70V25S15GG8 [IDT]

Dual-Port SRAM;
70V25S15GG8
型号: 70V25S15GG8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM

静态存储器
文件: 总26页 (文件大小:725K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 3.3V  
8/4K x 18 DUAL-PORT  
8/4K x 16 DUAL-PORT  
STATIC RAM  
IDT70V35/34S/L  
IDT70V25/24S/L  
Features  
Separate upper-byte and lower-byte control for multiplexed  
bus compatibility  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
IDT70V35/34 (IDT70V25/24) easily expands data bus width  
to 36 bits (32 bits) or more using the Master/Slave select  
when cascading more than one device  
High-speed access  
IDT70V35/34  
– Commercial:15/20/25ns(max.)  
– Industrial:20ns  
M/S = VIH for BUSY output flag on Master  
M/S = VIL for BUSY input on Slave  
IDT70V25  
BUSY and Interrupt Flag  
– Commercial:15/20/25/35/55ns(max.)  
– Industrial:20/25ns  
IDT70V24  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
– Commercial:15/20/25/35/55ns(max.)  
– Industrial:20ns  
Fully asynchronous operation from either port  
LVTTL-compatible, single 3.3V (±0.3V) power supply  
Available in a 100-pin TQFP (IDT70V35/24) & (IDT70V25/24),  
86-pin PGA (IDT70V25/24) and 84-pin PLCC (IDT70V25/24)  
Industrial temperature range (-40°C to +85°C) is available  
for selected speeds  
Low-power operation  
– IDT70V35/34S  
IDT70V35/34L  
Active: 430mW (typ.)  
Standby: 3.3mW (typ.)  
– IDT70V25/24S  
Active: 415mW (typ.)  
Standby: 660µW (typ.)  
IDT70V25/24L  
Green parts available, see ordering information  
Active: 400mW (typ.)  
Standby: 3.3mW (typ.)  
Active: 380mW (typ.)  
Standby: 660µW (typ.)  
Functional Block Diagram  
R/W  
L
R/W  
R
R
UBL  
UB  
LB  
CE  
OE  
R
R
R
LB  
CE  
OE  
L
L
L
,
(5)  
(5)  
I/O9R-I/O17R  
I/O9L-I/O17L  
I/O  
Control  
I/O  
Control  
(4)  
(4)  
I/O0R-I/O8R  
I/O0L-I/O8L  
(2,3)  
L
(2,3)  
BUSY  
R
BUSY  
(1)  
12R  
(1)  
12L  
A
A
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A0L  
A0R  
13  
13  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE  
OE  
R/W  
R
CE  
OE  
R/W  
L
L
R
R
L
SEM  
R
SEM  
INTL  
L
(3)  
(3)  
INTR  
M/S  
NOTES:  
5624 drw 01  
1. A12 is a NC for IDT70V34 and for IDT70V24.  
2. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
3. BUSY outputs and INT outputs are non-tri-stated push-pull.  
4. I/O0x - I/O7x for IDT70V25/24.  
5. I/O8x - I/O15x for IDT70V25/24.  
AUGUST 2015  
1
DSC-5624/8  
©2015 Integrated Device Technology, Inc.  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
The IDT70V35/34 (IDT70V25/24) is a high-speed 8/4K x 18 (8/4K featurecontrolledbyCEpermitstheon-chipcircuitryofeachporttoenter  
x16) Dual-Port Static RAM. The IDT70V35/34 (IDT70V25/24) is de- a very low standby power mode.  
signedtobeusedasastand-aloneDual-PortRAMorasacombination  
Fabricated using CMOS high-performance technology, these de-  
MASTER/SLAVE Dual-Port RAM for 36-bit (32-bit) or wider memory vices typically operate on only 430mW (IDT70V35/34) and 400mW  
systemapplicationsresultsinfull-speed,error-freeoperationwithoutthe (IDT70V25/24) of power.  
needforadditionaldiscretelogic.  
The IDT70V35/34 (IDT70V25/24) is packaged in a plastic 100-pin  
This device provides two independent ports with separate control, ThinQuadFlatpack. TheIDT70V25/24ispackagedinaceramic84-pin  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor PGA and 84-Pin PLCC.  
reads or writes to any location in memory. An automatic power down  
PinConfigurations(1,2,3,4)  
Index  
100 99 98 9796 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
N/C  
N/C  
I/O8L  
I/O17L  
I/O11L  
I/O12L  
I/O13L  
I/O14L  
Vss  
N/C  
N/C  
N/C  
N/C  
75  
74  
2
3
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
4
5
A
A
A
A
A
A
5L  
4L  
3L  
2L  
1L  
0L  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
I/O15L  
I/O16L  
IDT70V35/34PF  
INT  
L
(5)  
PN100  
VDD  
BUSY  
Vss  
M/S  
L
Vss  
I/O0R  
I/O1R  
I/O2R  
100-Pin TQFP  
(6)  
Top View  
BUSY  
R
INT  
R
VDD  
A
A
A
A
A
0R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
I/O8R  
I/O17R  
N/C  
1R  
2R  
3R  
4R  
N/C  
N/C  
N/C  
N/C  
N/C  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
5624 drw 02  
NOTES:  
1. A12 is a NC for IDT70V34.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground.  
4. PN100-1 package body is approximately 14mm x 14mm x 1.4mm.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part marking.  
6.422  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinConfigurations(1,2,3,4)(con't)  
Index  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
N/C  
N/C  
N/C  
N/C  
75  
2
N/C  
N/C  
N/C  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
3
4
N/C  
5
A5L  
A4L  
A3L  
A2L  
A1L  
A0L  
I/O10L  
I/O11L  
I/O12L  
I/O13L  
6
7
8
VSS  
9
I/O14L  
I/O15L  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
IDT70V25/24PF  
PN100(4)  
INTL  
V
V
DD  
SS  
BUSY  
L
100-Pin TQFP  
Top View(5)  
VSS  
M/S  
BUSY  
I/O0R  
I/O1R  
I/O2R  
R
INTR  
A
A
A
A
A
0R  
VDD  
1R  
2R  
3R  
4R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
5624 drw 03  
NOTES:  
1. A12 is a NC for IDT70V24.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground.  
4. PN100-1 package body is approximately 14mm x 14mm x 1.4mm.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part marking.  
6.42  
3
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinConfigurations(1,2,3,4)(con't)  
63  
61  
60  
58  
55  
54  
51  
48  
46  
45  
42  
11  
10  
09  
08  
07  
06  
05  
04  
03  
02  
01  
I/O7L  
I/O5L  
I/O4L  
I/O2L  
I/O0L  
A
11L  
A
10L  
A
7L  
OE  
L
SEM  
L
LBL  
66  
64  
62  
59  
56  
49  
50  
47  
44  
43  
41  
40  
(1)  
I/O10L  
I/O8L  
I/O6L  
I/O3L  
I/O1L  
A12L  
A
9L  
A
8L  
6L  
3L  
0L  
A5L  
UBL  
CEL  
67  
65  
57  
53  
52  
39  
VSS  
VDD  
I/O11L  
I/O9L  
R/W  
L
A
A4L  
69  
68  
38  
37  
I/O13L  
A
I/O12L  
A2L  
72  
71  
73  
33  
35  
34  
BUSY  
L
I/O15L  
A
I/O14L  
VDD  
INT  
L
IDT70V25/24  
G84(4)  
75  
70  
74  
32  
31  
36  
V
SS  
VSS  
VSS  
I/O0R  
M/S  
A1L  
84-Pin PGA  
Top View(5)  
76  
77  
78  
28  
29  
30  
I/O1R  
VDD  
A0R  
I/O2R  
INT  
R
BUSY  
R
79  
80  
26  
27  
I/O3R  
A2R  
I/O4R  
A1R  
81  
83  
7
8
11  
12  
23  
25  
VSS  
SEMR  
A
5R  
I/O5R  
VSS  
I/O7R  
I/O9R  
A3R  
82  
1
3
2
5
10  
14  
17  
20  
22  
24  
I/O6R  
I/O10R I/O13R I/O15R R/W  
R
A11R  
A
8R  
A
6R  
A4R  
UBR  
84  
4
6
9
15  
13  
16  
18  
19  
21  
(1)  
I/O8R  
I/O11R I/O12R I/O14R  
A10R  
A
9R  
A7R  
A12R  
OER  
LBR  
CER  
A
B
C
D
E
F
G
H
J
K
L
5624 drw 04  
Index  
NOTES:  
1. A12 is a NC for IDT70V24.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground supply.  
4. G84-3 package body is approximately 1.12 in x 1.12 in x .16 in.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part marking.  
6.442  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinConfigurations(1,2,3,4)(con't)  
INDEX  
11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75  
I/O8L  
I/O9L  
A
A
A
A
A
A
A
A
7L  
6L  
5L  
4L  
3L  
2L  
1L  
0L  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
I/O10L  
I/O11L  
I/O12L  
I/O13L  
VSS  
I/O14L  
I/O15L  
IDT70V25/24J  
J84(4)  
INT  
L
BUSY  
L
VDD  
84-Pin PLCC  
Top View(5)  
VSS  
VSS  
I/O0R  
I/O1R  
I/O2R  
M/S  
BUSY  
R
INT  
R
VDD  
A
A
A
A
A
A
0R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
I/O7R  
I/O8R  
1R  
2R  
3R  
4R  
5R  
A6R  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
