70V5378S133BGI [IDT]

PBGA-272, Tray;
70V5378S133BGI
型号: 70V5378S133BGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PBGA-272, Tray

时钟 静态存储器 内存集成电路
文件: 总29页 (文件大小:252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.3V 64/32K X 18  
SYNCHRONOUS  
IDT70V5388/78  
FOURPORT™ STATIC RAM  
Features  
Counter wrap-around control  
Internal mask register controls counter wrap-around  
– Counter-Interrupt flags to indicate wrap-around  
Mask register readback on address lines  
Global Master reset for all ports  
Dual Chip Enables on all ports for easy depth expansion  
Separate upper-word and lower-word controls on all ports  
272-BGA package (27mm x 27mm 1.27mm ball pitch) and  
256-BGA package (17mm x 17mm 1.0mm ball pitch)  
Commercial and Industrial temperature ranges  
JTAG boundary scan  
True four-ported memory cells which allow simultaneous  
access of the same memory location  
Synchronous Pipelined device  
– 64/32K x 18 organization  
Pipelined output mode allows fast 200MHz operation  
High Bandwidth up to 14 Gbps (200MHz x 18 bits wide x  
4 ports)  
LVTTL I/O interface  
High-speed clock to data access 3.0ns (max.)  
3.3V Low operating power  
Interrupt flags for message passing  
Width and depth expansion capabilities  
Counter readback on address lines  
MBIST (Memory Built-In Self Test) controller  
Green parts available, see ordering information  
Port - 1 Logic Block Diagram(2)  
R/  
W
P1  
0
1
1/0  
UBP1  
CE0P1  
CE1P1  
LBP1  
OEP1  
I/O9P1 - I/O17P1  
I/O0P1 - I/O8P1  
Port 1  
I/O  
Control  
TRST  
TMS  
JTAG  
TCK  
TDI  
Controller  
MBIST  
TDO  
CLKMBIST  
Addr.  
Read  
Back  
Port 1  
Readback  
Register  
MRST  
(1)  
A
0P1 - A15P1  
Port 1  
Mask  
,
Register  
CNTRDP1  
MKRDP1  
MKLDP1  
Port 1  
Address  
Decode  
64KX18  
Memory  
Array  
Priority  
Decision  
Logic  
Port 1  
CNTINCP1  
CNTLDP1  
CNTRSTP1  
Counter/  
Address  
Register  
CLKP1  
R/  
WP1  
Port 1  
Interrupt  
Logic  
CE0P1  
CE1P1  
CLKP1  
MRST  
CNTINTP1  
INTP1  
MRST  
5649 drw 01  
NOTE:  
1. A15x is a NC for IDT70V5378.  
2. Port 2, Port 3, and Port 4 Logic Blocks are similar to Port 1 Logic Blocks.  
OCTOBER 2008  
1
DSC-5649/5  
©2008IntegratedDeviceTechnology,Inc.  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
TheIDT70V5388/78isahigh-speed64/32Kx18bit tions specially designed to facilitate system operations.  
synchronous FourPort RAM. The memory array utilizes These include full-boundary, maskable address counters  
FourPort memory cells to allow simultaneous access of with associated interrupts for each port, mailbox interrupt  
anyaddressfromallfourports.Registersoncontrol,data, flags on each port to facilitate inter-port communications,  
andaddressinputsprovideminimalsetupandholdtimes. Memory Built-In Self-Test (MBIST), JTAG support and an  
The timing latitude provided by this approach allows sys- asynchronous Master Reset to simplify device initializa-  
tems to be designed with very short cycle times.  
tion. In addition, the address lines have been set up as I/O  
With an input data register and integrated burst pins,topermitthesupportofCNTRD (theabilitytooutputthe  
counters,the70V5388/78hasbeenoptimizedforapplica- currentvalueoftheinternaladdresscounterontheaddress  
tions having unidirectional or bi-directional data flow in lines)andMKRD(theabilitytooutputthecurrentvalueofthe  
bursts.Anautomaticpowerdownfeature,controlledbyCE0 counter mask register). For specific details on the device  
andCE1,permitstheon-chipcircuitryofeachporttoenter operation, please refer to the Functional Description and  
a very low standby power mode.  
TheIDT70V5388/78providesawiderangeoffunc-  
subsequent explanatory sections, beginning on page 21.  
2
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
(4)  
PinConfiguration  
70V5388/78BG  
BG-272(2)  
272-Pin BGA  
Top View(3)  
09/25/02  
1
LB  
2
I/O17  
P2  
3
I/O15  
4
I/O13  
5
I/O11  
6
I/O9  
7
I/O16  
P1  
8
9
10 11 12 13 14 15 16 17 18 19 20  
I/O14 I/O12  
P1  
I/O10  
P1  
I/O16  
P4  
LB  
P4  
I/O10  
P4  
I/O12 I/O14  
P4 P4  
I/O  
P3  
9
I/O11  
P3  
I/O13  
P3  
I/O15  
P3  
I/O17  
P3  
A
B
C
D
E
F
A
B
C
D
E
F
P1  
P2  
P2  
P2  
P2  
P1  
I/O16  
P2  
I/O14  
P2  
I/O12  
P2  
I/O10  
P2  
I/O17  
P1  
I/O13  
P1  
I/O11  
P1  
I/O11 I/O13  
P4 P4  
I/O17  
P4  
UB  
P1  
I/O10  
P3  
I/O12  
P3  
I/O14  
P3  
I/O16  
P3  
UB  
P4  
V
DD  
TMS  
TCK  
TDI  
V
DD  
(1)  
15  
(1)  
CE1  
P4  
A
A14  
P4  
I/O  
9
CE  
0
A
P1  
14  
I/O15  
P1  
I/O15  
P4  
R/W  
P4  
A15  
CE0  
P1  
CE  
1
R/W  
P1  
I/O  
P4  
9
V
SS  
TDO  
VSS  
V
SS  
V
V
SS  
SS  
P4  
P1  
P4  
P1  
P1  
A12  
OE  
P4  
A12  
A
13  
OE  
P1  
A
13  
V
SS  
V
DD  
VSS  
V
SS  
V
SS  
V
SS  
V
DD  
VDD  
V
DD  
VDD  
VDD  
V
SS  
VSS  
P4  
P1  
P1  
P4  
A
P1  
10  
A11  
P1  
MKRD CNTRD  
P1  
A
11  
A10  
CNTRD MKRD  
P4  
P1  
P4  
P4  
P4  
A
P1  
7
A8  
P1  
A9  
P1  
CNTINT  
P1  
A
8
A7  
P4  
A9  
P4  
CNTINT  
P4  
P4  
A
P1  
5
A6  
P1  
CNTINC  
P1  
A
P4  
5
A
P4  
6
CNTINC  
P4  
V
SS  
V
SS  
G
H
J
G
H
J
A
P1  
3
A4  
P1  
MKLD CNTLD  
P1 P1  
A
P4  
4
A
P4  
3
CNTLD MKLD  
P4 P4  
A
P1  
1
A
2
A2  
P4  
A
P4  
1
GND(5) GND(5) GND(5)  
GND(5)  
V
DD  
V
DD  
VDD  
VDD  
P1  
CLK  
P1  
CLK  
P4  
GND(5)  
A
P1  
0
GND(5) GND(5) GND(5)  
CNTRST  
P4  
INT CNTRST  
P1 P1  
INT  
P4  
A
P4  
0
K
L
K
L
GND(5) GND(5) GND(5) GND(5)  
A
P2  
0
INT CNTRST  
P2 P2  
CNTRST  
P3  
INT  
P3  
A0  
P3  
V
SS  
VSS  
,
GND(5)  
GND(5) GND(5) GND(5)  
A
P2  
1
A
P2  
2
CLK  
P2  
CLK  
P3  
A2  
P3  
A
P3  
1
V
DD  
V
DD  
M
N
P
R
T
M
N
P
R
T
A
P2  
3
A4  
P2  
A
P3  
4
A
P3  
3
MKLD CNTLD  
P2  
CNTLD MKLD  
P3  
P3  
P2  
A
P2  
5
A
P2  
6
A6  
P3  
A
P3  
5
CNTINC  
P2  
CNTINC  
P3  
V
SS  
V
SS  
A
P2  
7
A8  
P2  
A
8
A
9
A
9
A
P3  
7
CNTINT  
P2  
CNTINT  
P3  
P3  
P2  
P3  
A
P2  
10  
A11  
P2  
MKRD  
P3  
A11  
P3  
MKRD CNTRD  
P2  
CNTRD  
P3  
A
P3  
10  
P2  
A
P3  
12  
OE  
P3  
A
P2  
12  
A
P2  
13  
OE  
P2  
A13  
P3  
V
SS  
V
DD  
V
SS  
V
SS  
V
DD  
V
DD  
V
SS  
V
SS  
V
DD  
V
DD  
V
SS  
V
SS  
VDD  
V
SS  
U
V
W
Y
U
V
(1)  
A15  
P3  
A
P3  
14  
CE  
1
I/O  
P2  
0
(1)  
15  
CE  
0
A
P2  
14  
I/O  
P2  
6
I/O  
P3  
6
R/W  
P3  
CE  
0
CE  
P2  
1
R/W  
P2  
I/O  
P3  
0
A
V
SS  
NC  
V
SS  
TRST  
MRST  
V
SS  
VSS  
P3  
P3  
P2  
P2  
I/O  
5
I/O  
P1  
3
I/O  
P1  
1
I/O  
P1  
7
I/O  
P2  
8
I/O  
P2  
4
I/O  
P2  
2
I/O  
P3  
2
I/O  
P3  
4
I/O8  
P3  
UB  
P2  
I/O  
P4  
1
I/O  
3
I/O  
5
I/O  
7
CLKMBIST  
UB  
P3  
V
DD  
W
V
DD  
P1  
P4  
P4  
P4  
.
I/O  
P1  
8
LB  
P2  
I/O  
P1  
6
I/O4  
P1  
I/O  
P1  
2
I/O0  
P1  
I/O  
P2  
7
I/O  
P2  
5
I/O  
P2  
3
I/O  
P2  
1
I/O  
P3  
7
LB  
P3  
I/O  
P3  
1
I/O  
P3  
3
I/O  
P3  
5
I/O  
P4  
0
I/O  
2
I/O  
4
I/O  
6
I/O  
P4  
8
Y
P4  
P4  
P4  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
5649 drw 03  
NOTES:  
1. A15x is a NC for IDT70V5378.  
2. This package code is used to reference the package diagram.  
3. This text does not indicate orientation of the actual part marking.  
4. Package body is approximately 27mm x 27mm x 2.33mm, with 1.27mm ball-pitch.  
5. Central balls are for thermal dissipation only. They are connected to device VSS.  
3
6.42  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
(2)  
PinConfiguration  
70V5388/78BC  
BC-256(3)  
256-Pin BGA(4)  
Top View  
09/25/02  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16  
OE  
LB  
I/O16 I/O13 I/O  
9
I/O10  
P1  
R/W  
I/O  
9
I/O11  
P3  
I/O12 I/O16  
CE1  
I/O14  
P1  
I/O15 I/O17  
UB  
A
B
P2  
P2  
P2  
P1  
P1  
P4  
P1  
P4  
P4  
P4  
P3  
P3  
P4  
A
B
(1)  
15  
I/O17  
P4  
CE0  
P4  
CE  
1
I/O17  
P2  
I/O10 I/O15 I/O11  
P2  
I/O12 I/O16  
P3  
A
I/O13  
P4  
R/W  
P4  
UB  
P1  
I/O14  
P2  
LB  
TDI  
P1  
P1  
P1  
P3  
P1  
P4  
(1)  
15  
P4  
I/O12 I/O17 I/O12 I/O  
9
P1  
I/O14  
P3  
A
A
14  
P4  
A
14  
P1  
A
13  
P1  
I/O15  
P2  
CE  
0
I/O11 I/O15 I/O10  
OE  
P4  
TDO  
C
P2  
P1  
P1  
C
P3  
P1  
P4  
P4  
A
10  
P1  
A
12  
P1  
A
11  
P1  
A
9
P1  
I/O13  
P3  
I/O13  
P1  
I/O10  
P4  
I/O11 I/O16  
I/O9  
I/O14  
P4  
A
11  
P4  
A
12  
P4  
A
13  
P4  
TCK  
TMS  
D
E
P1  
P2  
P3  
D
E
A
P1  
6
A
P1  
5
A
P4  
10  
A
P1  
8
A
6
P4  
A
7
