddress;thisaddressauto-incrementsaftereachbytewrittenorread.  
Theframeformatsareshownbelow.  
SDA  
SCL  
SDA  
SCL  
P
S
Data Frame  
Data is stable during  
clock HIGH  
Stop  
Condition  
Start  
Condition  
Figure 1: Framing  
Each frame starts with a "Start Condition" and ends with an "End Condition". These are both generated by the Master device.  
MSB  
1
LSB  
1
0
1
0
1
0
R/W  
7-bit slave address  
R/W  
ACK from Slave  
0 - Slave will be written by master  
1 - Slave will be read by master  
The first byte transmitted by the Master is the Slave Address followed by the R/W bit.  
The Slave acknowledges by sending a "1" bit.  
Figure 2: First Byte Transmittetd on I2C Bus  
22  
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
EXTERNAL I2C INTERFACE CONDITION  
KEY:  
From Master to Slave  
FromMastertoSlave, butcanbeomittediffollowedbythecorrectsequence  
NormallydatatransferisterminatedbyaSTOPconditiongeneratedbytheMaster. However,iftheMasterstillwishestocommunicateonthebus,itcan  
generatearepeatedSTARTcondition, andaddressanotherSlaveaddresswithoutfirstgeneratingaSTOPcondition.  
From Slave to Master  
SYMBOLS:  
ACK - Acknowledge (SDA LOW)  
NACK - Not Acknowledge (SDA HIGH)  
Sr-RepeatedStartCondition  
S - START Condition  
P - STOP Condition  
PROGWRITE  
S
Address R/W ACK Command Code ACK Register ACK Data ACK  
7-bits 1-bit 8-bits: xxxxxx00 1-bit 8-bits 1-bit 8-bits 1-bit  
P
0
Figure 3: Progwrite Command Frame  
WritescancontinueaslongasaStopconditionisnotsentandeachbytewillincrementtheregisteraddress.  
PROGREAD  
Note: If the expected read command is not from the next higher register to the previous read or write command, then set a known "read" register address  
priortoareadoperationbyissuingthefollowingcommand:  
S
Address R/W ACK Command Code ACK Register ACK  
7-bits 1-bit 8-bits: xxxxxx00 1-bit 8-bits 1-bit  
P
0
Figure 4a: Prior to Progread Command Set Register Address  
TheusercanignoretheSTOPconditionaboveandusearepeatedSTARTconditioninstead,straightaftertheslaveacknowledgementbit(i.e.,followedby  
theProgreadcommand):  
Data_1  
8-bits  
Data_2  
8-bits  
Data_last  
8-bits  
P
Sr Address R/W ACK ID Byte ACK  
7-bits 1-bit 8 bits  
ACK  
1-bit  
ACK  
1-bit  
NACK  
1-bit  
1
1-bit  
Figure 4b: Progread Command Frame  
Note:Figure4babovebyitselfistheProgreadcommandformat. TheIDbyteforthe5V9888is10hex. Eachbyterecievedincrementstheregisteraddress.  
23  
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
PROGSAVE  
JTAGINSTRUCTIONREGISTER  
DESCRIPTION  
To save configuration into EEPROM, WRITE ENABLE pin must be set LOW  
P
S
Address R/W ACK Command Code ACK  
7-bits 1-bit 8-bits:xxxxxx01 1-bit  
IR (3)  
IR (2)  
IR (1)  
IR (0)  
Instructions  
EXTEST(1)  
SAMPLE/PRELOAD(1)  
IDCODE(1)  
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
1
NOTE:  
PROGWRITE is for writing to the 5V9888 registers.  
PROGREAD is for reading the 5V9888 registers.  
PROGSAVE is for saving all the contents of the 5V9888 registers to the EEPROM.  
PROGRESTORE is for loading the entire EEPROM contents to the 5V9888 registers.  
REGADDR(2)  
REGDATAW / PROGWRITE(3)  
REGDATAR / PROGREAD(4)  
PROGSAVE(5)  
PROGRESTORE(6)  
CLAMP(1)  
HIGHZ(1,7)  
BYPASS(1)  
PROGRESTORE  
P
S
Address R/W ACK Command Code ACK  
7-bits 1-bit 8-bits:xxxxxx10 1-bit  
NOTES:  
1. IEEE 1149.1 definition  
0
2. REGADDR is for setting a specific 5V9888 register address.  
3. REGDATAW/PROGWRITE is for writing to the 5V9888 registers.  
4. REGDATAR/PROGREAD is for reading the 5V9888 registers.  
5. PROGSAVE is for saving all the contents of the 5V9888 registers to the EEPROM.  
WRITE ENABLE pin must be asserted LOW.  
6. PROGRESTORE is for loading the entire EEPROM contents to the 5V9888 registers.  
7. The OEMs bits for OUT1-6 must be set for tri-state when using the HIGHZ instruction  
JTAGINTERFACE  
InadditiontotheIEEE1149.1instructionsEXTEST,SAMPLE/PRELOAD,  
CLAMP, HIGH-Z and BYPASS, the 5V9888 allows access to internal  
programmingregistersusingtheREGADDR(setregisteraddress),REGDATAR  
(read register) and REGDATW (write register instructions. Data is always  
accessedbybyte,andtheregisteraddressincrementsaftereachreadorwrite.  
Thefullinstructionsetfollows. TheIDT5V9888willbeupdatingtheregisters  
duringprogramming.  
The JTAG TAP controller can be reset in one of four ways:  
1) Power up in JTAG mode  
2) PowerupinI2CmodeandthengointoJTAGmode,orgooutofandback  
intoJTAGmodewiththeI2C/JTAGpin  
3) Apply TRST while in JTAG mode  
4) Apply five rising edges of TCK with TMS high while in JTAG mode  
EEPROMINTERFACE  
TheIDT5V9888canalsostoreitsconfigurationinaninternalEEPROM. Thecontentsofthedevice'sinternalprogrammingregisterscanbesavedtothe  
EEPROMbyissuingasaveinstruction(ProgSave)andassertingtheWRITEENABLEpinLOW. Theycanbeloadedbacktotheinternalprogrammingregisters  
byissuingarestoreinstruction(ProgRestore).  
ToinitiateasaveorrestoreusingI2C,onlytwobytesaretransferred.TheDeviceAddressisissuedwiththeread/writebitsetto"0",followedbytheappropriate  
commandcode.ThesaveorrestoreinstructionexecutesaftertheSTOPconditionisissuedbytheMaster,duringwhichtimetheIDT5V9888willnotgenerate  
Acknowledgebits. The5V9888willacknowledgetheinstructionsafterithascompletedexecutionofthem. Duringthattime,theI2Cbusshouldbeinterpreted  
as busy by all other users of the bus.  
UsingJTAG,theProgSaveandProgRestoreinstructionsselectstheBYPASSregisterpathforshiftingthedatafromTDItoTDOduringthedataregisterscanning.  