5624 drw 05  
NOTES:  
1. A12 is a NC for IDT70V24.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground.  
4. J84-1 package body is approximately 1.15 in x 1.15 in x .17 in.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part marking.  
6.42  
5
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
Names  
Chip Enable  
CE  
R/W  
OE  
L
CE  
R/W  
OE  
R
L
R
Read/Write Enable  
Output Enable  
L
R
(1)  
(1)  
A
0L - A12L  
A
0R - A12R  
I/O0R - I/O17R  
SEM  
UB  
LB  
INT  
BUSY  
M/S  
Address  
(2)  
(2)  
I/O0L - I/O17L  
SEM  
UB  
LB  
INT  
BUSY  
Data Input/Output  
Semaphore Enable  
Upper Byte Select(3)  
Lower Byte Select(4)  
Interrupt Flag  
L
R
L
R
NOTES:  
L
R
1. A12 is a NC for IDT70V34 and for IDT70V24.  
2. I/O0x - I/O15x for IDT70V25/24.  
L
R
3. Upper Byte Select controls pins 9-17 for IDT70V35/34 and controls pins 8-15  
for IDT70V25/24.  
Busy Flag  
L
R
4. Lower Byte Select controls pins 0-8 for IDT70V35/34 and controls pins 0-7  
for IDT70V25/24.  
Master or Slave Select  
Power (3.3V)  
V
V
DD  
SS  
Ground (0V)  
5624 tbl 01  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
(3)  
(2)  
R/W  
X
I/O9-17  
I/O0-8  
Mode  
CE  
H
X
L
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
High-Z  
High-Z  
DATAIN  
High-Z  
DATAIN  
High-Z  
High-Z  
Deselected: Power Down  
Both Bytes Deselected  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
X
H
L
H
High-Z  
L
L
H
L
H
DATAIN  
DATAIN  
High-Z  
L
L
L
H
L
H
H
H
X
L
H
L
H
DATAOUT  
High-Z  
Read Upper Byte Only  
Read Lower Byte Only  
Read Both Bytes  
L
L
H
L
H
DATAOUT  
DATAOUT  
High-Z  
L
L
L
H
DATAOUT  
High-Z  
X
H
X
X
X
Outputs Disabled  
5624 tbl 02  
NOTES:  
1. A0L-A12L A0R-A12R for IDT70V35/34 and A0L-A11L A0R-A11R for IDT70V25/24.  
2. Outputs listed in the table are for IDT70V35/34. Outputs for IDT70V25/24 are I/O0x-I/O7x.  
3. Outputs listed in the table are for IDT70V35/34. Outputs for IDT70V25/24 are I/O8x-I/O15x.  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
(1)  
(1)  
R/W  
H
I/O9-17  
I/O0-8  
Mode  
Read Data in Semaphore Flag  
Read Data in Semaphore Flag  
CE  
H
X
OE  
L
UB  
X
LB  
X
SEM  
L
L
L
L
L
L
DATAOUT  
DATAOUT  
DATAIN  
DATAOUT  
DATAOUT  
DATAIN  
H
L
H
X
H
X
H
X
X
Write I/O  
0
into Semaphore Flag  
into Semaphore Flag  
X
H
L
H
X
DATAIN  
DATAIN  
Write I/O  
0
____  
____  
L
X
X
Not Allowed  
Not Allowed  
____  
____  
L
X
X
X
L
5624 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from all of the I/O's (I/O0-I/O17 for IDT70V35/34) and (I/O0-I/O15 for IDT70V25/24). These eight semaphores  
are addressed by A0-A2.  
6.462  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AbsoluteMaximumRatings(1)  
MaximumOperatingTemperature  
andSupplyVoltage(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
Grade  
Ambient  
GND  
V
DD  
(2)  
V
TERM  
Temperature  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +4.6  
V
Commercial  
0OC to +70OC  
-40OC to +85OC  
0V  
0V  
3.3V  
3.3V  
+
+
0.3V  
T
BIAS  
Temperature  
Under Bias  
-55 to +125  
-65 to +150  
oC  
oC  
Industrial  
0.3V  
5624 tbl 05  
NOTE:  
Storage  
TSTG  
1. This is the parameter TA. This is the "instant on" case temperature.  
Temperature  
T
JN  
Junction Temperature  
+150  
50  
oC  
IOUT  
DC Output  
Current  
mA  
5624 tbl 04  
NOTES:  
RecommendedDCOperating  
Conditions  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS  
may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
Symbol  
Parameter  
Supply Voltage  
Ground  
Min.  
3.0  
Typ.  
Max.  
3.6  
Unit  
V
V
V
DD  
SS  
3.3  
0
0
0
V
2. VTERM must not exceed VDD + 0.3V for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > VDD + 0.3V.  
V
IH  
IL  
Input High Voltage  
Input Low Voltage  
2.0  
-0.3(1)  
V
DD+0.3(2)  
V
____  
____  
V
0.8  
V
Capacitance(1) (TA = +25°C, f = 1.0MHz)  
5624 tbl 06  
NOTES:  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions  
IN = 0V  
OUT = 0V  
Max. Unit  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed VDD + 0.3V.  
CIN  
V
9
pF  
C
OUT(2)  
V
10  
pF  
5624 tbl 07  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested.  
2. COUT also references CI/O.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 3.3V ± 0.3V)  
70V35/34/25/24S  
70V35/34/25/24L  
Symbol  
|ILI  
|ILO  
Parameter  
Input Leakage Current(1)  
Output Leakage Currentt(1)  
Output Low Voltage  
Test Conditions  
Min.  
___  
Max.  
10  
Min.  
___  
Max.  
Unit  
µA  
µA  
V
|
V
DD = 3.6V, VIN = 0V to VDD  
5
5
___  
___  
___  
___  
|
10  
CE = VIH, VOUT = 0V to VDD  
OL = +4mA  
OH = -4mA  
V
OL  
I
0.4  
___  
0.4  
___  
V
OH  
Output High Voltage  
I
2.4  
2.4  
V
5624 tbl 08  
NOTE:  
1. At VDD < 2.0V leakages are undefined.  
6.42  
7
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range for 70V35/34(1) (VDD = 3.3V ± 0.3V)  
70V35/34X15  
Com'l Only  
70V35/34X20  
Com'l  
70V35/34X25  
Com'l Only  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
IDD  
Dynamic Operating  
Current  
S
L
150  
215  
140  
130  
200  
175  
130  
190  
mA  
CE = VIL, Outputs Disabled  
140  
185  
125  
165  
SEM = (V3)IH  
(Both Ports Active)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
IND  
S
L
140  
130  
225  
195  
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
25  
20  
____  
____  
35  
30  
____  
____  
20  
15  
30  
25  
16  
13  
____  
____  
30  
25  
____  
____  
mA  
mA  
mA  
mA  
CE  
R
and CE  
(3)  
L
= VIH  
= VIH  
f = fMRAX  
SEM = SEM  
L
MIL &  
IND  
S
L
20  
15  
45  
40  
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
85  
80  
____  
____  
120  
110  
____  
____  
80  
75  
110  
100  
75  
72  
____  
____  
110  
95  
____  
____  
CE"A" = VIL and CE = V  
Active Port Outputs"BD"isablIeHd,  
(3)  
f=f  
MIL &  
IND  
S
L
80  
75  
130  
115  
SEM  
R
MAX = SEM  
L
= VIH  
ISB3  
Full Standby Current  
(Both Ports -  
Both Ports CE and  
COM'L  
S
L
1.0  
0.2  
____  
____  
5
1.0  
0.2  
5
1.0  
0.2  
____  
____  
5
CE  
R
> VDD - 0L.2V,  
2.5  
2.5  
2.5  
CMOS Level Inputs)  
V
> VDD - 0.2V or  
VIINN < 0.2V, f = 0(4)  
____  
____  
____  
____  
MIL &  
IND  
S
L
1.0  
0.2  
15  
5
SEMR = SEML > VDD - 0.2V  
ISB4  
Full Standby Current  
(One Port -  
COM'L  
S
L
85  
80  
125  
105  
80  
75  
115  
100  
75  
70  
105  
90  
CE"A" < 0.2V and  
CE"B" > VDD - 0.2V(5)  
SEM = SEM > VDD - 0.2V  
CMOS Level Inputs)  
V
>RVDD - 0.L2V or VIN < 0.2V  
____  
____  
____  
____  
MIL &  
IND  
S
L
80  
75  
130  
115  
AcINtive Port Outputs Disabled,  
____  
____  
____  
____  
(3)  
f = fMAX  
5624 tbl 09  
NOTES:  
1. 'X' in part number indicates power rating (S or L)  
2. VDD = 3.3V, TA = +25°C, and are not production tested. IDD DC = 115mA (typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using “AC Test Conditions” of input  
levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
AC Test Conditions  
3.3V  
3.3V  
Input Pulse Levels  
GND to 3.0V  
3ns Max.  
1.5V  
1.5V  
Figures 1 and 2  
590Ω  
590Ω  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
DATAOUT  
BUSY  
INT  
DATAOUT  
5pF*  
435Ω  
30pF  
435Ω  
5624 tbl 10  
5624 drw 06  
Figure 1. AC Output Test Load  
Figure 2. Output Test  
Load  
(For tLZ, tHZ, tWZ, tOW)  
*Including scope and jig.  
Timing of Power-Up Power-Down  
CE  
tPU  
tPD  
ICC  
50%  
50%  
ISB  
,
5624 drw 07  
6.482  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating Temperature  
