7024S35PFB [IDT]

Dual-Port SRAM, 4KX16, 35ns, CMOS, PQFP100, TQFP-100;
7024S35PFB
型号: 7024S35PFB
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 4KX16, 35ns, CMOS, PQFP100, TQFP-100

静态存储器 内存集成电路
文件: 总21页 (文件大小:190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED  
IDT7024S/L  
4K x 16 DUAL-PORT  
STATIC RAM  
IDT7024 easily expands data bus width to 32 bits or more  
using the Master/Slave select when cascading more than  
one device  
M/S = H for BUSY output flag on Master  
M/S = L for BUSY input on Slave  
Interrupt Flag  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
Battery backup operation2V data retention  
TTL-compatible, single 5V (±10%) power supply  
Available in 84-pin PGA, Flatpack, PLCC, and 100-pin Thin  
Quad Flatpack  
Features  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
Military:20/25/35/55/70ns(max.)  
Industrial:55ns (max.)  
– Commercial:15/17/20/25/35/55ns(max.)  
Low-power operation  
IDT7024S  
Active:750mW(typ.)  
Standby: 5mW (typ.)  
IDT7024L  
Active:750mW(typ.)  
Standby: 1mW (typ.)  
Separate upper-byte and lower-byte control for multiplexed  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
bus compatibility  
FunctionalBlockDiagram  
R/WL  
UBL  
R/WR  
UBR  
LBL  
CEL  
OEL  
R
CER  
OER  
LB  
I/O8L-I/O15L  
I/O8R-I/O15R  
I/O  
I/O  
Control  
Control  
I/O0L-I/O7L  
0R  
I/O -I/O  
7R  
(1,2)  
BUSYL  
(1,2)  
BUSYR  
A11R  
A0R  
A11L  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A0L  
12  
12  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CER  
OER  
CEL  
OE  
L
WR  
R/  
R/WL  
SEMR  
(2)  
SEML  
(2)  
M/S  
INTR  
2740 drw 01  
INTL  
NOTES:  
1. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
2. BUSY outputs and INT outputs are non-tri-stated push-pull.  
APRIL 2000  
1
DSC 2740/10  
©2000IntegratedDeviceTechnology,Inc.  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Description  
port to enter a very low standby power mode.  
The IDT7024 is a high-speed 4Kx 16 Dual-Port Static RAM. The  
IDT7024isdesignedtobeusedasastand-alone64K-bitDual-PortRAM  
orasacombinationMASTER/SLAVEDual-PortRAMfor32-bitormore  
wordsystems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproach  
in32-bitorwidermemorysystemapplicationsresultsinfull-speed,error-  
freeoperationwithouttheneedforadditionaldiscretelogic.  
This device provides two independent ports with separate control,  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
reads or writes to any location in memory. An automatic power down  
featurecontrolledbychipenable(CE)permitstheon-chipcircuitryofeach  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typically operate on only 750mW of power. Low-power (L)  
versionsofferbatterybackupdataretentioncapabilitywithtypicalpower  
consumptionof500µWfroma2Vbattery.  
TheIDT7024ispackagedinaceramic84-pinPGA,an84-pinFlatpack  
andPLCC,anda100-pinTQFP.Militarygradeproductismanufactured  
incompliancewiththelatestrevisionofMIL-PRF-38535QML,makingit  
ideallysuitedtomilitarytemperatureapplicationsdemandingthehighest  
levelofperformanceandreliability.  
PinConfigurations(1,2,3)  
INDEX  
11 10  
9
8
7
6
5
4
3
2
1 84 83 82 81 80 79 78 77 76 75  
74  
8L  
9L  
7L  
6L  
5L  
4L  
3L  
2L  
1L  
0L  
I/O  
I/O  
A
A
A
A
A
A
A
A
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
10L  
11L  
12L  
13L  
I/O  
I/O  
I/O  
I/O  
GND  
IDT7024J or F  
14L  
15L  
I/O  
I/O  
(4)  
J84-1  
F84-2  
L
INT  
(4)  
L
CC  
BUSY  
GND  
M/S  
V
84-Pin PLCC / Flatpack  
GND  
(5)  
Top View  
0R  
1R  
2R  
I/O  
I/O  
I/O  
R
BUSY  
R
INT  
CC  
V
0R  
1R  
2R  
3R  
4R  
5R  
6R  
A
A
A
A
A
A
A
3R  
4R  
5R  
6R  
7R  
8R  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Index  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
,
2740 drw 02  
10099 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
75  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
2
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
3
4
10L  
I/O  
11L  
I/O  
12L  
I/O  
13L  
I/O  
5
5L  
A
4L  
A
3L  
A
2L  
A
1L  
A
0L  
A
6
7
8
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
14L  
I/O  
I/O  
IDT7024PF  
15L  
L
INT  
(4)  
PN100-1  
CC  
V
L
BUSY  
GND  
M/S  
GND  
100-Pin TQFP  
0R  
I/O  
1R  
I/O  
2R  
I/O  
(5)  
Top View  
R
BUSY  
R
INT  
CC  
V
0R  
A
1R  
A
2R  
A
3R  
A
4R  
A
3R  
I/O  
4R  
I/O  
5R  
I/O  
6R  
I/O  
NOTES:  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
1. All VCC pins must be connected to the power supply.  
2. All GND pins must be connected to the ground supply.  
3. J84-1 package body is approximately 1.15 in x 1.15 in x .17 in.  
F84-2 package body is approximately 1.17 in x 1.17 in x .11 in.  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
2740 drw 03  
PN100-1 package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
6.42  
2
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
63  
61  
60  
58  
55  
54  
51  
48  
46  
45  
42  
40  
39  
37  
34  
11  
10  
09  
08  
07  
06  
05  
04  
03  
02  
01  
I/O7L  
I/O5L  
I/O4L  
I/O2L  
I/O0L  
L
L
A11L  
A10L  
A7L  
OE  
SEM  
LB  
L
66  
64  
62  
59  
56  
49  
50  
47  
44  
43  
I/O10L  
I/O8L  
I/O6L  
I/O3L  
I/O1L  
N/C  
A9L  
A8L  
A5L  
UBL  
CEL  
67  
65  
57  
53  
52  
41  
R/WL  
GND  
V
CC  
I/O11L  
I/O9L  
A6L  
A4L  
69  
68  
38  
I/O13L  
I/O12L  
A3L  
A2L  
72  
71  
73  
33  
35  
15L  
BUSYL  
I/O  
CC  
V
A
0L  
I/O14L  
INTL  
IDT7024G  
(4)  
75  
70  
74  
32  
31  
36  
G84-3  
I/O0R  
GND  
GND  
M/S  
GND  
A1L  
84-Pin PGA  
(5)  
Top View  
76  
77  
78  
28  
29  
30  
VCC  
I/O1R  
I/O  
2R  
A0R  
INTR  
BUSYR  
79  
80  
26  
27  
A2R  
I/O  
3R  
I/O4R  
A1R  
81  
83  
7
11  
12  
23  
25  
SEMR  
I/O5R  
A5R  
I/O  
7R  
GND  
GND  
A3R  
82  
1
3
2
5
8
10  
14  
17  
20  
22  
24  
I/O6R  
I/O9R  
I/O10R  
I/O13R  
I/O15R  
R/WR  
A11R  
A8R  
A6R  
A4R  
UBR  
84  
4
6
9
15  
13  
16  
18  
19  
21  
I/O8R  
I/O11R  
I/O12R  
I/O14R  
N/C  
A10R  
A9R  
A7R  
OER  
LBR  