DuringtheexecutionofaProgSaveorProgRestoreinstruction,theIDT5V9888willnotacceptanewprogramminginstruction(read,write,save,orrestore).  
Allnon-programmingJTAGinstructionswillfunctionproperly,buttheusershouldwaituntilthesaveorrestoreiscompletebeforeissuinganewprogramming  
instruction. Ifanewprogramminginstructionisissuedbeforethesaveorrestorecompletes,thenewinstructionisignored,andtheBYPASSregisterpathremains  
ineffectforshiftingdatafromTDItoTDOduringdataregisterscanning.  
Thetimeittakesforthesave(TSAVE)andrestore(TRESTORE)instructionstocompleteis:  
TSAVE = 100ms max, TRESTORE = 10 ms max  
WRITEENABLEshouldstaylowforatleast10msafterthecompletionofasaveinstruction.  
24  
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
Inorderforthesaveandrestoreinstructionstofunctionproperly,theIDT5V9888mustnotbeinshutdownmode(SHUTDOWNpinasserted). Intheevent  
ofaninterruptofsomesortsuchasapowerdownofthepartinthemiddleofasaveorrestoreoperation,thecontentstoorfromtheEEPROMwillbepartially  
loaded, and a CRC error will be generated. The CERR bit (0x81) will be asserted to indicate that an error has occurred. The LOSS_LOCK signal will also  
beasserted.  
Onpower-upoftheIDT5V9888,anautomaticrestoreisperformedtoloadtheEEPROMcontentsintotheinternalprogrammingregisters. Theauto-restore  
willnotfunctionproperlyifthedeviceisinshutdownmode(SHUTDOWNpinasserted). TheIDT5V9888willbereadytoacceptaprogramminginstructiononce  
itacknowledgesits7-bitI2Caddress.  
tTCLK  
t4  
t2  
t1  
TCLK  
t3  
TDI/TMS  
tDS  
tDH  
TDO  
TDO  
tDO  
t6  
TRST  
t5  
Standard JTAG Timing  
NOTE:  
t1 = tTCLKLOW  
t2 = tTCLKHIGH  
t3 = tTCLKFALL  
t4 = tTCLKRISE  
t5 = tRST (reset pulse width)  
t6 = tRSR (reset recovery)  
JTAG  
SYSTEMINTERFACEPARAMETERS  
ACELECTRICALCHARACTERISTICS  
Symbol  
Parameter  
DataOutput(1)  
Min.  
Max.  
Units  
tDO  
20  
ns  
Symbol  
Parameter  
Min.  
100  
40  
Max.  
Units  
tDOH  
tDS  
DataOutputHold(1)  
DataInput, tRISE =3ns  
DataInput, tFALL =3ns  
0
ns  
tTCLK  
JTAG Clock Input Period  
JTAG Clock HIGH  
JTAG Clock Low  
ns  
10  
ns  
tTCLKHIGH  
tTCLKLOW  
tTCLKRISE  
tTCLKFALL  
tRST  
ns  
tDH  
10  
ns  
40  
ns  
JTAG Clock Rise Time  
JTAG Clock Fall Time  
JTAGReset  
5(1)  
5(1)  
ns  
NOTE:  
1. 50pF loading on external output signals.  
ns  
50  
ns  
tRSR  
JTAG Reset Recovery  
50  
ns  
NOTE:  
1. Guaranteed by design.  
25  
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
I2C BUS DC CHARACTERISTICS  
Symbol  
VIH  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
Input HIGH Level  
InputLOWLevel  
Hysteresis of Inputs  
InputLeakageCurrent  
OutputLOWVoltage  
0.7 * VDD  
VIL  
0.3 * VDD  
V
VHYS  
IIN  
0.05 * VDD  
V
±1.0  
0.4  
μA  
V
VOL  
IOL = 3 mA  
I2C BUS AC CHARACTERISTICS FOR STANDARD MODE  
Symbol  
FSCLK  
tBUF  
Parameter  
Min  
0
Typ  
Max  
Unit  
KHz  
μs  
μs  
μs  
ns  
Serial Clock Frequency (SCLK)  
Bus free time between STOP and START  
SetupTime,START  
100  
4.7  
4.7  
4
tSU:START  
tHD:START  
tSU:DATA  
tHD:DATA  
tOVD  
HoldTime, START  
SetupTime,datainput(SDAT)  
HoldTime, datainput(SDAT)(1)  
Outputdatavalidfromclock  
Capacitive Load for Each Bus Line  
Rise Time, data and clock (SDAT, SCLK)  
Fall Time, data and clock (SDAT, SCLK)  
HIGH Time, clock (SCLK)  
LOW Time, clock (SCLK)  
250  
0
μs  
μs  
pF  
3.45  
400  
CB  
tR  
1000  
300  
ns  
tF  
ns  
tHIGH  
4
4.7  
4
μs  
μs  
μs  
tLOW  
tSU:STOP  
SetupTime, STOP  
NOTE:  
1. A device must internally provide a hold time of at least 300ns for the SDAT signal (referred to the VIHMIN of the SCLK signal) to bridge the undefined region of the falling edge  
of SCLK.  
I2C BUS AC CHARACTERISTICS FOR FAST MODE  
Symbol  
FSCLK  
tBUF  
Parameter  
Min  
0
Typ  
Max  
Unit  
KHz  
μs  
μs  
μs  
ns  
Serial Clock Frequency (SCLK)  
Bus free time between STOP and START  
SetupTime,START  
400  
1.3  
0.6  
0.6  
100  
0
tSU:START  
tHD:START  
tSU:DATA  
tHD:DATA  
tOVD  
HoldTime, START  
SetupTime,datainput(SDAT)  
HoldTime, datainput(SDAT)(1)  
Outputdatavalidfromclock  
Capacitive Load for Each Bus Line  
Rise Time, data and clock (SDAT, SCLK)  
Fall Time, data and clock (SDAT, SCLK)  
HIGH Time, clock (SCLK)  
LOW Time, clock (SCLK)  
μs  
μs  
pF  
0.9  
400  
300  
300  
CB  
tR  
20 + 0.1 * CB  
ns  
tF  
20 + 0.1 * CB  
ns  
tHIGH  
0.6  
1.3  
0.6  
μs  
μs  
μs  
tLOW  
tSU:STOP  
SetupTime, STOP  
NOTE:  
1. A device must internally provide a hold time of at least 300ns for the SDAT signal (referred to the VIHMIN of the SCLK signal) to bridge the undefined region of the falling edge  
of SCLK.  
26  
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
ABSOLUTEMAXIMUMRATINGS(1)  
Symbol  
VDD  
Description  
Internal Power Supply Voltage  
Input Voltage  
Max  
-0.5 to +4.6  
-0.5 to +4.6  
-0.5 to VDD + 0.5  
150  
Unit  
V
VI  
V
VO  
Output Voltage(2)  
V
TJ  
Junction Temperature  
Storage Temperature  
°C  
°C  
TSTG  
–65 to +150  
NOTE:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
2. Not to exceed 4.6V.  
(1)  
CAPACITANCE (TA = +25°C, f = 1MHz, VIN = 0V)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
CIN  
Input Capacitance  
4
pF  
Crystal Specifications  
XTAL_FREQ  
XTAL_MIN  
XTAL_MAX  
Crystal Frequency  
8
3.5  
50  
MHz  
pF  
Minimum Crystal Load Capacitance  
Maximum Crystal Load Capacitance  
Crystal Load Capacitance Resolution  
Voltage Swing (peak-to-peak, nominal)  
35.4  
0.125  
2.3  
pF  
XTAL_VPP  
V
NOTE:  
