7015S12PFGI [IDT]

HIGH-SPEED 8K x 9 DUAL-PORT STATIC RAM;
7015S12PFGI
型号: 7015S12PFGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

HIGH-SPEED 8K x 9 DUAL-PORT STATIC RAM

文件: 总21页 (文件大小:190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IDT7015S/L  
HIGH-SPEED  
8K x 9 DUAL-PORT  
STATIC RAM  
Features:  
M/S = VIH for BUSY output flag on Master  
M/S = VIL for BUSY input on Slave  
Busy and Interrupt Flag  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
TTL-compatible, single 5V (±10%) power supply  
Available in 68-pin PLCC and an 80-pin TQFP  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
– Commercial:12/15/17/20/25/35ns(max.)  
– Industrial:20ns(max.)  
Low-poweroperation  
– IDT7015S  
Active:750mW(typ.)  
Standby: 5mW (typ.)  
– IDT7015L  
Active:750mW(typ.)  
Green parts available, see ordering information  
Standby: 1mW (typ.)  
IDT7015 easily expands data bus width to 18 bits or more  
using the Master/Slave select when cascading more than  
onedevice  
FunctionalBlockDiagram  
OE  
L
L
OE  
R
CER  
CE  
R/WR  
R/W  
L
I/O0L- I/O8L  
I/O0R-I/O8R  
I/O  
I/O  
Control  
Control  
BUSYL(1,2)  
(1,2)  
BUSY  
R
A
12L  
A
12R  
0R  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A
A
0L  
13  
13  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE  
OE  
L
L
CE  
OE  
R/W  
R
R
R
R/W  
L
SEM  
R
SEM  
INTL  
L
M/S  
(2)  
(2)  
INTR  
2954 drw 01  
NOTES:  
1. In MASTER mode: BUSY is an output and is a push-pull driver  
In SLAVE mode: BUSY is input.  
2. BUSY outputs and INT outputs are non-tri-stated push-pull drivers.  
MARCH 2016  
1
DSC 2954/11  
©2016 Integrated Device Technology, Inc.  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description:  
The IDT7015 is a high-speed 8K x 9 Dual-Port Static RAM. The reads or writes to any location in memory. An automatic power down  
IDT7015 is designed to be used as a stand-alone Dual-Port RAM or as featurecontrolledbyCEpermitstheon-chipcircuitryofeachporttoenter  
acombinationMASTER/SLAVEDual-PortRAMfor18-bit-or-moreword a very low standby power mode.  
systems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproachin18-  
Fabricated using CMOS high-performance technology, these de-  
bitorwidermemorysystemapplicationsresultsinfull-speed,error-free vicestypicallyoperateononly750mWofpower.  
operationwithouttheneedforadditionaldiscretelogic.  
The IDT7015 is packaged in a 64-pin PLCC and an 80-pinTQFP  
This device provides two independent ports with separate control, (ThinQuadFlatpack).  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
PinConfigurations(1,2,3)  
27  
I/O7R  
9
I/O1L  
I/O0L  
I/O8L  
I/O8R  
OE  
28  
29  
8
7
R
R/W  
SEM  
CE  
R
R
R
30  
31  
6
OE  
R/W  
SEM  
CE  
L
5
L
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
4
L
N/C  
N/C  
GND  
3
L
2
N/C  
N/C  
7015  
J68(4)  
1
A12R  
A11R  
A10R  
68  
67  
66  
65  
64  
63  
62  
61  
V
A
A
A
CC  
12L  
11L  
10L  
A
A
A
A
A
9R  
8R  
7R  
6R  
5R  
A9L  
A8L  
A7L  
A6L  
2954 drw 02  
PinNames  
NOTES:  
Left Port  
Right Port  
Names  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately .95 in x .95 in x .17 in.  
4. This package code is used to reference the package diagram.  
Chip Enable  
CE  
R/W  
OE  
L
CE  
R/W  
OE  
R
L
R
Read/Write Enable  
Output Enable  
Address  
L
R
A
0L - A12L  
A0R - A12R  
I/O0L - I/O8L  
SEM  
INT  
BUSY  
I/O0R - I/O8R  
SEM  
INT  
BUSY  
M/S  
Data Input/Output  
Semaphore Enable  
Interrupt Flag  
Busy Flag  
L
R
L
R
L
R
Master or Slave Select  
Power  
V
CC  
GND  
Ground  
2954 tbl 01  
6.242  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
NC  
NC  
61  
62  
63  
64  
65  
40  
39  
38  
NC  
NC  
A
6L  
7L  
8L  
9L  
10L  
11L  
12L  
CC  
A5R  
A
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
A6R  
A
A
7R  
8R  
9R  
10R  
11R  
12R  
A
66  
67  
A
A
A
A
68  
69  
70  
A
A
A
V
7015  
PN80(4)  
A
NC  
NC  
NC  
71  
72  
73  
74  
75  
GND  
NC  
NC  
CE  
SEM  
R/W  
OE  
L
NC  
L
CE  
SEM  
R/W  
OE  
R
L
76  
77  
78  
79  
80  
R
25  
24  
23  
22  
21  
L
R
I/O8L  
I/O0L  
I/O1L  
R
I/O8R  
I/O7R  
2954 drw 03  
INDEX  
NOTES:  
1. All Vcc must be connected to power supply.  
2. All GND must be connected to ground supply.  
3. PN80 package body is approximately  
14mm x 14mm x 1.4mm.  
4. Thispackagecodeisusedtoreferencethepackagediagram.  
3
6.42  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
R/W  
X
I/O0-8  
Mode  
CE  
H
L
OE  
X
SEM  
H
High-Z  
DATAIN  
DATAOUT  
High-Z  
Deselected: Power-Down  
Write to Memory  
L
X
H
L
H
L
H
Read Memory  
X
X
H
X
Outputs Disabled  
2954 tbl 02  
NOTE:  
1. Condition: A0L — A12L = A0R — A12R  
Truth Table II: Semaphore Read/Write CONTROL(1)  
Inputs(1)  
Outputs  
R/W  
H
I/O0-8  
Mode  
CE  
H
OE  
L
SEM  
L
L
L
DATAOUT  
Read Semaphore Flag Data Out (I/O0-8  
Write I/O into Semaphore Flag  
Not Allowed  
)
H
X
DATAIN  
0
____  
L
X
X
2954 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from all I/Os (I/O0 - I/O8). These eight semaphores are addressed by A0 - A2.  
AbsoluteMaximumRatings(1)  
Commercial  
MaximumOperating  
TemperatureandSupplyVoltage(1)  
Symbol  
Rating  
& Industrial  
Unit  
Ambient  
(2)  
Grade  
Commercial  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
Vcc  
V
TERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +7.0  