CER  
A
B
C
D
E
F
G
H
J
K
L
2740 drw 04  
Index  
NOTES:  
1. All VCC pins must be connected to the power supply.  
2. All GND pins must be connected to the ground supply.  
3. Package body is approximately 1.12 in x 1.12 in x .16 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
PinNames  
MaximumOperatingTemperature  
andSupplyVoltage(1,2)  
Left Port  
Right Port  
Names  
Grade  
Ambient  
Temperature  
GND  
Vcc  
Chip Enable  
CEL  
CER  
WL  
WR  
R/  
R/  
Read/Write Enable  
Output Enable  
Address  
+
Military  
-55OC to +125OC  
0OC to +70OC  
0V  
0V  
0V  
5.0V 10%  
OEL  
OER  
+
5.0V 10%  
Commercial  
Industrial  
0L  
11L  
0R  
11R  
A
- A  
A
- A  
-40OC to +85OC  
5.0V 10%  
+
0L  
15L  
0R  
15R  
I/O - I/O  
SEML  
UBL  
I/O - I/O  
SEMR  
UBR  
Data Input/Output  
Semaphore Enable  
Upper Byte Select  
Lower Byte Select  
Interrupt Flag  
2740 tbl 02  
NOTES:  
1. This is the parameter TA.  
2. Industrial temperature: for specific speeds, packages and powers contact your  
sales office.  
LBL  
LBR  
INTL  
INTR  
Busy Flag  
BUSYL  
BUSYR  
S
M/  
Master or Slave Select  
Power  
CC  
V
GND  
Ground  
2740 tbl 01  
6.42  
3
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
R/W  
X
X
L
I/O8-15  
High-Z  
High-Z  
DATAIN  
High-Z  
DATAIN  
I/O0-7  
High-Z  
High-Z  
High-Z  
DATAIN  
DATAIN  
High-Z  
DATAOUT  
DATAOUT  
High-Z  
Mode  
CE  
H
X
L
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
Deselcted: Power-Down  
Both Bytes Deselected  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
H
H
L
L
H
L
H
L
L
L
H
L
H
H
H
X
L
H
L
H
DATAOUT  
High-Z  
Read Upper Byte Only  
Read Lower Byte Only  
Read Both Bytes  
L
L
H
L
H
L
L
L
H
DATAOUT  
High-Z  
X
H
X
X
X
Outputs Disabled  
2740 tbl 03  
NOTE:  
1. A0L A11L A0R A11R  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs(1)  
Outputs  
CE(2)  
H
OE  
L
UB  
X
H
X
H
L
LB  
X
H
X
H
X
L
SEM  
L
R/W  
H
H
I/O8-15  
I/O0-7  
Mode  
Read Semaphore Flag Data Out  
Read Semaphore Flag Data Out  
Write I/O0 into Semaphore Flag  
Write I/O0 into Semaphore Flag  
Not Allowed  
DATAOUT  
DATAOUT  
DATAIN  
DATAOUT  
DATAOUT  
DATAIN  
X
L
L
H
X
X
X
X
L
X
L
DATA  
DATA  
IN  
IN  
____  
____  
L
X
X
L
____  
____  
L
X
L
Not Allowed  
2740 tbl 04  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from all of the I/O's (I/O0 - I/O15).  
These eight semaphores are addressed by A0 - A2.  
AbsoluteMaximumRatings(1)  
RecommendedDCOperating  
Conditions  
Symbol  
Rating  
Commercial  
& Industrial  
Military  
Unit  
Symbol  
Parameter  
Min.  
4.5  
0
Typ. Max. Unit  
(2)  
VTERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +7.0  
-0.5 to +7.0  
V
VCC  
Supply Voltage  
5.0  
5.5  
0
V
V
V
GND Ground  
0
Temperature  
Under Bias  
-55 to +125  
-55 to +125  
50  
-65 to +135  
-65 to +150  
50  
oC  
oC  
TBIAS  
TSTG  
IOUT  
(2)  
____  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
2.2  
6.0  
(1)  
____  
-0.5  
0.8  
V
Storage  
Temperature  
2740 tbl 06  
NOTES:  
DC Output  
Current  
mA  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
2740 tbl 05  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS  
may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may  
affect reliability.  
2. VTERM must not exceed Vcc +10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period over VTERM > Vcc + 10%.  
6.42  
4
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
(1)  
Capacitance (TA = +25°C, f = 1.0MHz)  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2 )  
Max. Unit  
CIN  
VIN = 3dV  
9
pF  
COUT  
VOUT = 3dV  
10  
pF  
2740 tbl 07  
NOTES:  
1. This parameter are determined by device characterization, but is not  
production tested.  
2. 3dV references the interpolated capacitance when the input and  
output signals switch from 0V to 3V or from 3V to 0V.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VCC = 5.0V ± 10%)  
7024S  
7024L  
Symbol  
Parameter  
Input Leakage Curre nt(1)  
Output Leakage Current  
Output Low Voltage  
Test Conditions  
= 5.5V, V = 0V to V  
Min.  
Max.  
10  
Min.  
Max.  
Unit  
µA  
µA  
V
___  
___  
LI  
|I |  
CC  
IN  
CC  
CC  
V
5
5
___  
___  
___  
___  
LO  
|I  
|
10  
CE  
IH OUT  
= V , V = 0V to V  
OL  
V
OL  
I
= +4mA  
= -4mA  
0.4  
0.4  
___  
___  
OH  
V
OH  
I
Output High Voltage  
2.4  
2.4  
V
2740 tbl 08  
NOTE:  
1. At Vcc < 2.0V input leakages are undefined.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1,6) (VCC = 5.0V ± 10%)  
7024X15  
Com'l Only  
7024X17  
Com'l Only  
7024X20  
Com'l &  
Military  
7024X25  
Com'l &  
Military  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
170  
170  
310  
260  
170  
170  
310  
260  
160  
160  
290  
240  
155  
155  
265  
220  
mA  
CE = VIL,  
Outputs Open  
SEM = VIH  
____  
____  
____  
____  
____  
____  
____  
____  
(3)  
MIL &  
IND  
S
L
160  
160  
370  
320  
155  
155  
340  
280  
f = fMAX  
ISB1  
ISB2  
ISB3  
ISB4  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
20  
20  
60  
50  
20  
20  
60  
50  
20  
20  
60  
50  
16  
16  
60  
50  
mA  
mA  
mA  
mA  
CER = CEL = VIH  
SEMR = SEML = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
20  
20  
90  
70  
16  
16  
80  
65  
(5)  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
105  
105  
190  
160  
105  
105  
190  
160  
95  
95  
180  
150  
90  
90  
170  
140  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Open,  
(3)  
f=fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
95  
95  
240  
210  
90  
90  
215  
180  
SEMR = SEML = VIH  
Full Standby Current  
Both Ports CEL and  
CER > VCC - 0.2V,  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
(Both Ports  
-
CMOS Level Inputs)  
VIN > VCC - 0.2V or  
____  
____  
____  
____  
____  
____  
____  
____  
VIN < 0.2V, f = 0(4)  
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
SEMR = SEML > VCC - 0.2V  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
COM'L  
S
L
100  
100  
170  
140  
100  