1. Capacitance levels characterized but not tested.  
RECOMMENDEDOPERATINGCONDITIONS  
Symbol  
Description  
Min.  
3
Typ.  
Max.  
Unit  
VDD  
PowerSupplyVoltageforLVTTL  
Power Supply Voltage for LVDS/LVPECL  
OperatingTemperature,Ambient  
MaximumLoadCapacitance(LVTTLonly)  
ExternalReferenceCrystal  
3.3  
3.3  
3.6  
3.465  
+85  
15  
V
3.135  
–40  
TA  
CLOAD_OUT  
FIN  
°C  
pF  
8
50  
MHz  
ExternalReferenceClock,Industrial  
1
400  
5
tPU  
Power-uptimeforallVDDstoreachminimumspecifiedvoltage  
(powerrampsmustbemonotonic)  
0.05  
ms  
27  
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGE  
Symbol  
VIHH  
Parameter  
Test Conditions  
I2C/JTAG 3-Level Input  
Min.  
Typ.  
Max.  
Unit  
V
Input HIGH Voltage Level(1)  
Input MID Voltage Level(1)  
InputLOWVoltageLevel(1)  
VDD – 0.4  
VIMM  
I2C/JTAG 3-Level Input  
I2C/JTAG 3-Level Input  
VIN = VDD  
VDD/2 – 0.2  
VDD/2 + 0.2  
V
VILL  
0.4  
200  
+50  
V
HIGH Level  
MID Level  
LOW Level  
I3  
3-LevelInputDCCurrent  
VIN = VDD/2  
–50  
–200  
μA  
mA  
mA  
VIN = GND  
IDD  
IDDS  
TotalPowerSupplyCurrent  
(3.3V Supply, VDD)  
2 outputs @166MHz; 4 outputs @ 83MHz  
2 outputs @20MHz; 4 outputs @ 40MHz  
120  
40  
Total Power Supply Current in  
ShutdownMode(2)  
GlobalShutdownMode  
2
(PLLs, dividers, outputs, etc. powereddown)  
NOTES:  
1. These inputs are normally wired to VDD, GND, or left floating. If these inputs are switched dynamically after powerup, the function and timing of the outputs may be glitched, and  
the PLL may require additional tAQ time before all datasheet limits are achieved.  
2. Dividers must reload reprogrammed values via power-on reset or terminal count reload in order to ensure low-power mode.  
DCELECTRICALCHARACTERISTICSFOR3.3VLVTTL(1)  
Symbol  
IOH  
Parameter  
Output HIGH Current  
OutputLOWCurrent  
Input Voltage HIGH  
InputVoltageLOW  
Test Conditions  
Min.  
12  
12  
2
Typ.  
24  
Max.  
Unit  
mA  
mA  
V
VOH = VDD - 0.5, VDD = 3.3V ± 0.3V  
VOL = 0.5V, VDD = 3.3V ± 0.3V  
IOL  
24  
VIH  
VIL  
0.8  
10  
V
IIH  
Input HIGH Current  
InputLOWCurrent  
VIN = VDD  
VIN = 0V  
μA  
μA  
μA  
IIL  
10  
IOZD  
OutputLeakageCurrent  
3-stateoutputs  
10  
NOTE:  
1. See RECOMMENDED OPERATING RANGE table.  
POWERSUPPLYCHARACTERISTICSFORLVTTLOUTPUTS  
Symbol  
Parameter  
Test Conditions  
REF = LOW  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current  
6
12  
mA  
Outputsenabled,Alloutputsunloaded  
VDD = Max., CL = 0pF  
IDDD  
Dynamic VDD Power Supply  
CurrentperOutput  
40  
60  
μA/MHz  
FREFERENCE CLOCK = 33MHz, CL = 15pf  
FREFERENCE CLOCK = 133MHz, CL = 15pf  
FREFERENCE CLOCK = 200MHz, CL = 15pf  
26  
80  
40  
ITOT  
Total Power VDD Supply Current  
120  
170  
mA  
112  
28  
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
DCELECTRICALCHARACTERISTICSFORLVDS  
Symbol  
VOT (+)  
VOT (-)  
Δ VOT  
VOS  
Parameter  
Min.  
247  
-247  
Typ.  
1.2  
9
Max  
454  
-454  
50  
Unit  
mV  
mV  
mV  
V
DifferentialOutputVoltagefortheTRUEbinarystate  
DifferentialOutputVoltagefortheFALSEbinarystate  
ChangeinVOT betweenComplimentaryOutputStates  
OutputCommonModeVoltage(OffsetVoltage)  
ChangeinVOS betweenComplimentaryOutputStates  
Outputs Short Circuit Current, VOUT+ or VOUT- = 0V or VDD  
DifferentialOutputsShortCircuitCurrent,VOUT+=VOUT-  
1.125  
1.375  
50  
Δ VOS  
IOS  
mV  
mA  
mA  
24  
IOSD  
6
12  
POWERSUPPLYCHARACTERISTICSFORLVDSOUTPUTS(1)  
Symbol  
Parameter  
Test Conditions(2)  
REF = LOW  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current  
68  
90  
mA  
Outputsenabled,Alloutputsunloaded  
VDD = Max., CL = 0pF  
IDDD  
Dynamic VDD Power Supply  
CurrentperOutput  
30  
45  
μA/MHz  
FREFERENCE CLOCK = 100MHz, CL = 5pf  
FREFERENCE CLOCK = 200MHz, CL = 5pf  
FREFERENCE CLOCK = 400MHz, CL = 5pf  
86  
130  
150  
190  
ITOT  
Total Power VDD Supply Current  
100  
122  
mA  
NOTES:  
1. Output banks 4 and 5 are toggling. Other output banks are powered down.  
2. The termination resistors are excluded from these measurements.  
DCELECTRICALCHARACTERISTICSFORLVPECL  
Symbol  
VOH  
Parameter  
Min.  
VDD - 1.2  
VDD - 1.95  
0.55  
Typ.  
Max  
VDD - 0.9  
VDD - 1.61  
0.93  
Unit  
V
Output Voltage HIGH, terminated through 50Ωtied to VDD - 2V  
OutputVoltageLOW,terminatedthrough50ΩtiedtoVDD -2V  
Peak to Peak Output Voltage Swing  
VOL  
V
VSWING  
V
POWERSUPPLYCHARACTERISTICSFORLVPECLOUTPUTS(1)  
Symbol  
Parameter  
Test Conditions(2)  
REF = LOW  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current  
86  
110  
mA  
Outputsenabled,Alloutputsunloaded  
VDD = Max., CL = 0pF  
IDDD  
Dynamic VDD Power Supply  
CurrentperOutput  
35  
50  
μA/MHz  
FREFERENCE CLOCK = 100MHz, CL = 5pf  
FREFERENCE CLOCK = 200MHz, CL = 5pf  
FREFERENCE CLOCK = 400MHz, CL = 5pf  
120  
130  
140  
180  
190  
210  
ITOT  
Total Power VDD Supply Current  
mA  
NOTES:  
1. Output banks 4 and 5 are toggling. Other output banks are powered down.  
2. The termination resistors are excluded from these measurements.  
29  
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
ACTIMINGELECTRICALCHARACTERISTICS  
(SPREAD SPECTRUM GENERATION = OFF)  
Symbol  
fIN  
Parameter  
Test Conditions  
Min.  
1(1)  
Typ.  
Max  
400  
200  
500  
1200  
400  
40  
Unit  
MHz  
MHz  
InputFrequency  
OutputFrequency  
InputFrequencyLimit  
1/t1  
SingleEndedClockoutputlimit(LVTTL)  
DifferentialClockoutputlimit(LVPECL/LVDS)  
VCOoperatingFrequencyRange  
0.0049  
0.0049  