and Supply Voltage Range for 70V25/24(1) (VDD = 3.3V ± 0.3V)  
70V25/24X15  
Com'l Only  
70V25/24X20  
Com'l  
70V25X25  
Com'l  
70V24X25  
Com'l Only  
& Ind  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
IDD  
Dynamic Operating  
Current  
S
L
150  
215  
140  
130  
200  
175  
130  
190  
130  
190  
mA  
CE = VIL, Outputs Open  
140  
185  
125  
165  
125  
165  
SEM = VIH  
(3)  
(Both Ports Active)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
IND  
S
L
140  
130  
225  
195  
125  
180  
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
25  
20  
____  
____  
35  
30  
____  
____  
20  
15  
30  
25  
16  
13  
30  
25  
16  
13  
____  
____  
30  
25  
____  
____  
mA  
mA  
mA  
mA  
CE  
R
and CE  
(3)  
L
= VIH  
= VIH  
f = fMRAX  
SEM  
= SEML  
____  
____  
MIL &  
IND  
S
L
20  
15  
45  
40  
13  
40  
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
85  
80  
____  
____  
120  
110  
____  
____  
80  
75  
110  
100  
75  
72  
110  
95  
75  
72  
____  
____  
110  
95  
____  
____  
CE"A" = VIL and CE = V  
Active Port Outputs"BO"pen,IH  
(3)  
f=fMAX  
____  
____  
MIL &  
IND  
S
L
80  
75  
130  
115  
SEMR = SEML = VIH  
72  
110  
ISB3  
Full Standby Current  
(Both Ports -  
Both Ports CE and  
COM'L  
S
L
1.0  
0.2  
____  
____  
5
1.0  
0.2  
5
1.0  
0.2  
5
1.0  
0.2  
____  
____  
5
CE  
R
> VDD - 0L.2V,  
2.5  
2.5  
2.5  
2.5  
VIN < 0.2V, f = 0(4)  
CMOS Level Inputs)  
V
> VDD - 0.2V or  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
1.0  
0.2  
15  
5
0.2  
5
SEMR = SEML > VDD - 0.2V  
ISB4  
Full Standby Current  
(One Port -  
COM'L  
S
L
85  
80  
125  
105  
80  
75  
115  
100  
75  
70  
105  
90  
75  
70  
105  
90  
CE"A" < 0.2V and  
CE"B" > VDD - 0.2V(5)  
CMOS Level Inputs)  
SEMR = SEM > VDD - 0.2V  
V
> VDD - 0.L2V or VIN < 0.2V  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
80  
75  
130  
115  
AcINtive Port Outputs Open,  
____  
____  
____  
____  
70  
105  
(3)  
f = fMAX  
5624 tbl 09aaa  
70V25/24X35  
Com'l Only  
70V25/24X55  
Com'l Only  
Symbol  
Parameter  
Test Condition  
Version  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
IDD  
Dynamic Operating  
Current  
COM'L  
S
120  
180  
120  
180  
mA  
CE = VIL, Outputs Open  
SEM = (V3)IH  
L
115  
155  
115  
155  
(Both Ports Active)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
IND  
S
L
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
13  
11  
____  
____  
25  
20  
____  
____  
13  
11  
____  
____  
25  
20  
____  
____  
mA  
mA  
mA  
mA  
CE  
R
and CE  
(3)  
L
= VIH  
= VIH  
f = fMRAX  
SEM = SEM  
L
MIL &  
IND  
S
L
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
70  
65  
____  
____  
100  
90  
____  
____  
70  
65  
____  
____  
100  
90  
____  
____  
CE"A" = VIL and CE = V  
Active Port Outputs"BO"pen,IH  
(3)  
f=f  
MIL &  
IND  
S
L
SEM  
R
MAX = SEM  
L
= VIH  
ISB3  
Full Standby Current  
(Both Ports -  
Both Ports CE and  
COM'L  
S
L
1.0  
0.2  
____  
____  
5
1.0  
0.2  
____  
____  
5
CE  
R
> VDD - 0L.2V,  
2.5  
2.5  
VIN < 0.2V, f = 0(4)  
CMOS Level Inputs)  
V
> VDD - 0.2V or  
____  
____  
____  
____  
MIL &  
IND  
S
L
SEMR = SEML > VDD - 0.2V  
ISB4  
Full Standby Current  
(One Port -  
COM'L  
S
L
65  
60  
100  
85  
65  
60  
100  
85  
CE"A" < 0.2V and  
CE"B" > VDD- 0.2V(5)  
SEM = SEM > VDD - 0.2V  
CMOS Level Inputs)  
V
IN >RVDD - 0.L2V or VIN < 0.2V  
MIL &  
IND  
S
L
____  
____  
____  
____  
____  
____  
____  
____  
Active Port Outputs Open,  
(3)  
f = fMAX  
5624 tbl 09b  
NOTES:  
1. 'X' in part number indicates power rating (S or L)  
2. VDD = 3.3V, TA = +25°C, and are not production tested. IDD DC = 115mA (typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using “AC Test Conditions” of input  
levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6.42  
9
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating  
TemperatureandSupplyVoltageRangefor70V35/34(4)  
70V35/34X15  
Com'l Only  
70V35/34X20  
Com'l  
70V35/34X25  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
____  
20  
____  
25  
____  
ns  
ns  
ns  
t
Address Access Time  
15  
15  
15  
20  
20  
20  
25  
25  
25  
____  
____  
____  
____  
____  
____  
____  
____  
____  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
t
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output Enable Access Time(3)  
t
10  
12  
13  
____  
____  
____  
t
Output Hold from Address Change  
3
3
3
____  
____  
____  
Output Low-Z Time(1,2)  
t
3
3
3
____  
____  
____  
Output High-Z Time(1,2)  
t
10  
12  
15  
____  
____  
____  
Chip Enable to Power Up Time(1,2)  
t
0
0
0
____  
____  
____  
Chip Disable to Power Down Time(1,2)  
t
15  
20  
25  
____  
____  
____  
t
Semaphore Flag Update Pulse (OE or SEM)  
10  
10  
10  
____  
____  
____  
Semaphore Address Access(3)  
t
15  
20  
25  
ns  
5624 tbl 11  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL.  
4. 'X' in part number indicates power rating (S or L).  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE  
OE  
(4)  
tAOE  
(4)  
t
ABE  
UB, LB  
R/W  
(1)  
tOH  
tLZ  
VALID DATA(4)  
DATAOUT  
(2)  
tHZ  
BUSYOUT  
(3,4)  
5624 drw 08  
tBDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE, CE, LB, or UB.  
2. Timing depends on which signal is de-asserted first, CE, OE, LB, or UB.  
3. tBDD delay is required only in case where opposite port is completing a write operation to the same address location for simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tABE, tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6.1402  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating  
TemperatureandSupplyVoltageRangefor70V25/24(4)  
70V25/24X15  
Com'l Only  
70V25/24X20  
Com'l  
70V25X25  
Com'l  
70V24X25  
Com'l Only  
& Ind  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
____  
t
t
t
RC  
Read Cycle Time  
15  
____  
20  
____  
25  
____  
25  
____  
ns  
ns  
ns  
AA  
Address Access Time  
15  
15  
15  
20  
20  
20  
25  
25  
25  
25  
25  
25  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
ACE  
ABE  
t
t
t
t
t
t
t
t
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output Enable Access Time(3)  
AOE  
OH  
LZ  
10  
12  
13  
13  
____  
____  
____  
____  
Output Hold from Address Change  
3
3
3
3
____  
____  
____  
____  
Output Low-Z Time(1,2)  
3
3
3
3
____  
____  
____  
____  
Output High-Z Time(1,2)  
HZ  
PU  
10  
12  
15  
15  
____  
____  
____  
____  
Chip Enable to Power Up Time(1,2)  
0
0
0
0
____  
____  
____  
____  
Chip Disable to Power Down Time(1,2)  
PD  
15  
20  
25  
25  
____  
____  
____  
____  
SOP  
SAA  
Semaphore Flag Update Pulse (OE or SEM)  
10  
10  
10  
10  
____  
____  
____  
____  
Semaphore Address Access(3)  
15  
20  
25  
25  
ns  
5624 tbl 11b  
70V25/24X35  
Com'l Only  
70V25/24X55  
Com'l Only  
Symbol  
READ CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
t
t
t
t
t
t
t
t
t
t
t
t
RC  
Read Cycle Time  
35  
____  
55  
____  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AA  
Address Access Time  
35  
35  
35  
55  
55  
55  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time(3)  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
Output High-Z Time(1,2)  
Chip Enable to Power Up Time(1,2)  
Chip Disable to Power Down Time(1,2)  
