70T653MS10BCGI8 [IDT]

HIGH-SPEED 2.5V 512K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM;
70T653MS10BCGI8
型号: 70T653MS10BCGI8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

HIGH-SPEED 2.5V 512K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM

文件: 总24页 (文件大小:705K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 2.5V  
512K x 36  
IDT70T653M  
ASYNCHRONOUS DUAL-PORT  
STATIC RAM  
Š
WITH 3.3V 0R 2.5V INTERFACE  
Features  
True Dual-Port memory cells which allow simultaneous  
access of the same memory location  
High-speed access  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
Separate byte controls for multiplexed bus and bus  
matching compatibility  
– Commercial:10/12/15ns(max.)  
– Industrial: 12ns (max.)  
RapidWrite Mode simplifies high-speed consecutive write  
cycles  
Sleep Mode Inputs on both ports  
Single 2.5V (±100mV) power supply for core  
LVTTL-compatible, selectable 3.3V (±150mV)/2.5V (±100mV)  
power supply for I/Os and control signals on each port  
Includes JTAG functionality  
Dual chip enables allow for depth expansion without  
external logic  
IDT70T653M easily expands data bus width to 72 bits or  
more using the Busy Input when cascading more than one  
device  
Available in a 256-ball Ball Grid Array  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
Busy input for port contention management  
Interrupt Flags  
Green parts available, see ordering information  
Functional Block Diagram  
BE3L  
BE3R  
BE2R  
BE2L  
BE1L  
BE0L  
BE1R  
BE0R  
R/  
WL  
R/  
WR  
B B B B B B B B  
E E E E E E E E  
0
L
1
L
2
L
3
L
3 2 1 0  
R R R R  
CE0L  
CE1L  
CE0R  
CE1R  
OEL  
OE  
R
Dout0-8_L  
Dout0-8_R  
Dout9-17_L  
Dout9-17_R  
Dout18-26_R  
Dout27-35_R  
Dout18-26_L  
Dout27-35_L  
512K x 36  
MEMORY  
ARRAY  
I/O0L- I/O35L  
Di n_L  
Di n_R  
I/O0R -I/O35R  
A
18R  
0R  
A
18L  
0L  
Address  
Decoder  
Address  
Decoder  
ADDR_L  
ADDR_R  
A
A
CE0L  
CE1L  
ARBITRATION  
CE0R  
CE1R  
TDI  
TCK  
TMS  
TRST  
INTERRUPT  
SEMAPHORE  
LOGIC  
JTAG  
TDO  
OE  
L
OE  
R
R/W  
L
R/W  
R
BUSY  
SEM  
L
BUSY  
SEM  
R
L
R
(1)  
(1)  
INTL  
INT  
R
ZZ  
(2)  
(2)  
ZZR  
CONTROL  
LOGIC  
ZZL  
NOTES:  
1. INT is non-tri-state totem-pole outputs (push-pull).  
2. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when asserted. OPTx, INTx and the sleep mode  
5679 drw 01  
pins themselves (ZZx) are not affected during sleep mode.  
JUNE 2015  
1
DSC-5679/6  
©2015 Integrated Device Technology, Inc.  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
The IDT70T653M is a high-speed 512K x 36 Asynchronous Dual-  
Port Static RAM. The IDT70T653M is designed to be used as a stand-  
alone18874K-bitDual-PortRAM.Thisdeviceprovidestwoindependent  
portswithseparatecontrol,address,andI/Opinsthatpermitindependent,  
asynchronousaccessforreadsorwritestoanylocationinmemory. An  
automaticpowerdownfeaturecontrolledbythe chipenables(eitherCE0  
orCE1)permittheon-chipcircuitryofeachporttoenteraverylowstandby  
power mode.  
TheIDT70T653MhasaRapidWriteModewhichallowsthedesigner  
toperformback-to-backwriteoperationswithoutpulsingtheR/Winput  
each cycle. This is especially significant at the 10ns cycle time of the  
IDT70T653M,easingdesignconsiderationsatthesehighperformance  
levels.  
The70T653Mcansupportanoperatingvoltageofeither3.3Vor2.5V  
on one or both ports, controlled by the OPT pins. The power supply for  
the core of the device (VDD) is at 2.5V.  
2
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinConfiguration(1,2,3)  
70T653M BC  
BC-256(4,5)  
256-Pin BGA  
Top View  
A1  
A2  
A3  
A6  
A7  
A8L  
A8  
A9  
A11  
A12  
A5L  
A13  
A2L  
A14  
A0L  
A4  
A5  
A10  
A15  
A16  
NC  
TDI  
NC  
A11L  
BE2L CE1L  
INTL  
A17L A14L  
OEL  
NC  
NC  
B1  
B2  
B3  
B6  
B7  
A9L  
B9  
CE0L  
B11  
B12  
A4L  
B13  
A1L  
B4  
B5  
A15L  
B8  
B10  
B14  
B15  
B16  
I/O18L NC TDO  
A12L  
NC  
A18L  
BE3L  
R/WL  
NC I/O17L NC  
C1  
C5  
A13L  
C6  
C2  
C3  
C4  
A16L  
C7  
A7L  
C8  
C9  
C10  
C11  
C12  
A6L  
C13  
A3L  
C16  
C14  
C15  
I/O18R  
A10L  
I/O19L VSS  
BE1L BE0L SEML BUSY  
L
I/O16L  
OPTL I/O17R  
D1  
D2  
D6  
D9  
D11  
D3  
D5  
D7  
D8  
D10  
D12  
D13  
D14  
D15  
D16  
D4  
I/O20R I/O19R  
VDDQL  
VDDQL  
VDDQR  
VDDQR VDD I/O15R I/O15L I/O16R  
I/O20L  
VDDQL  
VDDQR VDDQR  
VDDQL  
VDD  
E5  
E6  
E7  
VSS  
E8  
VSS  
E9  
E10  
E11  
E12  
E13  
E1  
E2  
E3  
E4  
E14  
E16  
E15  
VDD  
VDD  
VSS  
VSS  
VDD  
VDD VDDQR  
I/O21R I/O21L I/O22L VDDQL  
I/O13L  
I/O14R  
I/O14L  
F7  
VSS  
F5  
F6  
F9  
F10  
F1  
F2  
F3  
F11  
F13  
F14  
F15  
F16  
F8  
VSS  
F12  
VDD  
F4  
I/O23L I/O22R I/O23R  
VDD  
NC  
VSS  
VSS  
I/O12R I/O13R I/O12L  
VDDQR  
VSS  
VDDQL  
G1  
G2  
G3  
G5  
G4  
G6  
G8  
VSS  
G9  
G14  
G15  
G16  
G7  
VSS  
G10  
G12  
VSS  
G13  
G11  
I/O24R  
VSS  
I/O24L  
VDDQR  
VSS  
VSS  
I/O25L  
I/O10L I/O11L I/O11R  
VSS  
VDDQL  
VSS  
H11  
H12  
H16  
H13  
H7  
VSS  
H8  
VSS  
H9  
H10  
H14  
H15  
H5  
H6  
H3  
H4  
H1  
H2  
VSS  
VSS VDDQL  
I/O9R IO9L  
I/O10R  
J16  
VSS  
VSS  
I/O26R VDDQR VSS  
VSS  
I/O26L I/O25R  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
VSS  
J8  
VSS  
J9  
J13  
J10  
J11  
J12  
J14  
J15  
I/O27L  
ZZR  
I/O28R I/O27R VDDQL  
VSS  
VSS  
VDDQR  
VSS  
VSS  
ZZL  
I/O8R  
I/O7R I/O8L  
K6  
K8  
VSS  
K10  
K12  
VSS  
K13  
K2  
K4  
K5  
K7  
VSS  
K9  
K11  
K15  
K16  
K1  
K3  
K14  
VSS  
VSS  
VDDQR  
I/O29L  
VDDQL VSS  
VSS  
VSS  
I/O6L I/O7L  
I/O29R  
I/O28L  
I/O6R  
L7  
VSS  
L8  
VSS  
L11  
L12  
VDD  
L13  
L5  
L6  
L9  
L10  
L3  
L4  
L15  
L16  
L1  
L2  
L14  
VSS  
VDDQL  
I/O30R VDDQR VDD  
NC  
VSS  
VSS  
I/O4R I/O5R  
I/O30L I/O31R  
I/O5L  
M5  
M6  
M7  
VSS  
M8  
VSS  
M9  
M10  
M11  
M12  
VDD  
M13  
M1 M2  
M3  
M4  
M16  
M14  
M15  
VDD  
N5  
VDD  
VSS  
VSS  
VDD  
VDDQL  
I/O32R I/O32L I/O31L VDDQR  
I/O4L  
I/O3R I/O3L  
N8  
N12  
N13  
N16  
N6  
N7  
N9  
N10  
N11  
N4  
N15  
N1  
N2  
N3  
N14  
VDDQL  
VDDQL  
I/O2R  
I/O1R  