V
5.0V  
5.0V  
+
+
10%  
Industrial  
0V  
10%  
Temperature  
Under Bias  
-55 to +125  
-65 to +150  
50  
oC  
oC  
T
BIAS  
STG  
2954 tbl 05  
NOTES:  
T
Storage  
Temperature  
1. This is the parameter TA. There is the "instant on" case temperature.  
DC Output  
Current  
mA  
IOUT  
2954 tbl 04  
RATINGS  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM  
may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
RecommendedDCOperating  
Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max. Unit  
V
CC  
Supply Voltage  
4.5  
5.0  
5.5  
0
V
V
V
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > Vcc + 10%.  
GND  
Ground  
0
0
V
IH  
IL  
Input High Voltage  
Input Low Voltage  
2.2  
6.0(2)  
0.8  
____  
-0.5(1)  
V
____  
V
2954 tbl 06  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
6.442  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Capacitance(1)  
(TA = +25°C, f = 1.0mhz, for TQFP Package)  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2)  
IN = 3dV  
OUT = 3dV  
Max. Unit  
CIN  
V
9
pF  
COUT  
V
10  
pF  
2954 tbl 07  
NOTES:  
1. This parameter is determined by device characteristics but is not  
production tested.  
2. 3dV references the interpolated capacitance when the input and  
output signals switch from 0V to 3V or from 3V to 0V .  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VCC = 5.0V ± 10%)  
7015S  
7015L  
Symbol  
|ILI  
|ILO  
Parameter  
Input Leakage Current(1)  
Output Leakage Current  
Output Low Voltage  
Test Conditions  
Min.  
Max.  
10  
Min.  
Max.  
Unit  
µA  
µA  
V
___  
___  
|
V
CC = 5.5V, VIN = 0V to VCC  
5
5
___  
___  
___  
___  
|
10  
CE = VIH, VOUT = 0V to VCC  
OL = +4mA  
OH = -4mA  
V
OL  
OH  
I
0.4  
0.4  
___  
___  
V
Output High Voltage  
I
2.4  
2.4  
V
2954 tbl 08  
NOTE:  
1. At Vcc < 2.0V, Input leakages are undefined.  
OutputLoadsand  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
Input Rise/Fall Times(1)  
3ns Max.  
1.5V  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V  
Figures 1 and 2  
2954 tbl 09  
5V  
5V  
893  
893Ω  
DATAOUT  
BUSY  
INT  
DATAOUT  
5pF  
30pF  
347Ω  
347Ω  
*
,
2954 drw 06  
2954 drw 05  
Figure 1. AC Output Test Load  
Figure 2. Output Test Load  
(For tLZ, tHZ, tWZ, tOW)  
*Including scope and jig.  
5
6.42  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (con't.) (VCC = 5.0V ± 10%)  
7015X12  
Com'l Only  
7015X15  
Com'l Only  
7015X17  
Com'l Only  
Typ.(2)  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating Current  
(Both Ports Active)  
S
L
170  
170  
325  
275  
170  
170  
310  
260  
170  
170  
310  
260  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
IND.  
S
L
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
IND.  
S
L
25  
25  
70  
60  
25  
25  
60  
50  
25  
25  
60  
50  
mA  
mA  
mA  
mA  
CE  
SEM  
f = fMAX  
R
= CE  
L
= VIH  
= VIH  
R
= SEM  
L
(3)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
S
L
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
IND.  
S
L
105  
105  
200  
170  
105  
105  
190  
160  
105  
109  
190  
160  
CE"A" = VIL and  
(5)  
CE"B" = VIH  
, Active Port  
(3)  
Outputs Disabled, f=fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
S
L
SEMR  
= SEM  
L
= VIH  
and  
ISB3  
Full Standby Current (Both  
Ports - All  
CMOS Level Inputs)  
Both Ports CEL  
COM'L  
IND.  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
CE  
R
> VCC - 0.2V  
V
V
IN > VCC - 0.2V or  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
IN < 0.2V, f = 0(4)  
S
L
SEMR = SEML >VCC - 0.2V  
ISB4  
Full Standby Current  
(One Port - All  
CMOS Level Inputs)  
COM'L  
IND.  
S
L
100  
100  
180  
150  
100  
100  
170  
140  
100  
100  
170  
140  
CE"A" < 0.2V and  
CE"B" > VCC - 0.2V(5)  
SEM  
R
= SEM  
L
>VCC - 0.2V  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
S
L
V
V
IN > VCC - 0.2V or  
IN < 0.2V, Active Port  
Outputs Disabled, f = fMAX  
(3)  
2954 tbl 10  
7015X20  
Com'l & Ind  
7015X25  
Com'l Only  
7015X35  
Com'l Only  
Typ.(2)  
Symbol  
Parameter  
Test Condition  
Version  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating Current  
(Both Ports Active)  
COM'L  
S
L
160  
290  
155  
155  
265  
220  
150  
150  
250  
210  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
160  
240  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
IND.  
S
L
160  
160  
380  
310  
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
IND.  
S
L
20  
20  
60  
50  
16  
16  
60  
50  
13  
13  
60  
50  
mA  
mA  
mA  
mA  
CE  
SEM  
f = fMAX  
R
= CE  
L
= VIH  
= VIH  
R
= SEM  
L
(3)  
____  
____  
____  
____  
____  
____  
____  
____  
S
L
20  
20  
80  
65  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
IND.  
S
L
95  
95  
180  
150  
90  
90  
170  
140  
85  
85  
155  
130  
CE"A" = VIL and  
(5)  
CE"B" = VIH  
, Active Port  
(3)  
Outputs Disabled, f=fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
S
L
95  
95  
240  
210  
SEMR  
= SEM  
L
= VIH  
and  
ISB3  
Full Standby Current (Both  
Ports - All  
CMOS Level Inputs)  
Both Ports CEL  
COM'L  
IND.  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
CE  
R
> VCC - 0.2V  
V
V
IN > VCC - 0.2V or  
____  
____  
____  
____  
____  
____  
____  
____  
IN < 0.2V, f = 0(4)  