Semaphore Flag Update Pulse (OE or SEM  
Semaphore Address Access(3)  
____  
____  
____  
____  
____  
____  
ACE  
ABE  
AOE  
OH  
LZ  
20  
____  
30  
____  
3
3
____  
____  
3
____  
3
____  
HZ  
15  
____  
25  
____  
PU  
0
____  
0
____  
PD  
35  
____  
50  
____  
SOP  
SAA  
)
15  
____  
15  
____  
35  
55  
ns  
5624 tbl 11c  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL.  
4. 'X' in part number indicates power rating (S or L).  
6.42  
11  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage for 70V35/34(5)  
70V35/34X15  
Com'l Only  
70V35/34X20  
Com'l  
70V35/34X25  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
12  
0
15  
0
20  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
Write Enable to Output in High-Z(1,2)  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
t
10  
____  
15  
____  
15  
____  
t
10  
____  
12  
____  
15  
____  
t
0
____  
0
____  
0
____  
t
10  
____  
12  
____  
15  
____  
t
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
5624 tbl 12  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access SRAM, CE = VIL, UB or LB = VIL, SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL. Either condition must be valid for  
the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the SRAM under all operating conditions. Although tDH and tOW values will vary over  
voltage and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part number indicates power rating (S or L).  
6.1422  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage for 70V25/24(5)  
70V25/24X15  
Com'l Only  
70V25/24X20  
Com'l  
70V25X25  
Com'l  
70V24X25  
Com'l Only  
& Ind  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
12  
0
15  
0
20  
0
20  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
Write Enable to Output in High-Z(1,2)  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
t
10  
____  
15  
____  
15  
____  
15  
____  
t
10  
____  
12  
____  
15  
____  
15  
____  
t
0
____  
0
____  
0
____  
0
____  
t
10  
____  
12  
____  
15  
____  
15  
____  
t
0
5
5
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
____  
____  
t
t
ns  
5624 tbl 12aaa  
70V25/24X35  
Com'l Only  
70V25/24X55  
Com'l Only  
Symbol  
WRITE CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
35  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
t
t
t
Write Pulse Width  
25  
0
40  
0
t
Write Recovery Time  
t
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
Write Enable to Output in High-Z(1,2)  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
15  
____  
30  
____  
t
15  
____  
25  
____  
t
0
____  
0
____  
t
15  
____  
25  
____  
t
0
5
5
0
5
5
____  
____  
____  
____  
t
t
ns  
5624 tbl 12b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access SRAM, CE = VIL, UB or LB = VIL, SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL. Either condition must be valid for  
the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the SRAM under all operating conditions. Although tDH and tOW values will vary over  
voltage and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part number indicates power rating (S or L).  
6.42  
13  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE or SEM(9)  
CE or SEM(9)  
R/W  
(3)  
WR  
(2)  
(6)  
t
t
AS  
tWP  
(7)  
tWZ  
tOW  
(4)  
(4)  
DATAOUT  
DATAIN  
tDW  
tDH  
5624 drw 09  
Timing Waveform of Write Cycle No. 2, CE, UB, LB Controlled Timing(1,5)  
tWC  
ADDRESS  
CE or SEM(9)  
UB or LB(9)  
tAW  
(3)  
(6)  
(2)  
tWR  
tEW  
tAS  
R/W  
tDW  
tDH  
DATAIN  
5624 drw 10  
NOTES:  
1. R/W or CE or UB & LB must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW UB or LB and a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end-of-write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition the outputs remain in the HIGH-impedance state.  
6. Timing depends on which enable signal is asserted last, CE, R/W, or UB or LB.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with Output Test Load  
(Figure 2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as  
the specified tWP.  
9. To access SRAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access Semaphore, CE = VIH or UB and LB = VIH, and SEM = VIL. tEW must be met for either condition.  
6.1442  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
t
OH  
tSAA  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tWR  
tACE  
tAW  
tEW  
SEM  
tSOP  
t
DW  
DATAOUT  
VALID(2)  
DATAIN  
VALID  
I/O0  
tAS  
tWP  
tDH  
R/W  
t
AOE  
t
SWRD  
OE  
Write Cycle  
Read Cycle  
5624 drw 11  
NOTES:  
1. CE = VIH or UB & LB = VIH for the duration of the above timing (both write and read cycle).  
2. “DATAOUT VALID” represents all I/O's (I/O0-I/O17 for IDT70V35/34) and (I/O0-I/O15 for IDT70V25/24) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
(2)  
SIDE  
"A"  
R/W"A"  
SEM"A"  
t
SPS  
A0"B"-A2"B"  
MATCH  
(2)  
SIDE  
"B"  
R/W"B"  
SEM"B"  
5624 drw 12  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH, or both UB & LB = VIH.  
2. All timing is the same for left and right port. Port “A” may be either left or right port. Port “B” is the opposite from port “A”.  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will obtain the semaphore flag.  
6.42  
15  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating  
TemperatureandSupplyVoltageRangefor70V35/34(6)  
70V35/34X15  
Com'l Ony  
70V35/34X20  
70V35/34X25  
Com'l Only  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S = VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
t
t
t
15  
____  
17  
____  
17  
____  
t
5
____  
5
____  
5
____  
BUSY Disable to Valid Data(3)  
t
18  
____  
30  
____  
30  
____  
(5)  
t
Write Hold After BUSY  
12  
15  
17  
BUSY TIMING (M/S = VIL  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
t
WB  
0
0
0
ns  
ns  
(5)  
tWH  
Write Hold After BUSY  
12  
15  
17  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
Write Data Valid to Read Data Delay(1)  
30  
25  
45  
35  
50  
35  
ns  
tDDD  
ns  
5624 tbl 13  
NOTES:  
1. Port-to-port delay through SRAM cells from writing port to reading port, refer to "TIMING WAVEFORM OF WRITE PORT-TO-PORT READ AND  
BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited during contention.  
5. To ensure that a write cycle is completed after contention.  
6. 'X' in part number indicates power rating (S or L).  
Timing Waveform of Write Port-to-Port Read and BUSY(2,4,5) (M/S = VIH)  
tWC  
ADDR"A"  
MATCH  
tWP  
R/W"A"  
tDH  
tDW  
DATAIN "A"  
VALID  
(1)  
tAPS  
ADDR"B"  
MATCH  
tBAA  
tBDA  
tBDD  
BUSY"B"  
t
WDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
NOTES:  
5624 drw 13  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (slave).  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave), BUSY is an input. Then for this example BUSY“A” = VIH and BUSY“B” input is shown above.  
5. All timing is the same for both left and right ports. Port “A” may be either the left or right port. Port “B ” is the port opposite from port “A”.  
6.1462  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating  
TemperatureandSupplyVoltageRangefor70V25/24(6)  
70V25/24X15  
Com'l Ony  
70V25/24X20  
Com'l  
70V25X25  
Com'l  
70V24X25  
Com'l Only  
& Ind  
& Ind  
Symbol  
BUSY TIMING (M/S = VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
20  
20  
20  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