VDD  
VDD VDDQR VDDQR VDDQL  
VDDQR VDDQR VDDQL  
I/O33L I/O34R I/O33R  
I/O2L  
P1  
P2  
P3  
P4  
P5  
P7  
P8  
P9 P10 P11  
P12  
P14  
P15  
P16  
P6  
A10R  
P13  
I/O35R I/O34L TMS A16R A13R  
A7R BE1R BE0R SEMR BUSY  
R
A6R  
I/O0L I/O0R I/O1L  
A3R  
R5  
R6  
R7  
A9R  
R8  
R9  
R10  
R11  
R16  
R1  
R2  
R3  
R4  
R12  
R13  
R14  
R15  
A15R A12R  
BE3R CE0R R/WR VSS  
NC  
I/O35L NC TRST A18R  
A4R  
A1R OPTR  
NC  
T2  
T3  
T4  
A17R  
T1  
T5  
A14R  
T8  
T9  
T15  
T16  
T6  
A11R  
T7  
A8R  
T10  
T11  
T12  
T13  
A2R  
T14  
A0R  
TCK  
NC  
NC  
BE2R CE1R  
NC  
NC  
OER INTR  
A5R  
5679 drw 02f  
NOTES:  
1. All VDD pins must be connected to 2.5V power supply.  
2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V), and 2.5V if OPT pin for that port is  
set to VSS (0V).  
3. All VSS pins must be connected to ground supply.  
4. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch.  
5. This package code is used to reference the package diagram.  
3
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
CE0R CE1R  
R/W  
OE  
Names  
Chip Enables (Input)  
CE0L  
R/W  
OE  
,
CE1L  
,
L
R
Read/Write Enable (Input)  
Output Enable (Input)  
L
R
A
0L - A18L  
I/O0L - I/O35L  
SEM  
INT  
BUSY  
BE0L - BE3L  
A
0R - A18R  
I/O0R - I/O35R  
SEM  
INT  
BUSY  
BE0R - BE3R  
Address (Input)  
Data Input/Output  
Semaphore Enable (Input)  
Interrupt Flag (Output)  
Busy Input  
L
R
L
R
L
R
Byte Enables (9-bit bytes) (Input)  
Power (I/O Bus) (3.3V or 2.5V)(1) (Input)  
Option for selecting VDDQX(1,2) (Input)  
Sleep Mode Pin(3) (Input)  
Power (2.5V)(1) (Input)  
V
DDQL  
V
DDQR  
NOTES:  
1. VDD, OPTX, and VDDQX must be set to appropriate operating levels prior to  
applying inputs on I/OX.  
OPT  
L
OPTR  
2. OPTX selects the operating voltage levels for the I/Os and controls on that port.  
If OPTX is set to VDD (2.5V), then that port's I/Os and controls will operate at 3.3V  
levels and VDDQX must be supplied at 3.3V. If OPTX is set to VSS (0V), then that  
port's I/Os and controls will operate at 2.5V levels and VDDQX must be supplied  
at 2.5V. The OPT pins are independent of one another—both ports can operate  
at 3.3V levels, both can operate at 2.5V levels, or either can operate at 3.3V  
with the other at 2.5V.  
ZZL  
ZZR  
V
V
DD  
SS  
Ground (0V) (Input)  
TDI  
TDO  
TCK  
Test Data Input  
3. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when  
asserted. OPTx, INTx and the sleep mode pins themselves (ZZx) are not  
affected during sleep mode. It is recommended that boundry scan not be operated  
during sleep mode.  
Test Data Output  
Test Logic Clock (10MHz) (Input)  
Test Mode Select (Input)  
TMS  
TRST  
Reset (Initialize TAP Controller) (Input)  
5679 tbl 01  
4
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I—Read/Write and Enable Control(1,2)  
Byte 3  
I/O27-35  
Byte 2  
I/O18-26  
Byte 1  
I/O9-17  
Byte 0  
I/O0-8  
CE  
X
1
R/W  
X
X
X
L
ZZ  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
MODE  
OE  
X
X
X
X
X
X
X
X
X
X
L
SEM CE  
0
BE  
X
X
H
H
H
H
L
3
BE  
X
X
H
H
H
L
2
BE  
X
X
H
H
L
1
BE  
X
X
H
L
0
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
H
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z Deselected–Power Down  
High-Z Deselected–Power Down  
High-Z All Bytes Deselected  
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
DIN  
Write to Byte 0 Only  
H
H
H
L
L
D
IN  
High-Z Write to Byte 1 Only  
High-Z Write to Byte 2 Only  
High-Z Write to Byte 3 Only  
H
H
L
L
D
IN  
High-Z  
High-Z  
H
H
L
L
D
IN  
High-Z  
High-Z  
H
L
L
High-Z  
DIN  
DIN  
Write to Lower 2 Bytes Only  
H
L
H
L
L
DIN  
DIN  
High-Z  
High-Z Write to Upper 2 bytes Only  
L
L
L
DIN  
DIN  
DIN  
DIN  
Write to All Bytes  
Read Byte 0 Only  
H
H
H
L
H
H
L
H
L
L
H
H
H
H
H
H
H
X
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
DOUT  
L
H
H
H
L
DOUT  
High-Z Read Byte 1 Only  
High-Z Read Byte 2 Only  
High-Z Read Byte 3 Only  
L
H
H
L
DOUT  
High-Z  
High-Z  
L
H
H
L
DOUT  
High-Z  
High-Z  
L
H
L
High-Z  
DOUT  
DOUT  
Read Lower 2 Bytes Only  
High-Z Read Upper 2 Bytes Only  
Read All Bytes  
L
H
L
H
L
DOUT  
DOUT  
High-Z  
L
L
L
DOUT  
DOUT  
DOUT  
DOUT  
H
X
L
L
L
L
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z Outputs Disabled  
High-Z High-Z Sleep Mode  
X
X
X
X
5679 tbl 02  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. It is possible to read or write any combination of bytes during a given access. A few representative samples have been illustrated here.  
Truth Table II – Semaphore Read/Write Control(1)  
Inputs(1)  
Outputs  
I/O  
R/W  
H
I/O118--82,6  
I/O  
0
Mode  
CE(2)  
H
OE  
L
BE  
X
3
BE  
2
BE  
X
1
BE  
L
0
SEM  
L
X
X
L
L
L
DATAOUT  
DATAOUT Read Data in Semaphore Flag(3)  
H
X
X
X
L
X
______  
DATAIN  
______  
Write I/O  
0 into Semaphore Flag  
L
X
X
X
X
X
Not Allowed  
5679 tbl 03  
NOTES:  
1. There are eight semaphore flags written to I/O0 and read from the I/Os (I/O0-I/O08 and I/O18-I/O26). These eight semaphore flags are addressed by A0-A2.  
2. CE = L occurs when CE0 = VIL and CE1 = VIH. CE = H when CE0 = VIH and/or CE1 = VIL.  
3. Each byte is controlled by the respective BEn. To read data BEn = VIL.  
5
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
RecommendedOperating  
TemperatureandSupplyVoltage(1)  
Ambient  
RecommendedDCOperating  
Conditions with VDDQ at 2.5V  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
2.4  
0
Typ.  
2.5  
2.5  
0
Max.  
2.6  
2.6  
0
Unit  
V
Grade  
Commercial  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
V
+
+
DD  
V
DD  
DDQ  
SS  
V
V
2.5V  
2.5V  
100mV  
100mV  
V
V
Industrial  
0V  
Input High Volltage  
(Address, Control &  
Data I/O Inputs)(3)  
V
DDQ + 100mV(2)  
____  
5679 tbl 04  
1.7  
1.7  
V
V
V
IH  
IH  
NOTE:  
1. This is the parameter TA. This is the "instant on" case temperature.  
_
Input High Voltage  
V
V
DD + 100mV(2)  
____  
JTAG  
Capacitance(1)  
V
V
V
IH  
IL  
IL  
V
DD - 0.2V  
-0.3(1)  
V
DD + 100mV(2)  
V
V
Input High Voltage -  
____  
____  
____  
ZZ, OPT  