100  
170  
140  
90  
90  
155  
130  
85  
85  
145  
120  
CE"A" < 0.2V and  
(5)  
CE"B" > VCC - 0.2V  
SEMR = SEML > VCC - 0.2V  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
90  
90  
225  
200  
85  
85  
200  
170  
VIN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Open,  
(3)  
MAX  
f = f  
2740 tbl 09a  
NOTES:  
1. 'X' in part number indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C, and are not production tested. ICC DC = 120mA (TYP.)  
3. At f = fMAX, address and I/O'S are cycling at the maximum frequency read cycle of 1/tRC, and using AC Test Conditionsof input levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6. Industrial temperature: for specific speeds, packages and powers contact your sales office.  
6.42  
5
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1,6) (con’t.) (VCC = 5.0V ± 10%)  
7024X35  
Com'l &  
Military  
7024X55  
Com'l, Ind  
& Military  
7024X70  
Military Only  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
____  
____  
____  
____  
mA  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
150  
150  
250  
210  
150  
150  
250  
210  
CE = VIL,  
Outputs Open  
SEM = VIH  
(3)  
MIL &  
IND  
S
L
150  
150  
300  
250  
150  
150  
300  
250  
140  
140  
300  
250  
f = fMAX  
____  
____  
____  
____  
mA  
mA  
ISB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
13  
13  
60  
50  
13  
13  
60  
50  
CER = CEL = VIH  
SEMR = SEML = VIH  
(3)  
f = fMAX  
MIL &  
IND  
S
L
13  
13  
80  
65  
13  
13  
80  
65  
10  
10  
80  
65  
____  
____  
____  
____  
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
85  
85  
155  
130  
95  
95  
155  
130  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Open,  
(3)  
f=fMAX  
MIL &  
IND  
S
L
85  
85  
190  
160  
95  
95  
190  
160  
80  
80  
190  
160  
SEMR = SEML = VIH  
____  
____  
____  
____  
mA  
mA  
ISB3  
Full Standby Current  
(Both Ports -  
Both Ports CEL and  
CER > VCC - 0.2V,  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
CMOS Level Inputs)  
VIN > VCC - 0.2V or  
VIN < 0.2V, f = 0(4)  
SEMR = SEML > VCC - 0.2V  
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
____  
____  
____  
____  
ISB4  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
COM'L  
S
L
80  
80  
135  
110  
80  
80  
135  
110  
CE"A" < 0.2V and  
(5)  
CE"B" > VCC - 0.2V  
SEMR = SEML > VCC - 0.2V  
VIN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Open,  
MIL &  
IND  
S
L
80  
80  
175  
150  
80  
80  
175  
150  
75  
75  
175  
150  
(3)  
f = fMAX  
2740 tbl 09b  
NOTES:  
1. 'X' in part number indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C, and are not production tested.  
3. At f = fMAX, address and I/O'S are cycling at the maximum frequency read cycle of 1/tRC, and using AC Test Conditionsof input levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6. Industrial temperature: for specific speeds, packages and powers contact your sales office.  
Data Retention Characteristics Over All Temperature Ranges  
(4)  
(L Version Only) (VLC = 0.2V, VHC = VCC - 0.2V)  
Symbol  
VDR  
ICCDR  
Parameter  
VCC for Data Retention  
Test Condition  
Min.  
Typ.(1)  
Max.  
Unit  
V
___  
___  
VCC = 2V  
2.0  
___  
Data Retention Current  
µA  
CE > VHC  
MIL. & IND.  
COM'L.  
100  
4000  
___  
VIN > VHC or < VLC  
100  
1500  
(3)  
___  
___  
tCDR  
Chip Deselect to Data Retention Time  
Operation Recovery Time  
0
ns  
SEM > VHC  
(3)  
(2)  
___  
___  
tR  
tRC  
ns  
2740 tbl 10  
NOTES:  
1. TA = +25°C, VCC = 2V, and are by device characterization but are not production tested.  
2. tRC = Read Cycle Time  
3. This parameter is guaranteed but not tested.  
4. At Vcc < 2.0V, input leakages are not defined.  
6.42  
6
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Data Retention Waveform  
DATA RETENTION MODE  
VDR  
4.5V  
4.5V  
tR  
VCC  
2V  
tCDR  
VDR  
VIH  
VIH  
CE  
2740 drw 05  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
5ns  
1.5V  
1.5V  
Figures 1 and 2  
2740 tbl 11  
5V  
5V  
1250  
1250  
DATAOUT  
BUSY  
INT  
DATAOUT  
30pF  
775  
5pF*  
775  
2740 drw 06  
Figure 1. AC Output Test Load  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
*Including scope and Jig  
6.42  
7
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4,5)  
7024X15  
Com'l Only  
7024X17  
Com'l Only  
7024X20  
Com'l &  
Military  
7024X25  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
____  
tRC  
Read Cycle Time  
15  
17  
20  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
____  
tAA  
Address Access Time  
15  
15  
15  
17  
17  
17  
20  
20  
20  
25  
25  
25  
Chip Enable Access Time(3)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tACE  
tABE  
tAOE  
tOH  
tLZ  
Byte Enable Access Time(3)  
Output Enable Access Time  
10  
10  
12  
13  
____  
____  
____  
____  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
3
3
3
3
____  
____  
____  
____  
3
3
3
3
Output High-Z Time(1,2)  
10  
10  
12  
15  
____  
____  
____  
____  
tHZ  
tPU  
tPD  
tSOP  
tSAA  
Chip Enable to Power Up Time(1,2)  
Chip Disable to Power Down Time(1,2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access(3)  
0
0
0
0
____  
____  
____  
____  
____  
____  
____  
____  
15  
17  
20  
25  
____  
____  
____  
____  
10  
10  
10  
10  
____  
____  
____  
____  
15  
17  
20  
25  
ns  
2740 tbl 12a  
7024X35  
Com'l &  
Military  
7024X55  
Com'l, Ind  
& Military  
7024X70  
Military Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
tRC  
Read Cycle Time  
35  
55  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
tAA  
Address Access Time  
35  
35  
35  
55  
55  
55  
70  
70  
70  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tACE  
tABE  
tAOE  
tOH  
tLZ  
20  
30  
35  
____  
____  
____  
3
3
3
____  
____  
____  
3
3
3
Output High-Z Time(1,2)  
15  
25  
30  
____  
____  
____  
tHZ  
tPU  
tPD  
tSOP  
tSAA  
Chip Enable to Power Up Time(1,2)  