SEMR = SEML >VCC - 0.2V  
S
L
1.0  
0.2  
30  
10  
ISB4  
Full Standby Current  
(One Port - All  
CMOS Level Inputs)  
COM'L  
S
L
90  
90  
155  
130  
85  
85  
145  
120  
80  
80  
135  
110  
CE"A" < 0.2V and  
CE"B" > VCC - 0.2V(5)  
SEM  
R
= SEM  
L
>VCC - 0.2V  
____  
____  
____  
____  
____  
____  
____  
____  
IND.  
S
L
90  
90  
230  
200  
V
V
IN > VCC - 0.2V or  
IN < 0.2V, Active Port  
Outputs Disabled, f = fMAX  
(3)  
2954 tbl 11  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C, and are not production tested. ICCDC = 120mA(typ.)  
3. At f = fMAX, address and I/O'S are cycling at the maximum frequency read cycle of 1/tRC, and using “AC Test Conditions” of input levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite of port "A".  
6.642  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
7015X12  
7015X15  
Com'l Only  
7015X17  
Com'l Only  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
tRC  
Read Cycle Time  
12  
15  
17  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
tAA  
Address Access Time  
12  
12  
15  
15  
17  
17  
Chip Enable Access Time(3)  
____  
____  
____  
____  
____  
____  
tACE  
tAOE  
tOH  
Output Enable Access Time  
8
10  
10  
____  
____  
____  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
3
3
3
____  
____  
____  
tLZ  
3
3
3
Output High-Z Time(1,2)  
10  
10  
10  
____  
____  
____  
tHZ  
tPU  
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
0
____  
____  
____  
____  
____  
____  
tPD  
12  
15  
17  
____  
____  
____  
tSOP  
tSAA  
10  
10  
10  
____  
____  
____  
12  
15  
17  
ns  
2954 tbl 12a  
7015X20  
Com'l & Ind  
7015X25  
Com'l Only  
7015X35  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
t
t
t
t
t
t
t
t
t
t
t
RC  
Read Cycle Time  
20  
25  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
AA  
Address Access Time  
20  
20  
25  
25  
35  
35  
Chip Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
ACE  
AOE  
OH  
LZ  
12  
13  
20  
____  
____  
____  
3
3
3
____  
____  
____  
3
3
3
Output High-Z Time(1,2)  
12  
15  
20  
____  
____  
____  
HZ  
PU  
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
0
____  
____  
____  
____  
____  
____  
PD  
20  
25  
35  
____  
____  
____  
SOP  
SAA  
10  
10  
15  
____  
____  
____  
20  
25  
35  
ns  
2954 tbl 12b  
NOTES:  
1. Transition is measured 0mV from Low- or High-impedance voltage with load (Figures 1 and 2).  
2. This parameter is guaranteed by device characterization but not tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL.  
4. 'X' in part numbers indicates power rating (S or L).  
7
6.42  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
tAA  
(4)  
tACE  
CE  
OE  
(4)  
tAOE  
R/W  
(1)  
tOH  
tLZ  
(4)  
DATAOUT  
VALID DATA  
(2)  
HZ  
t
BUSYOUT  
(3,4)  
BDD  
2954 drw 07  
t
NOTES:  
1. Timing depends on which signal is asserted last, OE or CE.  
2. Timing depends on which signal is de-asserted first, CE or OE.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
Timing of Power-Up / Power-Down  
CE  
tPU  
tPD  
ICC  
50%  
50%  
ISB  
,
2954 drw 08  
6.842  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
7015X12  
7015X15  
Com'l Only  
7015X17  
Com'l Only  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
12  
10  
10  
0
15  
12  
12  
0
17  
12  
12  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
10  
2
12  
2
12  
0
t
Write Recovery Time  
t
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
10  
10  
10  
____  
____  
____  
t
10  
10  
10  
____  
____  
____  
t
0
0
0
(1,2)  
____  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
10  
10  
____  
____  
____  
t
3
5
5
3
5
5
0
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
2954 tbl 13a  
7015X20  
Com'l & Ind  
7015X25  
Com'l Only  
7015X35  
Com'l Only  
Symbol  
WRITE CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
t
t
t
t
t
t
t
t
t
t
t
WC  
EW  
AW  
Write Cycle Time  
20  
15  
15  
0
25  
20  
20  
0
35  
30  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
AS  
WP  
WR  
DW  
HZ  
Write Pulse Width  
15  
2
20  
2
25  
0
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
15  
15  
15  
____  
____  
____  
12  
15  
20  
DH  
Data Hold Time(4)  
0
0
0
____  
____  
____  
Write Enable to Output in High-Z(1,2)  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
12  
15  
20  
____  
____  
____  
WZ  
OW  
SWRD  
____  
____  
____  
3
5
5
3
5
5
3
5
5
____  
____  
____  
____  
____  
____  
SPS  
ns  
2954 tbl 13b  
NOTES:  
1. Transition is measured 0mV from Low- or High-impedance voltage with the Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization but not tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part numbers indicates power rating (S or L).  
9
6.42  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
t
WC  
ADDRESS  
(7)  
t
HZ  
OE  
t
AW  
CE or SEM(9)  
(7)  
t
HZ  
(3)  
(6)  
(2)  
t
WR  
tAS  
tWP  
R/W  
(7)  
tLZ  
t
OW  
tWZ  
(4)  
(4)  
OUT  
DATA  
tDH  
tDW  
IN  
DATA  
,
2954 drw 09  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)  
tWC  
ADDRESS  
tAW  
(9)  
CE or SEM  
(3)  
(6)  
(2)  
tWR  
tAS  
tEW  
R/W  
tDW  
tDH  
DATAIN  
2954 drw 10  
NOTES:  