(TA = +25°C, F = 1.0MHZ) PQFP ONLY  
Input Low Voltage  
0.7  
0.2  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions  
IN = 0V  
OUT = 0V  
Max. Unit  
Input Low Voltage -  
-0.3(1)  
V
ZZ, OPT  
CIN  
V
15  
pF  
5679 tbl 05  
NOTES:  
(2)  
COUT  
V
10.5  
pF  
1. VIL (min.) = -1.0V for pulse width less than tRC/2 or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tRC/2 or 5ns, whichever is  
less.  
5679 tbl 08  
NOTES:  
1. These parameters are determined by device characterization, but are not  
production tested.  
3. To select operation at 2.5V levels on the I/Os and controls of a given port, the  
OPT pin for that port must be set to VSS(0V), and VDDQX for that port must be  
supplied as indicated above.  
2. COUT also references CI/O.  
RecommendedDCOperating  
Conditions with VDDQ at 3.3V  
AbsoluteMaximumRatings(1)  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
3.15  
0
Typ.  
2.5  
3.3  
0
Max.  
2.6  
3.45  
0
Unit  
V
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
V
V
DD  
DDQ  
SS  
V
V
V
TERM  
V
Terminal Voltage  
-0.5 to 3.6  
(VDD  
)
wiDthD Respect to GND  
V
V
Input High Voltage  
(Address, Control  
&Data I/O Inputs)(3)  
(2)  
V
TERM  
(VDDQ  
V
Terminal Voltage  
-0.3 to VDDQ + 0.3  
-0.3 to VDDQ + 0.3  
-55 to +125  
V
wiDthDQRespect to GND  
2.0  
1.7  
V
DDQ + 150mV(2)  
V
V
____  
V
IH  
IH  
)
(2)  
_
V
TERM  
Input and I/O Terminal  
V
Input High Voltage  
____  
V
V
DD + 100mV(2)  
JTAG  
(INPUTS and I/O's)  
Voltage with Respect to GND  
(3)  
Input High Voltage -  
TBIAS  
Temperature  
Under Bias  
oC  
oC  
VIH  
VIL  
VIL  
V
DD - 0.2V  
-0.3(1)  
V
DD + 100mV(2)  
V
V
____  
____  
____  
ZZ, OPT  
Input Low Voltage  
0.8  
0.2  
Storage  
-65 to +150  
TSTG  
Input Low Voltage -  
Temperature  
-0.3(1)  
V
ZZ, OPT  
T
JN  
Junction Temperature  
+150  
50  
oC  
5679 tbl 06  
NOTES:  
IOUT(For VDDQ = 3.3V) DC Output Current  
mA  
1. VIL (min.) = -1.0V for pulse width less than tRC/2 or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tRC/2 or 5ns, whichever is  
less.  
IOUT(For VDDQ = 2.5V) DC Output Current  
40  
mA  
5679 tbl 07  
3. To select operation at 3.3V levels on the I/Os and controls of a given port, the  
OPT pin for that port must be set to VDD (2.5V), and VDDQX for that port must be  
supplied as indicated above.  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS  
may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
2. This is a steady-state DC parameter that applies after the power supply has  
reached its nominal operating value. Power sequencing is not necessary;  
however, the voltage on any Input or I/O pin cannot exceed VDDQ during power  
supply ramp up.  
3. Ambient Temperature under DC Bias. No AC Conditions. Chip Deselected.  
6
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 2.5V ± 100mV)  
70T653M  
Min.  
___  
___  
___  
___  
Symbol  
|ILI  
|ILI  
|ILO  
Parameter  
Input Leakage Current(1)  
JTAG & ZZ Input Leakage Current(1,2)  
Output Leakage Current(1,3)  
Test Conditions  
DDQ = Max., VIN = 0V to VDDQ  
DD = Max. IN = 0V to VDD  
= VIH or CE = VIL, VOUT = 0V to VDDQ  
OL = +4mA, VDDQ = Min.  
OH = -4mA, VDDQ = Min.  
OL = +2mA, VDDQ = Min.  
OH = -2mA, VDDQ = Min.  
Max.  
10  
Unit  
µA  
µA  
µA  
V
|
V
V
|
,
V
+60  
10  
|
CE  
0
1
V
OL (3.3V) Output Low Voltage(1)  
OH (3.3V) Output High Voltage(1)  
OL (2.5V) Output Low Voltage(1)  
OH (2.5V) Output High Voltage(1)  
NOTES:  
I
0.4  
___  
V
I
2.4  
___  
V
V
I
0.4  
V
___  
V
I
2.0  
V
5679 tbl 09  
1. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to page 6 for details.  
2. Applicable only for TMS, TDI and TRST inputs.  
3. Outputs tested in tri-state mode.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(3) (VDD = 2.5V ± 100mV)  
70T653MS10  
Com'l Only  
70T653MS12  
Com'l  
70T653MS15  
Com'l Only  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(4)  
Max.  
Typ.(4)  
Max.  
710  
790  
210  
260  
460  
510  
Typ.(4)  
Max. Unit  
IDD  
Dynamic Operating  
Current (Both  
mA  
600  
CE and CE = VIL  
,
OutLputs DisaRbled  
S
S
S
S
S
S
600  
810  
600  
450  
____  
____  
____  
____  
(1)  
Ports Active)  
IND  
600  
f = fMAX  
(6)  
ISB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
mA  
mA  
mA  
CE  
L
= CE  
R
= VIH  
COM'L  
IND  
180  
240  
150  
120  
170  
(1)  
f = fMAX  
____  
____  
____  
____  
150  
(6)  
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
CE"A" = VIL and CE"B" = VIH  
COM'L  
IND  
400  
530  
360  
300  
400  
Active Port Outputs Disabled,  
____  
____  
____  
____  
(1)  
360  
f = fMAX  
ISB3  
Full Standby Current Both Ports CE  
L
and  
COM'L  
IND  
S
S
4
20  
4
4
20  
40  
4
20  
(Both Ports - CMOS CE  
R > VDDQ - 0.2V,  
Level Inputs)  
VIN > VDDQ - 0.2V or VIN < 0.2V,  
____  
____  
____  
____  
f = 0(2)  
(6)  
ISB4  
Full Standby Current  
(One Port - CMOS  
Level Inputs)  
mA  
CE"A" < 0.2V and  
COM'L  
IND  
S
S
400  
530  
460  
510  
300  
400  
CE"B" > VDDQ - 0.2V(5)  
V
IN > VDDQ - 0.2V or VIN < 0.2V,  
Active Port, Outputs Disabled,  
____  
____  
____  
____  
360  
(1)  
f = fMAX  
IZZ  
Sleep Mode Current ZZL = ZZR =  
V
IH  
mA  
COM'L  
IND  
S
S
4
20  
4
4
20  
40  
4
20  
(1)  
(Both Ports - TTL  
Level Inputs)  
f = fMAX  
____  
____  
____  
____  
5679 tbl 10  
NOTES:  
1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, using "AC TEST CONDITIONS" at input  
levels of GND to 3.3V.  
2. f = 0 means no address or control lines change. Applies only to input at CMOS level standby.  
3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
4. VDD = 3.3V, TA = 25°C for Typ, and are not production tested. IDD DC(f=0) = 200mA (Typ).  
5. CEX = VIL means CE0X = VIL and CE1X = VIH  
CEX = VIH means CE0X = VIH or CE1X = VIL  
CEX < 0.2V means CE0X < 0.2V and CE1X > VDDQX - 0.2V  
CEX > VDDQX - 0.2V means CE0X > VDDQX - 0.2V or CE1X < 0.2V.  
"X" represents "L" for left port or "R" for right port.  
6. ISB1, ISB2 and ISB4 will all reach full standby levels (ISB3) on the appropriate port(s) if ZZL and /or ZZR = VIH.  