Chip Disable to Power Down Time(1,2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access(3)  
0
0
0
____  
____  
____  
____  
____  
____  
35  
50  
50  
____  
____  
____  
15  
15  
15  
____  
____  
____  
35  
55  
70  
ns  
2740 tbl 12b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL, UB or LB = VIL, and SEM =VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM =VIL.  
4. 'X' in part number indicates power rating (S or L).  
5. Industrial temperature: for other speeds, packages and powers contact your sales office.  
6.42  
8
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
tAA  
(4)  
tACE  
CE  
(4)  
tAOE  
OE  
(4)  
tABE  
UB, LB  
R/W  
(1)  
tOH  
tLZ  
VALID DATA(4)  
DATAOUT  
(2)  
tHZ  
BUSYOUT  
(3,4)  
2740 drw 07  
tBDD  
NOTES:  
1. Timing depends on which signal is asserted last, CE, OE, LB, or UB.  
2. Timing depends on which signal is de-asserted first, CE, OE, LB, or UB.  
3. tBDD delay is required only in cases where opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY has  
no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tABE, tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
Timing of Power-Up Power-Down  
CE  
tPU  
tPD  
ICC  
I
SB  
,
2740 drw 08  
6.42  
9
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5,6)  
7024X15  
Com'l Only  
7024X17  
Com'l Only  
7024X20  
Com'l &  
Military  
7024X25  
Com'l &  
Military  
Symbol  
WRITE CYCLE  
tWC  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
Write Cycle Time  
15  
12  
12  
0
17  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEW  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
AW  
t
tAS  
tWP  
12  
0
12  
0
15  
0
20  
0
tWR  
tDW  
tHZ  
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
10  
10  
15  
15  
____  
____  
____  
____  
10  
10  
12  
15  
____  
____  
____  
____  
tDH  
0
0
0
0
(1,2)  
____  
____  
____  
____  
tWZ  
tOW  
tSWRD  
tSPS  
Write Enable to Output in High-Z  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
10  
12  
15  
____  
____  
____  
____  
0
5
5
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
____  
____  
ns  
2740 tbl 13a  
7024X35  
Com'l &  
Military  
7024X55  
Com'l, Ind  
& Military  
7024X70  
Military Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
tAS  
Write Cycle Time  
35  
30  
30  
0
55  
45  
45  
0
70  
50  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
tWP  
25  
0
40  
0
50  
0
tWR  
tDW  
tHZ  
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
15  
30  
40  
____  
____  
____  
15  
25  
30  
____  
____  
____  
tDH  
0
0
0
(1,2)  
____  
____  
____  
tWZ  
tOW  
tSWRD  
tSPS  
Write Enable to Output in High-Z  
Output Active from End-of-Write(1, 2,4)  
15  
25  
30  
____  
____  
____  
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
Flag Write to Read Time  
SEM  
ns  
SEM Flag Contention Window  
2740 tbl 13b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL, UB or LB = VIL, SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL.  
Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH  
and tOW values will vary over voltage and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part number indicates power rating (S or L).  
6. Industrial temperature: for other speeds, packages and powers contact your sales office.  
6.42  
10  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE or SEM (9)  
(9)  
UB or LB  
(3)  
(2)  
(6)  
tWR  
tWP  
tAS  
R/W  
DATAOUT  
DATAIN  
(7)  
tWZ  
tOW  
(4)  
(4)  
tDW  
tDH  
2740 drw 09  
Timing Waveform of Write Cycle No. 2, CE, UB, LB Controlled Timing(1,5)  
tWC  
ADDRESS  
tAW  
(9)  
or  
CE SEM  
(3)  
(2)  
(6)  
tWR  
tEW  
tAS  
(9)  
or  
UB LB  
R/  
W
tDW  
tDH  
DATAIN  
2740 drw 10  
NOTES:  
1. R/W or CE or UB & LB = VIH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a UB or LB = VIL and a CE = VIL and a R/W = VIL for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH = VIL to the end-of-write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE, R/W, UB, or LB.  
7. This parameter is guaranted by device characterization, but is not production tested. Transition is measured 0mV steady state with the Output Test Load  
(Figure 2).  
8. If OE = VIL during R/W controlled write cycle, the write pulse width must be the larger of tWP for (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the  
specified tWP .  
9. To access RAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access Semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL. tEW must be  
met for either condition.  
6.42  
11  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tOH  
tSAA  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tWR  
tACE  
tAW  
tEW  
SEM  
tSOP  
tDW  
DATAOUT  
VALID(2)  
DATAIN  
VALID  
I/O0  
tAS  
tWP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
Write Cycle  
Read Cycle  
2740 drw 11  
NOTES:  
1. CE = VIH or UB & LB = VIH for the duration of the above timing (both write and read cycle).  
2. DATAOUT VALIDrepresents all I/O's (I/O0-I/O15) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
0"A" 2"A"  
A
-A  
MATCH  
SIDE(2)  
"A"  
"A"  
R/W  
"A"  
SEM  
tSPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
2740 drw 12  
NOTES:  
1. D0R = D0L = VIL, CER = CEL = VIH, or both UB & LB = VIH, semaphore flag is released from both sides (reads as ones from both sides) at cycle start.  
2. All timing is the same for left and right ports. Port Amay be either left or right port. Port Bis the opposite from port A.  
3. This parameter is measured from R/WA or SEMA going HIGH to R/WB or SEMB going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will obtain the semaphore flag.  
6.42  
12  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6,7)  
7024X15  
Com'l Only  
7024X17  
Com'l Only  
7024X20  
Com'l &  
Military  
7024X25  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S = VIH)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tBAA  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