1. R/W or CE must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization but is not production tested. Transition is measured 0mV from steady state with the Output Test Load  
(Figure 2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be placed  
on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified  
tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access Semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
61.402  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tOH  
t
SAA  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
t
WR  
tACE  
tAW  
tEW  
SEM  
t
SOP  
tDW  
DATAIN  
VALID  
DATAOUT  
VALID(2)  
I/O  
tAS  
tDH  
t
WP  
R/W  
tAOE  
tSWRD  
OE  
Read Cycle  
Write Cycle  
2954 drw 11  
NOTES:  
1. CE = VIH for the duration of the above timing (both write and read cycle).  
2. “DATAOUT VALID” represents all I/O's (I/O0-I/O8) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2 "A"  
MATCH  
SIDE(2) "A"  
R/W"A"  
SEM"A"  
tSPS  
MATCH  
A0"B"-A2 "B"  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
2954 drw 12  
NOTES:  
1. DOR = DOL =VIH, CER = CEL =VIH.  
2. All timing is the same for left and right ports. Port“A” may be either left or right port. “B” is the opposite port from “A”.  
3. This parameter is measured from R/WA” or SEM“A” going high to R/W“B” or SEM“B” going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will obtain the semaphore flag.  
11  
6.42  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6)  
7015X12  
7015X15  
Com'l Only  
7015X17  
Com'l Only  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S = VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
12  
12  
12  
15  
15  
15  
17  
17  
17  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address  
BUSY Disable Time from Address  
BUSY Access Time from Chip Enable  
BUSY Disable Time from Chip Enable  
Arbitration Priority Set-up Time(2)  
BUSY Disable to Valid Data(3)  
t
t
t
12  
15  
17  
____  
____  
____  
t
5
5
5
____  
____  
____  
t
15  
18  
18  
(5)  
____  
____  
____  
t
Write Hold After BUSY  
11  
13  
13  
BUSY INPUT TIMING (M/S = VIL  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
t
WB  
0
0
0
ns  
ns  
(5)  
tWH  
Write Hold After BUSY  
11  
13  
13  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
25  
20  
30  
25  
40  
35  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
2954 tbl 14a  
7015X20  
Com'l & Ind  
7015X25  
Com'l Only  
7015X35  
Com'l Only  
Symbol  
BUSY TIMING (M/S = VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tBAA  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
t
WH  
20  
20  
20  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address  
BUSY Disable Time from Address  
BUSY Access Time from Chip Enable  
BUSY Disable Time from Chip Enable  
Arbitration Priority Set-up Time(2)  
17  
17  
20  
____  
____  
____  
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
Write Hold After BUSY(5)  
30  
30  
35  
____  
____  
____  
15  
17  
25  
BUSY INPUT TIMING (M/S = VIL  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
WH  
0
0
0
ns  
ns  
t
15  
17  
25  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
t
WDD  
DDD  
Write Pulse to Data Delay(1)  
45  
30  
50  
35  
60  
45  
ns  
t
Write Data Valid to Read Data Delay(1)  
ns  
2954 tbl 14b  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Wave form of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on Port "B" during contention on Port "A".  
5. To ensure that a write cycle is completed on Port "B" after contention on Port "A".  
6. 'X' in part numbers indicates power rating (S or L).  
61.422  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Read with BUSY(2,4,5) (M/S = VIH)  
tWC  
MATCH  
ADDR"A"  
R/W"A"  
tWP  
tDH  
tDW  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
tBDD  
tBDA  
BUSY"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
NOTES:  
2954 drw 13  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S=VIL  
2. CEL = CER = VIL  
3. OE = VIL for the reading port.  
4. If M/S=VIL (SLAVE), BUSY is an input. Then for this example, BUSY“A”=VIH and BUSY“B” input is shown above.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from Port "A".  
Timing Waveform of Write with BUSY(3)  
t
WP  
R/W"A"  
t
WB  
BUSY"B"  
(1)  
tWH  
R/W"B"  
(2)  
2954 drw 14  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from Port "A".  
13  
6.42  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE timing(1) (M/S = VIH)  
ADDR"A"  
and "B"  
ADDRESSES MATCH  
CE"A"  
(2)  
t
APS  
CE"B"  
tBAC  
tBDC  
BUSY"B"  
2954 drw 15  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESS "N"  
(2)  
tAPS  
ADDR"B"  
MATCHING ADDRESS "N"  
tBAA  
tBDA  
BUSY"B"  
2954 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from “A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1)  
7015X12  
Com'l Only  
7015X15  
Com'l Only  
7015X17  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min. Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
t
0
0
0
____  
____  
____  
t
12  
12  
15  
15  
17  
17  
____  
____  
____  
t
Interrupt Reset Time  
ns  
2954 tbl 15a  
7015X20  
Com'l & Ind  
7015X25  
Com'l Only  
7015X35  
Com'l Only  
Symbol  
INTERRUPT TIMING  
Parameter  
Min.  
Max.  
Min. Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
t
t
t
t
AS  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
WR  
INS  