7
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Test Conditions (VDDQ - 3.3V/2.5V)  
Input Pulse Levels  
GND to 3.0V / GND to 2.4V  
2ns Max.  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V/1.25V  
1.5V/1.25V  
Figure 1  
5679 tbl 11  
50  
50Ω  
,
DATAOUT  
1.5V/1.25  
10pF  
(Tester)  
5679 drw 03  
Figure 1. AC Output Test load.  
4
3.5  
3
2.5  
t
AA/tACE  
2
1.5  
1
(Typical, ns)  
0.5  
0
0
160  
140  
5679 drw 05  
20  
40  
60  
120  
80  
100  
Capacitance (pF) from AC Test Load  
Figure 3. Typical Output Derating (Lumped Capacitive Load).  
8
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
70T653MS10  
Com'l Only  
70T653MS12  
Com'l  
70T653MS15  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
LZOB  
HZ  
PU  
PD  
SOP  
SAA  
SOE  
Read Cycle Time  
10  
____  
12  
____  
15  
____  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Address Access Time  
10  
10  
5
12  
12  
6
15  
15  
7
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
t
5
____  
6
____  
7
____  
t
Output Hold from Address Change  
3
3
0
0
3
3
0
0
3
3
0
0
t
Output Low-Z Time Chip Enable and Semaphore(1,2)  
Output Low-Z Time Output Enable and Byte Enable(1,2)  
Output High-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
t
t
4
____  
6
____  
8
____  
t
Chip Enable to Power Up Time(2)  
0
____  
0
____  
0
____  
t
Chip Disable to Power Down Time(2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
8
4
8
6
12  
8
____  
____  
____  
t
t
2
____  
10  
5
2
____  
12  
6
2
____  
15  
7
t
Semaphore Output Enable Access Time  
ns  
5679 tbl 12  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(4)  
70T653MS10  
Com'l Only  
70T653MS12  
Com'l  
70T653MS15  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
10  
7
12  
9
15  
12  
12  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
7
9
t
0
0
t
7
9
12  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Data Hold Time  
Write Enable to Output in High-Z(1,2)  
Output Active from End-of-Write(1,2)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
0
0
t
5
7
10  
t
0
____  
0
____  
0
____  
t
4
____  
6
____  
8
____  
t
3
5
5
3
5
5
3
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
5679 tbl 13  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 1).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE= VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time. CE = VIL when  
CE0 = VIL and CE1 = VIH. CE = VIH when CE0 = VIH and/or CE1 = VIL.  
4. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 6 for details.  
9
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(4)  
t
RC  
ADDR  
(3)  
t
t
AA  
(3)  
ACE  
CE(5)  
(3)  
t
AOE  
OE  
(3)  
t
ABE  
BEn  
R/W  
t
OH  
(1)  
tLZ/tLZOB  
VALID DATA(3)  
DATAOUT  
(2)  
tHZ  
.
5679 drw 06  
NOTES:  
1. Timing depends on which signal is asserted last, OE, CE or BEn.  
2. Timing depends on which signal is de-asserted first CE, OE or BEn.  
3. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tABE.  
4. SEM = VIH.  
5. CE = L occurs when CE0 = VIL and CE1 = VIH. CE = H when CE0 = VIH and/or CE1 = VIL.  
Timing of Power-Up Power-Down  
CE  
tPU  
t
PD  
I
CC  
SB  
50%  
50%  
.
5679 drw 07  
I
10  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
t
WC  
ADDRESS  
(7)  
tHZ  
OE  
CE or SEM(9)  
t
AW  
(7)  
t
HZ  
(9)  
BEn  
(3)  
(6)  
(2)  
t
WR  
t
AS  
tWP  
R/W  
(7)  
(7)  
t
LZ  
t
OW  
tWZ  
(4)  
OUT  
(4)  
DATA  
t
DH  
t
DW  
,
IN  
DATA  
5679 drw 10  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5,8)  
t
WC  
ADDRESS  
tAW  
CE or SEM(9)  
BEn(9)  
(6)  
AS  
(3)  
WR  
(2)  
t
t
EW  
t
R/W  
tDW  
tDH  
DATAIN  
.
.
5679 drw 11  
NOTES:  
1. R/W or CE or BEn = VIH during all address transitions for Write Cycles 1 and 2.  
2. A write occurs during the overlap (tEW or tWP) of a CE = VIL, BEn = VIL, and a R/W = VIL for memory array writing cycle.  
3. tWR is measured from the earlier of CE, BEn or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load  
(Figure 1).  
8. If OE = VIL during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the  
specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition. CE = VIL when CE0 = VIL  
and CE1 = VIH. CE = VIH when CE0 = VIH and/or CE1 = VIL.  
11  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Addressinputsmustbestable. Inputdatasetupandholdtimes(tDW and  
RapidWrite Mode Write Cycle  
RtDaHp) iwdWill rnitoewMboederetfheereIn/OcewdilltoretmheaiennindtinhgeIandpdurtemssodtreafnosritthioend. uIrnattihoins  
of the operations due to R/W being held low. All standard Write Cycle  
specifications must be adhered to. However, tAS and tWR are only  
applicable when switching between read and write operations. Also,  
therearetwoadditionalconditionsontheAddressInputsthatmustalso  
bemettoensurecorrectaddresscontrolledwrites. Thesespecifications,  
the Allowable Address Skew (tAAS) and the Address Rise/Fall time  
(tARF),mustbemettousetheRapidWriteMode. Iftheseconditionsare  
notmetthereisthepotentialforinadvertentwriteoperationsatrandom  
intermediate locations as the device transitions between the desired  
writeaddresses.  
Unlike other vendors' Asynchronous Random Access Memories,  
theIDT70T653Miscapableofperformingmultipleback-to-backwrite  
operations without having to pulse the R/W, CE, or BEn signals high  
duringaddresstransitions. ThisRapidWriteModefunctionalityallows  
the system designer to achieve optimum back-to-back write cycle  
performancewithoutthedifficulttaskofgeneratingnarrowresetpulses  
everycycle, simplifyingsystemdesignandreducingtimetomarket.  
DuringthisnewRapidWriteMode,theendofthewritecycleisnow  
definedbytheendingaddresstransition,insteadoftheR/WorCEorBEn  
transition to the inactive state. R/W, CE, and BEn can be held active  
throughouttheaddresstransitionbetweenwritecycles.Caremustbe  
taken to still meet the Write Cycle time (tWC), the time in which the  
Timing Waveform of Write Cycle No. 3, RapidWrite Mode Write Cycle(1,3)  
(4)  
WC  
t
WC  
t