10  
0.4(1)  
0.03  
40  
fVCO  
fPFD  
fBW  
t2  
VCO Frequency  
PFD Frequency  
LoopBandwidth  
Input Duty Cycle  
Output Duty Cycle  
MHz  
MHz  
MHz  
%
PFDoperatingFrequencyRange  
Basedonloopfilterresistorandcapacitorvalues  
Duty Cycle for Input  
60  
t3  
Measured at VDD/2, FOUT 200MHz  
Measured at VDD/2, FOUT > 200MHz  
Single-EndedOutputclockriseandfalltime,  
20% to 80% of VDD (Output Load = 15pf)  
Single-EndedOutputclockriseandfalltime,  
20% to 80% of VDD (Output Load = 15pf)  
Single-EndedOutputclockriseandfalltime,  
20% to 80% of VDD (Output Load = 15pf)  
Single-EndedOutputclockriseandfalltime,  
20% to 80% of VDD (Output Load = 15pf)  
LVDS, 20% to 80%  
45  
55  
%
40  
60  
Slew Rate  
2.75  
SLEWx(bits) = 00  
Slew Rate  
2
t4(2)  
SLEWx(bits) = 01  
Slew Rate  
V/ns  
1.25  
0.75  
SLEWx(bits) = 10  
Slew Rate  
SLEWx(bits) = 11  
RiseTimes  
850  
850  
500  
500  
t5  
FallTimes  
ps  
RiseTimes  
LVPECL, 20% to 80%  
FallTimes  
t6  
t7  
t8  
Outputthree-stateTiming  
Timeforoutputtoenterorleavethree-statemode  
after SHUTDOWN/OE switches  
Peak-to-peakperiodjitter,  
150 +  
1/FOUTX  
150  
ns  
ps  
ps  
ClockJitter(3,7)  
OutputSkew  
fPFD > 20MHz  
fPFD < 20MHz  
200  
CLKoutputsmeasuredatVDD/2  
Skewbetweenoutputtooutput onthesamebank  
(bank 4 and bank 5 only)(4, 5)  
150  
t9  
LockTime  
Locktime(8)  
PLLLockTimefromPower-up(6)  
10  
10  
20  
20  
100  
ms  
μs  
ms  
t10  
t11  
PLLLocktimefromshutdownmode  
Hold Time after TSAVE for WRITE ENABLE signal  
Write-ProtectTime  
NOTES:  
1. Practical lower input frequency is determined by loop filter settings.  
2. A slew rate of 2V/ns or greater should be selected for output frequencies of 100MHz and higher.  
3. Input frequency is the same as the output with all output banks running at the same frequency.  
4. Skew measured between all in-phase outputs in the same bank.  
5. Skew measured between the cross points of all differential output pairs under identical input and output interfaces, transitions and load conditions on any one device.  
6. Includes loading the configuration bits from EEPROM to PLL registers. It does not include EEPROM programming/write time.  
7. Guaranteed by design but not production tested.  
8. Actual PLL lock time depends on the loop configuration.  
SPREADSPECTRUMGENERATIONSPECIFICATIONS  
Symbol  
fIN  
Parameter  
Description  
Min.  
1(1)  
Typ.  
Max  
400  
Unit  
MHz  
kHz  
InputFrequency  
Mod Freq  
InputFrequencyLimit  
33  
fMOD  
ModulationFrequency  
fSPREAD  
SpreadValue  
AmountofSpreadValue(Programmable)-DownSpread  
AmountofSpreadValue(Programmable)-CenterSpread  
-0.5, -1, -2.5, -3.5, -4  
-0.5 to +0.5  
%fOUT  
NOTE:  
1. Practical lower input frequency is determined by loop filter settings.  
30  
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
TEST CIRCUITS AND CONDITIONS(1)  
VDD  
CLKOUT  
CLOAD  
0.1μF  
OUTPUTS  
GND  
NOTE:  
1. All VDD pins must be tied together.  
Test Circuits for DC Outputs  
OTHER TERMINATION SCHEME (BLOCK DIAGRAM)  
CLOAD  
CLKOUT  
CLKOUT  
CLKOUT  
OUTPUTS  
GND  
OUTPUTS  
GND  
CLOAD  
RLOAD  
CLOAD  
LVDS: - 100Ω between differential outputs with 5pF  
LVTTL: -15pF for each output  
VDD-2V  
RLOAD  
CLOAD  
CLOAD  
CLKOUT  
OUTPUTS  
GND  
CLKOUT  
RLOAD  
VDD-2V  
LVPECL: - 50Ω to VDD-2V for each output with 5pF  
31  
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
RAM(PROGRAMMINGREGISTER)TABLES  
BIT #  
(Default Settings)  
BIT #  
Default  
ADDR  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Register  
DESCRIPTION  
Hex Value  
0x00  
0x01  
0x02  
0x03  
0x04  
No registers exist  
MFC=Manual Frequency Control Mode ('0'=All PLL Control (Default), "1"=PLL0 Control Only );  
GINEN0 to GINEN5=GINx Pins Enable Bits, ("1"=Enable (Default), "0"=No Connect (Internal State will be "Low"));  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
00  
MFC  
Address 0x04, Bits[7:1] are reserved and should bet set to "0".  
Address 0x05, Bits 7, 6, and 3 are reserved and should be set to "1'.  
0x05  
0x06  
FF  
GINEN4  
GINEN3  
GINEN2  
GINEN1  
GINEN0  
XDRV=crystal drive strength ("00" = 1.4V, "01" = 2.3V, "10"= 3.2V pk-pk swing typical, "11"=XTAL_IN with external clock-default); When  
"11", XTALCAP[7:0] value must also be set to "0".  
XDRV[1:0]  
0
0
1
1
0
0
0
0
30  
Bits 7,6, 3, 2, 1, 0 are reserved and should be set to "0"  
XTAL load cap = 3.5pF+ (0.125 x XTALCAP[7:0]) , 3.5pF to 35.4pF; Each XTAL pin to GND;  
(For example, "00000001"=0.125pF, "00000010"=0.25pF, "00000100"=0.5pF); Default = "00000000";  
XTALCAP[7:0]  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
IP0[2:0]_CONFIG0  
IP0[2:0]_CONFIG1  
IP0[2:0]_CONFIG2  
IP0[2:0]_CONFIG3  
RZ0[3:0]_CONFIG0  
RZ0[3:0]_CONFIG1  
RZ0[3:0]_CONFIG2  
RZ0[3:0]_CONFIG3  
CZ0[3:0]_CONFIG0  
CZ0[3:0]_CONFIG1  
CZ0[3:0]_CONFIG2  
CZ0[3:0]_CONFIG3  
ODIV0_CONFIG0  
ODIV0_CONFIG1  
ODIV0_CONFIG2  
ODIV0_CONFIG3  
PLL0 LOOP FILTER SETTING  
Loop Filter Values for PLL0 - For 4 Configurations (Default value is '0');  
CONFIG0 will be selected if GINx are disabled and operating in MFC mode  
ODIV0_CONFIGx=Determines which one of the 2 "Qx-Divider" Configurations to use with, for any of the "Qx-Divider" block associated  
with PLL0; Used in MFC mode; Default ODIV value is "0", and use CONFIG0 of Qx-Divider;  
Resistor = 0.3K+ RZ0[3:0] * 1K, 0.3 to 15.3kOhm with 1kOhm Step, ("0000"=0.3kOhm, "0001"=1.3kOhm, "0010"=2.3kOhm, ...);  