INR  
0
0
0
____  
____  
____  
20  
20  
20  
20  
25  
25  
____  
____  
____  
Interrupt Reset Time  
ns  
2954 tbl 15b  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
61.442  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
tWC  
INTERRUPT SET ADDRESS(2)  
ADDR"A"  
(4)  
(3)  
tWR  
tAS  
CE"A"  
R/W"A"  
INT"B"  
(3)  
tINS  
2954 drw 17  
t
RC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
tAS  
OE"B"  
(3)  
tINR  
INT"B"  
2954 drw 18  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from “A”.  
2. See Interrupt Truth Table.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
Truth Table III — Interrupt Flag(1)  
Left Port  
Right Port  
OE  
R/W  
L
A
12L-A0L  
1FFF  
X
R/W  
R
A
12R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CE  
L
OE  
L
INT  
L
CE  
R
R
INTR  
L
X
X
X
L
X
X
L
X
X
X
L
X
X
X
L
X
L
X
L(2)  
R
(3)  
X
X
1FFF  
1FFE  
X
H
R
X
L(3)  
H(2)  
L
L
X
X
X
X
L
1FFE  
X
X
L
2954 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
15  
6.42  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table IV — Address BUSY  
Arbitration  
Inputs  
Outputs  
A
OL-A12L  
(1)  
(1)  
A
OR-A12R  
Function  
Normal  
Normal  
Normal  
CE  
L
CE  
R
BUSY  
L
BUSYR  
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
MATCH  
H
H
MATCH  
(2)  
(2)  
Write Inhibit(3)  
2954 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSYX outputs on the IDT7015 are  
push-pull, not open drain outputs. On slaves the BUSYX input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D15 Left  
D0  
- D15 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
2954 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7015.  
2. There are eight semaphore flags written to via I/O0 and read from all I/Os (I/O0 - I/O8). These eight semaphores are addressed by A0 - A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
(INTL) is asserted when the right port writes to memory location 1FFE  
where a write is defined as the CE = R/W = VIL per Truth Table III. The  
leftportclearstheinterruptbyanaddresslocation1FFEaccesswhenCER  
=OER =VIL, R/W is a "don't care". Likewise, the right port interrupt flag  
(INTR)isassertedwhentheleftportwritestomemorylocation1FFFand  
tocleartheinterruptflag(INTR),therightportmustaccess memory location  
1FFF. The message (9 bits) at 1FFE or 1FFF is user-defined since it is  
anaddressableSRAMlocation.Iftheinterruptfunctionisnotused,address  
locations 1FFE and 1FFF are not used as mail boxes but are still part  
of the random access memory. Refer to Table III for the interrupt  
operation.  
TheIDT7015providestwoportswithseparatecontrol,addressand  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation  
inmemory.TheIDT7015hasanautomaticpowerdownfeaturecontrolled  
by CE. The CE controls on-chip power down circuitry that permits the  
respectiveporttogointoastandbymodewhennotselected(CEHIGH).  
Whenaportisenabled,accesstotheentirememoryarrayispermitted.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
or message center) is assigned to each port. The left port interrupt flag  
61.462  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
BusyLogic  
CE  
CE  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisbusy”.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
MASTER  
Dual Port  
RAM  
SLAVE  
Dual Port  
RAM  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
MASTER  
Dual Port  
RAM  
CE  
SLAVE  
Dual Port  
RAM  
CE  
BUSY (R)  
BUSY (L)  
BUSY (L)  
BUSY (R)  
BUSY (R)  
BUSY (L)  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
and use any BUSY indication as an interrupt source to flag the event of  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
TheBUSYoutputsontheIDT7015RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate. Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
2954 drw 19  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT7015 RAMs.  
leftportinnowayslowstheaccesstimeoftherightport. Bothportsare  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chip power down circuitry that permits the respective port to go into  
standbymodewhennotselected. Thisistheconditionwhichisshownin  
Truth Table I where CE and SEM are both HIGH.  
SystemswhichcanbestusetheIDT7015containmultipleprocessors  
or controllers and are typically very HIGH-speed systems which are  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
aperformanceincreaseofferedbytheIDT7015'shardwaresemaphores,  
whichprovidealockoutmechanismwithoutrequiringcomplexprogram-  
ming.  
Softwarehandshakingbetweenprocessorsoffersthemaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT7015doesnotuseitssemaphoreflagstocontrol  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal  
flexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
Width Expansion with Busy Logic  
Master/SlaveArrays  
WhenexpandinganIDT7015RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMarraywill  
receiveaBUSYindication,andtooutputthatindication.Anynumberof  
slavestobeaddressedinthesameaddressrangeasthemasterusethe  
BUSYsignalasawriteinhibitsignal.ThusontheIDT7015RAMtheBUSY  
pinisanoutputifthepartisusedasamaster(M/Spin=H),andtheBUSY  
pinisaninputifthepartusedasaslave(M/Spin=L)asshowninFigure  
3.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. It ignores whether an access is a read or write. In  