15  
15  
15  
17  
17  
17  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
Disable Time from Address Not Match  
BUSY  
BUSY Access Time from Chip Enable Low  
BUSY Disable Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
BUSY Disable to Valid Data(3)  
15  
17  
17  
17  
____  
____  
____  
____  
5
5
5
5
____  
____  
____  
____  
18  
18  
30  
30  
Write Hold After BUSY(5)  
12  
13  
15  
17  
____  
____  
____  
____  
BUSY INPUT TIMING (M/S = VIH)  
____  
____  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
tWB  
0
0
0
0
ns  
ns  
tWH  
PORT-TO-PORT DELAY TIMING  
tWDD  
tDDD  
Write Hold After BUSY(5)  
12  
13  
15  
17  
(1)  
____  
____  
____  
____  
____  
____  
____  
____  
Write Pulse to Data Delay  
30  
25  
30  
25  
45  
35  
50  
35  
ns  
Write Data Valid to Read Data Delay(1)  
ns  
2740 tbl 14a  
7024X35  
Com'l &  
Military  
7024X55  
Com'l, Ind  
& Military  
7024X70  
Military Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S = VIH)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
BAA  
t
20  
20  
20  
45  
40  
40  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
BUSY Disable Time from Address Not Match  
BUSY Access Time from Chip Enable Low  
BUSY Disable Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
20  
35  
35  
____  
____  
____  
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
Write Hold After BUSY(5)  
35  
40  
45  
____  
____  
____  
25  
25  
25  
BUSY INPUT TIMING (M/S = VIH)  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
tWB  
0
0
0
ns  
ns  
tWH  
PORT-TO-PORT DELAY TIMING  
tWDD  
tDDD  
Write Hold After BUSY(5)  
25  
25  
25  
(1)  
____  
____  
____  
____  
____  
____  
Write Pulse to Data Delay  
60  
45  
80  
65  
95  
80  
ns  
Write Data Valid to Read Data Delay(1)  
ns  
2740 tbl 14b  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0ns, tWDD tWP (actual) or tDDD tDW (actual).  
4. To ensure that the write cycle is inhibited on port 'B' during contention with port 'A'.  
5. To ensure that a write cycle is completed on port 'B' after contention with port 'A'.  
6. 'X' in part number indicates power rating (S or L).  
7. Industrial temperature: for other speeds, packages and powers contact your sales office.  
6.42  
13  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadandBUSY(2,4,5)(M/S = VIH)  
tWC  
MATCH  
ADDR"A"  
tWP  
R/  
W"A"  
tDH  
tDW  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
tBAA  
tBDA  
tBDD  
BUSY"B"  
tWDD  
VALID  
DATAOUT "B"  
(3)  
tDDD  
2740 drw 13  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave) then BUSY is an input BUSY"A" = VIL and BUSY"B" = don't care, for this example.  
5. All timing is the same for both left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY  
tWP  
"A"  
R/W  
(3)  
tWB  
"B"  
BUSY  
(1)  
tWH  
,
(2)  
R/ "B"  
W
2740 drw 14  
NOTES:  
1. tWH must be met for both BUSY input (slave) and output (master).  
2. BUSY is asserted on port "B" Blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the 'Slave' Version.  
6.42  
14  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
tBDC  
BUSY"B"  
2740 drw 15  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
ADDRESS "N"  
(2)  
tAPS  
MATCHING ADDRESS "N"  
tBAA  
tBDA  
2740 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from A.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1,2)  
7024X15  
Com'l Only  
7024X17  
Com'l Only  
7024X20  
Com'l &  
Military  
7024X25  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
tAS  
Address Set-up Time  
0
0
0
0
ns  
ns  
ns  
tWR  
tINS  
tINR  
Write Recovery Time  
Interrupt Set Time  
0
0
0
0
____  
____  
____  
____  
15  
15  
15  
15  
20  
20  
20  
20  
____  
____  
____  
____  
Interrupt Reset Time  
ns  
2740 tbl 15a  
7024X35  
Com'l &  
Military  
7024X55  
Com'l, Ind  
& Military  
7024X70  
Military Only  
Symbol  
INTERRUPT TIMING  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
tAS  
Address Set-up Time  
0
0
0
ns  
ns  
ns  
tWR  
tINS  
tINR  
Write Recovery Time  
Interrupt Set Time  
0
0
0
____  
____  
____  
25  
25  
40  
40  
50  
50  
____  
____  
____  
Interrupt Reset Time  
ns  
2740 tbl 15b  
NOTES:  
1. 'X' in part number indicates power rating (S or L).  
2. Industrial temperature: for other speeds, packages and powers contact your sales office.  
6.42  
15  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
tWC  
INTERRUPT SET ADDRESS (2)  
ADDR"A"  
(4)  
(3)  
tAS  
tWR  
CE"A"  
R/ "A"  
W
(3)  
tINS  
INT"B"  
2740 drw 17  
tRC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
(3)  
tAS  
CE"B"  
"B"  
OE  
(3)  
tINR  
"B"  
INT  
2740 drw 18  
NOTES:  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from A.  
2. See Interrupt Truth Table III.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
Truth Table III — Interrupt Flag(1,4)  
Left Port  
Right Port  
R/WL  
L
A11L-A0L  
FFF  
X
R/WR  
X
A11R-A0R  
X
Function  
CEL  
L
OEL  
X
INTL  
X
CER  
X
OER  
X
INTR  
(2)  
L
Set Right INTR Flag  
(3)  
X
X
X
X
X
L
L
FFF  
FFE  
X
H
Reset Right INTR Flag  
Set Left INTL Flag  
(3)  
X
X
X
X
L
L
L
X
X
X
(2)  
X
L
L
FFE  
H
X
X
X
Reset Left INTL Flag  
2740 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTR and INTL must be initialized at power-up.  
6.42  
16  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table IV —  
Address BUSY Arbritration  
Inputs  
Outputs  
A0L-A11L  
A0R-A11R  
(1)  
(1)  
Function  
Normal  
Normal  
Normal  
CEL CER  
BUSYL  
BUSYR  
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
MATCH  
H
H
(3)  
MATCH  
(2)  
(2)  
Write Inhibit  
2740 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSYX outputs on the IDT7024 are  
push pull, not open drain outputs. On slaves, the BUSY asserted input internally inhibits write.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs cannot be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0 - D15 Left  
D0 - D15 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
