70V37L15PFGI8

更新时间:2024-09-18 22:03:41
品牌:IDT
描述:HIGH-SPEED 3.3V 32K x 18 DUAL-PORT STATIC RAM

70V37L15PFGI8 概述

HIGH-SPEED 3.3V 32K x 18 DUAL-PORT STATIC RAM

70V37L15PFGI8 数据手册

通过下载70V37L15PFGI8数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
HIGH-SPEED 3.3V  
32K x 18 DUAL-PORT  
STATIC RAM  
IDT70V37L  
Š
Features  
True Dual-Ported memory cells which allow simultaneous  
access of the same memory location  
High-speed access  
M/S = VIH for BUSY output flag on Master,  
M/S = VIL for BUSY input on Slave  
Busy and Interrupt Flags  
– Commercial: 15/20ns (max.)  
– Industrial: 20ns (max.)  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Low-power operation  
– IDT70V37L  
Fully asynchronous operation from either port  
Separate upper-byte and lower-byte controls for multi-  
plexed bus and bus matching compatibility  
LVTTL-compatible, single 3.3V (±0.3V) power supply  
Available in a 100-pin TQFP  
Active:440mW(typ.)  
Standby:660µW(typ.)  
Dual chip enables allow for depth expansion without  
external logic  
IDT70V37 easily expands data bus width to 36 bits or  
more using the Master/Slave select when cascading more  
than one device  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
Green parts available, see ordering information  
Functional Block Diagram  
R/  
WL  
R/WR  
UBL  
UBR  
CE0L  
CE0R  
CE1L  
CE1R  
OE  
R
OE  
L
L
LBR  
LB  
I/O 9-17L  
I/O 0-8L  
I/O9-17R  
I/O0-8R  
I/O  
Control  
I/O  
Control  
(1,2)  
(1,2)  
BUSY  
R
BUSY  
L
.
32Kx18  
14L  
A
14R  
0R  
A
Address  
Decoder  
Address  
Decoder  
MEMORY  
ARRAY  
70V37  
A
0L  
A
15  
15  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE0R  
CE1R  
CE0L  
CE1L  
OER  
OEL  
R/WR  
R/W  
L
SEM  
L
L
SEM  
R
(2)  
(2)  
INTR  
INT  
M/S(1)  
4851 drw 01  
NOTES:  
1. BUSY is an input as a Slave (M/S=VIL) and an output when it is a Master (M/S=VIH).  
2. BUSY and INT are non-tri-state totem-pole outputs (push-pull).  
JUNE 2015  
1
DSC-4851/6  
©2015 Integrated Device Technology, Inc.  
IDT70V37L  
High-Speed 3.3V 32K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
TheIDT70V37isahigh-speed32Kx18Dual-PortStaticRAM. The reads or writes to any location in memory. An automatic power down  
IDT70V37 is designed to be used as a stand-alone 576K-bit feature controlled by the chip enables (either CE0 or CE1)  
Dual-PortRAMorasacombinationMASTER/SLAVEDual-PortRAMfor permittheon-chipcircuitryofeachporttoenteraverylowstandbypower  
36-bit-or-more word system. Using the IDT MASTER/SLAVE mode.  
Dual-PortRAMapproachin36-bitorwidermemorysystemapplications  
Fabricated using CMOS high-performance technology, these de-  
resultsinfull-speed,error-freeoperationwithouttheneedforadditional vices typically operate on only 440mW of power. The IDT70V37 is  
discretelogic. packaged in a 100-pin Thin Quad Flatpack (TQFP).  
This device provides two independent ports with separate control,  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
PinConfigurations(1,2,3)  
INDEX  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
A
9L  
A
8R  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
2
A10L  
A11L  
A12L  
A13L  
A14L  
A
9R  
A10R  
A11R  
A12R  
A13R  
A14R  
3
4
5
6
NC  
7
NC  
LB  
UBR  
CE0R  
CE1R  
SEM  
R/W  
V
8
LB  
UB  
CE0L  
CE1L  
SEM  
R/W  
OE  
L
9
R
L
IDT70V37PF  
PN100(4)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
L
L
L
100-Pin TQFP  
Top View(5)  
R
R
SS  
V
DD  
VSS  
OE  
V
I/O17R  
V
R
SS  
I/O17L  
I/O16L  
SS  
V
SS  
I/O15L  
I/O14L  
I/O13L  
I/O12L  
I/O11L  
I/O10L  
I/O16R  
I/O15R  
I/O14R  
I/O13R  
I/O12R  
I/O11R  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
4851 drw 02a  
NOTES:  
1. All VDD pins must be connected to power supply.  
2. All VSS pins must be connected to ground.  
3. Package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
6.422  
IDT70V37L  
High-Speed 3.3V 32K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
Names  
Chip Enables  
CE0L, CE1L  
R/W  
OE  
CE0R, CE1R  
R/W  
OE  
L
R
Read/Write Enable  
Output Enable  
L
R
A0L - A14L  
A0R - A14R  
Address  
I/O0L - I/O17L  
I/O0R - I/O17R  
Data Input/Output  
Semaphore Enable  
Upper Byte Select  
Lower Byte Select  
Interrupt Flag  
SEM  
UB  
LB  
INT  
BUSY  
L
SEM  
UB  
LB  
INT  
BUSY  
M/S  
R
L
R
L
R
L
R
Busy Flag  
L
R
Master or Slave Select  
Power (3.3V)  
V
DD  
VSS  
Ground (0V)  
4851 tbl 01  
RecommendedDCOperating  
Conditions  
AbsoluteMaximumRatings(1)  
Symbol  
Parameter  
Min.  
3.0  
Typ.  
Max.  
3.6  
0
Unit  
V
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
V
V
DD  
Supply Voltage  
Ground  
3.3  
VSS  
0
0
V
(2)  
____  
V
TERM  
Te rminal Vo ltag e  
-0.5 to +4.6  
-55 to +125  
-65 to +150  
50  
V
IH  
IL  
NOTES:  
Input High Voltage  
Input Low Voltage  
2.0  
V
DD+0.3(2)  
V
with Respect to GND  
-0.3(1)  
0.8  
V
____  
V
TBIAS  
Temperature  
Under Bias  
oC  
4851 tbl 04  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed VDD + 0.3V.  
Storage  
oC  
TSTG  
Temperature  
IOUT  
DC Output Current  
mA  
4851 tbl 02  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS  
may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
Capacitance(1) (TA = +25°C, f = 1.0MHz)  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions  
Max. Unit  
CIN  
VIN = 0V  
9
pF  
2. VTERM must not exceed VDD + 0.3V for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > VDD + 0.3V.  
(2)  
OUT  
C
VOUT = 0V  
10  
pF  
4851 tbl 05  
NOTES:  
1. This parameter is determined by device characterization but is not produc-  
tion tested.  
2. COUT also references CI/O.  
MaximumOperatingTemperature  
andSupplyVoltage(1)  
Grade  
Ambient  
GND  
VDD  
Temperature(1)  
Commercial  
Industrial  
0OC to +70OC  
0V  
0V  
3.3V  
3.3V  
+
0.3V  
0.3V  
-40OC to +85OC  
+
4851 tbl 03  
NOTE:  
1. This is the parameter TA. This is the "instant on" case temperature.  
6.42  
3
IDT70V37L  
High-Speed 3.3V 32K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I – Chip Enable(1,2)  
CE  
1
Mode  
CE  
CE0  
V
IL  
V
IH  
Port Selected (TTL Active)  
L
< 0.2V  
>VDD -0.2V  
X
Port Selected (CMOS Active)  
Port Deselected (TTL Inactive)  
Port Deselected (TTL Inactive)  
Port Deselected (CMOS Inactive)  
Port Deselected (CMOS Inactive)  
V
IH  
X
V
X(3)  
IL  
H
>VDD -0.2V  
X(3)  
<0.2V  
4852 tbl 06  
NOTES:  
1. Chip Enable references are shown above with the actual CE0 and CE1 levels; CE is a reference only.  
2. 'H' = VIH and 'L' = VIL.  
3. CMOS standby requires 'X' to be either < 0.2V or >VDD-0.2V.  
Truth Table II – Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
(2)  
R/W  
X
I/O9-17  
I/O0-8  
High-Z  
High-Z  
High-Z  
DATAIN  
DATAIN  
High-Z  
Mode  
Deselected: Power-Down  
Both Bytes Deselected  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
CE  
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
H
X
L
L
L
L
L
L
X
High-Z  
High-Z  
X
H
L
H
DATAIN  
High-Z  
L
H
L
H
L
L
H
DATAIN  
DATAOUT  
High-Z  
H
H
H
X
L
H
L
H
Read Upper Byte Only  
L
H
L
H
DATAOUT Read Lower Byte Only  
DATAOUT Read Both Bytes  
L
L
H
DATAOUT  
High-Z  
H
X
X
X
High-Z  
Outputs Disabled  
4851 tbl 07  
NOTES:  
1. A0L — A14L A0R — A14R  
2. Refer to Truth Table I - Chip Enable.  
Truth Table III – Semaphore Read/Write Control(1)  
Inputs(1)  
Outputs  
(2)  
R/W  
H
I/O9-17  
DATAOUT  
DATAOUT  
DATAIN  
I/O0-8  
Mode  
CE  
OE  
L
UB  
X
LB  
X
SEM  
H
X
H
X
L
L
L
L
L
L
L
DATAOUT Read Data in Semaphore Flag  
DATAOUT Read Data in Semaphore Flag  
H
L
H
X
H
X
X
DATAIN  
Write I/O  
0
into Semaphore Flag  
into Semaphore Flag  
X
H
L
H
X
DATAIN  
______  
DATAIN  
______  
Write I/O  
0
X
X
Not Allowed  
Not Allowed  
______  
______  
L
X
X
X
L
4851 tbl 08  
NOTES:  
1. There are eight semaphore flags written to I/O0 and read from all the I/Os (I/O0-I/O17). These eight semaphore flags are addressed by A0-A2.  
2. Refer to Truth Table I - Chip Enable.  
6.442  
IDT70V37L  
High-Speed 3.3V 32K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 3.3V ± 0.3V)  
70V37L  
Symbol  
Parameter  
Input Leakage Current(1)  
Output Leakage Current  
Output Low Voltage  
Test Conditions  
DD = 3.6V, VIN = 0V to VDD  
CE(2) = VIH, VOUT = 0V to VDD  
Min.  
___  
Max.  
Unit  
µA  
µA  
V
|ILI|  
V
5
5
___  
___  
|ILO  
|
V
OL  
I
OL = +4mA  
0.4  
___  
V
OH  
Output High Voltage  
IOH = -4mA  
2.4  
V
4851 tbl 09  
NOTES:  
1. At VDD < 2.0V, input leakages are undefined.  
2. Refer to Truth Table I - Chip Enable.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(5) (VDD = 3.3V ± 0.3V)  
70V37L15  
Com'l Only  
70V37L20  
Com'l  
& Ind  
Unit  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(1) Max. Typ.(1) Max.  
mA  
IDD  
Dynamic Operating  
Current  
L
L
L
L
L
L
L
L
L
L
145  
235  
135  
135  
35  
205  
220  
55  
CE = VIL, Outputs Disabled  
SEM = (V2)IH  
___  
___  
(Both Ports Active)  
IND  
f = fMAX  
mA  
mA  
mA  
mA  
ISB1  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
IND  
40  
70  
CE  
L
= CE = VIH  
R
SEM = SEM  
L
= VIH  
f = fMRAX  
(2)  
___  
___  
35  
65  
(4)  
ISB2  
Standby Current  
(One Port - TTL Level  
Inputs)  
COM'L  
IND  
100  
155  
90  
140  
150  
3.0  
3.0  
135  
145  
CE"A" = VIL and CE = V  
Active Port Outputs"BD"isablIeHd,  
(2)  
___  
___  
90  
f=fMAX  
,
SEM  
R
= SEM = VIH  
L
ISB3  
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CE  
L
and CE  
R
> VDD - 0.2V,  
COM'L  
IND  
0.2  
___  
3.0  
___  
0.2  
0.2  
90  
V
IN > VDD - 0.2V or VIN < 0.2V, f = 0(3)  
SEM = SEML > VDD - 0.2V  
R
CE"A" < 0.2V and CE > V - 0.2V(4)  
,
ISB4  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
COM'L  
IND  
95  
150  
SEM = SEM > V "-B"0.2V,DD  
90  
V
IN >RVDD - 0.L2V orDDVIN < 0.2V,  
___  
___  
(2)  
Active Port Outputs Disabled, f = fMAX  
4851 tbl 10  
NOTES:  
1. VDD = 3.3V, TA = +25°C, and are not production tested. IDD DC = 90mA (Typ.)  
2. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using “AC Test Conditions" of input levels  
of GND to 3V.  
3. f = 0 means no address or control lines change.  
4. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
5. Refer to Truth Table I - Chip Enable.  
6.42  
5
IDT70V37L  
High-Speed 3.3V 32K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
3.3V  
3.3V  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
3ns Max.  
1.5V  
1.5V  
Figures 1 and 2  
590Ω  
590Ω  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
DATAOUT  
BUSY  
INT  
DATAOUT  
30pF  
435Ω  
5pF*  
435Ω  
4851 tbl 11  
4851 drw 03  
4851 drw 04  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
Figure 1. AC Output Load  
* Including scope and jig.  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE(6)  
OE  
(4)  
tAOE  
(4)  
t
ABE  
UB, LB  
R/W  
DATAOUT  
BUSYOUT  
t
OH  
(1)  
tLZ  
VALID DATA(4)  
(2)  
tHZ  
(3,4)  
4851 drw 05  
tBDD  
Timing of Power-Up Power-Down  
CE(6)  
tPU  
tPD  
ICC  
50%  
50%  
.
4851 drw 06  
ISB  
NOTES:  
1. Timing depends on which signal is asserted last, OE, CE, LB or UB.  
2. Timing depends on which signal is de-asserted first CE, OE, LB or UB.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6. Refer toTruth Table I - Chip Enable.  
6.462  
IDT70V37L  
High-Speed 3.3V 32K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70V37L15  
70V37L20  
Com'l  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
____  
20  
____  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Address Access Time  
15  
15  
15  
20  
20  
20  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
Output High-Z Time(1,2)  
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
____  
____  
____  
____  
____  
____  
t
t
t
10  
____  
12  
____  
t
3
3
____  
____  
t
3
____  
3
____  
t
10  
____  
10  
____  
t
0
____  
0
____  
t
15  
____  
20  
____  
t
Semaphore Flag Update Pulse (OE or SEM)  
10  
____  
10  
____  
t
Semaphore Address Access Time  
15  
20  
ns  
4851 tbl 12  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage  
70V37L15  
Com'l Only  
70V37L20  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
t
t
t
Write Pulse Width  
12  
0
15  
0
t
Write Recovery Time  
t
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
Write Enable to Output in High-Z(1,2)  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
____  
15  
____  
t
10  
____  
10  
____  
t
0
____  
0
____  
t
10  
____  
10  
____  
t
0
5
5
0
5
5
____  
____  
____  
____  
t
t
ns  
4851 tbl 13  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. Thisparameterisguaranteedbydevicecharacterization,butisnotproductiontested.  
3. To access RAM, CE= VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
6.42  
7
IDT70V37L  
High-Speed 3.3V 32K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
t
WC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE or SEM(9,10)  
UB or LB(9)  
R/W  
(3)  
(2)  
(6)  
tWR  
tAS  
tWP  
(7)  
t
OW  
t
WZ  
(4)  
(4)  
DATAOUT  
DATAIN  
tDW  
tDH  
4851 drw 07  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)  
t
WC  
ADDRESS  
t
AW  
CE or SEM(9,10)  
UB or LB(9)  
(6)  
AS  
(3)  
(2)  
t
WR  
tEW  
t
R/W  
tDW  
tDH  
DATAIN  
4851 drw 08  
NOTES:  
1. R/W or CE or UB and LB = VIH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a CE = VIL and a R/W = VIL for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load  
(Figure 2).  
8. If OE = VIL during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the  
specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
10. Refer to Truth Table I - Chip Enable.  
6.482  
IDT70V37L  
High-Speed 3.3V 32K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tAW  
tWR  
t
ACE  
tEW  
SEM  
tOH  
tSOP  
tDW  
OUT  
DATA  
VALID(2)  
I/O  
IN  
DATA VALID  
tAS  
tWP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
tSOP  
Write Cycle  
Read Cycle  
4851 drw 09  
NOTES:  
1. CE = VIH or UB and LB = VIH for the duration of the above timing (both write and read cycle) (Refer to Truth Table I - Chip Enable).  
2. "DATAOUT VALID" represents all I/O's (I/O0 - I/O17) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2) "A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
4851 drw 10  
NOTES:  
1. DOR = DOL = VIL, CEL = CER = VIH or both UB and LB = VIH (Refer to Truth Table I - Chip Enable).  
2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A".  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, the semaphore will fall positively to one side or the other, but there is no guarantee which side will be granted the semaphore flag.  
6.42  
9
IDT70V37L  
High-Speed 3.3V 32K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70V37L15  
70V37L20  
Com'l  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max. Unit  
BUSY TIMING (M/S=VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
t
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
15  
____  
17  
____  
t
5
____  
5
____  
BUSY Disable to Valid Data(3)  
t
15  
____  
17  
____  
(5)  
t
Write Hold After BUSY  
12  
15  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
BUSY Input to Write(4)  
t
WB  
0
0
ns  
ns  
(5)  
tWH  
Write Hold After BUSY  
12  
15  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
Write Data Valid to Read Data Delay(1)  
30  
25  
45  
30  
ns  
tDDD  
ns  
4851 tbl 14  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual), or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
6.1402  
IDT70V37L  
High-Speed 3.3V 32K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadandBUSY (M/S =VIH)(2,4,5)  
tWC  
MATCH  
ADDR"A"  
R/W"A"  
tWP  
tDW  
t
DH  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
t
BAA  
tBDA  
tBDD  
BUSY"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
4851 drw 11  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL, refer to Truth Table I - Chip Enable.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave), BUSY is an input. Then for this example BUSY"A" = VIH and BUSY"B" input is shown above.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY (M/S = VIL)  
tWP  
R/W"A"  
(3)  
tWB  
BUSY"B"  
(1)  
tWH  
(2)  
R/W"B"  
.
4851 drw 12  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the 'slave' version.  
6.42  
11  
IDT70V37L  
High-Speed 3.3V 32K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(M/S = VIH)(1,3)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
t
APS  
CE"B"  
t
BAC  
tBDC  
BUSY"B"  
4851 drw 13  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(M/S = VIH)(1)  
ADDR"A"  
ADDRESS "N"  
(2)  
t
APS  
ADDR"B"  
MATCHING ADDRESS "N"  
t
BAA  
tBDA  
BUSY"B"  
4851 drw 14  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
3. Refer to Truth Table I - Chip Enable .  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70V37L15  
70V37L20  
Com'l  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
ns  
ns  
ns  
t
0
____  
0
____  
t
15  
15  
20  
20  
____  
____  
t
Interrupt Reset Time  
ns  
4851 tbl 15  
6.1422  
IDT70V37L  
High-Speed 3.3V 32K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1,5)  
tWC  
INTERRUPT SET ADDRESS(2)  
ADDR"A"  
(3)  
(4)  
t
AS  
tWR  
CE"A"  
R/W"A"  
INT"B"  
(3)  
t
INS  
4851 drw 15  
tRC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
t
AS  
OE"B"  
(3)  
tINR  
INT"B"  
4851 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. Refer to Interrupt Truth Table.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
5. Refer to Truth Table I - Chip Enable.  
Truth Table IV — Interrupt Flag(1,4,5)  
Left Port  
Right Port  
R/W  
L
A
14L-A0L  
7FFF  
X
R/W  
R
A
14R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CE  
L
OE  
L
INT  
L
CE  
R
OE  
R
INTR  
L
X
X
X
L
X
X
L
X
X
X
L(3)  
H(2)  
X
X
L
X
X
L(2)  
H(3)  
X
R
X
X
L
7FFF  
7FFE  
X
R
X
X
L
L
X
L
L
7FFE  
X
X
X
X
L
4851 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTL and INTR must be initialized at power-up.  
5. Refer to Truth Table I - Chip Enable.  
6.42  
13  
IDT70V37L  
High-Speed 3.3V 32K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table V —  
Address BUSY Arbitration(4)  
Inputs  
Outputs  
A
-A  
AOORL-A1144RL  
Function  
Normal  
Normal  
Normal  
(1)  
(1)  
CE  
L
CE  
R
BUSY  
L
BUSYR  
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
MATCH  
H
H
MATCH  
(2)  
(2)  
Write Inhibit(3)  
4851 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT70V37 are  
push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
4. Refer to Truth Table I - Chip Enable.  
Truth Table VI — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D17 Left  
D0  
- D17 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
4851 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70V37.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O17). These eight semaphores are addressed by A0 - A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Truth Table III - Semaphore Read/Write Control.  
FunctionalDescription  
TheIDT70V37providestwoportswithseparatecontrol,addressand  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation  
in memory. The IDT70V37 has an automatic power down feature  
controlled by CE. The CE0 and CE1 control the on-chip power down  
circuitrythatpermitstherespectiveporttogointoastandbymodewhen  
not selected (CE=HIGH). Whenaportisenabled, accesstotheentire  
memoryarrayispermitted.  
(HEX),whereawriteisdefinedasCER=R/WR =VIL pertheTruthTable.  
Theleftportclearstheinterruptthroughaccessofaddresslocation7FFE  
when CEL = OEL = VIL, R/W is a "don't care". Likewise, the right port  
interruptflag(INTR)isassertedwhentheleftportwritestomemorylocation  
7FFF(HEX)andtocleartheinterruptflag(INTR),therightportmustread  
the memory location 7FFF. The message (18 bits) at 7FFE or 7FFF is  
user-defined since it is an addressable SRAM location. If the interrupt  
functionisnotused, addresslocations7FFEand7FFFarenotusedas  
mailboxes,butaspartoftherandomaccessmemory.RefertoTruthTable  
IV fortheinterruptoperation.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessagecenter)isassignedtoeachport. Theleftportinterruptflag  
(INTL) is asserted when the right port writes to memory location 7FFE  
6.1442  
IDT70V37L  
High-Speed 3.3V 32K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwiththeR/Wsignal.Failuretoobservethistimingcan  
result in a glitched internal write inhibit signal and corrupted data in the  
slave.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisBusy”.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
Semaphores  
TheIDT70V37isanextremelyfastDual-Port32Kx18CMOSStatic  
RAMwithanadditional8addresslocationsdedicatedtobinarysemaphore  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications. flags.TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether PortRAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefined  
and use any BUSY indication as an interrupt source to flag the event of bythesystemdesigner’ssoftware.Asanexample,thesemaphorecan  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis beusedbyoneprocessortoinhibittheotherfromaccessingaportionof  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave the Dual-Port RAM or any other shared resource.  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
TheDual-PortRAMfeaturesafastaccesstime,withbothportsbeing  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying completelyindependentofeachother.Thismeansthattheactivityonthe  
the BUSY pins HIGH. If desired, unintended write operations can be leftportinnowayslowstheaccesstimeoftherightport. Bothportsare  
prevented to a port by tying the BUSY pin for that port LOW.  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom  
TheBUSYoutputsontheIDT70V37RAMinmastermode,arepush- orwrittentoatthesametimewiththeonlypossibleconflictarisingfromthe  
pulltypeoutputsanddonotrequirepullupresistorstooperate. Ifthese simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
RAMs are being expanded in depth, then the BUSY indication for the semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
resulting array requires the use of an external AND gate.  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chip power down circuitry that permits the respective port to go into  
standbymodewhennotselected.Thisistheconditionwhichisshownin  
Truth Table III where CE and SEM are both HIGH.  
A15  
CE0  
CE0  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY  
R
BUSY  
R
BUSY  
L
BUSYL  
SystemswhichcanbestusetheIDT70V37containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
a performance increase offered by the IDT70V37s hardware sema-  
phores,whichprovidealockoutmechanismwithoutrequiringcomplex  
programming.  
CE  
1
CE1  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY  
L
BUSY  
L
BUSYR  
BUSY  
R
.
Softwarehandshakingbetweenprocessorsoffersthemaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT70V37doesnotuseitssemaphoreflagstocontrol  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal  
flexibilityinsystemarchitecture.  
4851 drw 17  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT70V37 RAMs.  
Width Expansion with Busy Logic  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
Master/SlaveArrays  
WhenexpandinganIDT70V37RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMsarraywill  
receiveaBUSYindication,andtooutputthatindication.Anynumberof  
slavestobeaddressedinthesameaddressrangeasthemasterusethe  
BUSY signal as a write inhibit signal. Thus on the IDT70V37 RAM the  
BUSYpinisanoutputifthepartisusedasamaster(M/Spin=VIH),and  
theBUSYpinisaninputifthepartusedasaslave(M/Spin=VIL)asshown  
in Figure 3.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatasharedresourceisinuse.Ifthe  
leftprocessorwantstousethisresource,itrequeststhetokenbysetting  
thelatch. Thisprocessorthenverifiesitssuccessinsettingthelatchby  
readingit. Ifitwassuccessful,itproceedstoassumecontrolovertheshared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
The BUSY arbitration on a master is based on the chip enable and  
address signals only. It ignores whether an access is a read or write. In  
a master/slave array, both address and chip enable must be valid long  
6.42  
15  
IDT70V37L  
High-Speed 3.3V 32K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
shared resource.Theleftprocessorcantheneitherrepeatedlyrequest  
that semaphore’s status or remove its request for that semaphore to  
performanothertaskandoccasionallyattemptagaintogaincontrolofthe  
tokenviathesetandtestsequence.Oncetherightsidehasrelinquished  
thetoken,theleftsideshouldsucceedingainingcontrol.  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
semaphorerequestlatch.Shouldtheotherside’ssemaphorerequestlatch  
havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
overtotheothersideassoonasaoneiswrittenintothefirstside’srequest  
latch.Thesecondside’sflagwillnowstayLOWuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requested and the processor which requested it no longer needs the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites  
aonetothatlatch.  