a master/slave array, both address and chip enable must be valid long  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwiththeR/Wsignal.Failuretoobservethistimingcan  
result in a glitched internal write inhibit signal and corrupted data in the  
slave.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
that semaphore’s status or remove its request for that semaphore to  
Semaphores  
TheIDT7015areextremelyfastDual-Port8Kx9StaticRAMswithan  
additional8addresslocationsdedicatedtobinarysemaphoreflags.These  
flagsalloweitherprocessorontheleftorrightsideoftheDual-PortRAM  
toclaimaprivilegeovertheotherprocessorforfunctionsdefinedbythe  
systemdesigner’ssoftware.Asanexample,thesemaphorecanbeused  
byoneprocessortoinhibittheotherfromaccessingaportionoftheDual-  
Port RAM or any other shared resource.  
The Dual-Port RAM features a fast access time, and both ports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
17  
6.42  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
perform another task and occasionally attempt again to gain control semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
of the token via the set and test sequence. Once the right side has sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
relinquishedthetoken,theleftsideshouldsucceedingainingcontrol.  
semaphorerequestlatch.Shouldtheotherside’ssemaphorerequestlatch  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites overtotheothersideassoonasaoneiswrittenintothefirstside’srequest  
aonetothatlatch.  
latch.Thesecondside’sflagwillnowstayLOWuntilitssemaphorerequest  
The eight semaphore flags reside within the IDT7015 in a separate latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
memoryspacefromtheDual-PortRAM.Thisaddressspaceisaccessed is requested and the processor which requested it no longer needs the  
byplacingaLOWinputontheSEMpin(whichactsasachipselectforthe resource, the entire system can hang up until a one is written into that  
semaphore flags) and using the other control pins (Address, OE, and semaphorerequestlatch.  
R/W) as they would be used in accessing a standard static RAM. Each  
The critical case of semaphore timing is when both sides request a  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside single token by attempting to write a zero into it at the same time. The  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
theotheraddresspinshasanyeffect.  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero sidetomaketherequestwillreceivethetoken.Ifbothrequestsarriveat  
onthatsideandaoneontheotherside(seeTableV). Thatsemaphore thesametime,theassignmentwillbearbitrarilymadetooneportorthe  
can now only be modified by the side showing the zero. When a one is other.  
writtenintothesamelocationfromthesameside,theflagwillbesettoa  
One caution that should be noted when using semaphores is that  
one for both sides (unless a semaphore request from the other side is semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
pending)andthencanbewrittentobybothsides.Thefactthattheside Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites or misinterpreted, a software error can easily happen.  
from the other side is what makes semaphore flags useful in inter  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
processor communications. (A thorough discussing on the use of viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
this feature follows shortly.) A zero written into the same location from flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
the other side will be stored in the semaphore request latch for that sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
sideuntilthesemaphoreisfreedbythefirstside.  
to assure that they will be free when needed.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintooneside’soutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
UsingSemaphores—SomeExamples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
resourcemarkersfortheIDT7015’sDual-PortRAM.Saythe8Kx9RAM  
wastobedividedintotwo4Kx9blockswhichweretobededicatedatany  
onetimetoservicingeithertheleftorrightport.Semaphore0couldbeused  
toindicatethesidewhichwouldcontrolthelowersectionofmemory,and  
Semaphore 1 could be defined as the indicator for the upper section of  
memory.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTable  
V).Asanexample,assumeaprocessorwritesazerototheleftportata  
freesemaphorelocation.Onasubsequentread,theprocessorwillverify  
thatithaswrittensuccessfullytothatlocationandwillassumecontrolover  
the resource in question. Meanwhile, if a processor on the right side  
attemptstowriteazerotothesamesemaphoreflagitwillfail, aswillbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
used instead,systemcontentionproblemscouldhaveoccurredduring  
the gap between the read and write cycles.  
Totakearesource, inthisexamplethelower4KofDual-PortRAM,  
the processor on the left port could write and then read a zero in to  
Semaphore0.Ifthistaskweresuccessfullycompleted(azerowasread  
back rather than a one), the left processor would assume control of the  
lower4K.Meanwhiletherightprocessorwasattemptingtogaincontrolof  
theresourceaftertheleftprocessor,itwouldreadbackaoneinresponse  
tothezeroithadattemptedtowriteintoSemaphore0. Atthispoint, the  
softwarecouldchoosetotryandgaincontrolofthesecond4Ksectionby  
writing,thenreadingazerointoSemaphore1.Ifitsucceededingaining  
control,itwouldlockouttheleftside.  
Once the left side was finished with its task, it would write a one to  
Semaphore 0 and may then try to gain access to Semaphore 1. If  
Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo  
itssemaphorerequestandperformothertasksuntilitwasabletowrite,then  
readazerointoSemaphore1.Iftherightprocessorperformsasimilartask  
withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap  
4K blocks of Dual-Port RAM with each other.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation. The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
The blocks do not have to be any particular size and can even be  
variable, depending upon the complexity of the software using the  
61.482  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual- segmentsatfullspeed.  
Port RAM or other shared resources into eight parts. Semaphores can  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
given a common meaning as was shown in the example above.  
mayberesponsibleforbuildingandupdatingadatastructure.Theother  
Semaphores are a useful form of arbitration in systems like disk processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring processorreadsanincompletedatastructure,amajorerrorconditionmay  
atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
wasoff-limitstotheCPU,boththeCPUandtheI/Odevicescouldaccess itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
theirassignedportionsofmemorycontinuouslywithoutanywaitstates. is completed, the data structure block is released. This allows the  
SemaphoresarealsousefulinapplicationswherenomemoryWAIT” interpretingprocessortocomebackandreadthecompletedatastructure,  
stateisavailableononeorbothsides.Onceasemaphorehandshakehas therebyguaranteeingaconsistentdatastructure.  
been performed, both processors can access their assigned RAM  
L PORT  
SEMAPHORE  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
2954 drw 20  
Figure 4. IDT7015 Semaphore Logic  
19  
6.42  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
OrderingInformation  
XXXXX  
A
999  
A
A
A
A
Device Power Speed Package  
Type  
Process/  
Temperature  
Range  
Tube or Tray  
Tape and Reel  
Blank  
8
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Blank  
I(1)  
G(2)  
Green  
80-pin TQFP (PN80)  
68-pin PLCC (J68)  
PF  
J
Commercial Only  
Commercial Only  
Commercial Only  
Commercial & Industrial  
Commercial Only  
Commercial Only  
12  
15  
17  
20  
25  
35  
Speed in nanoseconds  
S
L
Standard Power  
Low Power  
7015 72K (8K x 9) Dual-Port RAM  
2954 drw 21  
NOTES:  
1. Contact your local sales office for industrial temp range for other speeds, packages and powers.  
2. Green parts available. For specific speeds, packages and powers contact your local sales office.  
Datasheet Document History  
01/11/99:  
Initiateddatasheetdocumenthistory  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Addedadditionalnotestopinconfigurations  
Changeddrawingformat  
Pages 2 and 3  
Page 1  
06/03/99:  
Corrected DSC number  
11/10/99:  
05/19/00:  
Replaced IDT logo  
Increasedstoragetemperatureparameter  
ClarifiedTAparameter  
Page 4  
Page 6  
DCElectricalparameters–changedwordingfrom"open"to"disabled"  
Changed ±200mV to 0mV in notes  
01/24/02:  
Pages 2 & 3  
Added date revision for pin configurations  
Pages 4, 6, 7, 9 & 12  
Pages 6, 7, 9, 12 & 14  
Page 20  
Removed Industrial temp footnote from all tables  
Added Industrial temp for 20ns speed to DC and AC Electrical Characteristics  
Added Industrial temp offering to 20ns ordering information  
Replaced TM logo with ® logo  
Pages 1 & 20  
62.402  
IDT7015S/L  
High-Speed 8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DatasheetDocumentHistory(con't)  
04/04/06:  
Page 1  
Added green availability to features  
Page 20  
Added green indicator to ordering information  
10/21/08:  
08/18/14:  
Page 20  
Page 20  
Removed "IDT" from orderable part number  
Added Tape & Reel to Ordering Information  
Page 2, 3 & 20  
The package codes PN80-1, G68-1 & J68-1 changed to PN80, G68 & J68 to match  
standardpackagecodes  
03/04/16:  
Page 2  
Page 3  
Changed diagram for the J68 pin configuration by rotating package pin labels and pin  
numbers 90 degrees clockwise to reflect pin1 orientation and added pin 1 dot at pin 1  
Removed J68 chamfer and aligned the top and bottom pin labels in the standard direction  
Changed diagram for the PN80 pin configuration by rotating package pin labels and pin  
numbers90degreescounterclockwisetoreflectpin1orientationandaddedpin1dotatpin1  
Corrected the PN80 pin label spacing and removed the chamfer  
Added the IDT logo to the J68 and PN80 pin configurations and changed the text to be in  
alignment with new diagram marking specs and removed the date revision indicator from  
allpinconfigurations  
UpdatedfootnotereferencesforPN80pinconfiguration  
Deletedallceramic68pinPGAreferencesincludingtheG68 pinconfiguration  
Military grade removed from Absolute Max and Max Operating tables  
Military grade removed from all DC Elec & all AC Elec tables for all speeds  
Page 4  
Page 6, 7, 9, 12 & 14  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
21  
6.42  