Zero capacitor = 6pF + CZ0[3:0] * 27.2pF, 6pF to 414pF with 27.2pF Step, ("0000"=6pF, "0001"=33.2pF, "0010"=60.4pF", ...);  
Pole capacitor = 1.3pF + CP0[3:0] * 0.75pF, 1.3pF to 12.55pF with 0.75pF Step, ("0000"=1.3pF, "0001"=2.05pF, "0010"=2.8pF, ...)  
Charge pump current = 5 * 2^IP0[2:0] μA, 5uA to 640uA with 5, 10, 20, 40, ... binary step;  
CP0[3:0]_CONFIG0  
CP0[3:0]_CONFIG1  
CP0[3:0]_CONFIG2  
CP0[3:0]_CONFIG3  
D0[7:0]_CONFIG0  
D0[7:0]_CONFIG1  
D0[7:0]_CONFIG2  
D0[7:0]_CONFIG3  
N0[7:0]_CONFIG0  
N0[7:0]_CONFIG1  
N0[7:0]_CONFIG2  
N0[7:0]_CONFIG3  
PLL0 INPUT DIVIDER D0 SETTING  
PLL0 D-Divider Values (Prescaler) - For 4 Configurations (Default value is '0');  
PLL0 MULTIPLIER SETTING  
CONFIG0 will be selected if GINx are disabled and operating in MFC mode.  
N0[11:0]_CONFIGx - Part of PLL0 M Integer Feedback Divider Values (see equation below) - For 4 Configurations (Default value is '0');  
A0[3:0]_CONFIGx - Part of PLL0 M Integer Feedback Divider Values (see equation below) - For 4 Configurations (Default value is '0');  
SSC_OFFSET0[5:0] - Spread Spectrum Fractional Multiplier Offset Value. See Spread Spectrum Settings in register address range  
0x60-0x67  
A0[3:0]_CONFIG0  
A0[3:0]_CONFIG1  
A0[3:0]_CONFIG2  
A0[3:0]_CONFIG3  
N0[11:8]_CONFIG0  
N0[11:8]_CONFIG1  
N0[11:8]_CONFIG2  
N0[11:8]_CONFIG3  
Total Multiplier Value M0 = 2 * N0[11:0] + A0 + 1 + SS_OFFSET0 * 1/64  
When A0[3:0] = 0 and spread spectrum disabled, M0= 2 * N0[11:0];  
When A0[3:0] > 0 and spread spectrum disabled, M0 = 2 * N0[11:0] + A0 + 1;  
(Note: A < N-1, i.e. valid M values are 2, 4, 6, 8, 9, 10, 11, 12, 13, ..., 4095 assuming within fPFD and fVCO spec);  
0x1C  
0x1D  
0x1E  
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00  
40  
00  
SP  
SH  
OE6  
OE5  
OE4  
OE3  
OE2  
OE1  
SP=Shutdown/OE Polarity for SHUTDOWN/OE signal pin, ("0"= Active High (Default), "1"= Active Low);  
OEx=Output Disable Function for OUTx, ("1"=OUTx disabled based on OE pin (Default for OUT2-6, Disable mode is defined by OEMx  
bits), "0"= Outputs enabled and no association with OE pin (Default));  
SH=Determines the function of the SHUTDOWN/OE signal pin. ("1"=Global Shutdown; this over-rides OEx and OSx bits, "0"=Ouput  
Enable/Disable (Default))  
OKC  
OKC=clock OK count, "0"=8 cycles, "1"=1024 cycles (Default) of Input Clocks for Revertive Switchover Mode:  
Address 0x1D, Bit 7 [5:0], and Address 0x1E are reserved and should be set to "0"  
32  
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
RAM(PROGRAMMINGREGISTER)TABLES  
BIT #  
(Default Settings)  
BIT #  
Default  
ADDR  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
DESCRIPTION  
Register  
Hex Value  
Configuring Output OUT1  
INV1=Output Inversion for OUT1 ("0"= Non-Invert (Default), "1"=Invert);  
SLEW1=Slew Rate Settings for OUT1 output ("00"= 2.75V/ns (Default), "01"=2V/ns, "10"=1.25V/ns, "11"=0.7V/ns);  
OEM1= Output Enable Mode for OUT1 output, when used with OE1 bit and SHUTDOWN/OE pin ("0x" = Tri-state (Default), "10"=Park  
Low, "11"=Park High);  
OEM1[1;0]  
SLEW1[1:0]  
0x1F  
0
0
0
0
0
0
0
0
00  
INV1  
Address 0x1F, Bits 3, 1, 0 are reserved and should be set to "0"  
IP1[2:0]_CONFIG0  
IP1[2:0]_CONFIG1  
IP1[2:0]_CONFIG2  
IP1[2:0]_CONFIG3  
RZ1[3:0]_CONFIG0  
RZ1[3:0]_CONFIG1  
RZ1[3:0]_CONFIG2  
RZ1[3:0]_CONFIG3  
CZ1[3:0]_CONFIG0  
CZ1[3:0]_CONFIG1  
CZ1[3:0]_CONFIG2  
CZ1[3:0]_CONFIG3  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
ODIV1_CONFIG0  
ODIV1_CONFIG1  
ODIV1_CONFIG2  
ODIV1_CONFIG3  
PLL1 LOOP FILTER SETTING  
Loop Filter Values for PLL1 - For 4 Configurations (Default value is '0');  
CONFIG0 will be selected if GINx are disabled and operating in MFC mode.  
ODIV1_CONFIGx=Determines which one of the 2 "Qx-Divider" Configurations to use with, for any of the "Qx-Divider" block associated  
with PLL1; Used in MFC mode; Default ODIV value is "0", and use CONFIG0 of Qx-Divider;  
Resistor = 0.3K+ RZ1[3:0] * 1K, 0.3 to 15.3kOhm with 1kOhm Step, ("0000"=0.3kOhm, "0001"=1.3kOhm, "0010"=2.3kOhm, ...);  
Zero capacitor = 6pF + CZ1[3:0] * 27.2pF, 6pF to 414pF with 27.2pF Step, ("0000"=6pF, "0001"=33.2pF, "0010"=60.4pF", ...);  
Pole capacitor = 1.3pF + CP1[3:0] * 0.75pF, 1.3pF to 12.55pF with 0.75pF Step, ("0000"=1.3pF, "0001"=2.05pF, "0010"=2.8pF, ...)  
Charge pump current = 5 * 2^IP1[2:0] μA, 5uA to 640uA with 5, 10, 20, 40, ... binary step;  
CP1[3:0]_CONFIG0  
CP1[3:0]_CONFIG1  
CP1[3:0]_CONFIG2  
CP1[3:0]_CONFIG3  
D1[7:0]_CONFIG0  
D1[7:0]_CONFIG1  
D1[7:0]_CONFIG2  
D1[7:0]_CONFIG3  
N1[7:0]_CONFIG0  
N1[7:0]_CONFIG1  
N1[7:0]_CONFIG2  
N1[7:0]_CONFIG3  
PLL1 INPUT DIVIDER D1 SETTING  
PLL1 D-Divider Values (Prescaler) - For 4 Configurations (Default value is '0');  
PLL1 MULTIPLIER SETTING  
CONFIG0 will be selected if GINx are disabled and operating in MFC mode.  
N1[11:0]_CONFIGx - Part of PLL1 M Integer Feedback Divider Values (see equation below) - For 4 Configurations (Default value is '0');  
A1[3:0]_CONFIGx - Part of PLL1 M Integer Feedback Divider Values (see equation below) - For 4 Configurations (Default value is '0');  
SSC_OFFSET1[5:0] - Spread Spectrum Fractional Multiplier Offset Value. See Spread Spectrum Settings in register address range  
0x68-0x6F  
A1[3:0]_CONFIG0  
A1[3:0]_CONFIG1  
A1[3:0]_CONFIG2  
A1[3:0]_CONFIG3  
N1[11:8]_CONFIG0  
N1[11:8]_CONFIG1  
N1[11:8]_CONFIG2  
N1[11:8]_CONFIG3  
Total Multiplier Value M1 = 2 * N1[11:0] + A1 + 1 + SS_OFFSET1 * 1/64  
When A1[3:0] = 0 and spread spectrum disabled, M1= 2 * N1[11:0];  
When A1[3:0] > 0 and spread spectrum disabled, M1 = 2 * N1[11:0] + A1 + 1 ;  
(Note: A < N-1, i.e. valid M values are 2, 4, 6, 8, 9, 10, 11, 12, 13, ..., 4095 assuming within fPFD and fVCO spec);  
PRIMCLK=Priority Selection for Input Clock ("0"=XTALIN/REF_IN becomes Primary (Default), "1"=CLK_IN becomes Primary);  
SM = Switchover Mode ("0x"=Manual, "10"= Auto-NonRevertive, "11"=Auto-Revertive (Default));  
Bit 3 is reserved and should be set to "0".  
SRC2[1:0]  
SRC1[1:0]  
SM[1:0]  
0x34  
0x35  
0
0
1
1
0
0
0
1
0
0
1
1
1
0
0
1
46  
55  
PRIMCLK  
SRCx[1:0]=Input Source Selection for Output Dividers "Qx" blocks ("00"=Selected Input CLK, "01"=PLL0, "10"=PLL1, "11"=PLL2);  
Default on SRC1 is the selected input clock. Default on SRC2-6 is PLL0 which will be powered down.  
SRC6[1:0]  
SRC5[1:0]  
SRC4[1:0]  
SRC3[1:0]  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
No Registers Exist  
IP2[2:0]_CONFIG0  
IP2[2:0]_CONFIG1  
IP2[2:0]_CONFIG2  
IP2[2:0]_CONFIG3  
RZ2[3:0]_CONFIG0  
RZ2[3:0]_CONFIG1  
RZ2[3:0]_CONFIG2  
RZ2[3:0]_CONFIG3  
CZ2[3:0]_CONFIG0  
CZ2[3:0]_CONFIG1  
CZ2[3:0]_CONFIG2  
CZ2[3:0]_CONFIG3  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
00  
00  
ODIV2_CONFIG0  
ODIV2_CONFIG1  
ODIV2_CONFIG2  
ODIV2_CONFIG3  
PLL2 LOOP FILTER SETTING  
Loop Filter Values for PLL2 - For 4 Configurations (Default value is '0');  
CONFIG0 will be selected if GINx are disabled and operating in MFC mode.  
ODIV2_CONFIGx=Determines which one of the 2 "Qx-Divider" Configurations to use with, for any of the "Qx-Divider" block associated with  
PLL2; Used in MFC mode; Default ODIV value is "0", and use CONFIG0 of Qx-Divider;  
Resistor = 0.3K+ RZ2[3:0] * 1K, 0.3 to 15.3kOhm with 1kOhm Step, ("0000"=0.3kOhm, "0001"=1.3kOhm, "0010"=2.3kOhm, ...);  
Zero capacitor = 6pF + CZ2[3:0] * 27.2pF, 6pF to 414pF with 27.2pF Step, ("0000"=6pF, "0001"=33.2pF, "0010"=60.4pF", ...);  
Pole capacitor = 1.3pF + CP2[3:0] * 0.75pF, 1.3pF to 12.55pF with 0.75pF Step, ("0000"=1.3pF, "0001"=2.05pF, "0010"=2.8pF, ...)  
Charge pump current = 5 * 2^IP2[2:0] μA, 5uA to 640uA with 5, 10, 20, 40, ... binary step;  
CP2[3:0]_CONFIG0  
CP2[3:0]_CONFIG1  
CP2[3:0]_CONFIG2  
CP2[3:0]_CONFIG3  
33  
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
RAM(PROGRAMMINGREGISTER)TABLES  
BIT #  
(Default Settings)  
BIT #  
Default  
ADDR  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
DESCRIPTION  
Register  
Hex Value  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
0
0
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
BB  
00  
00  
00  
BB  
00  
00  
0C  
BB  
00  
00  
0C  
BB  
00  
00  
03  
BB  
00  
00  
D2[7:0]_CONFIG0  
D2[7:0]_CONFIG1  
D2[7:0]_CONFIG2  
D2[7:0]_CONFIG3  
N2[7:0]_CONFIG0  
N2[7:0]_CONFIG1  
N2[7:0]_CONFIG2  
N2[7:0]_CONFIG3  
PLL2 INPUT DIVIDER D2 SETTING  
PLL2 D-Divider Values (Prescaler) - For 4 Configurations (Default value is '0');  
PLL2 MULTIPLIER SETTING  
CONFIG0 will be selected if GINx are disabled and operating in MFC mode.  
N2[11:0]_CONFIGx - Part of PLL2 M Integer Feedback Divider Values (see equation below) - For 4 Configurations (Default value is '0');  
Total Multiplier Value M2 = N2;  
N2[11:8]_CONFIG0  
N2[11:8]_CONFIG1  
N2[11:8]_CONFIG2  
N2[11:8]_CONFIG3  
INV2  
Bits [7:4] in addresses 0x48, 0x49, 0x4A, and 0x4B are reserved and should be set to "0"  
OEM2[1:0]  
SLEW2[1:0]  
Configuring Output OUT2  
INV2=Output Inversion for OUT2 ("0"= Non-Invert (Default), "1"=Invert);  
SLEW2=Slew Rate Settings for OUT2 output ("00"= 2.75V/ns (Default), "01"=2V/ns, "10"=1.25V/ns, "11"=0.7V/ns);  
OEM2= Output Enable Mode for OUT2output, when used with OE2 bit and SHUTDOWN/OE pin ("0x" = Tri-state (Default), "10"=Park  
Low, "11"=Park High);  
Q2[x:x]=Output Divider "Q2" Values (Default value is '2') - Support 2 output configurations when used in MFC mode;  
PM2[x:x]=Divide Mode, ("00"=Divider Disabled;"01"=Divide by '1';"10"=Divide by 2; "11"=Divide by (Q+2) (Default));  
(Note: To enable OUT2, PM2 register bit values for both CONFIG0 and CONFIG1 configurations must be non-zero.)  
Q2[1:0]_CONFIG1  
PM2[1:0]_CONFIG1  
Q2[1:0]_CONFIG0  
PM2[1:0]_CONFIG0  
Q2[9:2]_CONFIG0  
Address 0x4C, Bits 3, 1, 0 are reserved and should be set to "0"  
Q2[9:2]_CONFIG1  
OEM3[1:0]  
SLEW3[1:0]  
INV3  
Configuring Output OUT3  
INV3=Output Inversion for OUT3 ("0"= Non-Invert (Default), "1"=Invert);  
SLEW3=Slew Rate Settings for OUT3 output ("00"= 2.75V/ns (Default), "01"=2V/ns, "10"=1.25V/ns, "11"=0.7V/ns);  
OEM3= Output Enable Mode for OUT3 output, when used with OE3 bit and SHUTDOWN/OE pin ("0x" = Tri-state (Default), "10"=Park  
Low, "11"=Park High);  
Q3[x:x]=Output Divider "Q3" Values (Default value is '2') - Support 2 output configurations when used in MFC mode;  
PM3[x:x]=Divide Mode, ("00"=Divider Disabled;"01"=Divide by '1';"10"=Divide by 2; "11"=Divide by (Q+2) (Default));  
(Note: To enable OUT3, PM3 register bit values for both CONFIG0 and CONFIG1 configurations must be non-zero.)  
Q3[1:0]_CONFIG1  
PM3[1:0]_CONFIG1  
Q3[1:0]_CONFIG0  
PM3[1:0]_CONFIG0  
Q3[9:2]_CONFIG0  
Address 0x50, Bits 3, 1, 0 are reserved and should be set to "0"  
Q3[9:2]_CONFIG1  
OEM4[1:0]  
SLEW4[1:0]  
LVL4[1:0]  
INV4_1  
INV4_0  
Configuring Output OUT4  
INV4_1=Output Inversion for /OUT4 ("0"= Invert , "1"=Non-Invert (Default));  
INV4_0=Output Inversion for OUT4 ("0"= Invert , "1"=Non-Invert (Default));  