P4  
A
P4  
8
A9  
P4  
A
P1  
7
V
DD  
V
DD  
SS  
VDD  
VDD  
V
DD  
DD  
VDD  
VDD  
A
P1  
3
A
P1  
4
A
P1  
2
A
1
P4  
A
P4  
3
A
P1  
1
A
2
P4  
A
P4  
5
A
P4  
4
V
DD  
V
DD  
V
V
SS  
SS  
VSS  
V
VDD  
F
F
CLK  
P1  
A
P1  
0
CNTINC  
P1  
CNTRD  
P1  
A
P4  
0
CLK  
P4  
CNTINC CNTRD  
P4  
CNTLD  
P4  
G
V
DD  
VSS  
VSS  
VSS  
VSS  
V
VSS  
VSS  
VSS  
G
P4  
CNTRST  
P1  
CNTLD  
SS  
CNTINT  
P1  
CNTRST  
P4  
MKRD  
P4  
INT  
P4  
INT  
P1  
CNTINT  
P4  
MKLD  
P1  
MKLD  
P4  
VSS  
V
VSS  
VSS  
VSS  
H
J
P1  
H
J
CNTRST  
P3  
CLK  
P2  
INT CNTINT  
P3  
CNTRST  
P2  
CLK  
P3  
CNTINT  
P2  
MKLD  
P3  
INT  
P2  
MKRD  
P1  
VSS  
VSS  
V
SS  
SS  
V
SS  
SS  
VSS  
P3  
CNTINC  
P2  
A0  
P3  
CNTRD  
P2  
CNTLD  
P2  
MKRD  
P2  
MKLD  
P2  
CNTINC  
P3  
CNTLD  
P3  
MKRD  
P3  
CNTRD  
P3  
K
L
VSS  
VSS  
VSS  
V
V
VSS  
K
L
A
1
A
P2  
3
A
P2  
2
A
P2  
1
A
P3  
3
A
P3  
4
A2  
P3  
A
P2  
4
A0  
P2  
V
DD  
V
DD  
DD  
V
SS  
V
DD  
VDD  
VSS  
VSS  
P3  
A
P2  
6
A
5
P2  
A
5
A8  
P3  
A
P2  
8
A
P2  
9
A
P2  
7
A
P3  
7
A
6
P3  
M
N
P
R
T
VDD  
V
VDD  
VDD  
VDD  
VDD  
VDD  
M
N
P
R
T
P3  
A
P2  
10  
I/O  
P1  
5
A9  
P3  
A
11  
A
P2  
12  
I/O  
1
P1  
I/O  
6
P2  
I/O  
2
I/O  
3
A
P3  
11  
A
P3  
12  
A
10  
P3  
I/O  
7
I/O  
2
P4  
CLKMBIST  
TRST  
MRST  
P2  
P2  
P3  
P3  
A
P2  
13  
I/O  
2
P1  
I/O3  
P2  
I/O  
0
P3  
A
14  
P2  
I/O  
P1  
7
I/O  
7
I/O  
3
P4  
I/O  
4
I/O  
8
A
P3  
13  
I/O  
6
R/W  
P2  
CE  
P3  
0
A
P3  
14  
P2  
P3  
P3  
P4  
(1)  
(1)  
A15  
P3  
I/O  
P1  
8
I/O  
4
P1  
I/O2  
P3  
A
15  
P2  
CE  
P2  
1
UB  
P2  
I/O  
0
P1  
I/O5  
P2  
I/O  
1
I/O7  
P4  
I/O  
1
I/O  
6
P3  
CE  
P3  
1
I/O  
5
P4  
UB  
P3  
P4  
P2  
I/O  
P1  
6
I/O  
3
P1  
I/O  
8
P2  
I/O  
0
LB  
P3  
LB  
P2  
OE  
P3  
I/O  
4
I/O  
1
I/O5  
P3  
CE  
P2  
0
OE  
P2  
I/O  
0
I/O4  
P4  
I/O  
8
R/W  
P3  
P2  
P2  
P3  
P4  
P4  
7
1
2
3
4
5
6
8
9
10 11 12 13 14 15 16  
5649 drw 04  
NOTES:  
1. A15x is a NC for IDT70V5378.  
2. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch.  
3. This package code is used to reference the package diagram.  
4. This text does not indicate orientation of the actual part-marking.  
4
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Definitions  
Port 1  
Port 2  
Port 3  
Port 4  
Description  
Address Inputs. In the CNTRD and MKRD operations, these pins serve  
as outputs for the internal address counter and the internal counter mask  
register respectively.  
(1)  
(1)  
(1)  
(1)  
A0P1 - A15P1  
A0P2 - A15P2  
A0P3 - A15P3  
A0P4 - A15P4  
I/O0P1 - I/O17P1  
CLKP1  
I/O0P2 - I/O17P2  
CLKP2  
I/O0P3 - I/017P3 I/O0P4 - I/O17P4 Data Bus Input/Output.  
CLKP3  
CLKP4  
Clock Input. The maximum clock input rate is fMAX. The clock signal can  
be free running or strobed depending on system requirements.  
Master Reset Input. MRST is an asycnchronous input, and affects all  
ports. It must be asserted LOW (MRST = VIL) at initial power-up. Master  
Reset sets the internal value of all address counters to zero, and sets  
the counter mask registers for each port to 'unmasked'. It also resets the  
output flags for the mailboxes and the counter interrupts (INT = CNTINT  
= VIH) and deselects all registered control signals.  
MRST  
Chip Enable Inputs. To activate any port, both signals must be asserted  
= VIH). A given port is disabled if  
= VIH and/or CE = VIL).  
CE0P1, CE1P1  
R/WPI  
CE0P2, CE1P2  
R/WP2  
CE0P3, CE1P3  
R/WP3  
CE0P4, CE1P4  
R/WP4  
to their active states (CE  
0
= VIL, CE  
1
either chip enable is deasserted (CE  
0
1
Read/Write Enable Input. This signal is asserted LOW (R/W = VIL) in  
order to write to the FourPort memory array, and it is asserted HIGH  
(R/W = VIH) in order to read from the array.  
Lower Byte Select Input (I/O0 - I/O8). Asserting this signal LOW (LB = VIL)  
LBP1  
LBP3  
UBP3  
LBP2  
UBP2  
LBP4  
UBP4  
enables read/write operations to the lower byte. For read operations, this  
signal is used in conjunction with OE in order to drive output data on the  
lower byte of the data bus.  
Upper Byte Select Input (I/O  
V
9
- I/O17). Asserting this signal LOW (LB =  
IL) enables read/write operations to the upper byte. For read  
UBP1  
operations, this signal is used in conjunction with OE in order to drive  
output data on the upper byte of the data bus.  
Output Enable Input. Asserting this signal LOW (OE = VIL) enables the  
device to drive data on the I/O pins during read operation. OE is an  
asychronous input.  
OEP1  
OEP2  
OEP3  
OEP4  
Counter Load Input. Asserting this signal LOW (CNTLD = VIL) loads the  
address on the address lines (A  
counter for that port.  
CNTLDP1  
CNTLDP2  
CNTLDP3  
CNTLDP4  
0
- A15(1)) into the internal address  
Counter Increment Input. Asserting this signal LOW (CNTINC = VIL  
)
increments the internal address counter for that port on each rising edge  
of the clock signal. The counter will increment as defined by the counter  
mask register for that port (default mode is to advance one address on  
each clock cycle).  
CNTINCP1  
CNTRDP1  
CNTINCP2  
CNTRDP2  
CNTINCP3  
CNTRDP3  
CNTINCP4  
CNTRDP4  
Counter Readback Input. When asserted LOW (CNTRD = VIL) causes that  
port to output the value of its internal address counter on the address  
lines for that port. Counter readback is independent of the chip enables  
for that port. If the port is activated (CE0 = VIL and CE1 = VIH), during the  
counter readback operation, then the data bus will output the data  
associated with that readback address in the FourPort memory array  
(assuming that the byte enables and output enables are also asserted).  
Truth Table III indicates the required states for all other counter controls  
during this operation. The specific operation and timing of this funcion is  
described in detail in the text.  
Counter Reset Input. Asserting this signal LOW (CNTRST = VIL) resets  
the address counter for that port to zero.  
CNTRSTP1  
CNTINTP1  
CNTRSTP2  
CNTINTP2  
CNTRSTP3  
CNTINTP3  
CNTRSTP4  
CNTINTP4  
Counter Interrupt Flag Output. This signal is asserted LOW (CNTINT =  
VIL) when the internal address counter for that port 'wraps around' from  
max address [(the counter will increment as defined by the counter mask  
register for that port (default mode is to advance one address on each  
clock cycle)] to address min. as the result of counter increment (CNTINT  
= VIL). The signal goes LOW for one clock cycle, then automatically  
resets.  
5649 tbl 01  
5
6.42  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Definitions (con't.)  
Port 1  
Port 2  
Port 3  
Port 4  
MKLDP4  
Description  
Counter Mask Register Load Input. Asserting this signal LOW (MKLD =  
IL) loads the address on the address lines (A0  
- A15(1)) into the counter  
MKLDP1  
MKLDP2  
MKLDP3  
V
mask register for that port. Counter mask register operations are  
described in detail in the text.  
Counter Mask Register Readback Input. Asserting this signal LOW  
(MKRD = VIL) causes that port to output the value of its internal counter  
MKRDP1  
MKRDP2  
MKRDP3  
MKRDP4  
mask register on the address lines (A0  
- A15(1)) for that port. Address  
Counter and Counter-Mask Operational Table indicates the required  
states for all other counter controls during this operation. Counter mask  
register readback is independent of the chip enables for that port. If the  
port is activated (CE0 = VIL and CE1 = VIH) during the counter mask  
register readback operation, then the data bus will output the data  
associated with that address in the FourPort memory array ( assuming  
that the byte enables and output enables are also asserted). The specific  
operation and timing of this function is described in detail in the text.  
Interrupt Flag Output. The FourPort is equipped with mailbox functions:  
each port has a specific address wthin the memory array which, when  
written by any of the other ports, will generate an interrupt flag to that  
port. The port clears its interrupt by reading that address. The memory  
location is a valid address for data storage: a full 18-bit word can be  
stored for recall by the target port or any other port. The mailbox  