TheeightsemaphoreflagsresidewithintheIDT70V37inaseparate  
memoryspacefromtheDual-PortRAM.Thisaddressspaceisaccessed  
byplacingalowinputontheSEMpin(whichactsasachipselectforthe  
semaphoreflags)andusingtheothercontrolpins(Address,CE,andR/  
W)astheywouldbeusedinaccessingastandardStaticRAM. Eachof  
the flags has a unique address which can be accessed by either side  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof  
theotheraddresspinshasanyeffect.  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
on that side and a one on the other side (see Truth Table VI). That  
semaphorecannowonlybemodifiedbythesideshowingthezero.When  
aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
ispending)andthencanbewrittentobybothsides.Thefactthattheside  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
freedbythefirstside.  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
4851 drw 18  
Figure 4. IDT70V37 Semaphore Logic  
The critical case of semaphore timing is when both sides request a  
single token by attempting to write a zero into it at the same time. The  
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst  
sidetomaketherequestwillreceivethetoken.Ifbothrequestsarriveat  
thesametime,theassignmentwillbearbitrarilymadetooneportorthe  
other.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintooneside’soutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
One caution that should be noted when using semaphores is that  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
or misinterpreted, a software error can easily happen.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTable  
VI). As an example, assume a processor writes a zero to the left port at  
afreesemaphorelocation.Onasubsequentread,theprocessorwillverify  
thatithaswrittensuccessfullytothatlocationandwillassumecontrolover  
the resource in question. Meanwhile, if a processor on the right side  
attemptstowriteazerotothesamesemaphoreflagitwillfail, aswillbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
gap between the read and write cycles.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation. The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
6.1462  
IDT70V37L  
High-Speed 3.3V 32K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
OrderingInformation  
A
XXXXX  
A
999  
A
A
A
Device  
Type  
Power Speed  
Package  
Process/  
Temperature  
Range  
Tube or Tray  
Tape and Reel  
Blank  
8
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Blank  
I(1)  
G(2)  
PF  
Green  
100-pin TQFP (PN100)  
15  
20  
Commercial Only  
Commercial & Industrial  
Speed in nanoseconds  
L
Low Power  
70V37 576K (32K x 18) Dual-Port RAM  
4851 drw 19  
NOTES:  
1. ContactyoursalesofficeforIndustrialTemperaturerangeinotherspeeds,packagesandpowers.  
2. Greenpartsavailable.Forspecificspeeds,packagesandpowerscontactyoursalesoffice.  
DatasheetDocumentHistory:  
08/01/99:  
01/02/02:  
InitialPublicOffering  
Page 1 & 17 Replaced IDT logo  
Page 3 Increasedstoragetemperatureparameter  
ClarifiedTA Parameter  
Page 5 DCElectricalparameters–changedwordingfrom"open"to"disabled"  
Added Truth Table I - Chip Enable as note 5  
Corrected±200mVto0mVinnotes  
Page 5, 7, 10 & 12 Added Industrial Temperature range for 20ns to DC & AC Electrical Characteristics  
RemovedPreliminarystatus  
06/17/04 :  
08/15/08:  
Page 1 & 17 Replaced old logo with new TM logo  
Page 2 Added date revision to pin configuration  
Page 2 - 5 Changed naming conventions from VCC to VDD and from GND to VSS  
Page 1 Addedgreenavailabilitytofeatures  
Page 17 Addedgreenindicatortoorderinginformation  
Page 1 & 17 Updated old TM logo with new logo  
01/19/09:  
06/18/15:  
Page 17 Removed "IDT" from orderable part number  
Page 2 RemovedIDTinreferencetofabrication  
Page 2 Removeddatefromthe100-pinTQFPconfiguration  
Page 2 & 17 The package code PN100-1 changed to PN100 to match standard package codes  
Page 17 AddedTape&ReelindicatortotheOrderingInformation  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
Š
DualPortHelp@idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
17  

70V37L15PFGI8 相关器件

型号 制造商 描述 价格 文档
70V37L15PFI IDT Dual-Port SRAM, 32KX18, 15ns, CMOS, PQFP100, TQFP-100 获取价格
70V37L20PF8 IDT TQFP-100, Reel 获取价格
70V37L20PF9 IDT Dual-Port SRAM, 32KX18, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100 获取价格
70V37L20PFG IDT Dual-Port SRAM, 32KX18, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, GREEN, TQFP-100 获取价格
70V37L20PFG8 IDT Application Specific SRAM, 32KX18, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, GREEN, TQFP-100 获取价格
70V37L20PFGI IDT HIGH-SPEED 3.3V 32K x 18 DUAL-PORT STATIC RAM 获取价格
70V37L20PFGI8 IDT HIGH-SPEED 3.3V 32K x 18 DUAL-PORT STATIC RAM 获取价格
70V38 RENESAS 64K x 18 3.3V Dual-Port RAM 获取价格
70V38L15PFG IDT HIGH-SPEED 3.3V 64K x 18 DUAL-PORT STATIC RAM 获取价格
70V38L15PFG8 IDT HIGH-SPEED 3.3V 64K x 18 DUAL-PORT STATIC RAM 获取价格

70V37L15PFGI8 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6