2740 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7024.  
2. There are eight semaphore flags written to via I/O0 and read from all the I/O's. These eight semaphores are addressed by A0-A2.  
3. CE = VIH, SEM = VIL, to access the Semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
TheIDT7024providestwoportswithseparatecontrol,addressand  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation  
inmemory.TheIDT7024hasanautomaticpowerdownfeaturecontrolled  
by CE. The CE controls on-chip power down circuitry that permits the  
respectiveporttogointoastandbymodewhennotselected(CE=VIH).  
Whenaportisenabled,accesstotheentirememoryarrayispermitted.  
ormessagecenter)is assignedtoeachport. Theleftportinterruptflag  
(INTL) is asserted when the right port writes to memory location FFE  
(HEX), whereawriteisdefinedastheCE=R/W=VILpertheTruthTable  
III.TheleftportclearstheinterruptbyaccessaddresslocationFFEaccess  
when CER = OER = VIL, R/W is a "don't care". Likewise, the right port  
interruptflag(INTR)isassertedwhentheleftportwritestomemorylocation  
FFF(HEX)andtocleartheinterruptflag(INTR),therightportmustaccess  
thememorylocationFFF. Themessage(16bits)atFFEorFFFisuser-  
defined,sinceitisanaddressableSRAMlocation.Iftheinterruptfunction  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
6.42  
17  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
isnotused,addresslocationsFFEandFFFarenotusedasmailboxes,  
butaspartoftherandomaccessmemory.RefertoTruthTableIIIforthe  
interruptoperation.  
CE  
CE  
MASTER  
Dual Port  
RAM  
SLAVE  
Dual Port  
RAM  
BUSY (R)  
BUSY (R)  
BUSY (L)  
BUSY (L)  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisbusy.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
MASTER  
Dual Port  
RAM  
CE  
SLAVE  
Dual Port  
RAM  
CE  
BUSY (R)  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
BUSY (L)  
2740 drw 19  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT7024 RAMs.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
anduse anyBUSYindicationas aninterruptsource toflagthe eventof  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
TheBUSYoutputsontheIDT7024SRAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate.Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
Dual-Port RAM or any other shared resource.  
The Dual-PortRAMfeatures a fastaccess time, andbothports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnowayslows theaccess timeoftherightport.Bothports are  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chippowerdowncircuitrythatpermits the respective porttogointo  
standbymodewhennotselected.Thisistheconditionwhichisshownin  
Truth Table I where CE and SEM = VIH.  
SystemswhichcanbestusetheIDT7024containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
aperformanceincreaseofferedbytheIDT7024'shardwaresemaphores,  
whichprovidealockoutmechanismwithoutrequiringcomplexprogram-  
ming.  
Softwarehandshakingbetweenprocessors offers themaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT7024doesnotuseitssemaphoreflagstocontrol  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal  
flexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methods of hardware arbitration is that wait states are never incurred  
in either processor. This can prove to be a major advantage in very  
high-speedsystems.  
Width Expansion with BUSY Logic  
Master/SlaveArrays  
WhenexpandinganIDT7024RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMarraywill  
receiveaBUSYindication,andtooutputthatindication.Anynumberof  
slaves to be addressed in the same address range as the master, use  
theBUSYsignalasawriteinhibitsignal.ThusontheIDT7024RAMthe  
BUSYpinisanoutputifthepartisusedasamaster(M/Spin=VIH),and  
theBUSYpinisaninputifthepartusedasaslave(M/Spin=VIL)as shown  
in Figure 3.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. Itignores whetheranaccess is a readorwrite. In  
a master/slave array, bothaddress andchipenable mustbe validlong  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwitheithertheR/Wsignalorthebyteenables.Failure  
toobservethistimingcanresultinaglitchedinternalwriteinhibitsignaland  
corrupteddataintheslave.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
Semaphores  
TheIDT7024isanextremelyfastDual-Port4Kx16CMOSStaticRAM  
withanadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
thesystemdesignerssoftware.Asanexample,thesemaphorecanbe  
6.42  
18  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
it. If it was successful, it proceeds to assume control over the shared  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe byeitherrepeatedreadsorbywritingaoneintothesamelocation.The  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
thatsemaphoresstatusorremoveitsrequestforthatsemaphoretoperform into a semaphore flag. Whichever latch is first to present a zero to the  
anothertaskandoccasionallyattemptagaintogaincontrolofthetokenvia semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
thesetandtestsequence.Oncetherightsidehasrelinquishedthetoken, sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
theleftsideshouldsucceedingainingcontrol.  
semaphorerequestlatch.Shouldtheothersidessemaphorerequestlatch  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites overtotheothersideassoonasaoneiswrittenintothefirstsidesrequest  
aonetothatlatch.  
latch.ThesecondsidesflagwillnowstayLOWuntilitssemaphorerequest  
The eightsemaphore flags reside withinthe IDT7024ina separate latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
memoryspacefromtheDual-PortRAM.This addressspaceisaccessed is requestedandthe processorwhichrequesteditnolongerneeds the  
byplacingaLOWinputontheSEMpin(whichactsasachipselectforthe resource, the entire system can hang up until a one is written into that  
semaphore flags) and using the other control pins (Address, OE, and semaphorerequestlatch.  
R/W)as theywouldbeusedinaccessingastandardStaticRAM.Each  