BUSY Disable to Valid Data(3)  
Write Hold After BUSY(5)  
t
t
t
15  
____  
17  
____  
17  
____  
17  
____  
t
5
5
5
5
____  
____  
____  
____  
t
18  
30  
30  
30  
____  
____  
____  
____  
t
12  
15  
17  
17  
BUSY TIMING (M/S = VIL  
)
____  
____  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
0
0
ns  
ns  
tWH  
12  
15  
17  
17  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
Write Data Valid to Read Data Delay(1)  
30  
25  
45  
35  
50  
35  
50  
35  
ns  
tDDD  
ns  
5624 tbl 13aaa  
70V25/24X35  
Com'l Only  
70V25/24X55  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S = VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
20  
20  
20  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
t
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
BUSY Disable to Valid Data(3)  
Write Hold After BUSY(5)  
t
t
20  
____  
35  
____  
t
5
____  
5
____  
t
35  
____  
40  
____  
t
25  
25  
BUSY TIMING (M/S = VIL  
)
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
ns  
ns  
tWH  
25  
25  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
Write Data Valid to Read Data Delay(1)  
60  
45  
80  
65  
ns  
tDDD  
ns  
5624 tbl 13b  
NOTES:  
1. Port-to-port delay through SRAM cells from writing port to reading port, refer to "TIMING WAVEFORM OF WRITE PORT-TO-PORT READ AND  
BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited during contention.  
5. To ensure that a write cycle is completed after contention.  
6. 'X' in part number indicates power rating (S or L).  
6.42  
17  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with BUSY  
t
WP  
R/W"A"  
(3)  
t
WB  
BUSY"B"  
(1)  
tWH  
(2)  
R/W"B"  
,
5624 drw 14  
NOTES:  
1. tWH must be met for both master BUSY input (slave) and output (master).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the slave version.  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
t
BDC  
BUSY"B"  
5624 drw 15  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
NOTES:  
ADDRESS "N"  
(2)  
tAPS  
MATCHING ADDRESS "N"  
t
BAA  
tBDA  
5624 drw 16  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from “A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
6.1482  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating  
TemperatureandSupplyVoltageRangefor70V35/34(1)  
70V35/34X15  
Com'l Only  
70V35/34X20  
70V35/34X25  
Com'l Only  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
t
0
____  
0
____  
0
____  
t
15  
15  
20  
20  
20  
20  
____  
____  
____  
t
Interrupt Reset Time  
ns  
5624 tbl 14  
AC Electrical Characteristics Over the Operating  
TemperatureandSupplyVoltageRangefor70V25/24(1)  
70V25/24X15  
Com'l Only  
70V25/24X20  
Com'l  
70V25X25  
Com'l  
70V24X25  
Com'l Only  
& Ind  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
t
t
AS  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
0
ns  
ns  
ns  
WR  
INS  
INR  
0
____  
0
____  
0
____  
0
____  
15  
15  
20  
20  
20  
20  
20  
20  
____  
____  
____  
____  
Interrupt Reset Time  
ns  
5624 tbl 14aaa  
70V25/24X35  
Com'l Only  
70V25/24X55  
Com'l Only  
Symbol  
INTERRUPT TIMING  
Address Set-up Time  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
0
0
ns  
ns  
ns  
t
Write Recovery Time  
Interrupt Set Time  
0
____  
0
____  
t
25  
25  
40  
40  
____  
____  
t
Interrupt Reset Time  
ns  
5624 tbl 14b  
NOTES:  
1. 'X' in part number indicates power rating (S or L).  
6.42  
19  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
tWC  
ADDR"A"  
CE"A"  
INTERRUPT SET ADDRESS (2)  
(3)  
AS  
(4)  
t
tWR  
R/W"A"  
INT"B"  
(3)  
tINS  
5624 drw 17  
tRC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
tAS  
OE"B"  
(3)  
INR  
t
INT"B"  
5624 drw 18  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from “A”.  
2. See Interrupt Flag Truth Table III.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
6.2402  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table III — Interrupt Flag(1)  
Left Port  
(4)  
Right Port  
(4)  
R/W  
L
A
12L-A0L  
1FFF(4)  
X
R/W  
R
A
12R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CE  
L
OE  
L
INT  
L
CE  
R
OER  
INTR  
L
X
X
X
L
X
X
L
X
X
X
L
X
X
X
L
X
L
L
X
X
X
L(2)  
H(3)  
X
R
X
L
1FFF(4)  
1FFE(4)  
X
R
X
L(3)  
X
L
1FFE(4)  
H(2)  
X
X
X
L
5624 tbl 15  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. A12 is a NC for IDT70V34 and for IDT70V24, therefore Interrupt Addresses are FFF and FFE.  
Truth Table IV — Address BUSY  
Arbitration  
Inputs  
Outputs  
(4)  
A
12L-A0L  
(1)  
(1)  
A
12R-A0R  
Function  
Normal  
Normal  
Normal  
CE  
L
CE  
R
BUSY  
L
BUSYR  
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
H
MATCH  
H
MATCH  
Note(2)  
Note(2)  
Write Inhibit(3)  
5624 tbl 16  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the  
IDT70V35/34 (IDT70V25/24) are push pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. L if the inputs to the opposite port were stable prior to the address and enable inputs of this port. VIH if the inputs to the opposite port became stable after the  
address and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs cannot be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally  
ignored when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
4. A12 is a NC for IDT70V34 and for IDT70V24. Address comparison will be for A0 - A11.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D17 Left(2)  
D0  
- D17 Right(2)  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
5624 tbl 17  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70V35/34 (IDT70V25/24).  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O17 for IDT70V35/34) and (I/O0-I/O15 for IDT70V25/24). These eight semaphores  
are addressed by A0-A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Tables.  
6.42  
21  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
CE  
SLAVE  
Dual Port  
SRAM  
CE  
MASTER  
Dual Port  
SRAM  
BUSY  
R
BUSY  
R
BUSY  
L
BUSY  
L
MASTER  
Dual Port  
SRAM  
SLAVE  
Dual Port  
SRAM  
CE  
CE  
BUSY  
R
BUSY  
R
BUSYR  
BUSY  
L
BUSYL  
BUSY  
L
5624 drw 19  
Figure 3. Busy and chip enable routing for both width and depth expansion with IDT70V35/34 (IDT70V25/24) SRAMs.  
FunctionalDescription  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
The BUSY outputs on the IDT70V35/34 (IDT70V25/24) SRAM in  
master mode, are push-pull type outputs and do not require pull up  
resistorstooperate.IftheseSRAMsarebeingexpandedindepth,then  
theBUSYindicationfortheresultingarrayrequirestheuseofanexternal  
ANDgate.  
TheIDT70V35/34(IDT70V25/24)providestwoportswithseparate  
control,addressandI/Opinsthatpermitindependentaccessforreadsor  
writestoanylocationinmemory.TheIDT70V35/34(IDT70V25/24)has  
anautomaticpowerdownfeaturecontrolledbyCE.TheCEcontrolson-  
chip power down circuitry that permits the respective port to go into a  
standby mode when not selected (CE HIGH). When a port is enabled,  
accesstotheentirememoryarrayispermitted.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessagecenter)isassignedtoeachport. Theleftportinterruptflag  
(INTL) is asserted when the right port writes to memory location 1FFE  
(HEX) (FFE for IDT70V34 and IDT70V24), where a write is defined as  
theCER =R/WR=VIL perTruthTableIII.Theleftportclearstheinterrupt  
Width Expansion with Busy Logic  
Master/SlaveArrays  
When expanding an IDT70V35/34 (IDT70V25/24) SRAM array in  