functions and associated interrupts are described in detail in the text.  
INTP1  
INTP2  
INTP3  
INTP4  
TMS  
JTAG Input: Test Mode Select  
JTAG Input: Test Mode Reset (Intialize TAP Controller and reset the  
MBIST Controller)  
TRST  
TCK  
JTAG Input: Test Clock  
TDI  
JTAG Input: Test Data Input (serial)  
JTAG Output: Test Data Output (serial)  
MBIST Input: MBIST Clock  
TDO  
CLKMBIST  
GND  
Thermal Grounds (should be treated like VSS  
)
V
DD  
Core Power Supply (3.3V)  
Electrical Grounds (0V)  
VSS  
5649 tbl 02  
NOTE:  
1. A15x is a NC for IDT70V5378.  
6
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I—Read/Write and Enable Control(1,2,3)  
Upper Byte Lower Byte  
CLK  
CE  
1
R/W  
X
X
X
L
I/O9-17  
High-Z  
High-Z  
High-Z  
High-Z  
I/O0-8  
High-Z  
High-Z  
High-Z  
MODE  
DeselectedPower Down  
DeselectedPower Down  
All Bytes Deselected  
Write to Lower Byte Only  
Write to Upper Byte Only  
Write to Both Bytes  
OE  
X
X
X
X
X
X
L
CE  
0
UB  
X
X
H
H
L
LB  
X
X
H
L
H
X
L
L
L
L
L
L
L
X
X
L
H
H
H
H
H
H
H
X
DIN  
H
L
L
DIN  
High-Z  
L
L
DIN  
DIN  
H
L
L
H
H
H
X
High-Z  
DOUT  
Read Lower Byte Only  
Read Upper Byte Only  
Read Both Bytes  
L
H
L
DOUT  
High-Z  
L
L
DOUT  
DOUT  
H
X
X
High-Z  
High-Z  
Outputs Disabled  
5649 tbl 03  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. CNTLD, CNTINC, CNTRST = VIH.  
3. OE is an asynchronous input signal.  
Truth Table II—Address Counter & Mask Control(1,2)  
Previous Internal  
External  
Address  
Internal Address  
MODE  
Address  
Used  
CLK  
I/O  
I/O(0)  
I/O(p)  
CNTLD CNTINC CNTRST  
MKLD  
X
(3)  
X
An  
An  
An  
X
X
0
X
X
X
X
X
H
L
D
Counter Reset to Address 0  
Counter disabled (Ap reused)  
I/O (n) External Address Used  
External Address BlockedCounter disabled (Ap reused)  
Ap  
Ap  
An  
Ap  
H
L
D
(3)  
X
L
H
H
H
H
H
H
D
Ap  
H
DI/O(p)  
(5)  
(4)  
(5)  
Ap  
Ap + 1  
L
H
DI/O(p+1) Counter EnabledInternal Address generation  
5649 tbl 04  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. Read and write operations are controlled by the appropriate setting of R/W, CE0, CE1, LB, UB and OE.  
3. CNTLD and CNTRST are independent of all other memory control signals including CE0, CE1 and LB, UB.  
4. The address counter advances if CNTINC = VIL on the rising edge of CLK, regardless of all other memory control signals including CE0, CE1, LB, UB.  
5. The counter will increment as defined by the counter mask register for that port (default mode is to advance one address on each clock cycle).  
7
6.42  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
AddressCounterandCounter-MaskControlOperationalTable  
(Any Port)(1,2)  
CLK  
MRST CNTRST MKLD  
CNTLD CNTINC CNTRD  
MKRD  
Mode  
Operation  
Master- Counter/Address Register Reset and Mask Register  
Reset Set (resets chip as per reset state definition)  
X
L
X
X
X
X
X
X
H
H
L
X
L
X
X
X
X
X
X
X
X
Reset Counter/Address Register Reset  
H
Load  
Load  
Load of Address Lines into Mask Register  
Load of Address Lines into Counter/Address  
Register  
H
H
H
H
H
X
H
H
X
L
H
X
X
L
X
X
L
X
X
X
Increment Counter Increment  
Read- Readback Counter on Address Lines  
back  
X
Read-  
H
H
X
H
X
X
H
X
H
H
X
L
Readback Mask Register on Address Lines  
back  
(3)  
X
Hold  
Counter Hold  
H
5649 tbl 05  
NOTES:  
1. "X" = "don't care", "H" = VIH, "L" = VIL.  
2. Counter operation and mask register operation is independent of Chip Enable.  
3. MKLD = VIL will also hold the counter. Please refer to Truth Table II.  
RecommendedDCOperating  
Conditions  
RecommendedOperating  
TemperatureandSupplyVoltage(1)  
Ambient  
Symbol  
Parameter  
Min. Typ.  
Max.  
3.45  
0
Unit  
Grade  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
VDD  
V
DD  
SS  
IH  
Supply Voltage  
3.15 3.3  
V
Commercial  
0V  
3.3V  
3.3V  
+
+
150mV  
150mV  
V
Ground  
0
0
V
Industrial  
0V  
(2)  
____  
Input High Voltage  
2.0  
VDD + 150mV  
V
V
5649 tbl 06  
(Address, Control & I/O Inputs)  
NOTES:  
1. This is the parameter TA. This is the "instant on" case temperature.  
-0.3(1)  
0.8  
V
____  
VIL  
Input Low Voltage  
5649 tbl 07  
NOTES:  
1. Undershoot of VIL > -1.5V for pulse width less than 10ns is allowed.  
2. VTERM must not exceed VDD + 150mV.  
8
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
Capacitance(1)  
AbsoluteMaximumRatings(1)  
(TA = +25°C, F = 1.0MHZ)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
V
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2)  
IN = 3dV  
Max. Unit  
(2)  
Terminal Voltage  
with Respect to GND  
-0.5 to +4.6  
CIN  
V
8
pF  
pF  
V
TERM  
(3)  
OUT  
C
VOUT = 3dV  
10.5  
Temperature Under Bias  
-55 to +125  
oC  
(3)  
T
BIAS  
STG  
JN  
OUT  
5649 tbl 09  
NOTES:  
T
Storage Temperature  
Junction Temperature  
DC Output Current  
-65 to +150  
+150  
oC  
oC  
1. These parameters are determined by device characterization, but are not  
production tested.  
2. 3dV references the interpolated capacitance when the input and output switch  
from 0V to 3V or from 3V to 0V.  
T
I
50  
mA  
3. COUT also references CI/O.  
5623 tbl 06  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated  
in the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect reliability.  
2. VTERM must not exceed VDD + 150mV for more than 25% of the cycle time or  
4ns maximum, and is limited to < 20mA for the period of VTERM > VDD + 150mV.  
3. Ambient Temperature under DC Bias. No AC conditions. Chip Deselected.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 3.3V ± 150mV)  
70V5388/78S  
Symbol  
Parameter  
Test Conditions  
DD = Max., VIN = 0V to VDD  
DD = Max., VIN = 0V to VDD  
OUT = 0V to VDD, Outputs in tri-state mode  
OL = +4mA, VDD = Min.  
OH = -4mA, VDD = Min.  
Min.  
Max.  
10  
Unit  
µA  
µA  
µA  
V
Input Leakage Current(1)  
V
___  
___  
___  
___  
|ILI  
|ILI  
|ILO  
|
(1,2)  
|
JTAG Input Leakage Current  
V
30  
(1)  
|
Output Leakage Current  
V
10  
VOL  
Output Low Voltage  
Output High Voltage  
I
0.4  
___  
VOH  
I
2.4  
V
5649 tbl 10  
NOTE:  
1. At VDD < 2.0V leakages are undefined.  
2. Applicable only for TMS, TDI and TRST inputs.  
9
6.42  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(3) (VDD = 3.3V ± 150mV)  
70V5388/78S200 70V5388/78S166 70V5388/78S133 70V5388/78S100  
Com'l Only  
Com'l  
& Ind  
Com'l  
& Ind  
Com'l  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(4)  
405  
Max.  
470  
Typ.(4)  
Max.  
395  
400  
190  
195  
240  
245  
15  
Typ.(4)  
Max.  
320  
325  
155  
160  
195  
200  
15  
Typ.(4)  
Max. Unit  
CE1 = CE2 = CE3 = CE4 ,  
(5) = VIL  
IDD  
Dynamic Operating  
Current (All  
Ports Active)  
S
S
S
S
S
S
S
S
S
S
340  
340  
160  
160  
210  
210  
1.5  
275  
275  
130  
130  
170  
170  
1.5  
205  
205  
100  
100  
130  
130  
1.5  
1.5  
130  
130  
240  
mA  
245  
Outputs Disabled,  
f = fMAX  
___  
___  
(1)  
IND  
CE1 = CE2 = CE3 = CE  
4
(5) = VIH,  
ISB1  
Standby Current  
(All Ports - TTL  
Level Inputs)  
COM'L  
IND  
195  
225  
120  
mA  
125  
Outputs Disabled,  
___  
___  
(1)  
f = fMAX  
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
CE  
A
= VIL and CEB = CEC = CED = VIH  
Active Port, Outputs Disabled,  
COM'L  
IND  
250  
290  
150  
mA  
155  
___  
___  
(1)  
f=fMAX  
ISB3  
Full Standby Current (All All Ports Outputs Disabled,  
Ports - CMOS  
Level Inputs)  
COM'L  
IND  
1.5  
15  
15  
CE(5) > VDD - 0.2V, VIN > VDD - 0.2V  
mA  
___  
___  
(2)  
1.5  
15  
1.5  
15  
15  
or VIN < 0.2V, f = 0  
(5)  
ISB4  
Full Standby Current  
(One Port - CMOS  
Level Inputs)  
CE  
V
A
< 0.2V and CEB = CEC = CE  
D
> VDD - 0.2V  
COM'L  
IND  
250  
290  
210  
210  
240  
245  
170  
170  
195  
200  
150  
mA  
155  
IN > VDD - 0.2V or VIN < 0.2V  
___  
___  
(1)  
Active Port, Outputs Disabled, f = fMAX  
5649 tbl 11  
NOTES:  
1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tCYC, using "AC TEST CONDITIONS" at input  
levels of GND to 3V.  
2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.  
3. Parameters are identical for all ports.  
4. VDD = 3.3V, TA = 25°C for Typ, and are not production tested. IDD DC(f=0) = 120mA (Typ).  
5. CEX = VIL means CE0X = VIL and CE1X = VIH  
CEX = VIH means CE0X = VIH or CE1X = VIL  
CEX < 0.2V means CE0X < 0.2V and CE1X > VDD - 0.2V  
CEX > VDD - 0.2V means CE0X > VDD - 0.2V or CE1X - 0.2V  
"X" represents indicator for appropriate port.  
10  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
AC Test Conditions (VDDQ - 3.3V)  
Input Pulse Levels (Address & Controls)  
Input Pulse Levels (I/Os)  
Input Rise/Fall Times  
GND to 3.0V  
GND to 3.0V  
2ns  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V  
1.5V  
Figure 1  
5649 tbl 12  
50  
50Ω  
,
DATAOUT  
1.5V  
10pF  
(Tester)  
5649 drw 05  
Figure 1. AC Output Test Load  
*(For tLZ, tHZ, tWZ, tOW)  
7
6
5
tCD  
(Typical, ns)  
4
3
2
1
0
0
20  
40  
60  
80  
100  
120  
140  
160  
5649 drw 07  
Capacitance (pF) from AC Test Load  
Figure 2. Typical Output Derating (Lumped Capacitive Load).  
11  
6.42  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating Temperature Range  
(Read and Write Cycle Timing) (VDD = 3.3V ± 150mV, TA = 0°C to +70°C)  
70V5388/78S200  
Com'l Only  
70V5388/78S166  
Com'l  
70V5388/78S133  
Com'l  
70V5388/78S100  
Com'l  
& Ind  
& Ind  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
____  
f
MAX  
CYC2  
CH2  
CL2  
SA  
HA  
SC  
HC  
SW  
HW  
SD  
HD  
SB  
HB  
SCLD  
HCLD  
SCINC  
HCINC  
SCRST  
HCRST  
SCRD  
HCRD  
SMLD  
HMLD  
SMRD  
HMRD  
OE  
OLZ(1 5)  
OHZ (1,5)  
CD2  
CA2  
CM 2  
DC  
CKHZ (1,2,5)  
CKLZ (1,2,5)  
2
Maximum Frequency  
Clock Cycle Time  
200  
166  
133  
100  
____  
____  
____  
____  
t
5
6
7.5  
2.6  
2.6  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
10  
4
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
Clock HIGH Time  
2.0  
2.0  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
2.1  
2.1  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
t
Clock LOW Time  
4
t
Address Setup Time  
Address Hold Time  
Chip Enable Setup Time  
Chip Enable Hold Time  
R/W Setup Time  
2
t
0.7  
2
t
t
0.7  
2
t
t
R/W Hold Time  
0.7  
2
t
Input Data Setup Time  
Input Data Hold Time  
Byte Setup Time  
t
0.7  
2
t
t
Byte Hold Time  
0.7  
2
t
CNTLD Setup Time  
t
0.7  
2
CNTLD Hold Time  
t
CNTINC Setup Time  
CNTINC Hold Time  
t
0.7  
2
t
CNTRST Setup Time  
CNTRST Hold Time  
CNTRD Setup Time  
CNTRD Hold Time  
t
0.7  
2
t
t
0.7  
2
t
MKLD Setup Time  
t
0.7  
2
MKLD Hold Time  
t
MKRD Setup Time  
t
0.5  
0.5  
0.5  
0.7  
MKRD Hold Time  
____  
____  
____  
____  
t
Output Enable to Data Valid  
OE to LOW-Z  
4.0  
4.0  
4.2  
5
,
____  
____  
____  
____  
t
1
1
1
1
t
1
3.4  
3.0  
3.4  
1
3.6  
3.2  
3.6  
1
4.2  
3.4  
4.2  
1
4.5  
3.6  
5
OE to HIGH-Z  
____  
____  
____  
____  
t
Clock to Data Valid  
____  
____  
____  
____  
____  
____  
____  
____  
t
Clock to Counter Address Readback Valid  
Clock to Mask Register Readback Valid  
Data Output Hold After Clock HIGH  
Clock HIGH to Output HIGH-Z  
Clock HIGH to Output LOW-Z  
t
3.4  
3.6  
4.2  
5
____  
____  
____  
____  
t
1
1
1
1
1
1
1
1
1
1
1
1
t
3
3
3
3
____  
____  
____  
____  
t
5649 tbl 13a  
12  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating Temperature Range  
(Read and Write Cycle Timing) (VDD = 3.3V ± 150mV, TA = 0°C to +70°C)  
70V5388/78S200  
Com'l Only  
70V5388/78S166  
Com'l  
70V5388/78S133 70V5388/78S100  
Com'l  
& Ind  
Com'l  
& Ind  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
Interrupt Timing  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
SINT  
RINT  
SCINT  
RCINT  
Clock to INT Set Time  
5
5
5
5
6
6
6
6
7.5  
7.5  
7.5  
7.5  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
t
Clock to INT Reset Time  
Clock to CNTINT Set Time  
Clock to CNTINT Reset Time  
t
t
Master Reset Timing  
____  
____  
____  
____  
____  
____  
____  
____  
t
RS  
RSR  
ROF  
Master Reset Pulse Width  
7.5  
7.5  
7.5  
10  
ns  
ns  
ns  
t
Master Reset Recovery Time  
7.5  
7.5  
7.5  
10  
____  
____  
____  
____  
t
Master Resetto Output Flags Reset Time  
6.5  
6.5  
6.5  
8
Port to Port Delays  
____  
____  
____  
____  
CCS(3)  
Clock-to-Clock Setup Time  
4.5  
5
6.5  
9
ns  
t
JTAG Timing(4  
)
____  
____  
____  
____  
Maximum JTAG TAP Controller Frequency  
TCK Clo ck Cycle Time  
TCK Clo ck High Time  
TCK Clo ck Low Time  
JTAG Setup  
10  
10  
10  
10  
MHz  
ns  
f
JTAG  
____  
____  
____  
____  
100  
100  
100  
100  
tTCYC  
____  
____  
____  
____  
t
TH  
TL  
JS  
JH  
JCD  
40  
40  
20  
40  
40  
20  
40  
40  
20  
40  
40  
20  
ns  
____  
____  
____  
____  
____  
____  
____  
____  
ns  
t
ns  
t
____  
____  
____  
____  
20  
20  
20  
20  
t
JTAG Hold  
ns  
____  
____  
____  
____  
t
TCK Clock Low to TDO Valid (JTAG Data Output)  
20  
20  
20  
20  
ns  
____  
____  
____  
____  
0
0
ns  
t
JDC  
TCK Clock Low to TDO Invalid (JTAG Data Output Hold)  
Maximum CLKMBIST Frequency  
0
0
____  
____  
____  
____  
fBIST  
200  
166  
133  
100  
MHz  
ns  
____  
____  
____  
____  
2
2.5  
3
4
t
BH  
BL  
JRST  
JRSR  
CLKMBIST High Time  
CLKMBIST Low Time  
JTAG Reset  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
2
2.5  
50  
3
4
t
ns  
50  
50  
50  
t
ns  
50  
50  
50  
50  
t
JTAG Reset Recovery  
ns  
5649 tbl 13b  
NOTES:  
1. Guaranteed by design (not production tested).  
2. Valid for both data and address outputs.  
3. This parameter defines the time necessary for one port to complete a write and have valid data available at that address for access from the other port(s).  
Attempting to read data before tCCS has elapsed will result in the output of indeterminate data.  
4. JTAG operations occur at one speed (10MHz). The base device may run at any speed specified in this datasheet.  
5. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 1).  
13  
6.42  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
Switching Waveforms  
Timing Waveform of Read Cycle(2)  
tCYC2  
tCH2  
t
CL2  
CLK  
CE  
0
t
SC  
(3)  
tHC  
t
SC  
t
HC  
HB  
CE1  
t
SB  
tHB  
t
SB  
t
(5)  
LB, UB  
R/W  
t
HW  
HA  
t
SW  
SA  
t
t
ADDRESS(4)  
An  
An + 1  
An + 2  
Qn  
An + 3  
(1 Latency)  
tDC  
tCD2  
Qn + 2 (5)  
DATAOUT  
Qn + 1  
(1)  
tCKLZ  
t
OHZ  
tOLZ  
OE (1)  
,
tOE  
NOTES:  
1. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge.  
2. CNTLD = VIL, CNTINC and CNTRST = VIH.  
5649 drw 08  
3. The output is disabled (High-Impedance state) by CE0 = VIH, CE1 = VIL, LB, UB = VIH following the next rising edge of the clock. Refer to Truth Table I.  
4. Addresses do not have to be accessed sequentially since CNTLD = VIL constantly loads the address on the rising edge of the CLK; numbers  
are for reference use only.  
5. If LB, UB was HIGH, then the appropriate Byte of DATAOUT for Qn + 2 would be disabled (High-Impedance state).  
Timing Waveform of a Multi-Device Read(1,2)  
t
CYC2  
tCH2  
tCL2  
CLK  
ADDRESS(B1)  
CE0(B1)  
t
SA  
tHA  
A6  
A5  
A4  
A3  
A
2
A0  
A1  
tSC tHC  
tSC tHC  
tCD2  
tCD2  
tCKHZ  
tCD2  
Q0  
Q3  
A5  
Q
1
DATAOUT(B1)  
tDC  
tCKLZ  
tDC  
tCKHZ  
tSA tHA  
A6  
A4  
A3  
A2  
A0  
A1  
ADDRESS(B2)  
tSC tHC  
CE0(B2)  
tSC tHC  
tCD2  
tCKHZ  
tCD2  
,
DATAOUT(B2)  
Q4  
Q2  
tCKLZ  
tCKLZ  
NOTES:  
5649 drw 09  
1. B1 Represents Device #1; B2 Represents Device #2. Each Device consists of one IDT70V5388/78 for this waveform,  
and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation.  
2. LB, UB, OE, and CNTLD = VIL; CE1(B1), CE1(B2), R/W, CNTINC, and CNTRST = VIH.  
14  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Port A Write to Port B Read(1,2,4)  
CLK"A"  
tSW  
tHW  
R/W"A"  
ADDRESS"A"  
DATAIN"A"  
t
SA  
MATCH  
SD HD  
VALID  
tHA  
NO  
MATCH  
t
t
(3)  
CCS  
t
CLK"B"  
t
CD2  
R/W"B"  
t
SW  
SA  
t
HW  
t
tHA  
NO  
ADDRESS"B"  
DATAOUT"B"  
MATCH  
MATCH  
VALID  
t
DC  
5649 drw 10  
NOTES:  
1. CE0, LB, UB, and CNTLD = VIL; CE1, CNTINC, CNTRST, MRST, MKLD, MKRD and CNTRD = VIH.  
2. OE = VIL for Port "B", which is being read from. OE = VIH for Port "A", which is being written to.  
3. If tCCS < minimum specified, then data from Port "B" read is not valid until following Port "B" clock cycle (ie, time from write to valid read on opposite  
port will be tCCS + 2 tCYC2 + tCD2). If tCCS > minimum, then data from Port "B" read is available on first Port "B" clock cycle (ie, time from write to  
valid read on opposite port will be tCCS + tCYC2 + tCD2).  
4. All timing is the same for all ports. Port "A" may be any port. Port "B" is any other port on the device.  
Timing Waveform of Read-to-Write-to-Read (OE = VIL)(2)  
t
CYC2  
tCH2  
tCL2  
CLK  
CE0  
t
SC  
tHC  
CE1  
t
SB  
tHB  
LB, UB  
tSW tHW  
R/W  
tSW tHW  
(3)  
An + 3  
An + 4  
An  
An +1  
An + 2  
An + 2  
ADDRESS  
t
SA  
tHA  
t
SD  
t
HD  
DATAIN  
Dn + 2  
t
CD2  
t
CD2  
(1)  
tCKHZ  
Qn + 3  
Qn  
DATAOUT  
t
CKLZ  
READ  
NOP(4)  
WRITE  
READ  
,
5649 drw 11  
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CNTLD = VIL; CNTINC, and CNTRST, MRST, MKLD, MKRD and CNTRD = VIH. "NOP" is "No Operation".  
3. Addresses do not have to be accessed sequentially since CNTLD = VIL constantly loads the address on the rising edge of the CLK; numbers  
are for reference use only.  
4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.  
15  
6.42  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Read-to-Write-to-Read (OE Controlled)(2)  
t
CYC2  
tCH2  
tCL2  
CLK  
CE  
0
tSC  
tHC  
CE1  
tSB  
tHB  
LB, UB  
tSW tHW  
R/W  
t
SW tHW  
(3)  
An + 4  
An  
An +1  
An + 2  
An + 3  
Dn + 3  
An + 5  
ADDRESS  
t
SA  
tHA  
t
SD  
tHD  
DATAIN  
Dn + 2  
t
CD2  
tCD2  
(1)  
Qn  
Qn + 4  
DATAOUT  
(4)  
tCKLZ  
t
OHZ  
OE  
READ  
WRITE  
READ  
,
5649 drw 12  
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CNTLD = VIL; CNTINC, CNTRST, MRST, MKLD, MKRD and CNTRD = VIH.  
3. Addresses do not have to be accessed sequentially since CNTLD = VIL constantly loads the address on the rising edge of the CLK;  
numbers are for reference use only.  
4. This timing does not meet requirements for fastest speed grade. This waveform indicates how logically it could be done if timing so allows.  
Timing Waveform of Read with Address Counter Advance(1)  
t
CYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
ADDRESS  
An  
tSCLD tHCLD  
CNTLD  
tSCLD tHCLD  
CNTINC  
SCLD tHCLD  
t
tCD2  
,
Qn + 2(2)  
Qx - 1(2)  
Qn + 3  
Qn + 1  
Qn  
Qx  
DATAOUT  
tDC  
READ  
READ  
WITH  
COUNTER  
COUNTER  
HOLD  
READ WITH COUNTER  
EXTERNAL  
ADDRESS  
5649 drw 13  
NOTES:  
1. CE0, LB and UB = VIL; CE1, CNTRST, MRST, MKLD, MKRD and CNTRD = VIH.  
2. If there is no address change via CNTLD = VIL (loading a new address) or CNTINC = VIL (advancing the address), i.e. CNTLD = VIH and CNTINC = VIH, then  
the data output remains constant for subsequent clocks.  
16  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with Address Counter Advance(1)  
t
CYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
An  
ADDRESS  
INTERNAL(3)  
ADDRESS  
An(7)  
An + 1  
An + 3  
An + 4  
An + 2  
tSCLD tHCLD  
CNTLD  
tSCINC tHCINC  
CNTINC  
tSD tHD  
Dn + 4  
Dn + 1  
Dn + 3  
Dn  
Dn + 1  
Dn + 2  
DATAIN  
WRITE  
EXTERNAL  
ADDRESS  
WRITE  
WITH COUNTER  
WRITE  
COUNTER HOLD  
WRITE WITH COUNTER  
5649 drw 14  
Timing Waveform of Counter Reset(2)  
t
CYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
(4)  
An + 2  
An  
An + 1  
ADDRESS  
INTERNAL(3)  
ADDRESS  
Ax  
A1  
A0  
An  
An + 1  
tSW tHW  
R/  
W
CNTLD  
tSCLD  
tHCLD  
CNTINC  
tSCINC tHCINC  
tSCRST tHCRST  
CNTRST  
tSD  
tHD  
D0  
DATAIN  
(5)  
Q1  
Qn  
Q0  
DATAOUT  
EXECUTE(6)  
CNTRST  
WRITE  
READ  
READ  
READ  
A0  
READ  
A1  
A
0
ADDRESS n ADDRESS n+1  
5649 drw 15  
NOTES:  
1. CE0, LB, UB, and R/W = VIL; CE1 and CNTRST, MRST, MKLD, MKRD, and CNTRD = vIH.  
CE0, LB, UB = VIL; CE1 = VIH.  
2.  
3. The "Internal Address" is equal to the "External Address" when CNTLD = VIL and equals the counter value when CNTLD = VIH.  
4. Addresses do not have to be accessed sequentially since CNTLD = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference  
use only.  
5. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
6. No dead cycle exists during CNTRST operation. A READ or WRITE cycle may be coincidental with the counter CNTRST cycle: Address 0000h will be  
accessed. Extra cycles are shown here simply for clarification. For more information on CNTRST function refer to Truth Table II.  
7. CNTINC = VIL advances Internal Address from An’ to An +1. The transition shown indicates the time required for the counter to advance. The An +1Address  
is written to during this cycle.  
17  
6.42  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Master Reset(1)  
t
CYC2  
tCH2  
t
CL2  
CLK  
tRS  
MRST  
tROF  
ALL ADDRESS/  
DATA LINES  
tRSR  
(2)  
tS  
ALL OTHER  
INPUTS  
INACTIVE  
ACTIVE  
CNTINT  
INT  
5649 drw 16  
NOTES:  
1. Master Reset will reset the device. For JTAG and MBIST reset please refer to the JTAG Timing specification.  
2. tS is the set-up time required for all input control signals.  
18  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Load and Read Address Counter(1,2,3)  
t
CYC2  
(2)  
(3)  
t
CH2 tCL2  
CLK  
tCA2  
tSA  
tCKHZ  
tCKLZ  
tHA  
(4)  
An+2  
An  
A0  
-
A15  
tSCLD  
tHCLD  
CNTLD  
CNTINC  
tSCINC  
tHCINC  
tHCRD  
tSCRD  
CNTRD  
INTERNAL  
ADDRESS  
A
n+1  
An+2  
A
n
An+2  
An+2  
,
tDC  
tCD2  
Qn+2  
DATAOUT  
Qn+2  
Qx  
Qn+1  
Qn+2  
Qx-1  
Qn  
READ  
INTERNAL  
ADDRESS  
LOAD  
EXTERNAL  
ADDRESS  
READ DATA WITH COUNTER  
5649 drw 17  
NOTES:  
1. CE0, OE, LB and UB = VIL; CE1, R/W, CNTRST, MRST, MKLD and MKRD = VIH.  
2. Address in output mode. Host must not be driving address bus after time tCKLZ in next clock cycle.  
3. Address in input mode. Host can drive address bus after tCKHZ.  
4. This is the value of the address counter being read out on the address lines.  
Timing Waveform of Load and Read Mask Register(1,2,3,4)  
t
CYC2  
t
CH2 CL2  
t
(2)  
(1)  
CLK  
tCA2  
tSA  
tHA  
tCKHZ  
tCKLZ  
(4)  
A
n
A0 - A15  
An  
tSMLD  
tHMLD  
MKLD  
tSMRD  
tHMLD  
MKRD  
MASK  
INTERNAL  
VALUE  
An  
A
n
An  
An  
A
n
An  
,
READ  
LOAD  
MASK-REGISTER  
VALUE  
MASK REGISTER  
VALUE  
5649 drw 18  
NOTES:  
1. Address in output mode. Host must not be driving address bus after time tCKLZ in next clock cycle.  
2. Address in input mode. Host can drive address bus after tCKHZ.  
3. CE0, OE, LB and UB = VIL; CE1, R/W, CNTRST, MRST, CNTLD, CNTRD and CNTINC = VIH.  
4. This is the value of the mask register being read out on the address lines.  
19  
6.42  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Counter Interrupt(1,3)  
t
CYC2  
t
CH2 CL2  
t
CLK  
EXTERNAL  
ADDRESS  
007Fh  
xx7Dh  
tHMLD  
tSMLD  
MKLD  
tSCLD  
tHCLD  
CNTLD  
tSCINC  
tHCINC  
CNTINC  
COUNTER  
INTERNAL  
ADDRESS  
xx7Eh  
xx7Fh  
xx00h  
xx7Dh  
A
n
xx00h  
,
tRCINT  
tSCINT  
(2)  
CNTINT  
5649 drw 19  
Timing Waveform of Mailbox Interrupt Timing(4,6)  
t
CYC2  
t
CH2 CL2  
t
CLKP1  
tSA tHA  
PORT-1  
ADDRESS  
FFFE  
An  
An+1  
An+2  
An+3  
(5)  
tSINT  
INTP2 (7)  
tRINT  
t
CYC2  
t
CH2 CL2  
t
CLKP2  
tSA tHA  
PORT-2  
ADDRESS  
,
FFFE  
Am  
Am+1  
Am+3  
A
m+4  
(5)  
5649 drw 20  
NOTES:  
1. CE0, OE, LB and UB = VIL; CE1, R/W, CNTRST, MRST, CNTRD and MKRD = VIH.  
2. CNTINT is always driven.  
3. CNTINT goes LOW as the counter address increments (via CNTINC = VIL) past the maximum value programmed into the mask register and 'wraps around' to xx00h  
CNTINT stays LOW for one cycle, then resets. In this example, the mask register was programmed at xx7Fh ('x' indicates "Don't Care"). The Counter Mask Register  
operations are detailed on page 24.  
4. CNTRST, MRST, CNTRD CNTINC , MKRD and MKLD = VIH. The mailbox interrupt circuitry relies on the state of the chip enables, the read/write signal, and the  
address location to generate or clear interrupts as appropriate - other control signals such as OE, LB and UB are "Don't Care". Please refer to Truth Table III (page  
22) for further explanation.  
5. Address FFFEh is the mailbox location for Port 2 of IDT70V5388. Refer to Truth Table III for mailbox location of other Ports (page 22).  
6. Port 1 is configured for a write operation (setting the interrupt) in this example, and Port 2 is configured for a read operation (clearing the interrupt). Ports 1 and 2 are  
used for an example: any port can set an interrupt to any other port per the operations in Truth Table III (page 22).  
7. The interrupt flag is always set with respect to the rising edge of the writing port's clock, and cleared with respect to the rising edge of the reading port's clock.  
20  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
FunctionalDescription  
TheIDT70V5388/78providesatruesynchronous  
oftCCS mayproduceindeterminatedatafortheread.Twoor  
more ports attempting to write the same address location  
simultaneouslywillresultinindeterminatedatarecordedat  
that address.  
Eachportisequippedwithdualchipenables, CE0  
and CE1. A HIGH on CE0 or a LOW on CE1 for one clock  
cycle on any port will power down the internal circuitry on  
thatportinordertoreducestaticpowerconsumption. The  
multiplechipenablesalsoalloweasierbankingofmultiple  
IDT70V5388/78sfordepthexpansionconfigurations.One  
cycleisrequiredwithchipenablesreassertedtoreactivate  
the outputs.  
FourPort Static RAM interface. Registered inputs provide  
minimal set-up and hold times on address, data, and all  
critical control inputs. All internal registers are clocked on  
therisingedgeoftheclocksignal, however, theself-timed  
internal write pulse is independent of the LOW to HIGH  
transition of the clock signal and the duration of the R/W  
input signal. This is done in order to offer the fastest  
possible cycle times and highest data throughput. At 200  
MHz,thedevicesupportsacycletimeof5ns,andprovides  
a pipelined data output of 3.0 ns from clock edge to data  
valid. Four ports operating at 200 MHz, each with a bus  
width of 18 bits, results in a data throughput rate of nearly  
14 Gbps.  
Depth and Width Expansion  
Asatruesynchronousdevice,theIDT70V5388/78  
providestheflexibilitytoclockeachportindependently:the  
portsmayrunatdifferentfrequenciesand/oroutofsynchro-  
nization with each other. As a true FourPort device, the  
IDT70V5388/78 is capable of performing simultaneous  
reads from all ports on the same address location. Care  
shouldbetakenwhenattemptingtowriteandreadaddress  
locations simultaneously: the timing diagrams depict the  
critical parameter tCCS, which determines the amount of  
timeneededtoensurethatthewritehassuccessfullybeen  
completedandsovaliddataisavailableforoutput.Violation  
The IDT70V5388/78 features dual chip enables  
(refertoTruthTableI)inordertofacilitaterapidandsimple  
depth expansion with no requirements for external logic.  
Figure 4 illustrateshowtocontrolthevariouschipenables  
in order to expand two devices in depth.  
The IDT70V5388/78 can also be used in applica-  
tions requiring expanded width, as indicated in Figure 3.  
Throughcombiningthecontrolsignals,thedevicescanbe  
grouped as necessary to accommodate applications re-  
quiring36-bitsorwider.  
(1)  
A16/A15  
IDT70V5388/78  
IDT70V5388/78  
CE0  
CE0  
CE1  
CE1  
VDD  
VDD  
Control Inputs  
Control Inputs  
IDT70V5388/78  
IDT70V5388/78  
CE1  
CE1  
UB, LB  
R/W,  
OE,  
CE0  
CE0  
Control Inputs  
Control Inputs  
CLK,  
CNTLD,  
CNTRST,  
CNTINC  
5649 drw 21  
Figure 3. Depth and Width Expansion with IDT70V5388/78  
NOTE:  
1. A16 is for IDT70V5388, A15 is for IDT70V5378.  
21  
6.42  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
MailboxInterrupts  
possible to do so by disabling the byte enables during that  
write cycle.  
TheIDT70V5388/78supportsmailboxinterrupts,  
facilitatingcommunicationamongthedevicesattachedto  
each port. If the user chooses the interrupt function, then  
each of the upper four address locations in the memory  
arrayareassignedasamailboxforoneoftheports:FFFFh  
(7FFFh for IDT70V5378) is the mailbox for Port 1, FFFEh  
(7FFEh for IDT70V5378) is the mailbox for Port 2, FFFDh  
(7FFDh for IDT70V5378) is the mailbox for Port 3, and  
FFFCh (7FFCh for IDT70V5378) is the mailbox for Port 4.  
TruthTableIIIdetailstheoperationofthemailboxinterrupt  
functions.  
Once INT has gone LOW for a specific port, that  
port can reset the INT by reading its assigned mailbox. In  
the case of Port 1, it would clear its INT signal by reading  
FFFFh(7FFFhforIDT70V5378).Asstatedpreviously,the  
interrupt operation executes based on the state of the  
address pins, the chip enables, and the R/W pin: it is  
possible to clear the interrupt by asserting a read to the  
appropriatelocationwhilekeepingtheoutputenable(OE)or  
the byte enables deasserted, and so avoid having to drive  
data on the I/O bus. The INT is reset, or goes HIGH again,  
in relation to the reading port’s clock signal.  
A given port’s interrupt is set (i.e., INT goes LOW)  
whenever any other port on the device writes to the given  
port’saddress.Forexample,Port1sINTwillgoLOWifPort  
2,Port3,orPort4writetoFFFFh(7FFFhforIDT70V5378).  
The INT will go LOW in relation to the clock on the writing  
port (see also the Mailbox Interrupt Timing waveform on  
page 20). If a port writes to its own mailbox, no interrupt is  
generated.  
The mailbox location is a valid memory address:  
the user can store an 18-bit data word at that location for  
retrievalbythetargetport.Intheeventthattwoormoreports  
attempt to set an interrupt to the same port at the same  
time, theinterruptsignalwillgoLOW, butthedataactually  
stored at that location will be indeterminate. The actual  
interrupt is generated as a result of evaluating the state of  
the address pins, the chip enables, and the R/W pin: if the  
user wishes to set an interrupt to a specific port without  
changing the data stored in that port’s mailbox, it is  
MasterReset  
TheIDT70V5388/78isequippedwithanasynchro-  
nousMasterResetinput,whichcanbeassertedindepen-  
dentlyofallclockinputsandwilltakeeffectpertheMaster  
Resettimingwaveformonpage18.TheMasterResetsets  
theinternalvalueofalladdresscounterstozero, andsets  
the counter mask register on each port to all ones (i.e.,  
completelyunmasked).Italsoresetsallmailboxinterrupts  
and counter interrupts to HIGH (i.e., non-asserted) and  
sets all registered control signals to a deselected state. A  
MasterResetoperationmustbeperformedafterpower-up,  
inordertoinitializethevariousregistersonthedevicetoa  
knownstate.MasterResetwillresetthedevice.ForJTAG  
andMBISTresetpleaserefertotheJTAGSectiononpage  
25.  
Truth Table III—Mailbox Interrupt Flag Operations  
(1,2)  
(1,2)  
(1,2)  
(1,2)  
Port 1  
Port 2  
Port 3  
Port 4  
(4)  
(4)  
(4)  
(4)  
CE  
X
L
INT  
L
CE  
L
INT  
X
X
L
CE  
L
INT  
X
X
X
X
L
CE  
INT  
X
X
X
X
X
X
L
R/W  
A
15-  
A
0
R/W  
L
A
15-  
A
0
R/W  
L
A
15-  
A
0
R/W  
L
A
15-  
A
0
Function  
X
X
FFFF  
X
FFFF  
X
L
X
L
FFFF  
X
Set Port 1 INT Flag(3)  
Reset Port 1 INT Flag  
Set Port 2 INT Flag(3)  
Reset Port 2 INT Flag  
Set Port 3 INT Flag(3)  
Reset Port 3 INT Flag  
Set Port 4 INT Flag(3)  
Reset Port 4 INT Flag  
H
FFFF  
FFFE  
X
H
X
X
X
X
X
X
X
X
H
L
X
X
L
X
L
X
L
X
L
L
L
X
FFFE  
X
FFFE  
X
X
X
L
FFFE  
FFFD  
X
H
X
X
X
X
X
X
H
L
X
X
L
X
L
X
L
L
FFFD  
X
L
X
FFFD  
X
X
X
L
X
L
X
L
FFFD  
FFFC  
X
H
X
X
X
X
H
X
X
L
L
X
FFFC  
X
FFFC  
X
L
X
X
X
X
X
X
FFFC  
H
5649 tbl 14  
NOTES:  
1. The status of OE is a "Don't Care" for the interrupt logic circuitry. If it is desirable to reset the interrupt flag on a given port while keeping the I/O bus in a tri-state  
condition, then this can be accomplished by setting OE = VIH while the read access is asserted to the appropriate address location.  
2. The status of the LB and UB controls are "Don't Care" for the interrupt circuitry. If it is desirable to set the interrupt flag to a specific port without overwriting the  
data value already stored at the mailbox location, then this can be accomplished by setting LB = UB = VIH during the write access for that specific mailbox.  
Similarly, if it desirable to reset the interrupt flag on a given port while keeping the I/O bus in a tri-state condition, then this can be accomplished by setting LB  
= UB = VIH while the read access is asserted to the appropriate address location.  
3. The interrupt to a specific port can be set by any one of the other three ports. The appropriate control states for the other three ports are depicted above. In the  
event that two or more ports attempt to set the same interrupt flag simultaneously via a valid data write, the data stored at the mailbox location will be  
indeterminate.  
4. A15 is a NC for IDT70V5378, therefore Mailbox Interrupt Addresses are 7FFF, 7FFE, 7FFD and 7FFC. Address comparison will be for A0 - A14.  
22  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
Address Counter Control Operations  
EachportontheIDT70V5388/78isequippedwith  
an internal address counter, to ease the process of  
burstingdataintooroutofthedevice.TruthTableIIdepicts  
the specific operation of the counter functions, to include  
theorderofpriorityamongthesignals.Allcountercontrols  
areindependentofchipenables.Thedevicesupportsthe  
ability to load a new address value on each access, or to  
loadanaddressvalueonagivenclockcycleviatheCNTLD  
controlandthenallowthecountertoincreasethatvalueby  
preset increments on each successive clock via the  
CNTINC control (see also the Counter Mask Operations  
section that follows). The counter can be suspended on  
any clock cycle by disabling the CNTINC, and it can be  
reset to zero on any clock cycle by asserting the CNTRST  
control.CNTRST onlyaffectstheaddressvaluestoredinthe  
counter: it has no effect on the counter mask register.  
Whenthecounterreachesthemaximumvaluein  
thearray(i.e.,addressFFFFhforIDT70V5388andaddress  
7FFFh for IDT70V5378) or it reaches the highest value  
permitted by the Counter Mask Register, it then ‘wraps  
aroundtothebeginningofthearray.WhenAddressMinis  
reached via counter increment (i.e., not as a result of an  
externaladdressload),thentheCNTINT signalforthatport  
isdrivenlowforoneclockcycle,automaticallyresettingon  
the next cycle.  
When the CNTRD control is asserted, the  
IDT70V5388/78willoutputthecurrentaddressstoredinthe  
internalcounterforthatportasnotedintheLoadandRead  
AddressCountertimingwaveformonpage19.Theaddress  
will be output on the address lines. During this output, the  
data I/Os will be driven in accordance with the settings of  
the chip enables, byte enables, and the output enable on  
that port: the device does not automatically tri-state these  
pins during the address readback operation.  
CNTRD  
MKRD  
Read Back  
Register  
Addr.  
Read  
Back  
MKLD  
Memory  
Array  
Mask  
Register  
Address  
(I/O)  
Counter/  
Address  
Register  
CNTLD  
CNTINC  
CNTRST  
,
CLK  
5649 drw 22  
Figure 4. Logic Block Diagram for Read Back Operations  
23  
6.42  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
Counter-MaskRegister  
CNTINT  
Load  
Counter-Mask  
Register = FF  
H
0 0  
0's 0 1 1 1 1 1 1 1 1  
STEP 1  
A
15(2)  
A14  
A8  
A7  
A6  
A5  
A4  
A3  
A1 A0  
A2  
Masked Address  
Counter Address  
Load  
Address  
Counter = FD  
STEP 2  
H
H
L
0 0  
0's 0 1 1 1 1 1 1 0 1  
A
15(2)  
A14  
A8  
A7  
A6  
A5  
A4  
A3  
A1 A0  
A2  
Max  
Address  
Register  
STEP 3  
STEP 4  
,
X X  
X's  
1 1 1 1 1 1 1  
1
X
A
15(2)  
A14  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
Max + 1  
Address  
Register  
X X  
X's X 0 0 0 0 0 0 0 0  
A
15(2)  
A14  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
5649 drw 23  
Figure 5. Programmable Counter-Mask Register Operation(1)  
NOTE:  
1. The "X's" in this diagram represent the upper bits of the counter.  
2. A15 is a NC for IDT70V5378.  
The internal address counter on each port has an operation, the CNTINT output for this port is automatically  
associatedCounterMaskRegisterthatallowsforconfigu- triggered – it will go low for one clock cycle and then reset.  
ration of the internal address counter on that port. Truth  
TheexampledepictedinFigure 5isaverysimple  
TableIIIgroupstheoperationsoftheaddresscounterwith one: it is also possible to mask non-contiguous bits, such  
thoseofthecountermaskregister,toincludeMasterReset asloading5555hinthemaskregister.Asstatedpreviously,  
andapplicablereadbackoperations.  
theaddresscountersimplyconcatenatesallbitsthathave  
Each bit in the mask register controls the corre- not been masked and continues to increment those bits in  
spondingbitintheinternaladdresscounter:writinga1to accordance with the CNTINC control: in this fashion, if the  
a bit in the mask register allows that bit to increment in mask register is set at 5555h and a start address of 0007h  
responsetoCNTINC,whilewritinga0toabitmasksit(i.e., is asserted via CNTLD, the next value the counter will  
locks it at whatever value is loaded via CNTLD). The mask increment to in response to the CNTINC control is 0012h,  
register is extremely flexible: every bit can be controlled then 0013h, then 0016h, etc.  
independentlyofeveryotherbit.Thecountersimplyconcat-  
Besides supporting precise control of which por-  
enates those bits that have not been masked, giving the tions of the array are available to a particular port in burst  
user great selectivity in determining which portions of the operations, the independent control on the mask register  
memory array are available to a particular port for burst bits also provides excellent flexibility in determining the  
operations.  
value by which the counter will increment. For example,  
Figure 5 illustrates the operation of the Counter settingbit0ofthemaskregisterto0masksitfromcounter  
Mask Register in simply constraining a port to a selected operation, effectively configuring that port to count by  
portionofthearray,specificallyaddresses0000hto00FFh. incrementsoftwo.Thiscanbeveryusefulinconfiguringtwo  
Instepone,themaskregisterisloadedwith00FFhviaMKLD ports to work in combination, effectively creating a single  
(see also the Load and Read Mask Register timing wave- 36-bit port. Thus, Port 1 can be configured to count by two  
formonpage19).Insteptwo,astartingaddressof00FDis starting on even addresses (the start point is asserted via  
assertedforthestartpointofaburst,andtheCNTINC control CNTLD), and Port 2 can be configured to count by two  
is enabled. Step three indicates the address counter startingonoddaddresses(againviaCNTLD).Thetwoports  
incrementing to 00FFh. In step four, the internal counter together will operate on 36-bit data words, storing half of  
determinesthatalladdressvaluesgreaterthan00FFhhave eachwordinaneven-numberedaddress, theotherhalfin  
beenmasked, andsoitincrementspastthismaxvalueto anodd-numberedaddress.Settingbits1and0ofthemask  
0000h. As a result of reaching 0000h via the CNTINC register on a given port to “0” configures that port to count  
24  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
in increments of four: masking bits 2, 1, and 0 configures  
that port to count in increments of eight, and so on. The  
ability to set the increments by which the counters will  
advance gives the user the ability to interleave memory  
operationsamongtheports, minimizingtheconcernsthat  
a given address might be written by more than one port at  
any given point in time (an operation that would have  
indeterminateresults).  
whilea"1"indicatesthatthememoryarraypassed.Therest  
of the MRR contains the total number of failed read cycles  
in the entire MBIST sequence.  
The IDT70V5388/78 MBIST function has been  
supplemented with the ability for the user to force a failure  
reportfromthedevice. Thisallowstheusertheflexibilityof  
validating the MBIST function itself, by verifying that the  
deviceisabletoreportfaultsaswellaspassingresults.The  
two modes of operation, normal MBIST testing and forced  
error reporting, are controlled via the JTAG TAP interface  
usingtheinstructionPROGRAM_MBIST_MODE_SELECT.  
For further detail, please refer to the System Interface  
Parameters table on page 28.  
TheMBISTfunctionexecutesoncetheRUNBIST  
instructionisinputviatheJTAGinterface.TheentireMBIST  
test will be performed with a deterministic number of TCK  
cycles depending on the TCK and CLKMBIST frequency.  
This can be calculated by using the following formula:  
JTAGSupport  
The IDT70V5388/78 provides a serial boundary  
scan test access port . The JTAG tables starting on page  
29providethespecificdetailsfortheJTAGimplementation  
on this device.  
The IDT70V5388/78 executes a JTAG test logic  
resetuponpower-up. Thispower-upresetwillinitializethe  
TAP controller and MBIST controller. In most power  
environmentsnofurtheractionisrequired. However,ifthe  
user has any concern about the system’s voltage states  
during power-up, then the user can use the optional TRST  
input as part of a board’s power on reset sequence. The  
TRST pinalsoprovidesanalternatemeansofresettingthe  
JTAG test logic when required, and is available for use by  
externalJTAGcontrollersasanasynchronousresetsignal.  
IftheuserdoesnotplantorelyontheoptionalTRST pin,but  
wantstouseJTAGfunctionality,theTRST pinshouldeither  
betiedHIGH(preferredimplementation)orleftfloating.  
IfJTAGoperationsarenotdesired,theuserhasa  
tCYC[CLKMBIST]  
x m + SPC, where:  
tCYC =  
tCYC[TCK]  
tCYC is the total number of TCK cycles required to run  
MBIST.  
SPC is the synchronization padding cycles (typically 4-6  
cycles, to accommodate state machine overhead, turn-  
around cycles, etc.)  
number of options for disabling the JTAG functions. One  
wouldbetosimplytieTCKLOW,leavingallotherJTAGpins  
floating (alternatively, TDI and TMS could be tied HIGH).  
Since the device executes a JTAG reset upon power-up:  
withTCKtiedLOW,nofurtherclockingoftheTAPwilloccur  
and no JTAG operations will take place. Alternatively, the  
user can opt to tie TRST LOW(eitherinlieuoforinaddition  
to tying TCK LOW) and the TAP will be locked in a reset  
condition, blocking all JTAG operations.  
misaconstantthatrepresentsthenumberofreadandwrite  
operations required to run the internal MBIST algorithms  
(14,811,136)forbothIDT70V5388andIDT70V5378.  
MemoryBuilt-In-TestOperations  
Go-NoGo Testing  
The IDT70V5388/78 is equipped with a self-test  
functionthatcanberunbytheuserastheresultofasingle  
instruction, implemented via the JTAG TAP interface. If  
multipleFourPortdevicesareusedonthesameboard,all  
can execute MBIST simultaneously, facilitating board  
checkout.  
The MBIST function executes a Go-NoGo test  
withinthedevice,whichthencapturespass-failinformation  
and failure count in a special register called the MBIST  
Result Register (MRR). Upon completion of the test, the  
MRRcanbescannedoutviatheJTAGinterface,usingthe  
internalscanoperation. BitzerooftheMRR(MRR[0])isa  
don'tcare.BitoneoftheMRR(MRR[1])indicatesthepass/  
fail status: a "0" indicates some sort of failure was noted,  
25  
6.42  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
JTAG/BIST TAP Controller Block Diagram  
0
Bypass Register (BYR)  
1
0
MBIST Mode Select Register (MSR)  
3
2
1
0
Instruction Register (IR)  
25 24  
MBIST Result Register (MRR)  
31 30 29  
Selection  
Circuitry  
TDI  
X
TDO  
1
0
(MUX)  
,
Identification Register (IDR)  
0
391  
Boundary Scan Register (BSR)  
MBIST  
CONTROLLER  
TCK  
TAP  
CONTROLLER  
TMS  
CLKMBIST  
TRST  
MEMORY  
CELL  
5649 drw 25  
26  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
JTAGTimingSpecifications  
tTCYC  
tTL  
t
TH  
TCK  
Device Inputs(1)/  
TDI/TMS  
t
JDC  
t
JH  
tJS  
Device Outputs(2)/  
TDO  
t
JRSR  
t
JCD  
TRST  
5649 drw 26  
,
t
JRST  
NOTES:  
1. Device inputs = All device inputs except TDI, TMS, and TRST.  
2. Device outputs = All device outputs except TDO.  
3. To reset the test (JTAG) port without resetting the device, TMS must be held LOW for 5 cycles, or TRST must be held LOW for one cycle.  
27  
6.42  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
Identification Register Definitions  
Instruction Field  
Value  
Description  
Revision Number (31:28)  
0x0  
Reserved for version number  
(1)  
IDT Device ID (27:12)  
Defines IDT part number  
0x31D  
0x33  
1
IDT JEDEC ID (11:1)  
Allows unique identification of device vendor as IDT  
Indicates the presence of an ID register  
ID Register Indicator Bit (Bit 0)  
5649 tbl 15  
NOTE:  
1. Device ID for IDT70V5378 is 0x31E.  
ScanRegisterSizes  
Register Name  
Bit Size  
Instruction (IR)  
4
MBIST Mode Select Register (MSR)  
Bypass (BYR)  
2
1
Identification (IDR)  
32  
392 Note (3)  
26  
Boundary Scan (BSR)  
MBIST Result (MRR)  
5649 tbl 16  
SystemInterfaceParameters  
Instruction  
Code  
0000  
Description  
EXTEST  
Forces contents of the boundary scan cells onto the device outputs(1).  
Places the boundary scan register (BSR) between TDI and TDO.  
BYPASS  
IDCODE  
1111  
0111  
Places the bypass register (BYR) between TDI and TDO.  
Loads the ID register (IDR) with the vendor ID code and places the  
register between TDI and TDO.  
0110  
0001  
Places the bypass register (BYR) between TDI and TDO. Forces all  
device outputdrivers to a High-Z state.  
HIGHZ  
SAMPLE/PRELOAD  
Places the boundary scan register (BSR) between TDI and TDO.  
SAMPLE allows data from device inputs(2) to be captured in the  
boundary scan cells and shifted serially through TDO. PRELOAD allows  
data to be input serially into the boundary scan cells via the TDI.  
Places the MBIST Mode Register between TDI and TDO. A value of '00'  
written into this register will allow MBIST to run in standard memory test  
mode, outputting valid results as appropriate via the MBIST Result  
Register. A value of '11' written into the MBIST Mode Register will force  
the MBIST Result Register (MRR) to report a result of 'FAIL'., with 8E0000  
failed read cycles noted (i.e., the MRR content = (8E0000h, 0, x). The  
value of the MBIST Mode Register is not guaranteed at power-up and is  
not affected by Master reset and JTAG reset.  
MBIST_MODE_SELECT  
1010  
1000  
Invokes MBIST. Internally updates MBIST result register with Go-NoGo  
information and number of issues. PROGRAM_MBIST_MODE_REGISTER  
must be run prior to executing RUNBIST in order to ensure valid results.  
There is no need to repeat this instruction unless the mode of operation  
is changed: the MMR will retain its programmed value until overwritten or  
the device is powered down.  
RUNBIST  
Scans out partial information. Places MBIST result register (MRR)  
between TDI & TDO.  
INT_SCAN  
CLAMP  
0100  
0101  
Uses BYR. Forces contents of the boundary scan cells onto the device  
outputs. Places the Bypass register (BYR) between TDI & TDO.  
Several combinations are reserved. Do notuse codes other than those  
identified above.  
RESERVED  
PRIVATE  
0010, 0011  
Several combinations arePRIVATE (for IDT internal use). Do not use  
codes other than those identified above.  
1001, 1011, 1100, 1101, 1110  
5649 tbl 17  
NOTES:  
1. Device outputs = All device outputs except TDO.  
2. Device inputs = All device inputs except TDI, TMS, and TRST.  
3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local  
IDT sales representative.  
28  
IDT70V5388/78  
3.3V 64/32K x 18 Synchronous FourPort™ Static RAM  
Industrial and Commercial Temperature Ranges  
OrderingInformation  
XXXXX  
A
999  
A
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I(1)  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
G(2)  
Green  
272-ball BGA (BG272-1)  
256-ball BGA (BC256-1)  
BG  
BC  
Commercial Only  
Commercial & Industrial  
Commercial & Industrial  
Commercial & Industrial  
200  
166  
133  
100  
Speed in MH  
Z
S
Standard Power  
1152K (64K x 18) 3.3V FourPort™ RAM  
576K (32K x 18) 3.3V FourPort™ RAM  
70V5388  
70V5378  
5649 drw 27  
NOTES:  
1. Contact your local sales office for industrial temp. range for other speeds, packages and powers.  
2. Green parts available. For specific speeds, packages and powers contact your local sales office.  
DatasheetDocumentHistory  
08/20/02:  
09/25/02:  
08/20/03:  
InitialPublicDatasheet  
Added0.5MDensitytoDatasheet  
ChangedpowernumbersinDCElectricalCharacteristicstable  
RemovedPreliminarystatus  
Page 10  
01/31/06:  
10/23/08:  
Page 1  
Page 29  
Page 29  
Addedgreenavailabilitytofeatures  
Addedgreenindicatortoorderinginformation  
Removed "IDT" from orderable part number  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
29  
6.42  

相关型号:

70V5378S133BGI8

PBGA-272, Reel
IDT

70V5378S166BC8

CABGA-256, Reel
IDT

70V5378S166BCGI

Four-Port SRAM, 32KX18, 3.2ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT

70V5378S166BCGI8

Application Specific SRAM, 32KX18, 3.2ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT

70V5378S166BG

PBGA-272, Tray
IDT

70V5378S166BGG8

PBGA-272, Reel
IDT

70V5378S166BGGI

Four-Port SRAM, 32KX18, 3.2ns, CMOS, PBGA272, 27 X 27 MM, 2.33 MM HEIGHT, 1.27 MM PITCH, GREEN, BGA-272
IDT

70V5378S166BGGI8

Multi-Port SRAM, 32KX18, 3.2ns, CMOS, PBGA272
IDT

70V5378S166BGI8

PBGA-272, Reel
IDT

70V5378S200BCG

Four-Port SRAM, 32KX18, 3ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT

70V5378S200BCG8

Multi-Port SRAM, 32KX18, 3ns, CMOS, PBGA256
IDT

70V5378S200BG

PBGA-272, Tray
IDT