The critical case of semaphore timing is when both sides request  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside a single token by attempting to write a zero into it at the same time.  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof The semaphore logic is specially designed to resolve this problem.  
theotheraddresspinshasanyeffect.  
Ifsimultaneous requests are made, the logicguarantees thatonlyone  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel sidereceivesthetoken.Ifonesideisearlierthantheotherinmakingthe  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero request, the firstside tomake the requestwillreceive the token. Ifboth  
on that side and a one on the other side (see Truth Table III). That requestsarriveatthesametime,theassignmentwillbearbitrarilymade  
semaphorecannowonlybemodifiedbythesideshowingthezero.When to one port or the other.  
aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
One caution that should be noted when using semaphores is that  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
ispending)andthencanbewrittentobybothsides.Thefactthattheside Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites ormisinterpreted, a software errorcaneasilyhappen.  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
freedbythefirstside.  
to assure that they will be free when needed.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintoonesidesoutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
UsingSemaphores—SomeExamples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
resourcemarkersfortheIDT7024sDual-PortRAM.Saythe4Kx16RAM  
was tobedividedintotwo2Kx16blocks whichweretobededicatedat  
anyonetimetoservicingeithertheleftorrightport.Semaphore0could  
be used to indicate the side which would control the lower section of  
memory,andSemaphore1couldbedefinedastheindicatorfortheupper  
sectionofmemory.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTruth  
TableIII).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation.Onasubsequentread,theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attempts towriteazerotothesamesemaphoreflagitwillfail,as willbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
gap between the read and write cycles.  
Totakearesource,inthis examplethelower2KofDual-PortRAM,  
the processor on the left port could write and then read a zero in to  
Semaphore0.Ifthistaskweresuccessfullycompleted(azerowasread  
backratherthana one), the leftprocessorwouldassume controlofthe  
lower2K.Meanwhiletherightprocessorwasattemptingtogaincontrolof  
theresourceaftertheleftprocessor,itwouldreadbackaoneinresponse  
tothezeroithadattemptedtowriteintoSemaphore0.Atthis point,the  
softwarecouldchoosetotryandgaincontrolofthesecond2Ksectionby  
writing,thenreadingazerointoSemaphore1.Ifitsucceededingaining  
control,itwouldlockouttheleftside.  
Once the left side was finished with its task, it would write a one to  
Semaphore 0 and may then try to gain access to Semaphore 1. If  
Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo  
itssemaphorerequestandperformothertasksuntilitwasabletowrite,then  
6.42  
19  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
readazerointoSemaphore1.Iftherightprocessorperformsasimilartask  
SemaphoresarealsousefulinapplicationswherenomemoryWAIT”  
withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap stateisavailableononeorbothsides.Onceasemaphorehandshakehas  
2Kblocks ofDual-PortRAMwitheachother. been performed, both processors can access their assigned RAM  
The blocks do not have to be any particular size and can even be segmentsatfullspeed.  
variable, depending upon the complexity of the software using the  
Anotherapplicationisintheareaofcomplexdatastructures. Inthis  
semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual- case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
PortRAMorothersharedresources intoeightparts. Semaphores can mayberesponsibleforbuildingandupdatingadatastructure.Theother  
evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
given a common meaning as was shown in the example above.  
processorreadsanincompletedatastructure,amajorerrorconditionmay  
Semaphores are a useful form of arbitration in systems like disk exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea is completed, the data structure block is released. This allows the  
wasoff-limitstotheCPU,boththeCPUandtheI/Odevicescouldaccess interpretingprocessortocomebackandreadthecompletedatastructure,  
theirassignedportionsofmemorycontinuouslywithoutanywaitstates. therebyguaranteeingaconsistentdatastructure.  
L PORT  
SEMAPHORE  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
2740 drw 20  
Figure 4. IDT7024 Semaphore Logic  
6.42  
20  
IDT7024S/L  
High-Speed 4K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
OrderingInformation  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I
B
Commercial (0 C to +70 C)  
° °  
(1)  
Industrial (-40 C to +85 C)  
°
°
Military (-55 C to +125 C)  
°
°
Compliant to MIL-PRF-38535 QML  
100-pin TQFP (PN100-1)  
84-pin PGA (G84-3)  
PF  
G
J
84-pin PLCC (J84-1)  
F
84-pin Flatpack (F84-2)  
15  
17  
20  
25  
35  
55  
70  
Commercial Only  
Commercial Only  
Commercial & Military  
Commercial & Military  
Commercial & Military  
Commercial, Industrial & Military  
Military Only  
Speed in nanoseconds  
S
L
Standard Power  
Low Power  
7024  
64K (4K x 16) Dual-Port RAM  
2740 drw 21  
NOTE:  
1. Industrial temperature range is available on selected PLCC packages in standard power.  
For other speeds, packages and powers contact your sales office.  
DatasheetDocumentHistory  
1/13/99:  
Initiateddatasheetdocumenthistory  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Pages2and3Addedadditionalnotestopinconfigurations  
Changeddrawingformat  
Page 1 Corrected DSC number  
Replaced IDT logo  
6/4/99:  
4/4/00:  
Page 6CorrectedtypoinData Retentionchart  
Changed±500mVto0mVinnotes  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
21  

相关型号:

7024S35PFG

Dual-Port SRAM, 4KX16, 35ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, GREEN, TQFP-100
IDT

7024S35PFGB

Dual-Port SRAM, 4KX16, 35ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, GREEN, TQFP-100
IDT

7024S35PFGB8

HIGH-SPEED 4K x 16 DUAL-PORT STATIC RAM
IDT

7024S35PFGI8

HIGH-SPEED 4K x 16 DUAL-PORT STATIC RAM
IDT

7024S45F

Dual-Port SRAM, 4KX16, 45ns, CMOS, PQFP84, QFP-84
IDT

7024S45FB

Dual-Port SRAM, 4KX16, 45ns, CMOS, PQFP84, QFP-84
IDT

7024S45G

Dual-Port SRAM, 4KX16, 45ns, CMOS, CPGA84, PGA-84
IDT

7024S45GB

Dual-Port SRAM, 4KX16, 45ns, CMOS, CPGA84, PGA-84
IDT

7024S45J

PLCC-84, Tube
IDT

7024S45J8

PLCC-84, Reel
IDT

7024S45JG

Multi-Port SRAM, 4KX16, 45ns, CMOS, PQCC84, PLASTIC, LCC-84
IDT

7024S45PF

Dual-Port SRAM, 4KX16, 45ns, CMOS, PQFP100, PLASTIC, TQFP-100
IDT