ontheIDT70V35andIDT70V25byanaddresslocation1FFE(FFEfor widthwhileusingBUSYlogic,onemasterpartisusedtodecidewhichside  
IDT70V34andIDT70V24)accesswhenCEL=OEL=VIL,R/WLisa"don't of the SRAM array will receive a BUSY indication, and to output that  
care".Likewise,therightportinterruptflag(INTR)issetwhentheleftport indication. Any number of slaves to be addressed in the same address  
writestomemorylocation1FFFforIDT70V35andIDT70V25(HEX)(FFF rangeasthemaster,usetheBUSYsignalasawriteinhibitsignal.Thus  
for IDT70V34 and IDT70V24) and to clear the interrupt flag (INTR), the ontheIDT70V35/34(IDT70V25/24)SRAMtheBUSYpinisanoutputif  
right port must read the memory location 1FFF for IDT70V35 and thepartisusedasamaster(M/Spin=VIH),andtheBUSYpinisaninput  
IDT70V25 (FFF for IDT70V34 and IDT70V24). The message (16 bits) if the part used as a slave (M/S pin = VIL) as shown in Figure 3.  
at 1FFE or 1FFF for IDT70V35 and IDT70V25 (FFE or FFF for  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
IDT70V34 and IDT70V24) is user-defined, since it is an addressable decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
SRAMlocation.Iftheinterruptfunctionisnotused,addresslocations1FFE arrayandanothermasterindicatingBUSYononeothersideofthearray.  
and1FFFforIDT70V35andIDT70V25(FFEandFFFforIDT70V34and Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
IDT70V24)arenotusedasmailboxes,butaspartoftherandomaccess inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
memory. RefertoTruthTableIIIfortheinterruptoperation.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. It ignores whether an access is a read or write. In  
a master/slave array, both address and chip enable must be valid long  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwitheithertheR/Wsignalorthebyteenables.Failure  
toobservethistimingcanresultinaglitchedinternalwriteinhibitsignaland  
corrupteddataintheslave.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheSRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheSRAMis“busy”.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
Semaphores  
The IDT70V35/34 (IDT70V25/24) is an extremely fast Dual-Port 8/  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications. 4K x 18 (8/4K x 16) CMOS Static RAM with an additional 8 address  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether locationsdedicatedtobinarysemaphoreflags.Theseflagsalloweither  
and use any BUSYindication as an interrupt source to flag the event of processorontheleftorrightsideoftheDual-PortSRAMtoclaimaprivilege  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis overtheotherprocessorforfunctionsdefinedbythesystemdesigner’s  
6.2422  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
software.Asanexample,thesemaphorecanbeusedbyoneprocessor a chip select for the semaphore flags) and using the other control pins  
toinhibittheotherfromaccessingaportionoftheDual-PortSRAMorany (Address,OE,andR/W)astheywouldbeusedinaccessingastandard  
other shared resource.  
staticRAM.Eachoftheflagshasauniqueaddresswhichcanbeaccessed  
TheDual-PortSRAMfeaturesafastaccesstime,andbothportsare by either side through address pins A0 – A2. When accessing the  
completelyindependentofeachother.Thismeansthattheactivityonthe semaphores, noneoftheotheraddresspinshasanyeffect.  
leftportinnowayslowstheaccesstimeoftherightport. Bothportsare  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel  
identicalinfunctiontostandardCMOSStaticRAMandcanbeaccessed iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
atthesametimewiththeonlypossibleconflictarisingfromthesimultaneous on that side and a one on the other side (see Truth Table V). That  
writingof,orasimultaneousREAD/WRITEof,anon-semaphorelocation. semaphorecannowonlybemodifiedbythesideshowingthezero.When  
Semaphoresareprotectedagainstsuchambiguoussituationsandmay aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
be used by the system program to avoid any conflicts in the non- settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
semaphore portion of the Dual-Port SRAM. These devices have an ispending)andthencanbewrittentobybothsides.Thefactthattheside  
automatic power-down feature controlled by CE, the Dual-Port SRAM whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
on-chip power down circuitry that permits the respective port to go into communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
standbymodewhennotselected.Thisistheconditionwhichisshownin shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
Truth Table I where CE and SEM are both HIGH.  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
SystemswhichcanbestusetheIDT70V35/34(IDT70V25/24)contain freedbythefirstside.  
multiple processors or controllers and are typically very high-speed  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
systems which are software controlled or software intensive. These thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
systemscanbenefit fromaperformanceincreaseofferedbytheIDT70V35/ azeroreadsasallzeros.Thereadvalueislatchedintooneside’soutput  
34 (IDT70V25/24)'s hardware semaphores, which provide a lockout registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
mechanismwithoutrequiringcomplexprogramming.  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
Softwarehandshakingbetweenprocessorsoffersthemaximumin stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
configurations.TheIDT70V35/34(IDT70V25/24)doesnotuseitssema- cause either signal (SEM or OE) to go inactive or the output will never  
phoreflagstocontrolanyresourcesthroughhardware,thusallowingthe change.  
systemdesignertotalflexibilityinsystemarchitecture.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
An advantage of using semaphores rather than the more common to guarantee that no system level contention will occur. A processor  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
either processor. This can prove to be a major advantage in very high- semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
speedsystems.  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTruth  
TableV).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation.Onasubsequentread,theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attemptstowriteazerotothesamesemaphoreflagitwillfail, aswillbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
gap between the read and write cycles.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortSRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst,hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
thatsemaphore’sstatusorremoveitsrequestforthatsemaphoretoperform  
anothertaskandoccasionallyattemptagaintogaincontrolofthetokenvia  
thesetandtestsequence.Oncetherightsidehasrelinquishedthetoken,  
theleftsideshouldsucceedingainingcontrol.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation. The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
semaphorerequestlatch.Shouldtheotherside’ssemaphorerequestlatch  
havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
overtotheothersideassoonasaoneiswrittenintothefirstside’srequest  
latch.Thesecond side’sflagwillnowstayLOWuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requested and the processor which requested it no longer needs the  
resource, theentiresystemcanhangupuntilaoneiswrittenintothat  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites  
aonetothatlatch.  
TheeightsemaphoreflagsresidewithintheIDT70V35/34(IDT70V25/  
24)inaseparatememoryspacefromtheDual-PortSRAM.Thisaddress  
spaceisaccessedbyplacingaLOWinputontheSEMpin(whichactsas  
6.42  
23  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
semaphorerequestlatch.Thecriticalcaseofsemaphoretimingiswhen control,itwouldlockouttheleftside.  
bothsidesrequestasingletokenbyattemptingtowriteazerointoitatthe  
Once the left side was finished with its task, it would write a one to  
same time. The semaphore logic is specially designed to resolve this Semaphore 0 and may then try to gain access to Semaphore 1. If  
problem.Ifsimultaneousrequestsaremade,thelogicguaranteesthatonly Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo  
onesidereceivesthetoken.Ifonesideisearlierthantheotherinmaking itssemaphorerequestandperformothertasksuntilitwasabletowrite,then  
therequest,thefirstsidetomaketherequestwillreceivethetoken.Ifboth readazerointoSemaphore1.Iftherightprocessorperformsasimilartask  
requestsarriveatthesametime,theassignmentwillbearbitrarilymade withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap  
to one port or the other.  
4KblocksofDual-PortSRAMwitheachother.  
One caution that should be noted when using semaphores is that  
The blocks do not have to be any particular size and can even be  
semaphoresalonedonotguaranteethataccesstoaresourceissecure. variable, depending upon the complexity of the software using the  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual-  
or misinterpreted, a software error can easily happen.  
PortSRAMorothersharedresourcesintoeightparts.Semaphorescan  
Initializationofthesemaphoresisnotautomaticandmustbehandled evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest given a common meaning as was shown in the example above.  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
Semaphores are a useful form of arbitration in systems like disk  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring  
to assure that they will be free when needed.  
atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse  
ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea  
wasoff-limitstotheCPU,boththeCPUandtheI/Odevicescouldaccess  
theirassignedportionsofmemorycontinuouslywithoutanywaitstates.  
SemaphoresarealsousefulinapplicationswherenomemoryWAIT”  
stateisavailableononeorbothsides.Onceasemaphorehandshakehas  
been performed, both processors can access their assigned RAM  
segmentsatfullspeed.  
UsingSemaphores—SomeExamples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
resource markers for the IDT70V35/34 (IDT70V25/24)’s Dual-Port  
SRAM.Saythe8Kx18SRAMwastobedividedintotwo4Kx18blocks  
whichweretobededicatedatanyonetimetoservicingeithertheleftor  
rightport. Semaphore0couldbeusedtoindicatethesidewhichwould  
controlthelowersectionofmemory,andSemaphore1couldbedefined  
astheindicatorfortheuppersectionofmemory.  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
mayberesponsibleforbuildingandupdatingadatastructure.Theother  
processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
processorreadsanincompletedatastructure,amajorerrorconditionmay  
exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
is completed, the data structure block is released. This allows the  
interpretingprocessortocomebackandreadthecompletedatastructure,  
therebyguaranteeingaconsistentdatastructure.  
Totakearesource,inthisexamplethelower4KofDual-PortSRAM,  
the processor on the left port could write and then read a zero in to  
Semaphore0.Ifthistaskweresuccessfullycompleted(azerowasread  
back rather than a one), the left processor would assume control of the  
lower4K.Meanwhiletherightprocessorwasattemptingtogaincontrolof  
the resourceaftertheleftprocessor,itwouldreadbackaoneinresponse  
tothezeroithadattemptedtowriteintoSemaphore0. Atthispoint, the  
softwarecouldchoosetotryandgaincontrolofthesecond4Ksectionby  
writing,thenreadingazerointoSemaphore1.Ifitsucceededingaining  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
5624 drw 20  
Figure 4. IDT70V35/34 (IDT70V25/24) Semaphore Logic  
6.2442  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
OrderingInformation  
XXXXX  
A
999  
A
A
A
A
Device  
Type  
Power Speed Package  
Process/  
Temperature  
Range  
Blank Tube or Tray  
Tape and Reel  
8
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Blank  
I(1)  
G(2)  
Green  
PF  
G
J
100-pin TQFP (PN100) 70V35/34/25/24  
84-Pin PGA (G84)  
84-Pin PLCC (J84)  
70V25/24  
70V25/24  
Commercial Only - 70V35/34/25/24  
Commercial & Industrial - 70V35/34/25/24  
Commercial Only - 70V35/34/24  
Commercial & Industrial - 70V25  
Commercial Only - 70V25/24  
15  
20  
25  
25  
35  
55  
,
Speed in Nanoseconds  
Commercial Only - 70V25/24  
S
L
Standard Power  
Low Power  
144K (8K x 18-Bit) 3.3V Dual-Port RAM  
72K (4K x 18-Bit) 3.3V Dual-Port RAM  
128K (8K x 16-Bit) 3.3V Dual-Port RAM  
64K (4K x 16-Bit) 3.3V Dual-Port RAM  
70V35  
70V34  
70V25  
70V24  
5624 drw 21a  
NOTES:  
1. ContactyourlocalsalesofficeforIndustrialtemprangeforotherspeeds,packagesandpowers.  
2. Greenpartsavailable.Forspecificspeeds,packagesandpowerscontactyourlocalsalesoffice.  
DatasheetDocumentHistory  
06/08/00:  
08/09/01:  
InitialPublicOffering  
Page 1 Corrected I/O numbering  
Page 5-7, 10 & 12 Removed Industrial temperature range offering for 25ns from DC & AC Electrical Characteristics  
Page17 RemovedIndustrialtemperaturerangeofferingfor25nsspeedfromtheorderinginformation  
AddedIndustrialtemperatureofferingfootnote  
07/02/02:  
06/22/04:  
Page 2 Added date revision for pin configuration  
Added 70V34 to datasheet (4K x 18)  
Consolidated 70V25/24 datasheets (8/4K x 16) into 70V35/34 (8/4K x 18) datasheet  
RemovedPreliminarystatusfromdatasheet  
Page 2 & 3 Changed naming convention from VCC to VDD and from GND to VSS for PN100 packages  
Page7 UpdatedConditionsinCapacitancetable  
Page7 AddedJunctionTemperaturetoAbsoluteMaximumRatingstable  
Page 9, 11, 13, 17 &, 19 Added DC and AC Electrical Characteristics tables for 70V25/24 data  
Page21& 22 ChangedInterruptflagtable, footnotesandInterruptstexttoreflect70V25/24data  
Page 1 & 15 Replaced old logo with new TM logo  
10/28/04:  
04/05/05:  
Page25 Addedsteppingindicatortoorderinginformation  
Page1Addedgreenavailabilitytofeatures  
Page 25 Added green indicator to ordering information  
10/23/08:  
Page 25 Removed "IDT" from orderable part number  
6.42  
25  
IDT70V35/34S/L (IDT70V25/24S/L)  
High-Speed 3.3V 8/4K x 18 (8/4K x 16) Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DatasheetDocumentHistory(cont'd)  
08/26/15:  
Page 1 Updatedthe70V25&70V24 highspeedaccessofferingsinFeatures, removed70V24X25industrialtemp  
Page 2 RemovedtheIDTinreferencetofabrication  
Pages 2, 3, 4 & 5 Removed the date from the PN100, G84 & J84 pin configurations  
Page 6 Updatedfootnotes2&3forTruthTableI:Non-ContentionRead/WriteControl  
Pages 9,11,13,17 & 19 Removed 25ns Industrial temp offering from the DC Chars and AC Chars tables for the 70V24  
Page 25 AddedTape&Reelindicatorandremovedthesteppingindicatorfromtheorderinginformation  
Page 25 ThepackagecodeforPN100-1changedtoPN100,G84-3changedtoG84andJ84-1changedtoJ84respectively  
intheorderinginformationtomatchthestandardpackagecodes  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
DualPortHelp@idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.2462  

相关型号:

70V25S15J

PLCC-84, Tube
IDT

70V25S15JG

Dual-Port SRAM, 8KX16, 15ns, CMOS, PQCC84, 1.150 X 1.150 INCH, 0.170 INCH HEIGHT, GREEN, PLASTIC, LCC-84
IDT

70V25S15JG8

Dual-Port SRAM
IDT

70V25S15PF

TQFP-100, Tray
IDT

70V25S15PF8

TQFP-100, Reel
IDT

70V25S15PF9

Dual-Port SRAM, 8KX16, 15ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
IDT

70V25S15PFG

Dual-Port SRAM, 8KX16, 15ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, GREEN, PLASTIC, TQFP-100
IDT

70V25S20J8

PLCC-84, Reel
IDT

70V25S20JGI

Dual-Port SRAM, 8KX16, 20ns, CMOS, PQCC84, 1.150 X 1.150 INCH, 0.170 INCH HEIGHT, GREEN, PLASTIC, LCC-84
IDT

70V25S20JGI8

Dual-Port SRAM
IDT

70V25S20JI

Dual-Port SRAM, 8KX16, 20ns, CMOS, PQCC84, 1.150 X 1.150 INCH, 0.170 INCH HEIGHT, PLASTIC, LCC-84
IDT

70V25S20PF

TQFP-100, Tray
IDT