SLEW4=Slew Rate Settings for OUT4 output ("00"= 2.75V/ns (Default), "01"=2V/ns, "10"=1.25V/ns, "11"=0.7V/ns);  
OEM4= Output Enable Mode for OUT4 output, when used with OE4 bit and SHUTDOWN/OE pin ("0x" = Tri-state (Default), "10"=Park  
Low, "11"=Park High);  
LVL4=Output IO Standard Selection, ("00"=LVTTL (Default), "01"=LVDS, "10"=LVPECL, "11"=Reserved);  
Q4[x:x]=Output Divider "Q4" Values (Default value is '2') - Support 2 output configurations when used in MFC mode;  
PM4[x:x]=Divide Mode, ("00"=Divider Disabled;"01"=Divide by '1';"10"=Divide by 2; "11"=Divide by (Q+2) (Default));  
(Note: To enable OUT4, PM4 register bit values for both CONFIG0 and CONFIG1 configurations must be non-zero.)  
Q4[1:0]_CONFIG1  
PM4[1:0]_CONFIG1  
Q4[1:0]_CONFIG0  
PM4[1:0]_CONFIG0  
Q4[9:2]_CONFIG0  
When using LVPECL or LVDS outputs, SLEW4 must be set to "00".  
Q4[9:2]_CONFIG1  
OEM5[1:0]  
SLEW5[1:0]  
LVL5[1:0]  
INV5_1  
INV5_0  
Configuring Output OUT5  
INV5_1=Output Inversion for /OUT5 ("0"= Invert, "1"=Non-Invert (Default));  
INV5_0=Output Inversion for OUT5 ("0"= Invert, "1"=Non-Invert (Default));  
SLEW5=Slew Rate Settings for OUT5 output ("00"= 2.75V/ns (Default), "01"=2V/ns, "10"=1.25V/ns, "11"=0.7V/ns);  
OEM5= Output Enable Mode for OUT5 output, when used with OE5 bit and SHUTDOWN/OE pin ("0x" = Tri-state (Default), "10"=Park  
Low, "11"=Park High);  
LVL5=Output IO Standard Selection, ("00"=LVTTL (Default), "01"=LVDS, "10"=LVPECL, "11"=Reserved);  
Q5[x:x]=Output Divider "Q5" Values (Default value is '2') - Support 2 output configurations when used in MFC mode;  
PM5[x:x]=Divide Mode, ("00"=Divider Disabled;"01"=Divide by '1';"10"=Divide by 2; "11"=Divide by (Q+2) (Default));  
(Note: To enable OUT5, PM5 register bit values for both CONFIG0 and CONFIG1 configurations must be non-zero.)  
Q5[1:0]_CONFIG1  
PM5[1:0]_CONFIG1  
Q5[1:0]_CONFIG0  
PM5[1:0]_CONFIG0  
Q5[9:2]_CONFIG0  
When using LVPECL or LVDS outputs, SLEW5 must be set to "00".  
Q5[9:2]_CONFIG1  
OEM6[1:0]  
SLEW6[1:0]  
INV6  
Configuring Output OUT6  
INV6=Output Inversion for OUT6 ("0"= Non-Invert (Default), "1"=Invert);  
SLEW6=Slew Rate Settings for OUT6 output ("00"= 2.75V/ns (Default), "01"=2V/ns, "10"=1.25V/ns, "11"=0.7V/ns);  
OEM6= Output Enable Mode for OUT6 output, when used with OE6 bit and SHUTDOWN/OE pin ("0x" = Tri-state (Default), "10"=Park  
Low, "11"=Park High);  
Q6[x:x]=Output Divider "Q6" Values (Default value is '2') - Support 2 output configurations when used in MFC mode;  
PM6[x:x]=Divide Mode, ("00"=Divider Disabled;"01"=Divide by '1';"10"=Divide by 2; "11"=Divide by (Q+2) (Default));  
(Note: To enable OUT6, PM6 register bit values for both CONFIG0 and CONFIG1 configurations must be non-zero.)  
Q6[1:0]_CONFIG1  
PM6[1:0]_CONFIG1  
Q6[1:0]_CONFIG0  
PM6[1:0]_CONFIG0  
Q6[9:2]_CONFIG0  
Address 0x5C, Bits 3 is reserved and should be set to "0"  
Address 0x5C, Bits 1, 0 are reserved and should be set to "1"  
Q6[9:2]_CONFIG1  
34  
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
RAM(PROGRAMMINGREGISTER)TABLES  
BIT #  
(Default Settings)  
BIT #  
Default  
ADDR  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
DESCRIPTION  
Register  
Hex Value  
TSSC0[3:0]  
X2_0  
NSSC0[3:0]  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
SS_OFFSET0[5:0]  
DITH0  
SD0[3:0][1]  
SD0[3:0][3]  
SD0[3:0][5]  
SD0[3:0][7]  
SD0[3:0][9]  
SD0[3:0][11]  
TSSC1[3:0]  
X2_1  
SD0[3:0][0]  
SPREAD SPRECTRUM SETTINGS FOR PLL0  
SD0[3:0][2]  
SD0[3:0][4]  
SD0[3:0][6]  
SD0[3:0][8]  
SS_OFFSET0=SS Fractional Offset/ First Sample (Unsigned);  
TSSC0=# of PFD Cycles Per SS Cycle Step, TSSC="0000" for SSC off (Default);  
NSSC0=# of SS Samples to Use from SS Memory (Default is "0");  
DITH0=LSB DITHER on Σ, ("1"=dither on, "0"=off (Default));  
X2_0=ΣΔ output x2, ("1"=x2, "0"=normal (Default));  
SD0=Delta-encoded samples (unsigned); Waveform start with SS_OFFSET0, then SS_OFFSET0+SD0[0], etc. (Default is "0");  
SD0[3:0][10]  
NSSC1[3:0]  
SS_OFFSET1[5:0]  
DITH1  
SD1[3:0][1]  
SD1[3:0][3]  
SD1[3:0][5]  
SD1[3:0][7]  
SD1[3:0][9]  
SD1[3:0][11]  
SD1[3:0][0]  
SD1[3:0][2]  
SD1[3:0][4]  
SD1[3:0][6]  
SD1[3:0][8]  
SD1[3:0][10]  
SPREAD SPRECTRUM SETTINGS FOR PLL1  
SS_OFFSET1=SS Fractional Offset/ First Sample (Unsigned);  
TSSC1=# of PFD Cycles Per SS Cycle Step, TSSC="0000" for SSC off (Default);  
NSSC1=# of SS Samples to Use from SS Memory (Default is "0");  
DITH1=LSB DITHER on ΣΔ, ("1"=dither on, "0"=off (Default));  
X2_1=ΣΔ output x2, ("1"=x2, "0"=off (Default));  
SD1=Delta-encoded samples (unsigned); Waveform start with SS_OFFSET1, then SS_OFFSET1+SD1[0], etc. (Default is "0");  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
0x80  
0x81  
No Registers Exist  
CRC error in EEPROM  
CERR = CRC error bit indicator ("1`" = CRC error)  
CERR  
Read-Only  
35  
IDT5V9888  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
INDUSTRIALTEMPERATURERANGE  
RECOMMENDEDLANDINGPATTERN  
NL 28 pin  
NOTE: All dimensions are in millimeters.  
36  
IDT5V9888  
INDUSTRIALTEMPERATURERANGE  
3.3V EEPROMPROGRAMMABLECLOCKGENERATOR  
ORDERINGINFORMATION  
XXXXX  
XX  
X
IDT  
Package Process  
Device Type  
Industrial (-40°C to +85°C)  
I
Thin Quad Flat Pack - Green  
PFG  
Thermally Enhanced Plastic Very Fine Pitch  
Quad Flat No Lead Package - Green  
NLG  
3.3V EEPROM Programmable Clock Generator  
5V9888  
CORPORATE HEADQUARTERS  
for SALES:  
for Tech Support:  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
clockhelp@idt.com  
www.idt.com  
37  

相关型号:

5V9888PFGI8

Clock Generator, PQFP32
IDT

5V9888TNLGI

Clock Generator, 500MHz, VFQFPN-28
IDT

5V9888TNLGI8

Clock Generator, 500MHz, VFQFPN-28
IDT

5V9888TPFGI

Clock Generator, 500MHz, PQFP32, TQFP-32
IDT

5V9888TPFGI8

Clock Generator, 500MHz, PQFP32, TQFP-32
IDT

5V9910A-2SO

PLL Based Clock Driver, 5V Series, 8 True Output(s), 0 Inverted Output(s), PDSO24, 0.300 INCH, SOIC-24
IDT

5V9910A-2SOG

PLL Based Clock Driver, 5V Series, 8 True Output(s), 0 Inverted Output(s), PDSO24, 0.300 INCH, LEAD FREE, SOIC-24
IDT

5V9910A-2SOG8

PLL Based Clock Driver, 5V Series, 8 True Output(s), 0 Inverted Output(s), PDSO24, 0.300 INCH, SOIC-24
IDT

5V9910A-2SOGI

PLL Based Clock Driver, 5V Series, 8 True Output(s), 0 Inverted Output(s), PDSO24, 0.300 INCH, LEAD FREE, SOIC-24
IDT

5V9910A-2SOI

PLL Based Clock Driver, 5V Series, 8 True Output(s), 0 Inverted Output(s), PDSO24, 0.300 INCH, SOIC-24
IDT

5V9910A-5SO

PLL Based Clock Driver, 5V Series, 8 True Output(s), 0 Inverted Output(s), PDSO24, 0.300 INCH, SOIC-24
IDT

5V9910A-5SOG

PLL Based Clock Driver, 5V Series, 8 True Output(s), 0 Inverted Output(s), PDSO24, GREEN, SOIC-24
IDT