相关型号:

7015S12PFGI8

HIGH-SPEED 8K x 9 DUAL-PORT STATIC RAM
IDT

7015S15GG

Dual-Port SRAM, 8KX9, 15ns, CMOS, CPGA68, 1.18 X 1.18 INCH, 0.16 INCH HEIGHT, GREEN, CERAMIC, PGA-68
IDT

7015S15GG8

Dual-Port SRAM, 8KX9, 15ns, CMOS, CPGA68, 1.18 X 1.18 INCH, 0.16 INCH HEIGHT, GREEN, CERAMIC, PGA-68
IDT

7015S15J

PLCC-68, Tube
IDT

7015S15J8

PLCC-68, Reel
IDT

7015S15JG

Dual-Port SRAM, 8KX9, 15ns, CMOS, PQCC68, 0.95 X 0.95 INCH, 0.17 INCH HEIGHT, GREEN, PLASTIC, LCC-68
IDT

7015S15JG8

Dual-Port SRAM, 8KX9, 15ns, CMOS, PQCC68, PLASTIC, LCC-68
IDT

7015S15JGI

HIGH-SPEED 8K x 9 DUAL-PORT STATIC RAM
IDT

7015S15JGI8

HIGH-SPEED 8K x 9 DUAL-PORT STATIC RAM
IDT

7015S15PFG

Dual-Port SRAM, 8KX9, 15ns, CMOS, PQFP80, 14 X 14 MM, 1.40 MM HEIGHT, GREEN, TQFP-80
IDT

7015S15PFG8

Dual-Port SRAM, 8KX9, 15ns, CMOS, PQFP80, TQFP-80
IDT

7015S15PFGI

HIGH-SPEED 8K x 9 DUAL-PORT STATIC RAM
IDT