tWC  
ADDRESS  
(2)  
EW  
t
CE or SEM(6)  
BEn  
R/W  
t
WR  
t
WP  
(5)  
WZ  
(5)  
OW  
t
t
DATAOUT  
tDH  
tDH  
t
DH  
tDW  
tDW  
tDW  
DATAIN  
5679 drw 08  
NOTES:  
1. OE = VIL for this timing waveform as shown. OE may equal VIH with same write functionality; I/O would then always be in High-Z state.  
2. A write occurs during the overlap (tEW or tWP) of a CE = VIL, BEn = VIL, and a R/W = VIL for memory array writing cycle. The last transition LOW of CE, BEn, and  
R/W initiates the write sequence. The first transition HIGH of CE, BEn, and R/W terminates the write sequence.  
3. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
4. The timing represented in this cycle can be repeated multiple times to execute sequential RapidWrite Mode writes.  
5. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load  
(Figure 1).  
6. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition. CE = VIL when CE0 = VIL  
and CE1 = VIH. CE = VIH when CE0 = VIH and/or CE1 = VIL.  
12  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics over the Operating Temperature Range  
and Supply Voltage Range for RapidWrite Mode Write Cycle(1)  
Symbol  
Parameter  
Min  
Max  
Unit  
____  
t
AAS  
Allowable Address Skew for RapidWrite Mode  
Address Rise/Fall Time for RapidWrite Mode  
1
ns  
____  
tARF  
1.5  
V/ns  
5679 tbl 14  
NOTE:  
1. Timing applies to all speed grades when utilizing the RapidWrite Mode Write Cycle.  
Timing Waveform of Address Inputs for RapidWrite Mode Write Cycle  
A
0
tARF  
t
AAS  
A
18  
t
ARF  
5679 drw 09  
13  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
t
SAA  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
t
t
AW  
tWR  
ACE  
t
EW  
SEM(1)  
tOH  
t
SOP  
tDW  
OUT  
DATA  
VALID(2)  
I/O  
IN  
DATA VALID  
t
AS  
t
WP  
tDH  
R/W  
t
SWRD  
tSOE  
OE  
t
SOP  
Write Cycle  
Read Cycle  
.
5679 drw 12  
NOTES:  
1. CE0 = VIH and CE1 = VIL are required for the duration of both the write cycle and the read cycle waveforms shown above. Refer to Truth Table II for details and for  
appropriate BEn controls.  
2. "DATAOUT VALID" represents all I/O's (I/O0 - I/O8 and I/O18 - I/O26) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2) "A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
.
5679 drw 13  
NOTES:  
1. DOR = DOL = VIL, CEL = CER = VIH. Refer to Truth Table II for appropriate BE controls.  
2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A".  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied,the semaphore will fall positively to one side or the other, but there is no guarantee which side will be granted the semaphore flag.  
14  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70T653MS10  
Com'l Only  
70T653MS12  
Com'l  
70T653MS15  
Com'l Only  
& Ind  
Symbol  
Parameter  
Unit  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
BUSY TIMING  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
7
0
9
0
ns  
ns  
tWH  
12  
PORT-TO-PORT DELAY TIMING  
Write Pulse to Data Delay(1)  
Write Data Valid to Read Data Delay(1)  
____  
____  
____  
____  
____  
____  
t
WDD  
14  
14  
16  
16  
20  
20  
ns  
tDDD  
ns  
5679 tbl 15  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to Timing Waveform of Write with Port-to-Port Read.  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of the Max. spec, tWDD – tWP (actual), or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1,2,3)  
70T65M3S10  
Com'l Only  
70T653MS12  
70T6539MS15  
Com'l Only  
Com'l  
& Ind  
Symbol  
SLEEP MODE TIMING (ZZx=VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
ZZS  
ZZR  
ZZPD  
ZZPU  
Sleep Mode Set Time  
10  
10  
12  
12  
15  
15  
t
Sleep Mode Reset Time  
t
Sleep Mode Power Down Time(4)  
Sleep Mode Power Up Time(4)  
10  
____  
12  
____  
15  
____  
t
0
0
0
5679 tbl 15a  
NOTES:  
1. Timing is the same for both ports.  
2. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when asserted. OPTx, INTx and the sleep mode pins themselves (ZZx) are not affected  
during sleep mode. It is recommended that boundary scan not be operated during sleep mode.  
3. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 6 for details.  
4. This parameter is guaranteed by device characterization, but is not production tested.  
15  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with Port-to-Port Read(1,3)  
tWC  
MATCH  
ADDR"A"  
tWP  
R/W"A"  
tDH  
t
DW  
VALID  
DATAIN "A"  
ADDR"B"  
MATCH  
(4)  
R/W"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
t
DDD  
.
NOTES:  
5679 drw 14a  
1. CE0L = CE0R = VIL; CE1L = CE1R = VIH.  
2. OE = VIL for the reading port.  
3. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
4. R/WB = VIH.  
Timing Waveform of Write with BUSY  
tWP  
R/W"A"  
t
WB  
BUSY"B"  
(1)  
tWH  
(2)  
R/W"B"  
.
NOTES:  
1. tWH must be met for BUSY input.  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
5679 drw 15  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1,2)  
70T653MS10  
Com'l Only  
70T653MS12  
Com'l  
& Ind  
70T653MS15  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
t
0
____  
0
____  
0
____  
t
10  
10  
12  
12  
15  
15  
____  
____  
____  
t
Interrupt Reset Time  
ns  
5679 tbl 16  
NOTES:  
1. Timing is the same for both ports.  
2. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 6 for details.  
16  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
t
WC  
(2)  
ADDR"A"  
INTERRUPT SET ADDRESS  
(5)  
(4)  
tWR  
tAS  
(3)  
CE"A"  
R/W"A"  
INT"B"  
(4)  
tINS  
.
5679 drw 18  
tRC  
INTERRUPT CLEAR ADDRESS(2)  
ADDR"B"  
(4)  
t
AS  
(3)  
CE"B"  
OE"B"  
INT"B"  
(4)  
t
INR  
.
5679 drw 19  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. Refer to Interrupt Truth Table.  
3. CEX = VIL means CE0X = VIL and CE1X = VIH. CEX = VIH means CE0X = VIH and/or CE1X = VIL.  
4. Timing depends on which enable signal (CE or R/W) is asserted last.  
5. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
Truth Table III — Interrupt Flag(1,4)  
Left Port  
Right Port  
R/W  
L
L
A
18L-A0L  
R/W  
X
R
A
18R-A0R  
