70V659S15BCGI8
更新时间:2024-10-29 23:11:08
品牌:IDT
描述:HIGH-SPEED 3.3V 128/64/32K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM
70V659S15BCGI8 概述
HIGH-SPEED 3.3V 128/64/32K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM
70V659S15BCGI8 数据手册
通过下载70V659S15BCGI8数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。
PDF下载IDT70V659/58/57S
HIGH-SPEED 3.3V
128/64/32K x 36
ASYNCHRONOUS DUAL-PORT
STATIC RAM
LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018
Features
◆
◆
True Dual-Port memory cells which allow simultaneous
Full on-chip hardware support of semaphore signaling
between ports
Fully asynchronous operation from either port
Separate byte controls for multiplexed bus and bus
matching compatibility
Supports JTAG features compliant to IEEE 1149.1
LVTTL-compatible, single 3.3V (±150mV) power supply for
core
LVTTL-compatible, selectable 3.3V (±150mV)/2.5V (±100mV)
power supply for I/Os and control signals on each port
Available in a 208-pin Plastic Quad Flatpack, 208-ball fine
pitch Ball Grid Array, and 256-ball Ball Grid Array
Industrial temperature range (–40°C to +85°C) is available
for selected speeds
access of the same memory location
High-speed access
◆
◆
◆
– Commercial:10/12/15ns(max.)
– Industrial:12/15ns(max.)
Dual chip enables allow for depth expansion without
external logic
IDT70V659/58/57 easily expands data bus width to 72 bits
or more using the Master/Slave select when cascading
more than one device
M/S = VIH for BUSY output flag on Master,
M/S = VIL for BUSY input on Slave
Busy and Interrupt Flags
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
On-chip port arbitration logic
Green parts available, see ordering information
Functional Block Diagram
BE3L
BE3R
BE2R
BE2L
BE1L
BE0L
BE1R
BE0R
R/WL
R/
WR
B B B B B B B B
E E E E E E E E
0
L
1
L
2
L
3
L
3
2 1
0
CE0L
CE1L
CE0R
CE1R
R R R R
OEL
OER
Dout0-8_L
Dout0-8_R
Dout9-17_L
Dout9-17_R
Dout18-26_R
Dout27-35_R
Dout18-26_L
Dout27-35_L
128/64/32K x 36
MEMORY
ARRAY
I/O0L- I/O35L
Di n_L
Di n_R
I/O0R -I/O35R
(1)
(1)
16 L
A
16R
Address
Decoder
A
Address
Decoder
ADDR_L
ADDR_R
A0R
A0L
CE0L
CE1L
ARBITRATION
CE0R
CE1R
INTERRUPT
SEMAPHORE
LOGIC
OE
L
OE
R
R/W
L
R/W
R
(2,3)
L
(2,3)
R
BUSY
SEM
INT
BUSY
SEM
M/S
L
L
R
(3)
(3)
INT
R
TMS
TCK
TDI
JTAG
TDO
TRST
NOTES:
4869 drw 01
1. A16 is a NC for IDT70V658. Also, Addresses A16 and A15 are NC's for IDT70V657.
2. BUSY is an input as a Slave (M/S=VIL) and an output when it is a Master (M/S=VIH).
3. BUSY and INT are non-tri-state totem-pole outputs (push-pull).
JUNE 2018
1
©2018 Integrated Device Technology, Inc.
DSC-4869/8
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
Description
The IDT70V659/58/57 is a high-speed 128/64/32K x 36 Asynchro- address,andI/Opinsthatpermitindependent,asynchronousaccessfor
nousDual-PortStaticRAM.TheIDT70V659/58/57isdesignedtobeused reads or writes to any location in memory. An automatic power down
asastand-alone4/2/1MbitDual-PortRAMorasacombinationMASTER/ feature controlled by the chip enables (either CE0 or CE1) permit the
SLAVE Dual-Port RAM for 72-bit-or-more word system. Using the IDT on-chip circuitry of each port to enter a very low standby power mode.
MASTER/SLAVE Dual-Port RAM approach in 72-bit or wider memory
The 70V659/58/57 can support an operating voltage of either 3.3V
systemapplicationsresultsinfull-speed,error-freeoperationwithoutthe or2.5Vononeorbothports,controlledbytheOPTpins.Thepowersupply
needforadditionaldiscretelogic.
for the core of the device (VDD) remains at 3.3V.
This device provides two independent ports with separate control,
2
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
PinConfigurations(3,4,5,6,7,8)
03/19/04
I/O16L
156
1
2
3
4
5
6
I/O19L
I/O19R
I/O20L
I/O20R
I/O16R
155
I/O15L
154
I/O15R
153
V
V
SS
VDDQL
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
DDQL
VSS
I/O14L
I/O14R
I/O13L
I/O13R
7
8
9
I/O21L
I/O21R
I/O22L
I/O22R
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
V
V
SS
V
DDQR
DDQR
VSS
I/O12L
I/O12R
I/O11L
I/O11R
I/O23L
I/O23R
I/O24L
I/O24R
V
V
SS
VDDQL
DDQL
VSS
I/O10L
I/O10R
I/O9L
I/O25L
I/O25R
I/O26L
I/O26R
70V659/58/57DR
DR-208(7)
I/O9R
V
V
V
V
V
V
V
V
SS
V
DDQR
DDQR
DD
VSS
V
V
DD
DD
DD
SS
V
V
SS
SS
208-Pin PQFP
Top View(8)
SS
SS
VDDQL
DDQL
VSS
I/O8R
I/O8L
I/O7R
I/O7L
I/O27R
I/O27L
I/O28R
I/O28L
V
V
SS
V
DDQR
DDQR
VSS
I/O6R
I/O6L
I/O5R
I/O5L
I/O29R
I/O29L
I/O30R
I/O30L
V
V
SS
VDDQL
DDQL
VSS
I/O4R
I/O4L
I/O3R
I/O3L
I/O31R
I/O31L
I/O32R
I/O32L
V
V
SS
V
DDQR
DDQR
VSS
I/O2R
I/O2L
I/O1R
I/O1L
I/O33R
I/O33L
I/O34R
I/O34L
4869 drw 02a
NOTES:
1. Pin is a NC for IDT70V658 and IDT70V657.
2. Pin is a NC for IDT70V657.
3. All VDD pins must be connected to 3.3V power supply.
4. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (3.3V) and 2.5V if OPT pin for that port is
set to VSS (0V).
5. All VSS pins must be connected to ground.
6. Package body is approximately 28mm x 28mm x 3.5mm.
7. This package code is used to reference the package diagram.
8. This text does not indicate orientation of the actual part-marking.
3
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
Pin Configurations(3,4,5,6,7,8) (con't.)
70V659/58/57BC
BC-256(7)
256-Pin BGA
Top View(8)
03/19/04
A1
A2
A3
A6
A7
A8
A9
A11
A12
A13
A14
A4
A5
A10
A15
A16
NC
TDI
NC
A
11L
A
8L
9L
7L
BE2L CE1L
INT
L
A
5L
A
2L
A
0L
NC
A
14L
OE
L
NC
NC
B1
B2
B3
B6
B7
B9
CE0L
B11
B12
B13
B4
B5
B8
B10
B14
B15
B16
(2)
I/O18L NC TDO
A
12L
10L
A
NC
A
4L
A
1L
A15L
NC
BE3L
R/W
L
NC I/O17L NC
C1
C5
C6
C2
C3
C4
C7
C8
C9
C10
C11
C12
C13
C16
C14
C15
(1)
I/O18R
A
13L
A
I/O19L
V
SS
A16L
A
BE1L BE0L SEM
L
BUSY
L
A
6L
A
3L
I/O16L
OPT
L
I/O17R
D1
D2
D6
DDQL
D9
D11
D3
D5
D7
DDQR
D8
D10
D12
D13
D14
D15
D16
D4
I/O20R I/O19R
V
V
DDQL
VDDQR
DDQL
I/O20L
VDDQL
V
V
DDQR
V
V
DDQR
V
DD I/O15R I/O15L I/O16R
V
DD
E5
E6
E7
E8
E9
E10
E11
E12
E13
E1
E2
E3
E4
DDQL
E14
E16
E15
V
DD
V
DD
SS
SS
V
SS
SS
V
SS
V
SS
SS
SS
SS
V
SS
V
DD
V
DD
VDDQR
I/O21R I/O21L I/O22L
V
I/O13L
I/O14R
I/O14L
F7
F1
F2
F3
F5
F6
F9
F10
F14
F15
F16
F11
F13
F8
F12
F4
V
I/O23L I/O22R I/O23R
V
DD
V
V
VSS
V
SS
VDDQR I/O12R I/O13R I/O12L
VDDQL
V
SS
SS
SS
V
DD
G1
G5
H5
G2
G4
G6
G8
G9
G3
G14
G15
G16
G7
G10
G12
G13
G11
I/O24R
V
SS
SS
SS
I/O24L
VDDQR
V
V
V
I/O25L
V
SS
V
SS
V
SS
V
DDQL I/O10L I/O11L I/O11R
V
SS
H11
H12
H16
H13
H7
H8
H9
H10
H14
H15
H3
H4
H6
H1
H2
VSS
V
SS
I/O10R
V
DDQL
I/O9R IO9L
V
SS
V
V
VSS
I/O26R
VDDQR
V
VSS
I/O26L I/O25R
J1
J5
J2
J3
J4
J6
J7
J8
J9
J13
J10
J11
J12
J14
J15
J16
I/O27L
I/O28R I/O27R
VDDQL
V
V
SS
V
SS
V
SS
V
SS
VDDQR
VSS
V
SS
SS
VSS
I/O8R
I/O7R I/O8L
K6
K8
K10
K12
K13
K2
K4
K5
L5
K7
L7
K9
K11
K15
K16
K1
K3
K14
V
SS
V
SS
SS
SS
V
SS
SS
V
SS
V
DDQR
I/O6R
V
SS
V
SS
V
SS
V
I/O29L
V
DDQL
I/O6L I/O7L
I/O29R
I/O28L
L8
L11
L12
L13
L6
L9
L10
L3
L4
L15
L16
L1
L2
L14
V
SS
V
V
SS
V
DD
V
DDQL
I/O5L
I/O30R
VDDQR
V
DD
V
SS
V
SS
V
I/O4R I/O5R
I/O30L I/O31R
M5
M6
M7
M8
M9
M10
M11
M12
M13
M1 M2
M3
M4
M16
M14
M15
V
DD
V
DD
V
SS
V
V
SS
VSS
V
DD
V
DD
V
DDQL
I/O3R I/O3L
I/O32R I/O32L I/O31L
VDDQR
I/O4L
N8
DDQL
N12
N16
N13
N4
N5
N6
DDQR
N7
N9
N10
N11
N15
N1
N2
N3
N14
V
V
DDQL
I/O2R
I/O1R
V
DD
V
DD
VDDQR
V
V
DDQL
V
DDQR
V
DDQR
V
DDQL
I/O33L I/O34R I/O33R
I/O2L
P1
P2
P3
P4
16R
P5
P7
P8
P9
P10
P11
P12
P14
P15
P16
P6
P13
(1)
I/O35R I/O34L TMS
A
A
13R
A
7R BE1R BE0R SEM
R
BUSY
R
A
6R
I/O0L I/O0R I/O1L
A
10R
A
3R
R5
R6
R7
R8
R9
R10
R11
R16
R1
R2
R3
R4
R12
R13
R14
R15
,
(2)
A
15R
A
12R
A
9R
BE3R CE0R R/W
R
M/S
NC
I/O35L NC TRST NC
A4R
A
1R OPT
R
NC
T2
T3
T1
T4
T5
T8
T9
T15
T16
T6
T7
T10
T11
T12
T13
T14
TCK
NC
NC
NC
A14R
BE2R CE1R
NC
NC
A
11R
A
8R
OE
R
INT
R
A
5R
A
2R
A0R
4869 drw 02c
,
NOTES:
1. Pin is a NC for IDT70V658 and IDT70V657.
2. Pin is a NC for IDT70V657.
3. All VDD pins must be connected to 3.3V power supply.
4. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (3.3V), and 2.5V if OPT pin for that port is
set to VSS (0V).
5. All VSS pins must be connected to ground supply.
6. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch.
7. This package code is used to reference the package diagram.
8. This text does not indicate orientation of the actual part-marking.
4
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
Pin Configuration(3,4,5,6,7,8) (con't.)
03/19/04
1
2
3
4
5
6
7
8
9
11 12 13 14
10
16 17
15
(1)
I/O19L
A
12L
V
V
V
DD
SS
SS
A
B
C
D
E
F
I/O18L
V
SS
A
8L
A
0L
I/O17L
VSS
A4
L
OPTL
TDO
NC
A
16L
BE1L
SEM
L
INTL
A
B
C
D
E
F
I/O20R
V
SS
A
9L
I/O18R
I/O15R
A5
L
I/O16L
TDI
NC
NC
A
13L
A
1L
VDDQR
V
V
SS
DD
CE0L
BUSY
L
BE2L
BE3L
A
A
10L
VSS
I/O19R
V
DD
A
14L
CE1L
A6L
A
2L
I/O16R I/O15L
V
DDQL
VDDQR
R/WL
(2)
I/O22L
VSS
I/O17R
I/O12L
I/O21L
A
11L
7L
V
DD
V
DDQL
I/O14L I/O14R
I/O13L
I/O20L
A
15L
NC
VDD
BE0L
A3L
OE
L
I/O23L I/O22R
VDDQR I/O21R
I/O13R
I/O12R
V
SS
V
DDQL
I/O23R
VSS
VDDQR
I/O24L
I/O25L
V
SS
I/O11L
I/O10L
I/O26L
V
SS
I/O9L
VDDQL
I/O24R
I/O25R
I/O11R
I/O10R
G
H
J
G
H
J
70V659/58/57BF
BF-208(7)
V
DD
I/O26R
V
DDQR
V
DD
I/O9R
V
SS
V
DD
VDDQL
V
SS
V
SS
VDDQR
V
DD
V
SS
VSS
208-Ball BGA
Top View(8)
V
DDQL
I/O7R
I/O6R
VSS
I/O8R
I/O28R
VSS
I/O27R
K
L
V
SS
K
L
I/O29R I/O28L
VDDQR
I/O27L
I/O7L
I/O6L
V
SS
I/O8L
V
DDQL
I/O30R
VSS
I/O29L
V
SS
I/O5R
I/O4R
VDDQR
M
N
P
R
T
M
N
P
R
T
I/O31L
I/O32R
VSS
I/O3R
I/O2L
V
DDQL
I/O31R I/O30L
I/O5L
I/O4L
(1)
I/O3L
I/O32L
I/O33L
VDDQR
V
DD
INT
R
A
4R
VSS
TRST
A
12R
A8R
I/O35R
TCK
A
16R
BE1R
SEMR
V
SS
V
DDQL
I/O1R
VDDQR
V
V
SS
SS
A
5R
A
1R
2R
A
13R
A9R
NC
NC
V
SS
I/O34R
BE2R
BE3R
CE0R
BUSYR
I/O0R
V
SS
VSS
A
I/O2R
I/O1L
A6R
A
14R
A10R
CE1R
I/O33R I/O34L
V
DDQL TMS
R/WR
V
DD
(2)
15R
OPT
R
I/O0L
V
DD
A
3R
A
0R
A
11R
A7R
V
SS
V
DD
M/S
I/O35L
NC
BE0R
OER
A
U
U
4869 drw 02b
NOTES:
1. Pin is a NC for IDT70V658 and IDT70V657.
2. Pin is a NC for IDT70V657.
3. All VDD pins must be connected to 3.3V power supply.
4. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (3.3V) and 2.5V if OPT pin for that port is
set to VSS (0V).
5. All VSS pins must be connected to ground.
6. Package body is approximately 15mm x 15mm x 1.4mm with 0.8mm ball pitch.
7. This package code is used to reference the package diagram.
8. This text does not indicate orientation of the actual part-marking.
5
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
PinNames
Left Port
Right Port
CE1R
Names
Chip Enables - (Input)
CE0L
R/W
OE
,
CE1L
CE0R
R/W
OE
,
L
R
Read/Write Enable - (Input)
Output Enable - (Input)
Address - (Input)
L
R
(3)
(3)
A
0L - A16L
A0R - A16R
I/O0L - I/O35L
I/O0R - I/O35R
Data Input/Output
Semaphore Enable - (Input)
Interrupt Flag - (Output)
Busy Flag - (Output)(4)
Byte Enables (9-bit bytes) - (Input)
SEM
INT
BUSY
BE0L - BE3L
L
SEM
INT
BUSY
BE0R - BE3R
R
L
R
L
R
(1)
VDDQL
VDDQR
Power (I/O Bus) (3.3V or 2.5V) - (Input)
(1,2)
OPTL
OPTR
Option for selecting VDDQX - (Input)
M/S
Master or Slave Select - (Input)
(1)
VDD
Power (3.3V) - (Input)
V
SS
Ground (0V) - (Input)
Test Data Input
NOTES:
1. VDD, OPTX, and VDDQX must be set to appropriate operating levels prior to
applying inputs on I/OX.
TDI
TDO
TCK
TMS
TRST
2. OPTX selects the operating voltage levels for the I/Os and controls on that port.
If OPTX is set to VIH (3.3V), then that port's I/Os and controls will operate at 3.3V
levels and VDDQX must be supplied at 3.3V. If OPTX is set to VIL (0V), then that
port's I/Os and controls will operate at 2.5V levels and VDDQX must be supplied
at 2.5V. The OPT pins are independent of one another—both ports can operate
at 3.3V levels, both can operate at 2.5V levels, or either can operate at 3.3V
with the other at 2.5V.
Test Data Output
Test Logic Clock (10MHz)
Test Mode Select
Reset (Initialize TAP Controller)
4869 tbl 01
3. Addresses A16x is a NC for IDT70V658. Also, Addresses A16x and A15x are
NC's for IDT70V657.
4. BUSY is an input as a slave (M/S = VIL).
6
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
Truth Table I—Read/Write and Enable Control(1,2)
Byte 3
I/O27-35
Byte 2
I/O18-26
Byte 1
I/O9-17
Byte 0
I/O0-8
CE
X
1
R/W
X
X
X
L
MODE
OE
X
X
X
X
X
X
X
X
X
X
L
SEM CE
0
BE
3
BE
2
BE
1
BE0
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
X
H
H
H
H
L
X
X
H
H
H
L
X
X
H
H
L
X
X
H
L
High-Z
High-Z
High-Z
High-Z
High-Z
High-Z
High-Z
High-Z
High-Z
High-Z
High-Z
High-Z
High-Z
High-Z
High-Z
High-Z Deselected–Power Down
High-Z Deselected–Power Down
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
High-Z
All Bytes Deselected
Write to Byte 0 Only
Write to Byte 1 Only
Write to Byte 2 Only
Write to Byte 3 Only
Write to Lower 2 Bytes Only
Write to Upper 2 bytes Only
Write to All Bytes
DIN
H
H
H
L
L
D
IN
High-Z
High-Z
High-Z
H
H
L
L
D
IN
High-Z
High-Z
H
H
L
L
D
IN
High-Z
High-Z
H
L
L
High-Z
DIN
DIN
H
L
H
L
L
D
IN
IN
D
IN
IN
High-Z
High-Z
L
L
L
D
D
DIN
DIN
H
H
H
L
H
H
L
H
L
L
H
H
H
H
H
H
H
X
High-Z
High-Z
High-Z
High-Z
High-Z
High-Z
DOUT
Read Byte 0 Only
L
H
H
H
L
DOUT
High-Z Read Byte 1 Only
High-Z Read Byte 2 Only
High-Z Read Byte 3 Only
L
H
H
L
DOUT
High-Z
High-Z
L
H
H
L
DOUT
High-Z
High-Z
L
H
L
High-Z
DOUT
DOUT
Read Lower 2 Bytes Only
High-Z Read Upper 2 Bytes Only
Read All Bytes
High-Z Outputs Disabled
L
H
L
H
L
D
OUT
OUT
D
OUT
OUT
High-Z
L
L
L
D
D
DOUT
DOUT
H
L
L
L
L
High-Z
High-Z
High-Z
4869 tbl 02
NOTES:
1. "H" = VIH, "L" = VIL, "X" = Don't Care.
2. It is possible to read or write any combination of bytes during a given access. A few representative samples have been illustrated here.
Truth Table II – Semaphore Read/Write Control(1)
Inputs(1)
BE
Outputs
(2)
R/W
H
I/O1-35
I/O
0
Mode
CE
OE
L
BE
3
2
BE
1
BE
0
SEM
H
H
L
L
X
X
L
X
X
L
X
X
L
L
L
L
L
DATAOUT
DATAOUT Read Data in Semaphore Flag(3)
X
X
DATAIN
Write I/O
0 into Semaphore Flag
↑
______
______
X
X
X
Not Allowed
4869 tbl 03
NOTES:
1. There are eight semaphore flags written to I/O0 and read from all the I/Os (I/O0-I/O35). These eight semaphore flags are addressed by A0-A2.
2. CE = L occurs when CE0 = VIL and CE1 = VIH.
3. Each byte is controlled by the respective BEn. To read data BEn = VIL.
7
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
RecommendedDCOperating
RecommendedDCOperating
Conditions with VDDQ at 2.5V
Conditions with VDDQ at 3.3V
Symbol
Parameter
Core Supply Voltage
I/O Supply Voltage(3)
Ground
Min. Typ.
Max.
Unit
V
Symbol
Parameter
Core Supply Voltage
I/O Supply Voltage(3)
Ground
Min. Typ.
3.15 3.3
3.15 3.3
Max.
Unit
V
V
DD
DDQ
SS
3.15 3.3
3.45
V
DD
DDQ
SS
3.45
V
2.4
0
2.5
2.6
V
V
3.45
V
V
0
0
V
V
0
0
0
V
Input High Voltage(3)
(Address & Control Inputs)
1.7
V
DDQ + 150mV(2)
V
____
____
V
V
DDQ + 100mV(2)
V
IH
Input High Voltage
2.0
V
V
V
IH
(Address & Control Inputs)(3)
DDQ + 150mV(2)
0.8
V
____
____
____
____
V
IH
IL
Input High Voltage - I/O(3)
Input Low Voltage
1.7
DDQ + 100mV(2)
0.7
V
V
IH
IL
Input High Voltage - I/O(3)
Input Low Voltage
2.0
V
-0.5(1)
V
V
-0.3(1)
V
4869 tbl 06
4869 tbl 07
NOTES:
NOTES:
1. VIL > -1.5V for pulse width less than 10 ns.
2. VTERM must not exceed VDDQ + 100mV.
1. VIL > -1.5V for pulse width less than 10 ns.
2. VTERM must not exceed VDDQ + 150mV.
3. To select operation at 2.5V levels on the I/Os and controls of a given port, the 3. To select operation at 3.3V levels on the I/Os and controls of a given port, the
OPT pin for that port must be set to VSS (0V), and VDDQX for that port must be
supplied as indicated above.
OPT pin for that port must be set to VDD (3.3V), and VDDQX for that port must be
supplied as indicated above.
Capacitance(1)
MaximumOperating
TemperatureandSupplyVoltage(1)
(TA = +25°C, F = 1.0MHZ) PQFP ONLY
Ambient
Symbol
Parameter
Input Capacitance
Output Capacitance
Conditions
IN = 0V
OUT = 0V
Max. Unit
Grade
Commercial
Temperature
0OC to +70OC
-40OC to +85OC
GND
0V
V
+
+
DD
CIN
V
8
pF
3.3V
3.3V
150mV
150mV
(2)
OUT
C
V
10.5
pF
Industrial
0V
4869 tbl 08
NOTES:
4869 tbl 04
NOTE:
1. These parameters are determined by device characterization, but are not
production tested.
1. This is the parameter TA. This is the "instant on" case temperature.
2. COUT also references CI/O.
AbsoluteMaximumRatings(1)
Symbol
Rating
Commercial
& Industrial
Unit
(2)
TERM
V
V
DD Terminal Voltage
-0.5 to + 4.6
V
(VDD
)
with Respect to GND
Temperature Under Bias
Storage Temperature
Junction Temperature
NOTES:
(3)
T
BIAS
STG
JN
-55 to +125
-65 to +150
+150
oC
oC
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS
may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above
those indicated in the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may
affect reliability.
T
T
oC
2. VTERM must not exceed VDD + 150mV for more than 25% of the cycle time
or 4ns maximum, and is limited to < 20mA for the period of VTERM > VDD
+ 150mV.
I
OUT(For VDDQ = 3.3V) DC Output Current
50
mA
IOUT(For VDDQ = 2.5V) DC Output Current
40
mA
3. Ambient Temperature under DC Bias. No AC Conditions. Chip Deselected.
4869 tbl 05
8
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range (VDD = 3.3V ± 150mV)
70V659/58/57S
Min. Max.
Symbol
|ILI
|ILO
Parameter
Input Leakage Current(1)
Output Leakage Current
Test Conditions
DDQ = Max., VIN = 0V to VDDQ
CE
OL = +4mA, VDDQ = Min.
OH = -4mA, VDDQ = Min.
OL = +2mA, VDDQ = Min.
OH = -2mA, VDDQ = Min.
Unit
µA
µA
V
___
___
___
|
V
10
10
|
0
= VIH or CE1 = VIL, VOUT = 0V to VDDQ
V
OL (3.3V) Output Low Voltage(2)
OH (3.3V) Output High Voltage(2)
OL (2.5V) Output Low Voltage(2)
OH (2.5V) Output High Voltage(2)
I
0.4
___
V
I
2.4
V
___
V
I
0.4
V
___
V
I
2.0
V
4869 tbl 09
NOTE:
1. At VDD < - 2.0V input leakages are undefined.
2. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to p.6 for details.
DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range(3) (VDD = 3.3V ± 150mV)
70V659/58/57S10 70V659/58/57S12 70V659/58/57S15
Com'l Only
Com'l
& Ind
Com'l
& Ind
Symbol
Parameter
Test Condition
= VIL
Version
COM'L
Typ.(4)
340
Max.
500
Typ.(4)
Max.
465
515
125
150
325
365
Typ.(4)
300
350
75
Max. Unit
IDD
Dynamic Operating
Current (Both
Ports Active)
mA
mA
mA
mA
CE
L
and CE
R
,
S
S
S
S
S
S
315
365
90
440
490
100
125
315
350
Outputs Disabled
____
____
(1)
IND
f = fMAX
ISB1
Standby Current
(Both Ports - TTL
Level Inputs)
CE
f = fMAX
L
= CE
R
= VIH
COM'L
IND
115
165
(1)
____
____
115
200
225
100
175
200
(5)
ISB2
Standby Current
(One Port - TTL
Level Inputs)
CE"A" = VIL and CE"B" = VIH
Active Port Outputs Disabled,
COM'L
IND
225
340
____
____
(1)
f=fMAX
ISB3
Full Standby Current Both Ports CE
(Both Ports - CMOS CE
Level Inputs)
L and
> VDDQ - 0.2V,
VIN > VDDQ - 0.2V or VIN < 0.2V,
COM'L
IND
S
S
3
15
3
6
15
15
3
6
15
15
R
____
____
f = 0(2)
ISB4
Full Standby Current
(One Port - CMOS
Level Inputs)
mA
CE"A" < 0.2V and
COM'L
IND
S
S
220
335
195
220
320
360
170
195
310
345
CE"B" > VDDQ - 0.2V(5)
V
IN > VDDQ - 0.2V or VIN < 0.2V,
Active Port, Outputs Disabled,
____
____
(1)
f = fMAX
4869 tbl 10
NOTES:
1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, using "AC TEST CONDITIONS" at input
levels of GND to 3V.
2. f = 0 means no address or control lines change. Applies only to input at CMOS level standby.
3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
4. VDD = 3.3V, TA = 25°C for Typ, and are not production tested. IDD DC(f=0) = 120mA (Typ).
5. CEX = VIL means CE0X = VIL and CE1X = VIH
CEX = VIH means CE0X = VIH or CE1X = VIL
CEX < 0.2V means CE0X < 0.2V and CE1X > VDDQ - 0.2V
CEX > VDDQ - 0.2V means CE0X > VDDQ - 0.2V or CE1X - 0.2V
"X" represents "L" for left port or "R" for right port.
9
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
2.5V
AC Test Conditions (VDDQ - 3.3V/2.5V)
Input Pulse Levels
GND to 3.0V / GND to 2.5V
2ns Max.
Input Rise/Fall Times
Input Timing Reference Levels
Output Reference Levels
Output Load
833Ω
1.5V/1.25V
1.5V/1.25V
DATAOUT
Figures 1 and 2
4869 tbl 11
5pF*
770Ω
,
3.3V
590Ω
5pF*
50Ω
50Ω
,
DATAOUT
DATAOUT
1.5V/1.25
10pF
435Ω
(Tester)
4869 drw 03
Figure 1. AC Output Test load.
,
4869 drw 04
Figure 2. Output Test Load
(For tCKLZ, tCKHZ, tOLZ, and tOHZ).
*Including scope and jig.
10.5pF is the I/O capacitance of this
device, and 10pF is the AC Test Load
Capacitance.
7
6
5
4
3
∆tAA
(Typical, ns)
2
1
,
30
20.5
50
80 100
200
-1
Figure 3. Typical Output Derating (Lumped Capacitive Load).
Capacitance (pF)
4869 drw 05
10
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
AC Electrical Characteristics Over the
OperatingTemperatureandSupplyVoltageRange(5)
70V659/58/57S10 70V659/58/57S12 70V659/58/57S15
Com'l Only
Com'l
& Ind
Com'l
& Ind
Symbol
Parameter
Min. Max.
Min.
Max.
Min.
Max.
Unit
READ CYCLE
____
____
____
t
RC
AA
ACE
ABE
AOE
OH
LZ
HZ
PU
PD
SOP
SAA
Read Cycle Time
10
12
15
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
____
____
____
t
Address Access Time
10
10
5
12
12
6
15
15
7
Chip Enable Access Time(3)
Byte Enable Access Time(3)
Output Enable Access Time
____
____
____
____
____
____
____
____
____
t
t
t
5
6
7
____
____
____
t
Output Hold from Address Change
Output Low-Z Time (1,2)
3
0
0
3
0
0
3
0
0
____
____
____
t
t
Output High-Z Time(1,2)
4
6
8
t
Chip Enable to Power Up Time(2)
Chip Disable to Power Down Time(2)
Semaphore Flag Update Pulse (OE or SEM)
Semaphore Address Access Time
0
0
0
____
____
____
____
____
____
t
10
4
10
6
15
8
____
____
____
t
t
3
10
3
12
3
20
ns
4869 tbl 12
AC Electrical Characteristics Over the
OperatingTemperatureandSupplyVoltage(5)
70V659/58/57S10 70V659/58/57S12 70V659/58/57S15
Com'l Only
Com'l
& Ind
Com'l
& Ind
Symbol
Parameter
Min. Max.
Min.
Max.
Min.
Max.
Unit
WRITE CYCLE
____
____
____
____
____
____
____
____
____
____
____
____
____
____
____
____
____
____
____
____
____
____
____
____
tWC
tEW
tAW
tAS
Write Cycle Time
10
8
12
10
10
0
15
12
12
0
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Chip Enable to End-of-Write(3)
Address Valid to End-of-Write
Address Set-up Time(3)
Write Pulse Width
8
0
tWP
tWR
tDW
tDH
8
10
0
12
0
Write Recovery Time
Data Valid to End-of-Write
Data Hold Time(4)
0
6
8
10
0
0
0
Write Enable to Output in High-Z(1,2)
Output Active from End-of-Write(1,2,4)
SEM Flag Write to Read Time
SEM Flag Contention Window
4
4
4
____
____
____
tWZ
____
____
____
tOW
tSWRD
tSPS
0
5
5
0
5
5
0
5
5
____
____
____
____
____
____
ns
4869 tbl 13
NOTES:
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).
2. Thisparameterisguaranteedbydevicecharacterization,butisnotproductiontested.
3. To access RAM, CE= VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage
and temperature, the actual tDH will always be smaller than the actual tOW.
5. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 6 for details.
11
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
Waveform of Read Cycles(5)
tRC
ADDR
(4)
t
t
AA
(4)
ACE
CE
OE
(4)
tAOE
(4)
tABE
BEn
R/W
tOH
(1)
tLZ
VALID DATA(4)
DATAOUT
BUSYOUT
(2)
tHZ
.
(3,4)
4869 drw 06
t
BDD
NOTES:
1. Timing depends on which signal is asserted last, OE, CE or BEn.
2. Timing depends on which signal is de-asserted first CE, OE or BEn.
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY
has no relation to valid output data.
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.
5. SEM = VIH.
Timing of Power-Up Power-Down
CE
t
PU
tPD
ICC
50%
50%
.
4869 drw 07
ISB
12
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)
tWC
ADDRESS
(7)
tHZ
OE
tAW
CE or SEM(9)
BEn(9)
R/W
(3)
(2)
(6)
tWR
tAS
tWP
(7)
tOW
t
WZ
(4)
(4)
DATAOUT
DATAIN
tDW
tDH
4869 drw 08
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)
t
WC
ADDRESS
t
AW
CE or SEM(9)
BEn(9)
(6)
AS
(3)
(2)
tWR
tEW
t
R/W
tDW
tDH
DATAIN
4869 drw 09
NOTES:
1. R/W or CE or BEn = VIH during all address transitions.
2. A write occurs during the overlap (tEW or tWP) of a CE = VIL and a R/W = VIL for memory array writing cycle.
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.
4. During this period, the I/O pins are in the output state and input signals must not be applied.
5. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.
6. Timing depends on which enable signal is asserted last, CE or R/W.
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load
(Figure 2).
8. If OE = VIL during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be
placed on the bus for the required tDW. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the
specified tWP.
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.
13
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)
tSAA
A0-A2
VALID ADDRESS
VALID ADDRESS
tAW
tWR
tACE
t
EW
SEM/BEn(1)
tOH
tSOP
t
DW
OUT
DATA
VALID(2)
I/O
IN
DATA VALID
tAS
tWP
tDH
R/W
tSWRD
tAOE
OE
tSOP
Write Cycle
Read Cycle
4869 drw 10
NOTES:
1. CE = VIH for the duration of the above timing (both write and read cycle) (Refer to Chip Enable Truth Table). Refer also to Truth Table II for appropriate BE controls.
2. "DATAOUT VALID" represents all I/O's (I/O0 - I/O35) equal to the semaphore value.
Timing Waveform of Semaphore Write Contention(1,3,4)
A0"A"-A2"A"
MATCH
(2)
SIDE "A"
R/W"A"
SEM"A"
tSPS
A0"B"-A2"B"
MATCH
(2)
SIDE
R/W"B"
SEM"B"
"B"
4869 drw 11
NOTES:
1. DOR = DOL = VIL, CEL = CER = VIH. Refer to Truth Table II for appropriate BE controls.
2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A".
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.
4. If tSPS is not satisfied,the semaphore will fall positively to one side or the other, but there is no guarantee which side will be granted the semaphore flag.
14
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
AC Electrical Characteristics Over the
OperatingTemperatureandSupplyVoltageRange
70V659/58/57S10 70V659/58/57S12 70V659/58/57S15
Com'l Only
Com'l
& Ind
Com'l
& Ind
Symbol
BUSY TIMING (M/S=VIH
Parameter
Unit
Min.
Max.
Min.
Max.
Min.
Max.
)
____
____
____
____
____
____
____
____
____
____
____
____
t
BAA
BDA
BAC
BDC
APS
BDD
WH
10
10
10
12
12
12
15
15
15
ns
ns
ns
ns
ns
ns
ns
BUSY Access Time from Address Match
BUSY Disable Time from Address Not Matched
BUSY Access Time from Chip Enable Low
BUSY Disable Time from Chip Enable High
Arbitration Priority Set-up Time(2)
t
t
t
10
12
15
____
____
____
t
5
5
5
____
____
____
BUSY Disable to Valid Data(3)
t
10
12
15
t
Write Hold After BUSY(5)
8
10
12
____
____
____
BUSY TIMING (M/S=VIL
)
____
____
____
____
____
____
BUSY Input to Write(4)
Write Hold After BUSY(5)
t
WB
0
8
0
0
ns
ns
tWH
10
12
PORT-TO-PORT DELAY TIMING
____
____
____
____
____
____
t
WDD
Write Pulse to Data Delay(1)
22
20
25
22
30
25
ns
tDDD
Write Data Valid to Read Data Delay(1)
ns
4869 tbl 14
NOTES:
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".
2. To ensure that the earlier of the two ports wins.
3. tBDD is a calculated parameter and is the greater of the Max. spec, tWDD – tWP (actual), or tDDD – tDW (actual).
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".
5. To ensure that a write cycle is completed on port "B" after contention on port "A".
15
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
TimingWaveformof WritewithPort-to-PortReadandBUSY (M/S =VIH)(2,4,5)
tWC
MATCH
ADDR"A"
tWP
R/W"A"
tDW
tDH
VALID
DATAIN "A"
(1)
tAPS
MATCH
ADDR"B"
t
BAA
tBDA
tBDD
BUSY"B"
tWDD
DATAOUT "B"
VALID
(3)
tDDD
.
4869 drw 12
NOTES:
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).
2. CEL = CER = VIL.
3. OE = VIL for the reading port.
4. If M/S = VIL (slave), BUSY is an input. Then for this example BUSY"A" = VIH and BUSY"B" input is shown above.
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".
Timing Waveform of Write with BUSY (M/S = VIL)
tWP
R/W"A"
(3)
WB
t
BUSY"B"
(1)
tWH
(2)
R/W"B"
4869 drw 13
NOTES:
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.
3. tWB is only for the 'slave' version.
16
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
Waveform of BUSY Arbitration Controlled by CE Timing(M/S = VIH)(1)
ADDR"A"
ADDRESSES MATCH
and "B"
CE"A"
(2)
t
APS
CE"B"
t
BAC
tBDC
BUSY"B"
4869 drw 14
Waveform of BUSY Arbitration Cycle Controlled by Address Match
Timing(M/S = VIH)(1)
ADDR"A"
ADDRESS "N"
(2)
t
APS
ADDR"B"
MATCHING ADDRESS "N"
tBAA
tBDA
BUSY"B"
4869 drw 15
NOTES:
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.
AC Electrical Characteristics Over the
OperatingTemperatureandSupplyVoltageRange
70V659/58/57S10
Com'l Only
70V659/58/57S12
Com'l
70V659/58/57S15
Com'l
& Ind
& Ind
Symbol
Parameter
Min.
Max.
Min.
Max.
Min.
Max.
Unit
INTERRUPT TIMING
____
____
____
____
____
____
t
AS
WR
INS
INR
Address Set-up Time
Write Recovery Time
Interrupt Set Time
0
0
0
ns
ns
ns
t
0
0
0
____
____
____
t
10
10
12
12
15
15
____
____
____
t
Interrupt Reset Time
ns
4869 tbl 15
17
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
Waveform of Interrupt Timing(1)
tWC
INTERRUPT SET ADDRESS(2)
ADDR"A"
(4)
(3)
tWR
tAS
CE"A"
R/W"A"
INT"B"
(3)
t
INS
4869 drw 16
tRC
INTERRUPT CLEAR ADDRESS (2)
ADDR"B"
CE"B"
(3)
t
AS
OE"B"
(3)
tINR
INT"B"
4869 drw 17
NOTES:
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.
2. Refer to Interrupt Truth Table.
3. Timing depends on which enable signal (CE or R/W) is asserted last.
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.
Truth Table III — Interrupt Flag(1,4)
Left Port
Right Port
(5,6)
(5,6)
R/W
L
A
16L-A0L
R/W
R
A
16R-A0R
Function
Set Right INT Flag
Reset Right INT Flag
Set Left INT Flag
Reset Left INT Flag
CE
L
OE
L
INT
L
CE
R
OE
R
INTR
L
X
X
X
L
X
X
L
X
1FFFF
X
X
X
X
X
L
L
X
X
X
L(2)
H(3)
X
R
X
X
L
1FFFF
1FFFE
X
R
X
X
L(3)
H(2)
L
X
L
L
1FFFE
X
X
X
L
4869 tbl 16
NOTES:
1. Assumes BUSYL = BUSYR =VIH.
2. If BUSYL = VIL, then no change.
3. If BUSYR = VIL, then no change.
4. INTL and INTR must be initialized at power-up.
5. A16x is a NC for IDT70V658, therefore Interrupt Addresses are FFFF and FFFE.
6. A16x and A15x are NC's for IDT70V657, therefore Interrupt Addresses are 7FFF and 7FFE.
18
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
Truth Table IV —
AddressBUSY Arbitration
Inputs
Outputs
(4)
A
OL-A16L
(1)
(1)
A
OR-A16R
Function
Normal
Normal
Normal
CE
X
L
CE
R
BUSY
L
BUSYR
X
NO MATCH
MATCH
H
H
H
H
X
H
X
H
L
MATCH
H
H
L
MATCH
(2)
(2)
Write Inhibit(3)
4869 tbl 17
NOTES:
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the
IDT70V659/58/57 are push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.
4. A16X is a NC for IDT70V658, therefore Address comparison will be for A0 - A15. Also, A16X and A15X are NC's for IDT70V657, therefore Address comparison will
be for A0 - A14.
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)
Functions
D0
- D35 Left
D0
- D35 Right
Status
No Action
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free
Left Port Writes "0" to Semaphore
Right Port Writes "0" to Semaphore
Left Port Writes "1" to Semaphore
Left Port Writes "0" to Semaphore
Right Port Writes "1" to Semaphore
Left Port Writes "1" to Semaphore
Right Port Writes "0" to Semaphore
Right Port Writes "1" to Semaphore
Left Port Writes "0" to Semaphore
Left Port Writes "1" to Semaphore
Left port has semaphore token
No change. Right side has no write access to semaphore
Right port obtains semaphore token
No change. Left port has no write access to semaphore
Left port obtains semaphore token
Semaphore free
Right port has semaphore token
Semaphore free
Left port has semaphore token
Semaphore free
4869 tbl 18
NOTES:
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70V659/58/57.
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O35). These eight semaphores are addressed by A0 - A2.
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.
Interrupts
FunctionalDescription
Iftheuserchoosestheinterruptfunction,amemorylocation(mail box
ormessagecenter)isassignedtoeachport. Theleftportinterruptflag
(INTL)isassertedwhentherightportwritestomemorylocation1FFFE
(HEX)(FFFEforIDT70V658and 7FFEforIDT70V657), whereawrite
isdefinedasCER=R/WR=VIL pertheTruthTableIII.Theleftportclears
the interrupt through access of address location 1FFFE (FFFE for
IDT70V658 and 7FFE for IDT70V657) when CEL = OEL = VIL, R/W is
The IDT70V659/58/57 provides two ports with separate control,
addressandI/Opinsthatpermitindependentaccessforreadsorwrites
toanylocationinmemory.TheIDT70V659/58/57hasanautomaticpower
down feature controlled by CE. The CE0 and CE1 control the on-chip
powerdowncircuitrythatpermitstherespectiveporttogointoastandby
mode when not selected (CE= HIGH). When a port is enabled, access
totheentirememoryarrayispermitted.
19
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
a"don'tcare".Likewise,therightportinterruptflag(INTR)isassertedwhen numberofslavestobeaddressedinthesameaddressrangeasthemaster
theleftportwritestomemorylocation1FFFF(HEX)(FFFFforIDT70V658 usetheBUSYsignalasawriteinhibitsignal.ThusontheIDT70V659/58/
and7FFFforIDT70V657)andtocleartheinterruptflag(INTR),theright 57RAMtheBUSYpinisanoutputifthepartisusedasamaster(M/Spin
port must read the memory location 1FFFF (FFFF for IDT70V658 and = VIH), and the BUSY pin is an input if the part used as a slave (M/S pin
7FFF for IDT70V657). The message (36 bits) at 1FFFE (FFFE for = VIL) as shown in Figure 3.
IDT70V658 and 7FFE for IDT70V657)or 1FFFF (FFFF for IDT70V658
and 7FFF for IDT70V657) is user-defined since it is an addressable
SRAM location. If the interrupt function is not used, address locations
1FFFE (FFFE for IDT70V658 and 7FFE for IDT70V657) and 1FFFF
(FFFF for IDT70V658 and 7FFF for IDT70V657) are not used as mail
boxes,butaspartoftherandomaccessmemory.RefertoTruthTableIII
fortheinterruptoperation.
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit
decisioncouldresultwithonemasterindicatingBUSYononesideofthe
array and another master indicating BUSY on one other side of
thearray.Thiswouldinhibitthewriteoperationsfromoneportforpartof
awordandinhibitthewriteoperationsfromtheotherportforthe otherpart
of the word.
The BUSY arbitration on a master is based on the chip enable and
address signals only. It ignores whether an access is a read or write. In
a master/slave array, both address and chip enable must be valid long
enoughforaBUSYflagtobeoutputfromthemasterbeforethe actualwrite
pulsecanbeinitiatedwiththeR/Wsignal.Failureto observethistiming
canresultinaglitchedinternalwriteinhibitsignalandcorrupteddatainthe
slave.
BusyLogic
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe
twoaccessestoproceedandsignalstheothersidethattheRAMis“Busy”.
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally
topreventthewritefromproceeding.
Semaphores
TheIDT70V659/58/57isanextremelyfastDual-Port128/64/32Kx
36CMOSStaticRAMwithanadditional8addresslocationsdedicatedto
binarysemaphoreflags.Theseflagsalloweitherprocessorontheleftor
right sideoftheDual-PortRAMtoclaimaprivilegeovertheotherprocessor
forfunctionsdefinedbythesystemdesigner’ssoftware.Asanexample,
the semaphore can be used by one processor to inhibit the other from
accessingaportionoftheDual-PortRAMoranyothersharedresource.
TheDual-PortRAMfeaturesafastaccesstime,withbothportsbeing
completelyindependentofeachother.Thismeansthatthe activityonthe
leftportinnowayslowstheaccesstimeoftherightport. Bothportsare
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom
orwrittentoatthesametimewiththeonlypossibleconflictarisingfromthe
simultaneous writing of, or a simultaneous READ/WRITE of, a non-
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol
on-chip power down circuitry that permits the respective port to go into
standbymodewhennotselected.
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether
and use any BUSY indication as an interrupt source to flag the event of
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying
the BUSY pins HIGH. If desired, unintended write operations can be
prevented to a port by tying the BUSY pin for that port LOW.
The BUSY outputs on the IDT70V659/58/57 RAM in master mode,
arepush-pulltypeoutputsanddonotrequirepullupresistorstooperate.
If these RAMs are being expanded in depth, then the BUSY indication
for the resulting array requires the use of an external AND gate.
(1,2)
17
A
CE0
CE0
MASTER
Dual Port RAM
SLAVE
Dual Port RAM
BUSY
R
BUSY
R
BUSY
L
BUSYL
SystemswhichcanbestusetheIDT70V659/58/57containmultiple
processors or controllers and are typically very high-speed systems
which are software controlled or software intensive. These systems
canbenefitfromaperformanceincreaseofferedbytheIDT70V659/58/
57shardwaresemaphores,whichprovidealockoutmechanismwithout
requiringcomplexprogramming.
Softwarehandshakingbetweenprocessorsoffersthemaximumin
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying
configurations. The IDT70V659/58/57 does not use its semaphore
flagstocontrolanyresourcesthroughhardware,thusallowingthesystem
designertotalflexibilityinsystemarchitecture.
CE
1
CE1
MASTER
Dual Port RAM
SLAVE
Dual Port RAM
BUSY
L
BUSY
L
BUSYR
BUSY
R
.
Figure 3. Busy and chip enable routing for both width and48d6e9pdrtwh18
expansion with IDT70V659/58/57 RAMs.
NOTES:
1. A16 for IDT70V658.
2. A15 for IDT70V657.
Width Expansion with Busy Logic
Master/SlaveArrays
An advantage of using semaphores rather than the more common
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin
either processor. This can prove to be a major advantage in very high-
speedsystems.
When expanding an IDT70V659/58/57 RAM array in width while
usingBUSYlogic,onemasterpartisusedtodecidewhichsideoftheRAMs
array will receive a BUSY indication, and to output that indication. Any
20
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,
afactwhichtheprocessorwillverifybythesubsequentread(seeTable
V).Asanexample,assumeaprocessorwritesazerototheleftportata
freesemaphorelocation.On usedinstead,systemcontentionproblems
couldhaveoccurredduringthegapbetweenthereadandwritecycles.
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed
How the Semaphore Flags Work
Thesemaphorelogicisasetofeightlatcheswhichareindependent
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,
from one port to the other to indicate that a shared resource
isinuse.Thesemaphoresprovideahardwareassistforauseassignment
methodcalled“TokenPassingAllocation.”Inthismethod,thestateofa
semaphorelatchisusedasatokenindicatingthatasharedresourceis
inuse.Iftheleftprocessorwantstousethisresource,itrequeststhetoken
bysettingthelatch.Thisprocessorthenverifiesitssuccessinsettingthe
latchbyreadingit. Ifitwassuccessful,itproceedstoassumecontrolover
thesharedresource.Ifitwasnotsuccessfulinsettingthelatch,itdetermines
thattherightsideprocessorhassetthelatchfirst, hasthetokenandisusing
thesharedresource.Theleftprocessorcantheneitherrepeatedlyrequest
that semaphore’s status or remove its request for that semaphore to
performanothertaskandoccasionallyattemptagaintogaincontrolofthe
tokenviathesetandtestsequence.Oncetherightsidehasrelinquished
byeitherrepeatedreadsorbywritingaoneintothesamelocation. The
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed
into a semaphore flag. Whichever latch is first to present a zero to the
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother
sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame
semaphorerequestlatch.Shouldtheotherside’ssemaphorerequestlatch
havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip
overtotheothersideassoonasaoneiswrittenintothefirstside’srequest
latch.Thesecondside’sflagwillnowstayLOWuntilitssemaphorerequest
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore
is requested and the processor which requested it no longer needs the
thetoken,theleftsideshouldsucceedingainingcontrol.
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting
resource, the entire system can hang up until a one is written into that
semaphorerequestlatch.
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites
aonetothatlatch.
The eight semaphore flags reside within the IDT70V659/58/57 in a
separatememoryspacefromtheDual-PortRAM.Thisaddressspaceis
accessedbyplacingalowinputontheSEMpin(whichactsasachipselect
forthesemaphoreflags)andusingtheothercontrolpins(Address,CE,
R/WandBEo)astheywouldbeusedinaccessingastandardStaticRAM.
Eachoftheflagshasauniqueaddresswhichcanbeaccessedbyeither
sidethroughaddresspinsA0–A2.Whenaccessingthesemaphores,none
oftheotheraddresspinshasanyeffect.
L PORT
R PORT
SEMAPHORE
REQUEST FLIP FLOP
SEMAPHORE
REQUEST FLIP FLOP
0
D
0
D
D
D
Q
Q
WRITE
WRITE
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero
on that side and a one on the other side (see Truth Table V). That
semaphorecannowonlybemodifiedbythesideshowingthezero.When
aoneiswrittenintothesamelocationfromthesameside,the flagwillbe
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside
ispending)andthencanbewrittentobybothsides.Thefactthattheside
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor
communications.(Athoroughdiscussionontheuseofthisfeaturefollows
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis
freedbythefirstside.
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining
azeroreadsasallzeros.Thereadvalueislatchedintooneside’soutput
registerwhenthatside'ssemaphoreselect(SEM,BEn)andoutputenable
(OE) signals go active. This serves to disallow the semaphore from
changingstateinthemiddleofareadcycleduetoawritecyclefromthe
otherside.Becauseofthislatch,arepeatedreadofasemaphoreinatest
loopmustcauseeithersignal(SEMorOE)togoinactiveortheoutputwill
neverchange. However, duringreads BEnfunctionsonlyasanoutput
forsemaphore.Itdoesnothaveanyinfluenceonthesemaphore control
logic.
SEMAPHORE
READ
SEMAPHORE
READ
4869 drw 19
Figure 4. IDT70V659/58/57 Semaphore Logic
The critical case of semaphore timing is when both sides request a
single token by attempting to write a zero into it at the same time. The
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives
thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst
sidetomaketherequestwillreceivethetoken.Ifbothrequestsarriveat
thesametime,theassignmentwillbearbitrarilymadetooneportorthe
other.
One caution that should be noted when using semaphores is that
semaphoresalonedonotguaranteethataccesstoaresourceissecure.
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused
or misinterpreted, a software error can easily happen.
Initializationofthesemaphoresisnotautomaticandmustbehandled
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth
sidesshouldhaveaonewrittenintothematinitializationfrombothsides
to assure that they will be free when needed.
AsequenceWRITE/READmustbeusedbythesemaphoreinorder
to guarantee that no system level contention will occur. A processor
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore
21
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
JTAGTimingSpecifications
t
JCYC
t
JR
tJF
t
JCL
tJCH
TCK
Device Inputs(1)/
TDI/TMS
tJDC
tJS
tJH
Device Outputs(2)/
TDO
t
JRSR
tJCD
TRST
x
4869 drw 20
t
JRST
NOTES:
1. Device inputs = All device inputs except TDI, TMS, and TRST.
2. Device outputs = All device outputs except TDO.
JTAG AC Electrical
Characteristics(1,2,3,4)
Symbol
Parameter
JTAG Clock Input Period
JTAG Clock HIGH
JTAG Clock Low
JTAG Clock Rise Time
JTAG Clock Fall Time
JTAG Reset
Min.
100
40
Max.
Units
ns
____
t
JCYC
JCH
JCL
JR
JF
JRST
JRSR
JCD
JDC
JS
JH
____
____
t
ns
t
40
ns
t
3(1)
ns
____
t
3(1)
ns
____
____
t
50
ns
____
t
JTAG Reset Recovery
JTAG Data Output
JTAG Data Output Hold
JTAG Setup
50
ns
____
t
25
ns
____
t
0
ns
____
____
t
15
15
ns
t
JTAG Hold
ns
4869 tbl 19
NOTES:
1. Guaranteed by design.
2. 30pF loading on external output signals.
3. Refer to AC Electrical Test Conditions stated earlier in this document.
4. JTAG operations occur at one speed (10MHz). The base device may run at
any speed specified in this datasheet.
22
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
Identification Register Definitions
Instruction Field
Value
Description
Revision Number (31:28)
0x0
Reserved for version number
0x303(1)
0x33
1
IDT Device ID (27:12)
IDT JEDEC ID (11:1)
ID Register Indicator Bit (Bit 0)
NOTE:
Defines IDT part number
Allows unique identification of device vendor as IDT
Indicates the presence of an ID register
4869 tbl 20
1. Device ID for IDT70V658 is 0x30B. Device ID for IDT70V657 is 0x323.
ScanRegisterSizes
Register Name
Bit Size
Instruction (IR)
Bypass (BYR)
4
1
Identification (IDR)
32
Boundary Scan (BSR)
Note (3)
4869 tbl 21
SystemInterfaceParameters
Instruction
Code
Description
EXTEST
0000
Forces contents of the boundary scan cells onto the device outputs(1)
Places the boundary scan register (BSR) between TDI and TDO.
.
BYPASS
IDCODE
1111
Places the by pass registe r (BYR) betwe en TDI and TDO.
0010
Loads the ID register (IDR) with the vendor ID code and places the
register between TDI and TDO.
0100
Places the bypass register (BYR) between TDI and TDO. Forces all
device output drivers to a High-Z state.
HIGHZ
Uses BYR. Forces contents of the boundary scan cells onto the device
outputs. Places the bypass register (BYR) between TDI and TDO.
CLAMP
0011
0001
SAMPLE/PRELOAD
Places the boundary scan register (BSR) between TDI and TDO.
SAMPLE allows data from device inputs(2) and outputs(1) to be captured
in the boundary scan cells and shifted serially through TDO. PRELOAD
allows data to be input serially into the b oundary scan cells via the TDI.
RESERVED
All other codes
Several combinations are reserved. Do not use codes other than those
identified above.
4869 tbl 22
NOTES:
1. Device outputs = All device outputs except TDO.
2. Device inputs = All device inputs except TDI, TMS, and TRST.
3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local
IDT sales representative.
23
IDT70V659/58/57S
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
Ordering Information
XXXXX
A
999
A
A
A
A
Device
Type
Power Speed
Package
Process/
Temperature
Range
Tube or Tray
Tape and Reel
Blank
8
Commercial (0°C to +70°C)
Industrial (-40°C to +85°C)
Blank
I(1)
G(2)
Green
208-ball fpBGA (BF208)
208-pin PQFP (DR208)
256-ball BGA (BC256)
BF
DR
BC
10
12
15
Commercial Only
Commercial & Industrial
Commercial & