7006L15FG [IDT]

Dual-Port SRAM, 16KX8, 15ns, CMOS, PQCC68, 0.970 X 0.970 INCH, 0.080 INCH HEIGHT, GREEN, QFP-68;
7006L15FG
型号: 7006L15FG
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 16KX8, 15ns, CMOS, PQCC68, 0.970 X 0.970 INCH, 0.080 INCH HEIGHT, GREEN, QFP-68

静态存储器 内存集成电路
文件: 总20页 (文件大小:182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED  
16K x 8 DUAL-PORT  
STATIC RAM  
IDT7006S/L  
M/S = H for BUSY output flag on Master,  
M/S = L for BUSY input on Slave  
Busy and Interrupt Flags  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
Devices are capable of withstanding greater than 2001V  
electrostatic discharge  
Battery backup operation2V data retention  
TTL-compatible, single 5V (±10%) power supply  
Available in 68-pin PGA, quad flatpack, PLCC, and a 64-pin  
TQFP  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
Green parts available, see ordering information  
Features  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
Military:20/25/35/55/70ns(max.)  
Industrial:55ns (max.)  
– Commercial:15/17/20/25/35/55ns(max.)  
Low-power operation  
IDT7006S  
Active:750mW(typ.)  
Standby: 5mW (typ.)  
IDT7006L  
Active:700mW(typ.)  
Standby: 1mW (typ.)  
IDT7006 easily expands data bus width to 16 bits or more  
using the Master/Slave select when cascading more than  
one device  
FunctionalBlockDiagram  
OE  
R
OEL  
CE  
R/W  
R
CE  
L
R/W  
L
R
I/O0L- I/O7L  
I/O0R-I/O7R  
I/O  
I/O  
Control  
Control  
BUSY (1,2)  
L
(1,2)  
BUSY  
R
A
13L  
A
13R  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A
0L  
A
0R  
14  
14  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE  
OE  
R/W  
L
CE  
OE  
R/W  
R
R
L
R
L
SEM  
R
SEM (2)  
L
M/S  
(2)  
INT  
L
INTR  
2739 drw 01  
NOTES:  
1. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
2. BUSY outputs and INT outputs are non-tri-stated push-pull.  
OCTOBER 2008  
1
©2008IntegratedDeviceTechnology,Inc.  
DSC-2739/16  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Description  
a very low standby power mode.  
The IDT7006 is a high-speed 16K x 8 Dual-Port Static RAM. The  
IDT7006isdesignedtobeusedasastand-alone128K-bitDual-PortRAM  
orasacombinationMASTER/SLAVEDual-PortRAMfor16-bit-or-more  
wordsystems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproach  
in16-bitorwidermemorysystemapplicationsresultsinfull-speed,error-  
freeoperationwithouttheneedforadditionaldiscretelogic.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typically operate on only 750mW of power. Low-power (L)  
versionsofferbatterybackupdataretentioncapabilitywithtypicalpower  
consumptionof500µWfroma2Vbattery.  
TheIDT7006ispackagedinaceramic68-pinPGA, an68-pinquad  
flatpack,aPLCC,anda64-pinthinquadflatpack,TQFP.Militarygrade  
productismanufacturedincompliancewiththelatestrevisionofMIL-PRF-  
38535 QML, Class B, making it ideally suited to military temperature  
applicationsdemandingthehighestlevelofperformanceandreliability.  
This device provides two independent ports with separate control,  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
reads or writes to any location in memory. An automatic power down  
featurecontrolledbyCEpermitstheon-chipcircuitryofeachporttoenter  
PinConfigurations(1,2,3)  
INDEX  
11/06/01  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
60  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
GND  
I/O6L  
I/O7L  
A
A
A
A
A
A
5L  
4L  
3L  
2L  
1L  
0L  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
59  
58  
57  
56  
55  
IDT7006J or F  
J68-1(4)  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
INT  
L
F68-1(4)  
VCC  
BUSY  
GND  
M/S  
BUSY  
INT  
L
GND  
I/O0R  
I/O1R  
I/O2R  
68 Pin PLCC / Flatpack  
Top View(5)  
.
R
R
VCC  
A0R  
A1R  
A2R  
A3R  
A4R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
2739 drw 02  
11/06/01  
INDEX  
A
A
A
A
A
4L  
3L  
2L  
1L  
0L  
1
2
3
48  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
GND  
I/O6L  
I/O7L  
47  
46  
4
5
6
45  
44  
43  
INT  
L
7006PF  
PN-64(4)  
BUSY  
GND  
M/S  
L
7
8
9
42  
41  
40  
39  
38  
37  
VCC  
64 Pin TQFP  
Top View(5)  
GND  
I/O0R  
I/O1R  
I/O2R  
BUSY  
R
10  
11  
12  
INT  
R
A
A
A
A
A
0R  
13  
14  
15  
16  
1R  
2R  
3R  
4R  
VCC  
36  
35  
34  
NOTES:  
I/O3R  
I/O4R  
I/O5R  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
33  
3. J68-1 package body is approximately .95 in x .95 in. x .17 in.  
F68-1 package body is approximately .97 in x .97 in x .08 in.  
PN64-1 package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking  
2739 drw 03  
2
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
PinConfigurations(1,2,3)(con't.)  
51  
50  
48  
A
46  
A
44  
42  
40  
38  
36  
11/06/01  
11  
10  
09  
08  
07  
A4L  
2L  
1L  
0L BUSY  
L
M/S INT  
R
A1R  
A3R  
A
5L  
6L  
53  
A
52  
49  
47  
A
45  
INT  
43  
GND  
41  
BUSY  
39  
A
37  
35  
34  
L
R
A4R  
7L  
A3L  
0R  
A2R  
A
5R  
6R  
8R  
A
55  
A
54  
32  
33  
A
A7R  
9L  
A
8L  
57  
A
56  
A
30  
31  
A
A9R  
11L  
10L  
12L  
13L  
59  
58  
A
28  
29  
A10R  
A11R  
IDT7006G  
G68-1(4)  
V
CC  
61  
60  
A
26  
GND  
27  
06  
05  
04  
03  
02  
01  
A12R  
N/C  
63  
SEM  
68-Pin PGA  
Top View(5)  
62  
24  
N/C  
25  
A
L
13R  
CE  
L
65  
OE  
64  
22  
SEM  
23  
R
CER  
L
R/W  
L
67  
I/O0L  
66  
20  
OE  
21  
R/WR  
R
N/C  
1
3
5
GND  
7
9
68  
11  
13  
V
15  
18  
I/O7R  
19  
N/C  
.
GND  
I/O7L  
CC  
I/O1L  
I/O4L  
I/O2L  
I/O1R  
I/O4R  
2
4
6
8
10  
12  
14  
16  
17  
I/O5L  
I/O0R I/O2R I/O3R I/O5R I/O6R  
V
CC  
I/O6L  
I/O3L  
A
B
C
D
E
F
G
H
J
K
L
INDEX  
2739 drw 04  
NOTES:  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 1.18 in x 1.18 in x .16 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking  
PinNames  
Left Port  
Right Port  
Names  
Chip Enable  
CE  
R/W  
OE  
L
CE  
R/W  
OE  
R
L
R
Read/Write Enable  
Output Enable  
Address  
L
R
A0L - A13L  
A0R - A13R  
I/O0L - I/O7L  
SEM  
INT  
BUSY  
I/O0R - I/O7R  
Data Input/Output  
Semaphore Enable  
Interrupt Flag  
Busy Flag  
L
SEM  
INT  
BUSY  
M/S  
R
L
R
L
R
Master or Slave Select  
Power  
V
CC  
GND  
Ground  
2739 tbl 01  
6.42  
3
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table I: Non-Contention Read/Write Control  
Outputs  
Inputs(1)  
R/W  
I/O0-7  
Mode  
CE  
H
L
OE  
X
SEM  
H
X
L
High-Z  
DATAIN  
Deselected: Power-Down  
Write to Memory  
X
H
L
H
X
L
H
DATAOUT Read Memory  
High-Z Outputs Disabled  
X
H
X
2739 tbl 02  
NOTE:  
1. A0L A13L is not equal to A0R A13R  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs(1)  
R/W  
Outputs  
I/O0-7  
Mode  
CE  
H
OE  
L
SEM  
L
H
DATAOUT Read in Semaphore Flag Data Out  
H
X
L
DATAIN  
Write I/Oo into Semaphore Flag  
Not Allowed  
____  
L
X
X
L
2739 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from I/O0 - I/O7. These eight semaphores are addressed by A0 - A2.  
AbsoluteMaximumRatings(1)  
RecommendedDCOperating  
Conditions  
Symbol  
Rating  
Commercial  
& Industrial  
Military  
Unit  
Symbol  
Parameter  
Supply Voltage  
GND Ground  
Min.  
Typ. Max. Unit  
(2)  
V
TERM  
Te rminal Vo ltag e  
with Respect  
to GND  
-0.5 to +7.0  
-0.5 to +7.0  
V
VCC  
4.5  
5.0  
5.5  
0
V
V
V
0
0
Temperature  
Under Bias  
-55 to +125  
-65 to +150  
50  
-65 to +135  
-65 to +150  
50  
oC  
oC  
T
BIAS  
____  
V
IH  
Input High Voltage  
Input Low Voltage  
2.2  
6.0(2)  
0.8  
____  
VIL  
-0.5(1)  
V
Storage  
Temperature  
TSTG  
2739 tbl 06  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
DC Output  
Current  
mA  
IOUT  
2739 tbl 04  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sec-tions of this specification is not implied. Exposure  
to absolute maxi-mum rating conditions for extended periods may affect  
reliability.  
MaximumOperatingTemperature  
andSupplyVoltage(1)  
Ambient  
Grade  
Temperature  
-55OC to+125OC  
0OC to +70OC  
40OC to +85OC  
GND  
Vcc  
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM < Vcc + 10%.  
Military  
0V  
5.0V  
+
+
+
10%  
Commercial  
Industrial  
0V  
5.0V  
5.0V  
10%  
10%  
Capacitance(1) (TA = +25°C, f = 1.0mhz)  
0V  
Symbol  
Parameter  
Conditions(2)  
Max.  
Unit  
pF  
2739 tbl 07  
NOTES:  
C
IN  
Input Capacitance  
VIN = 3dV  
9
1. This is the parameter TA. This is the "instant on" case temperature.  
Output  
Capacitance  
VOUT = 3dV  
10  
pF  
COUT  
2739 tbl 05  
NOTES:  
1. These parameters are determined by device characterization, but are not  
production tested (TQFP Package Only).  
2. 3dV references the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V.  
4
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the 0perating  
Temperature and Supply Voltage Range (VCC = 5.0V ± 10%)  
7006S  
7006L  
Symbol  
|ILI  
|ILO  
Parameter  
Test Conditions  
Min.  
Max.  
10  
Min.  
Max.  
5
Unit  
µA  
µA  
V
(1)  
___  
___  
|
Input Leakage Current  
V
CC = 5.5V, VIN = 0V to VCC  
___  
___  
___  
___  
|
Output Leakage Current  
Output Low Voltage  
Output High Voltage  
10  
5
CE = VIH, VOUT = 0V to VCC  
VOL  
IOL = 4mA  
0.4  
0.4  
___  
___  
VOH  
IOH = -4mA  
2.4  
2.4  
V
2739 tbl 08  
NOTE:  
1. At Vcc < 2.0V input leakages are undefined.  
Data Retention Characteristics Over All Temperature Ranges  
(L Version Only) (VLC = 0.2V, VHC = VCC - 0.2V)  
(1)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
V
___  
___  
VDR  
VCC for Data Retention  
V
CC = 2  
V
2.0  
___  
ICCDR  
Data Retention Current  
µA  
CE > VHC  
IN > VHC or < VLC  
Mil. & Ind.  
Com'l.  
100  
4000  
___  
V
100  
1500  
(3)  
CDR  
___  
___  
t
Chip Deselect to Data Retention Time  
Operation Recovery Time  
SEM > VHC  
0
ns  
(3)  
(2)  
___  
___  
t
R
t
RC  
ns  
2739 tbl 09  
NOTES:  
1. TA = +25°C, VCC = 2V, and are not production tested.  
2. tRC = Read Cycle Time  
3. This parameter is guaranteed by characterization, but is not production tested.  
Data Retention Waveform  
DATA RETENTION MODE  
DR > 2V  
VCC  
4.5V  
4.5V  
V
tCDR  
tR  
VDR  
CE  
VIH  
VIH  
2739 drw 05  
6.42  
5
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (VCC = 5.0V ± 10%)  
7006X15  
7006X17  
7006X20  
Com'l, Ind  
& Military  
7006X25  
Com'l &  
Military  
Com'l Only  
Com'l Only  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2 )  
Max.  
Unit  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
170  
160  
310  
260  
170  
160  
310  
260  
160  
150  
290  
240  
155  
145  
265  
220  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
160  
150  
370  
320  
155  
145  
340  
280  
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
20  
10  
60  
50  
20  
10  
60  
50  
20  
10  
60  
50  
16  
10  
60  
50  
mA  
mA  
CE  
SEM  
f = fMAX  
L
= CE  
R
= VIH  
= VIH  
R
= SEM  
L
(3)  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
20  
10  
90  
70  
16  
10  
80  
65  
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
105  
95  
190  
160  
105  
95  
190  
160  
95  
85  
180  
150  
90  
80  
170  
140  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
95  
85  
240  
210  
90  
80  
215  
180  
SEMR = SEML = VIH  
I
SB3  
Full Standby Current (Both Both Ports CE  
L
and  
> VCC - 0.2V  
IN > VCC - 0.2V or  
IN < 0.2V, f = 0(4)  
SEM = SEM > VCC - 0.2V  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
mA  
mA  
Ports - All CMOS Level  
Inputs)  
CER  
V
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
V
R
L
ISB4  
Full Standby Current  
(One Port - All  
CMOS Level Inputs)  
COM'L  
S
L
100  
90  
170  
140  
100  
90  
170  
140  
90  
80  
155  
130  
85  
75  
145  
120  
CE"A" < 0.2V and  
(5)  
CE"B" > VCC - 0.2V  
SEM = SEM > VCC - 0.2V  
R
L
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
90  
80  
225  
200  
85  
75  
200  
170  
V
IN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Disabled  
(3)  
f = fMAX  
2739 tbl 10  
7006X35  
Com'l &  
Military  
7006X55  
Com'l, Ind  
& Military  
7006X70  
Military  
Only  
Symbol  
Parameter  
Test Condition  
Version  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
____  
____  
____  
____  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
COM'L  
S
L
150  
140  
250  
210  
150  
140  
250  
210  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
MIL &  
IND  
S
L
150  
140  
300  
250  
150  
140  
300  
250  
140  
130  
300  
250  
____  
____  
____  
____  
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
13  
10  
60  
50  
13  
10  
60  
50  
mA  
mA  
mA  
mA  
CE  
SEM  
f = fMAX  
L
= CE  
R
= VIH  
= VIH  
R
= SEM  
L
(3)  
MIL &  
IND  
S
L
13  
10  
80  
65  
13  
10  
80  
65  
10  
8
80  
65  
____  
____  
(5)  
____  
____  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
85  
75  
155  
130  
85  
75  
155  
130  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
85  
75  
MIL &  
IND  
S
L
190  
160  
85  
75  
190  
160  
80  
70  
190  
160  
SEMR = SEML = VIH  
____  
____  
____  
____  
ISB3  
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CE  
CE > VCC - 0.2V  
IN > VCC - 0.2V or  
IN < 0.2V, f = 0(4)  
SEM = SEM > VCC - 0.2V  
L
and  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
R
V
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
V
R
L
____  
____  
____  
____  
ISB4  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
COM'L  
S
L
80  
70  
135  
110  
80  
70  
135  
110  
CE"A" < 0.2V and  
(5)  
CE"B" > VCC - 0.2V  
SEM = SEM > VCC - 0.2V  
R
L
MIL &  
IND  
S
L
80  
70  
175  
150  
80  
70  
175  
150  
75  
65  
175  
150  
V
IN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Disabled  
(3)  
f = fMAX  
2739 tbl 11  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C, and are not production tested. ICC DC =120ma (typ)  
3. At f = fMAX, address and I/O'S are cycling at the maximum frequency read cycle of 1/tRC, and using AC Test Conditions” of input levels  
of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B"is the opposite from port "A".  
6
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
5V  
5V  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
5ns Max.  
1.5V  
1250  
1250Ω  
DATAOUT  
BUSY  
INT  
Input Rise/Fall Times  
DATAOUT  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
5pF*  
775Ω  
30pF  
775Ω  
1.5V  
,
Figures 1 and 2  
2739 drw 06  
2739 tbl 12  
Figure 1. AC Output Test Load  
Figure 2. Output Test Load  
(5pF for tLZ, tHZ, tWZ, tOW)  
*Including scope and jig.  
AC Electrical Oharacteristics Over the  
OperatingtemperatureandSupplyVoltageRange(4)  
7006X15  
Com'l Only  
7006X17  
Com'l Only  
7006X20  
Com'l,Ind  
& Military  
7006X25  
Com'l & Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
____  
t
RC  
AA  
ACE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
17  
20  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
____  
t
Address Access Time  
15  
15  
17  
17  
20  
20  
25  
25  
Chip Enable Access Time(3)  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
Output Enable Access Time  
10  
10  
12  
13  
____  
____  
____  
____  
t
Output Hold from Address Change  
Output Low-Z Time(1,2)  
3
3
3
3
____  
____  
____  
____  
t
3
3
3
3
Output High-Z Time(1,2)  
10  
10  
12  
15  
____  
____  
____  
____  
t
t
Chip Enable to Power Up Time(2,5)  
Chip Disable to Power Down Time(2,5)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
0
0
____  
____  
____  
____  
____  
____  
____  
____  
t
15  
17  
20  
25  
____  
____  
____  
____  
t
10  
10  
10  
10  
____  
____  
____  
____  
t
15  
17  
20  
25  
2739 tbl 13a  
7006X35  
Com'l &  
Military  
7006X55  
Com'l, Ind  
& Military  
7006X70  
Military  
Only  
Symbol  
READ CYCLE  
Parameter  
Min.  
Max.  
Min. Max.  
Min.  
Max.  
Unit  
____  
____  
____  
t
RC  
AA  
ACE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
35  
55  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
t
Address Access Time  
35  
35  
55  
55  
70  
70  
Chip Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
t
t
20  
30  
35  
____  
____  
____  
t
3
3
3
____  
____  
____  
t
3
3
3
Output High-Z Time(1,2)  
15  
25  
30  
____  
____  
____  
t
t
Chip Enable to Power Up Time(2,5)  
Chip Disable to Power Down Time(2,5)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
0
____  
____  
____  
____  
____  
____  
t
35  
50  
50  
____  
____  
____  
t
15  
15  
15  
____  
____  
____  
t
35  
55  
70  
2739 tbl 13b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with load (Figures 1 and 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL.  
4. 'X' in part numbers indicates power rating (S or L).  
6.42  
7
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
t
RC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE  
(4)  
tAOE  
OE  
R/W  
(1)  
LZ  
tOH  
t
VALID DATA(4)  
DATAOUT  
(2)  
HZ  
t
BUSYOUT  
(3,4)  
tBDD  
2739 drw 07  
NOTES:  
1. Timing depends on which signal is asserted last, OE or CE.  
2. Timing depends on which signal is de-asserted first CE or OE.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
Timing of Power-Up Power-Down  
CE  
tPU  
tPD  
ICC  
ISB  
,
2739 drw 08  
8
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
7006X15  
7006X17  
Com'l Only  
7006X20  
Com'l, Ind  
& Military  
7006X25  
Com'l &  
Military  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
17  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
12  
0
12  
0
15  
0
20  
0
t
Write Recovery Time  
t
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
10  
10  
15  
15  
____  
____  
____  
____  
t
10  
10  
12  
15  
____  
____  
____  
____  
t
0
0
0
0
(1,2)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
12  
15  
____  
____  
t
0
5
5
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
t
t
ns  
2739 tbl 14a  
7006X35  
Com'l & Military  
7006X55  
Com'l, Ind  
& Military  
7006X70  
Military  
Only  
Symbol  
WRITE CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
35  
30  
30  
0
55  
45  
45  
0
70  
50  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
25  
0
40  
0
50  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
15  
30  
40  
____  
____  
____  
t
15  
25  
30  
____  
____  
____  
t
0
0
0
(1,2)  
____  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
15  
25  
30  
____  
____  
____  
t
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
2739 tbl 14b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested but not tested.  
3. To access RAM, CE = VIL, SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part numbers indicates power rating (S or L).  
6.42  
9
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
HZ  
t
OE  
tAW  
CE or SEM(9)  
(3)  
WR  
(6)  
AS  
(2)  
tWP  
t
t
R/W  
DATAOUT  
DATAIN  
(7)  
WZ  
t
OW  
t
(4)  
(4)  
tDW  
tDH  
2739 drw 09  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)  
t
WC  
ADDRESS  
tAW  
CE or SEM(9)  
R/W  
(3)  
WR  
(6)  
AS  
(2)  
EW  
t
t
t
t
DW  
tDH  
DATAIN  
2739 drw 10  
NOTES:  
1. R/W or CE must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W low transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured by 0mV from steady state with the Output Test Load  
(Figure 2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be placed  
on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified  
tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore CE = VIH and SEM = VIL. tEW must be met for either condition.  
10  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
tOH  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tACE  
tAW  
tWR  
t
t
EW  
SEM  
t
DW  
tSOP  
DATAOUT  
VALID  
DATA  
0
DATAIN VALID  
tAS  
WP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
t
SOP  
Read Cycle  
Write Cycle  
2739 drw 11  
NOTE:  
1. CE = VIH for the duration of the above timing (both write and read cycle).  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2) A”  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
“B”  
R/W"B"  
SEM"B"  
2739 drw 12  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH, Semaphore Flag is released from both sides (reads as ones from both sides) at cycle start.  
2. All timing is the same for left and right ports. Port A” may be either left or right port. Port B” is the opposite from port A”.  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, the semaphore will fall positively to one side or the other, but there is no guarantee which side will obtain the flag.  
6.42  
11  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6)  
7006X15  
7006X17  
7006X20  
Com'l, Ind  
& Military  
7006X25  
Com'l &  
Military  
Com'l Only  
Com'l Only  
Symbol  
BUSY TIMING (M/S=VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
17  
17  
17  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
t
15  
17  
17  
17  
____  
____  
____  
____  
t
5
5
5
5
____  
____  
____  
____  
BUSY Disable to Valid Data(3)  
t
18  
18  
30  
30  
t
Write Hold After BUSY(5)  
12  
13  
15  
17  
____  
____  
____  
____  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
0
0
ns  
ns  
tWH  
12  
13  
15  
17  
PORT-TO-PORT DELAY TIMING  
Write Pulse to Data Delay  
Write Data Valid to Read Data Delay(1)  
(1)  
____  
____  
____  
____  
____  
____  
____  
____  
t
WDD  
30  
25  
30  
25  
45  
35  
50  
35  
ns  
tDDD  
ns  
2739 tbl 15a  
7006X35 Com'l  
& Military  
7006X55  
Com'l, Ind  
& Military  
7006X70  
Military  
Only  
Symbol  
BUSY TIMING (M/S=VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
20  
20  
20  
45  
40  
40  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
t
20  
35  
35  
____  
____  
____  
t
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
t
35  
40  
45  
t
Write Hold After BUSY(5)  
25  
25  
25  
____  
____  
____  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
0
ns  
ns  
tWH  
25  
25  
25  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
60  
45  
80  
65  
95  
80  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
2739 tbl 15b  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited with port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention with port "A".  
6. 'X' is part numbers indicates power rating (S or L).  
.
12  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadandBUSY(2,5)(M/S =VIH)(4)  
t
WC  
MATCH  
ADDR"A"  
R/W"A"  
tWP  
t
DW  
tDH  
VALID  
DATAIN "A"  
(1)  
APS  
t
MATCH  
ADDR"B"  
t
BDA  
tBDD  
BUSY"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
DDD  
t
2739 drw 13  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL  
3. OE = VIL for the reading port.  
4. If M/S = VIL(slave) then BUSY is input (BUSY"A" = VIH) and BUSY"B" = "don't care", for this example.  
5. All timing is the same for left and right port. Port "A' may be either left or right port. Port "B" is the port opposite from Port "A".  
Timing Waveform of Write with BUSY  
t
WP  
R/W"A"  
(3)  
tWB  
BUSY"B"  
(1)  
t
WH  
(2)  
R/W"B"  
2739 drw 14  
NOTES:  
1. tWH must be met for both BUSY input (slave) and output (master).  
2. BUSY is asserted on Port "B", blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the 'Slave' Version.  
6.42  
13  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
tBDC  
BUSY"B"  
2739 drw 15  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1)(M/S = VIH)  
ADDRESS "N"  
ADDR"A"  
ADDR"B"  
BUSY"B"  
(2)  
APS  
t
MATCHING ADDRESS "N"  
t
BAA  
tBDA  
2739 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from port A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1)  
7006X15  
Com'l Only  
7006X17  
Com'l Only  
7006X20  
Com'l, Ind  
& Military  
7006X25  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
0
ns  
ns  
ns  
t
0
0
0
0
____  
____  
____  
____  
t
15  
15  
15  
15  
20  
20  
20  
20  
____  
____  
____  
____  
t
Interrupt Reset Time  
ns  
2739 tbl 16a  
7006X35  
Com'l &  
Military  
7006X55  
Com'l, Ind  
& Military  
7006X70  
Military Only  
Symbol  
INTERRUPT TIMING  
Parameter  
Min. Max.  
Min. Max.  
Min.  
Max. Unit  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
____  
t
0
0
0
ns  
____  
____  
____  
t
25  
25  
40  
40  
50  
50  
ns  
____  
____  
____  
t
Interrupt Reset Time  
ns  
2739 tbl 16b  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
14  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
t
WC  
INTERRUPT SET ADDRESS(2)  
ADDR"A"  
(4)  
WR  
(3)  
AS  
t
t
CE"A"  
R/W"A"  
INT"B"  
(3)  
INS  
t
2739 drw 17  
tRC  
INTERRUPT CLEAR ADDRESS(2)  
ADDR"B"  
CE"B"  
(3)  
tAS  
OE"B"  
(3)  
INR  
t
INT"B"  
2739 drw 18  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from port A”.  
2. See Interrupt Truth Table III.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
TruthTables  
Truth Table III — Interrupt Flag(1,4)  
Left Port  
Right Port  
OE  
R/WL  
A13L-A0L  
R/WR  
A
13R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CEL  
OE  
L
INTL  
CER  
R
INTR  
(2)  
L
L
X
X
L
X
X
X
L
3FFF  
X
X
X
X
L
L
X
X
L
X
3FFF  
3FFE  
X
L
R
(3)  
X
X
X
H
R
(3)  
X
X
L
L
X
X
X
L
(2)  
X
3FFE  
H
X
X
L
2739 tbl 17  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTR and INTL must be initialized at power-up.  
6.42  
15  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table IV — Address BUSY Arbitration  
Inputs  
Outputs  
A
OL-A13L  
(1)  
AOR-A13R  
Function  
Normal  
Normal  
Normal  
CE  
L
CE  
R
BUSY (1)  
L
BUSY  
R
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
MATCH  
H
H
(3)  
MATCH  
(2)  
(2)  
Write Inhibit  
2739 tbl 18  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSYX outputs on the IDT7006 are  
push pull, not open drain outputs. On slaves the BUSYX input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs cannot be low simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving low regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D7  
Left  
D0  
- D7  
Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
1
1
0
0
1
1
0
1
1
1
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
2739 tbl 19  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7006.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's. These eight semaphores are addressed by A0 - A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
TheIDT7006providestwoportswithseparatecontrol,addressand Theleftportclearstheinterruptbyreadingaddresslocation3FFEaccess  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation when CER = OER = VIL, R/W is a "don't care". Likewise, the right port  
inmemory.TheIDT7006hasanautomaticpowerdownfeaturecontrolled interruptflag(INTR)isassertedwhentheleftportwritestomemorylocation  
by CE. The CE controls on-chip power down circuitry that permits the 3FFF(HEX)andtocleartheinterruptflag(INTR),therightportmustread  
respectiveporttogointoastandbymodewhennotselected(CEHIGH). thememorylocation3FFF. Themessage(8bits)at3FFEor3FFFisuser-  
Whenaportisenabled,accesstotheentirememoryarrayispermitted. defined,sinceitisanaddressableSRAMlocation.Iftheinterruptfunction  
isnotused,addresslocations3FFEand3FFFarenotusedasmailboxes,  
butaspartoftherandomaccessmemory.RefertoTruthTableIIIforthe  
interruptoperation.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessagecenter)is assignedtoeachport. Theleftportinterruptflag  
BusyLogic  
(INTL) is asserted when the right port writes to memory location 3FFE  
(HEX) where a write is defined as CE = R/W = VIL per the Truth Table.  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
16  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
SLAVE  
Dual Port  
RAM  
MASTER  
Dual Port  
RAM  
CE  
CE  
BUSY (R)  
BUSY (L)  
BUSY (L)  
BUSY (R)  
MASTER  
Dual Port  
RAM  
SLAVE  
Dual Port  
RAM  
CE  
CE  
BUSY (R)  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
BUSY (L)  
2739 drw 19  
Figure 3. Busy and chip enable routing for both width and depth expansion with IDT7006 RAMs.  
a master/slave array, bothaddress andchipenable mustbe validlong  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisbusy.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
anduse anyBUSY indicationas aninterruptsource toflagthe eventof  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwiththeR/Wsignal.Failuretoobservethistimingcan  
resultina glitchedinternalwrite inhibitsignalandcorrupteddata inthe  
slave.  
SEMAPHORES  
TheIDT7006isanextremelyfastDual-Port16Kx8CMOSStaticRAM  
withanadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
thesystemdesignerssoftware.Asanexample,thesemaphorecanbe  
usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
Dual-Port RAM or any other shared resource.  
The Dual-PortRAMfeatures a fastaccess time, andbothports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnowayslows theaccess timeoftherightport.Bothports are  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chippowerdowncircuitrythatpermits the respective porttogointo  
standbymodewhennotselected. Thisistheconditionwhichisshownin  
Truth Table I where CE and SEM are both HIGH.  
SystemswhichcanbestusetheIDT7006containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
aperformanceincreaseofferedbytheIDT7006shardwaresemaphores,  
whichprovidealockoutmechanismwithoutrequiringcomplexprogram-  
ming.  
Softwarehandshakingbetweenprocessors offers themaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT7006doesnotuseitssemaphoreflagstocontrol  
TheBUSYoutputsontheIDT7006RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate.Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
Width Expansion with Busy Logic  
Master/SlaveArrays  
WhenexpandinganIDT7006RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMsarraywill  
receivea BUSYindication,andtooutputthatindication.Anynumberof  
slavestobeaddressedinthesameaddressrangeasthemaster,usethe  
BUSYsignalasawriteinhibitsignal.ThusontheIDT7006RAMtheBUSY  
pinisanoutputifthepartisusedasamaster(M/Spin=VIH),andtheBUSY  
pin is an input if the part used as a slave (M/S pin = VIL) as shown in  
Figure 3.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. Itignores whetheranaccess is a readorwrite. In  
6.42  
17  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal cause either signal (SEM or OE) to go inactive or the output will never  
flexibilityinsystemarchitecture.  
change.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin to guarantee that no system level contention will occur. A processor  
either processor. This can prove to be a major advantage in very high- requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
speedsystems.  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTruth  
TableV).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation.Onasubsequentread,theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attempts towriteazerotothesamesemaphoreflagitwillfail,as willbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
gap between the read and write cycles.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation.The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
semaphorerequestlatch.Shouldtheothersidessemaphorerequestlatch  
havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
overtotheothersideassoonasaoneiswrittenintothefirstsidesrequest  
latch.ThesecondsidesflagwillnowstayLOWuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requestedandthe processorwhichrequesteditnolongerneeds the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
The criticalcase ofsemaphore timingis whenbothsides requesta  
single token by attempting to write a zero into it at the same time. The  
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst  
sidetomaketherequestwillreceivethetoken.Ifbothrequestsarriveat  
thesametime,theassignmentwillbearbitrarilymadetooneportorthe  
other.  
One caution that should be noted when using semaphores is that  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
ormisinterpreted, a software errorcaneasilyhappen.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.”Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thispro-cessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
thatsemaphoresstatusorremoveitsrequestforthatsemaphoretoperform  
anothertaskandoccasionallyattemptagaintogaincontrolofthetokenvia  
thesetandtestsequence.Oncetherightsidehasrelinquishedthetoken,  
theleftsideshouldsucceedingainingcontrol.  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites  
aonetothatlatch.  
The eightsemaphore flags reside withinthe IDT7006ina separate  
memoryspacefromtheDual-PortRAM.This addressspaceisaccessed  
byplacingaLOWinputontheSEMpin(whichactsasachipselectforthe  
semaphore flags) and using the other control pins (Address, OE, and  
R/W)as theywouldbeusedinaccessingastandardStaticRAM.Each  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside  
throughaddresspinsA0A2. Whenaccessingthesemaphores,none  
oftheotheraddresspinshasanyeffect.  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
on that side and a one on the other side (see Truth Table V). That  
semaphorecannowonlybemodifiedbythesideshowingthezero.When  
aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
ispending)andthencanbewrittentobybothsides.Thefactthattheside  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
freedbythefirstside.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintoonesidesoutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
UsingSemaphores—SomeExamples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging resourcemarkersfortheIDT7006’sDual-PortRAM.Saythe16Kx8RAM  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside. wastobedividedintotwo8Kx8blockswhichweretobededicatedatany  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust onetimetoservicingeithertheleftorrightport.Semaphore0couldbeused  
18  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
toindicatethesidewhichwouldcontrolthelowersectionofmemory,and evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing  
Semaphore1couldbedefinedas the indicatorfortheuppersectionof given a common meaning as was shown in the example above.  
memory.  
Semaphores are a useful form of arbitration in systems like disk  
Totakearesource,inthis examplethelower8KofDual-PortRAM, interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring  
the processor on the left port could write and then read a zero in to atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse  
Semaphore0.Ifthistaskweresuccessfullycompleted(azerowasread ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea  
backratherthana one), the leftprocessorwouldassume controlofthe wasoff-limitstotheCPU,boththeCPUandtheI/Odevicescouldaccess  
lower8K.Meanwhiletherightprocessorwasattemptingtogaincontrolof theirassignedportionsofmemorycontinuouslywithoutanywaitstates.  
the resourceaftertheleftprocessor,itwouldreadbackaoneinresponse  
SemaphoresarealsousefulinapplicationswherenomemoryWAIT”  
tothezeroithadattemptedtowriteintoSemaphore0.Atthis point,the stateisavailableononeorbothsides.Onceasemaphorehandshakehas  
softwarecouldchoosetotryandgaincontrolofthesecond8Ksectionby been performed, both processors can access their assigned RAM  
writing,thenreadingazerointoSemaphore1.Ifitsucceededingaining segmentsatfullspeed.  
control,itwouldlockouttheleftside.  
Anotherapplicationisintheareaofcomplexdatastructures. Inthis  
Once the left side was finished with its task, it would write a one to case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
Semaphore 0 and may then try to gain access to Semaphore 1. If mayberesponsibleforbuildingandupdatingadatastructure.Theother  
Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
itssemaphorerequestandperformothertasksuntilitwasabletowrite,then processorreadsanincompletedatastructure,amajorerrorconditionmay  
readazerointoSemaphore1.Iftherightprocessorperformsasimilartask exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
8Kblocks ofDual-PortRAMwitheachother.  
itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
The blocks do not have to be any particular size and can even be is completed, the data structure block is released. This allows the  
variable, depending upon the complexity of the software using the interpretingprocessortocomebackandreadthecompletedatastructure,  
semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual- therebyguaranteeingaconsistentdatastructure.  
PortRAMorothersharedresources intoeightparts. Semaphores can  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
D0  
D0  
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
,
READ  
2739 drw 20  
Figure 4. IDT7006 Semaphore Logic  
6.42  
19  
IDT7006S/L  
High-Speed 16K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
OrderingInformation  
A
XXXXX  
A
999  
A
A
Device Power Speed Package  
Type  
Process/  
Temperature  
Range  
Blank Commercial (0°C to +70°C)  
I(1)  
B
Industrial (-40°C to +85°C)  
Military (-55°C to +125°C)  
Compliant to MIL-PRF-38535 QML  
G(2)  
Green  
PF  
G
J
64-pin TQFP (PN64-1)  
68-pin PGA (G68-1)  
68-pin PLCC (J68-1)  
68-pin Flatpack (F68-1)  
F
15  
17  
20  
25  
35  
55  
70  
Commercial Only  
Commercial Only  
Commercial, Industrial & Military  
Commercial & Military  
Commercial & Military  
Commercial, Industrial, & Military  
Military Only  
Speed in nanoseconds  
S
L
Standard Power  
Low Power  
128K (16K x 8) Dual-Port RAM  
7006  
2739 drw 21  
NOTES:  
1. Industrial temperature range is available on selected TQFP packages in standard power.  
For other speeds, packages and powers contact your sales office.  
2. Green parts available. For specific speeds, packages and powers contact your local sales office.  
DatasheetDocumentHistory  
01/04/99:  
Initiateddatasheetdocumenthistory  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Addedadditionalnotestopinconfigurations  
Changeddrawingformat  
Changed 3FFF to 3FFE in Truth Table III  
Replaced IDT logo  
Corrected drawing error  
Addedcopywrightinfo  
Increasedstoragetemperatureparameter  
ClarifiedTAparameter  
06/03/99:  
09/14/99:  
11/10/99:  
12/22/99:  
05/08/00:  
Page 15  
Page 1  
Page 1  
Page 4  
Page 6  
DCElectricalparameters–changedwordingfrom"open"to"disabled"  
Changed±500mVto0mVinnotes  
Addeddaterevisionforpinconfigurations  
09/12/01:  
Page 2 & 3  
Page 6  
AddedIndustrialtemptothecolumnheadingfor20nstoDCElectricalCharacteristics  
Pages7,9,12&14 AddedIndustrialtemptothecolumnheadingsfor20nstoACElectricalCharacteristics  
Page 7  
Pages4,6,7,9,  
12 & 14  
Table 13a appeared twice, corrected and placed table 13b for 35, 55 & 70ns speeds  
RemovedIndustrialtempnotefromalltables  
Page 20  
Page 1  
Page 20  
Page 20  
AddedIndustrialtempto20nsinorderinginformation  
Addedgreenavailabilitytofeatures  
Addedgreenindicatortoorderinginformation  
Removed "IDT" from orderable part number  
01/31/06:  
10/21/08:  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
20  

相关型号:

7006L15FG8

Dual-Port SRAM, 16KX8, 15ns, CMOS, PQCC68, 0.970 X 0.970 INCH, 0.080 INCH HEIGHT, GREEN, QFP-68
IDT

7006L15FGB8

HIGH-SPEED 16K x 8 DUAL-PORT STATIC RAM
IDT

7006L15FGI8

HIGH-SPEED 16K x 8 DUAL-PORT STATIC RAM
IDT

7006L15G

Application Specific SRAM, 16KX8, 15ns, CMOS, CPGA68, 1.180 X1.180 INCH, 0.160 INCH HEIGHT, PGA-68
IDT

7006L15GG

Dual-Port SRAM, 16KX8, 15ns, CMOS, CPGA68, 1.180 X 1.180 INCH, 0.160 INCH HEIGHT, GREEN, CERAMIC, PGA-68
IDT

7006L15GG8

Dual-Port SRAM, 16KX8, 15ns, CMOS, CPGA68, 1.180 X 1.180 INCH, 0.160 INCH HEIGHT, GREEN, CERAMIC, PGA-68
IDT

7006L15GGB8

HIGH-SPEED 16K x 8 DUAL-PORT STATIC RAM
IDT

7006L15GGI8

HIGH-SPEED 16K x 8 DUAL-PORT STATIC RAM
IDT

7006L15JGB8

HIGH-SPEED 16K x 8 DUAL-PORT STATIC RAM
IDT

7006L15JGI8

HIGH-SPEED 16K x 8 DUAL-PORT STATIC RAM
IDT

7006L15PF9

Dual-Port SRAM, 16KX8, 15ns, CMOS, PQFP64, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-64
IDT

7006L15PFGB8

HIGH-SPEED 16K x 8 DUAL-PORT STATIC RAM
IDT