Function  
CE  
L
OE  
X
L
INT  
X
L
CE  
X
R
OE  
X
R
INTR  
L
7FFFF  
X
X
L(2)  
H(3)  
X
Set Right INT  
Reset Right INT  
Set Left INT Flag  
Reset Left INT Flag  
R
Flag  
X
X
X
X
L(3)  
H(2)  
X
L
L
7FFFF  
7FFFE  
X
R
Flag  
X
X
X
X
L
L
X
L
X
L
L
7FFFE  
X
X
X
X
L
5679 tbl 17  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH. CE0X = VIL and CE1X = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTL and INTR must be initialized at power-up.  
17  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table IV — Example of Semaphore Procurement Sequence(1,2,3)  
D
0
- D Left  
D0 - D Right  
D
18 - D286 Right  
18 - D286 Left  
Functions  
Status  
D
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
5679 tbl 19  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70T653M.  
2. There are eight semaphore flags written to via I/O0 and read from I/Os (I/O0-I/O8 and I/O18-I/O26). These eight semaphores are addressed by A0 - A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
semaphoreflags. Theseflagsalloweitherprocessorontheleftor  
TheIDT70T653Mprovidestwoportswithseparatecontrol,address  
and I/O pins that permit independent access for reads or writes to any  
location in memory. The IDT70T653M has an automatic power down  
feature controlled by CE. The CE0 and CE1 control the on-chip power  
downcircuitrythatpermitstherespectiveporttogointoastandbymode  
when not selected (CE= HIGH). When a port is enabled, access to the  
entirememoryarrayispermitted.  
right side of the Dual-Port RAM to claim a privilege over the other  
processorforfunctionsdefinedbythesystemdesigner’ssoftware.As  
an example, the semaphore can be used by one processor to inhibit  
the other from accessing a portion of the Dual-Port RAM or any other  
shared resource.  
TheDual-PortRAMfeaturesafastaccesstime,withbothportsbeing  
completelyindependentofeachother.Thismeansthatthe activityonthe  
leftportinnowayslowstheaccesstimeoftherightport. Bothportsare  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom  
orwrittentoatthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE0andCE1,theDual-  
PortRAMchipenables,andSEM,thesemaphoreenable.TheCE0,CE1,  
and SEM pins control on-chip power down circuitry that permits the  
respectiveporttogointostandbymodewhennotselected.  
Systems which can best use the IDT70T653M contain multiple  
processors or controllers and are typically very high-speed systems  
whicharesoftwarecontrolledorsoftwareintensive. Theseystemscan  
benefit from a performance increase offered by the IDT70T653Ms  
hardware semaphores, which provide a lockout mechanism without  
requiringcomplexprogramming.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mail box  
ormessagecenter)isassignedtoeachport. Theleftportinterruptflag  
(INTL)isassertedwhentherightportwritestomemorylocation7FFFE  
(HEX),whereawriteisdefinedasCER=R/WR =VIL pertheTruthTable.  
Theleftportclearstheinterruptthroughaccessofaddresslocation7FFFE  
when CEL = OEL = VIL, R/W is a "don't care". Likewise, the right port  
interruptflag(INTR)isassertedwhentheleftportwritestomemorylocation  
7FFFF(HEX)andtocleartheinterruptflag(INTR),therightportmustread  
thememorylocation7FFFF.Themessage(36bits)at7FFFEor7FFFF  
isuser-definedsinceitisanaddressableSRAMlocation.Iftheinterrupt  
functionisnotused, addresslocations7FFFEand7FFFFarenotused  
asmailboxes,butaspartoftherandomaccessmemory.RefertoTruth  
Table III for the interrupt operation.  
BusyLogic  
Softwarehandshakingbetweenprocessorsoffersthemaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations. The IDT70T653M does not use its semaphore flags to  
control any resources through hardware, thus allowing the system  
designertotalflexibilityinsystemarchitecture.  
TheBUSYpinoperatesasawriteinhibitinputpin.Normaloperation  
canbeprogrammedbytyingtheBUSYpinsHIGH.Ifdesired,unintended  
writeoperationscanbepreventedtoaportbytyingtheBUSYpinforthat  
port LOW.  
Anadvantageofusingsemaphoresratherthanthemorecommon  
methodsofhardwarearbitrationisthatwaitstatesareneverincurred  
in either processor. This can prove to be a major advantage in very  
high-speed systems.  
Semaphores  
The IDT70T653M is an extremely fast Dual-Port 512K x 36 CMOS  
StaticRAMwithanadditional8addresslocationsdedicatedtobinary  
18  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
subsequent read (see Table IV). As an example, assume a processor  
writes a zero to the left port at a free semaphore location. On a  
subsequent read, the processor will verify that it has written success-  
fullytothatlocationandwillassumecontrolovertheresourceinquestion.  
Meanwhile,ifaprocessorontherightsideattemptstowriteazerotothe  
samesemaphoreflagitwillfail,aswillbeverifiedbythe factthataonewill  
bereadfromthatsemaphoreontherightsideduringsubsequentread.  
HadasequenceofREAD/WRITEbeenusedinstead,systemcontention  
problemscouldhaveoccurredduringthegapbetweenthereadandwrite  
cycles.  
How the Semaphore Flags Work  
The semaphore logic is a set of eight latches which are indepen-  
dent of the Dual-Port RAM. These latches can be used to pass a flag,  
or token, from one port to the other to indicate that a shared resource  
is in use. The semaphores provide a hardware assist for a use  
assignment method called “Token Passing Allocation.” In this method,  
the state of a semaphore latch is used as a token indicating that a  
shared resource is in use. If the left processor wants to use this  
resource,itrequeststhetokenbysettingthelatch.Thisprocessorthen  
verifiesitssuccessinsettingthelatchbyreadingit. Ifitwassuccessful,it  
proceeds to assume control over the shared resource. If it was not  
successfulinsettingthelatch,itdeterminesthattherightsideprocessor  
has set the latch first, has the token and is using the shared resource.  
The left processor can then either repeatedly request that  
semaphore’s status or remove its request for that semaphore to  
perform another task and occasionally attempt again to gain control of  
the token via the set and test sequence. Once the right side has  
relinquishedthetoken,theleftsideshouldsucceedingainingcontrol.  
The semaphore flags are active LOW. A token is requested by  
writing a zero into a semaphore latch and is released when the same  
sidewritesaonetothatlatch.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation. The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
The eight semaphore flags reside within the IDT70T653M in a  
separate memory space from the Dual-Port RAM. This address space  
isaccessedbyplacingalowinputontheSEMpin(whichactsasachip  
selectforthesemaphoreflags)andusingtheothercontrolpins(Address,  
CE0, CE1,R/W and BEn) as they would be used in accessing a  
standardStaticRAM.Eachoftheflagshasauniqueaddresswhichcan  
beaccessedbyeithersidethroughaddresspinsA0A2.Whenaccessing  
thesemaphores, noneoftheotheraddresspinshasanyeffect.  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel  
is written into an unused semaphore location, that flag will be set to  
a zero on that side and a one on the other side (see Truth Table IV).  
Thatsemaphorecannowonlybemodifiedbythesideshowingthezero.  
Whenaoneiswrittenintothesamelocationfromthesameside,the flag  
will be set to a one for both sides (unless a semaphore request  
fromtheothersideispending)andthencanbewrittentobybothsides.  
The fact that the side which is able to write a zero into a semaphore  
subsequently locks out writes from the other side is what makes  
semaphoreflagsusefulininterprocessorcommunications.(Athorough  
discussionontheuseofthisfeaturefollowsshortly.)Azerowrittenintothe  
samelocationfromtheothersidewillbestoredinthesemaphorerequest  
latchforthatsideuntilthesemaphoreisfreedbythefirstside.  
5679 drw 21  
Figure 4. IDT70T653M Semaphore Logic  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
semaphorerequestlatch.Iftheoppositesidesemaphorerequestlatchhas  
beenwrittentozerointhemeantime,thesemaphoreflagwillflipoverto  
theothersideassoonasaoneiswrittenintothefirstrequestlatch.The  
oppositesideflagwillnowstayLOWuntilitssemaphorerequestlatchis  
writtentoaone.Fromthisitiseasytounderstandthat,ifasemaphoreis  
requested and the processor which requested it no longer needs the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
The critical case of semaphore timing is when both sides request a  
single token by attempting to write a zero into it at the same time. The  
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst  
side to make the request will receive the token. If  
bothrequestsarriveatthesametime, theassignmentwillbearbitrarily  
made to one port or the other.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
a zero reads as all zeros for a semaphore read, the SEM, BEn, and OE  
signalsneedtobeactive. (PleaserefertoTruthTableII). Furthermore,  
thereadvalueislatchedintooneside’soutputregisterwhenthatside's  
semaphoreselect(SEM,BEn)andoutputenable(OE)signalsgoactive.  
Thisservestodisallowthesemaphorefromchangingstateinthemiddle  
of a read cycle due to a write cycle from the other side.  
One caution that should be noted when using semaphores is that  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
As with any powerful programming technique, if semaphores  
are misused or misinterpreted, a software error can easily happen.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
A sequence WRITE/READ must be used by the semaphore in  
order to guarantee that no system level contention will occur. A  
processor requests access to shared resources by attempting to write  
a zero into a semaphore location. If the semaphore is already in use,  
the semaphore request latch will contain a zero, yet the semaphore  
flag will appear as one, a fact which the processor will verify by the  
19  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
20  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
SleepMode  
The IDT70T653M is equipped with an optional sleep or low power operation occurs during these periods, the memory array may be  
modeonbothports.Thesleepmodepinonbothportsisactivehigh.During corrupted. Validity of data out from the RAM cannot be guaranteed  
normal operation, the ZZ pin is pulled low. When ZZ is pulled high, the immediatelyafterZZisasserted(priortobeinginsleep).  
port will enter sleep mode where it will meet lowest possible power  
DuringsleepmodetheRAMautomaticallydeselectsitself.TheRAM  
conditions.Thesleepmodetimingdiagramshowsthemodesofoperation: disconnectsitsinternalbuffer.Alloutputswillremaininhigh-Zstatewhile  
NormalOperation, NoRead/WriteAllowedandSleepMode.  
insleepmode.Allinputsareallowedtotoggle.TheRAMwillnotbeselected  
Foraperiodoftime priortosleepmodeandafterrecoveringfromsleep and will not perform any reads or writes.  
mode(tZZS andtZZR),newreadsorwritesarenotallowed.Ifawriteorread  
JTAG Functionality and Configuration  
TheIDT70T653Miscomposedoftwoindependentmemoryarrays, Register Sizes, and System Interface Parameter tables. Specifically,  
and thus cannot be treated as a single JTAG device in the scan chain. commands for Array B must precede those for Array A in any JTAG  
The two arrays (A and B) each have identical characteristics and operationssenttotheIDT70T653M. PleasereferenceApplicationNote  
commandsbutmustbetreatedasseparateentitiesinJTAGoperations. AN-411,"JTAGTestingofMultichipModules"forspecificinstructionson  
Please refer to Figure 5.  
performing JTAG testing on the IDT70T653M. AN-411 is available at  
JTAGsignalingmustbeprovidedseriallytoeacharrayandutilizes www.idt.com.  
theinformationprovidedintheIdentificationRegisterDefinitions,Scan  
IDT70T653M  
Array B  
TDO  
TDI  
TDOA  
TDIB  
Array A  
TCK  
TMS  
TRST  
5679 drw 23  
Figure 5. JTAG Configuration for IDT70T653M  
21  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
JTAGTimingSpecifications  
t
JCYC  
t
JR  
tJF  
t
JCL  
tJCH  
TCK  
Device Inputs(1)/  
TDI/TMS  
t
JDC  
t
JS  
t
JH  
Device Outputs(2)/  
TDO  
t
JRSR  
t
JCD  
TRST  
x
5679 drw 24  
t
JRST  
NOTES:  
1. Device inputs = All device inputs except TDI, TMS, TCK and TRST.  
2. Device outputs = All device outputs except TDO.  
JTAG AC Electrical  
Characteristics(1,2,3,4,5)  
70T653M  
Symbol  
Parameter  
JTAG Clock Input Period  
JTAG Clock HIGH  
JTAG Clock Low  
JTAG Clock Rise Time  
JTAG Clock Fall Time  
JTAG Reset  
Min.  
100  
40  
Max.  
____  
Units  
ns  
t
JCYC  
JCH  
JCL  
JR  
JF  
JRST  
JRSR  
JCD  
JDC  
JS  
JH  
____  
____  
t
ns  
t
40  
____  
ns  
t
3(1)  
3(1)  
ns  
____  
t
ns  
____  
t
50  
ns  
____  
t
JTAG Reset Recovery  
JTAG Data Output  
JTAG Data Output Hold  
JTAG Setup  
50  
____  
ns  
NOTES:  
1. Guaranteed by design.  
t
25  
____  
ns  
2. 30pF loading on external output signals.  
3. Refer to AC Electrical Test Conditions stated earlier in this document.  
4. JTAG operations occur at one speed (10MHz). The base device may run at any  
speed specified in this datasheet.  
t
0
ns  
____  
____  
t
15  
15  
ns  
5. JTAG cannot be tested in sleep mode.  
t
JTAG Hold  
ns  
5679 tbl 20  
22  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Identification Register Definitions  
Value  
Value  
Instruction Field Array B  
Instruction Field Array A  
Description  
Reserved for Version number  
Array B  
0x0  
Array A  
0x0  
Revision Number (31:28)  
Revision Number (63:60)  
IDT Device ID (59:44)  
IDT Device ID (27:12)  
0x33B  
0x33  
1
0x33B  
0x33  
1
Defines IDT Part number  
IDT JEDEC ID (11:1)  
IDT JEDEC ID (43:33)  
Allows unique identification of device vendor as IDT  
Indicates the presence of an ID Register  
ID Register Indicator Bit (Bit 0)  
ID Register Indicator Bit (Bit 32)  
5679 tbl 21  
ScanRegisterSizes  
Bit Size  
Array A  
Bit Size  
Bit Size  
Register Name  
Array B  
70T653M  
Instruction (IR)  
4
1
4
1
8
2
Bypass (BYR)  
Identification (IDR)  
Boundary Scan (BSR)  
32  
32  
64  
Note (3)  
Note (3)  
Note (3)  
5679 tbl 22  
SystemInterfaceParameters  
Instruction  
Code  
Description  
EXTEST  
00000000  
Forces contents of the boundary scan cells onto the device outputs(1).  
Places the boundary scan register (BSR) between TDI and TDO.  
BYPASS  
IDCODE  
11111111  
Places the bypass register (BYR) between TDI and TDO.  
00100010  
Loads the ID register (IDR) with the vendor ID code and places the  
register between TDI and TDO.  
01000100  
Places the bypass register (BYR) between TDI and TDO. Forces all  
device output drivers to a High-Z state.  
HIGHZ  
Uses BYR. Forces contents of the boundary scan cells onto the device  
outputs. Places the bypass register (BYR) between TDI and TDO.  
CLAMP  
00110011  
00010001  
SAMPLE/PRELOAD  
Places the boundary scan register (BSR) between TDI and TDO.  
SAMPLE allows data from device inputs(2) and outputs(1) to be captured  
in the boundary scan cells and shifted serially through TDO. PRELOAD  
allows data to be input serially into the boundary scan cells via the TDI.  
RESERVED  
Several combinations are reserved. Do not use codes other than those  
identified above.  
All Other Codes  
5679 tbl 23  
NOTES:  
1. Device outputs = All device outputs except TDO.  
2. Device inputs = All device inputs except TDI, TMS, TCK and TRST.  
3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local  
IDT sales representative.  
23  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Ordering Information  
XXXXX  
A
999  
A
A
A
A
Speed  
Package  
Power  
Device  
Type  
Process/  
Temperature  
Range  
Tube or Tray  
Tape and Reel  
Blank  
8
Commercial (0 C to +70 C)  
Industrial (-40 C to +85 C)  
Blank  
I(1)  
G(2)  
BC  
Green  
256-ball BGA (BC-256)  
Commercial Only  
Commercial & Industrial  
Commercial Only  
10  
12  
15  
Speed in nanoseconds  
Standard Power  
S
18Mbit (512K x 36) Asynchronous Dual-Port RAM  
70T653M  
5679 drw 25  
NOTE:  
1. Contactyourlocalsalesofficeforindustrialtemprangeforotherspeeds,packagesandpowers.  
2. Greenpartsavailable.Forspecificspeeds,packagesandpowerscontactyourlocalsalesoffice.  
DatasheetDocumentHistory:  
10/08/03: InitialDatasheet  
10/20/03: Page1Added"IncludesJTAGfunctionality"tofeatures  
Page 13 Corrected tARF to 1.5V/ns Min  
09/28/04: Removed "Preliminary" status  
Page 11 Updated Timing Waveform of Write Cycle No. 1, R/W Controlled Timing  
Page21 AddedJTAGConfigurationandJTAGFunctionalitydescriptions  
Page 1 & 24 Replaced old logo with the new TM logo  
06/30/05: Page 1 Added green availability to features  
Page 24 Added green indicator to ordering information  
07/25/08: Page 7 Corrected a typo in the DC Chars table  
01/19/09: Page 24 Removed "IDT" from orderable part number  
06/15//15: Page 3 RemovedthedatefromtheBC256pinconfiguration  
Page24AddedTapeandReelindicatorsandaddedfootnoteannotationstotheOrderingInformation  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
DualPortHelp@idt.com  
Š
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
24  

相关型号:

70T653MS12BCG

HIGH-SPEED 2.5V 512K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM
IDT

70T653MS12BCG8

Dual-Port SRAM, 512KX36, 12ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT

70T653MS12BCGI

HIGH-SPEED 2.5V 512K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM
IDT

70T653MS12BCGI8

Dual-Port SRAM, 512KX36, 12ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT

70T653MS15BCG

Dual-Port SRAM, 512KX36, 15ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT

70T653MS15BCG8

Dual-Port SRAM, 512KX36, 15ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT

70T653MS15BCGI

HIGH-SPEED 2.5V 512K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM
IDT

70T653MS15BCGI8

HIGH-SPEED 2.5V 512K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM
IDT

70T659S10BCG

HIGH-SPEED 2.5V 256/128K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM
IDT

70T659S10BCG8

HIGH-SPEED 2.5V 256/128K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM
IDT

70T659S10BCGI

HIGH-SPEED 2.5V 256/128K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM
IDT

70T659S10BCGI8

Application Specific SRAM, 128KX36, 10ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT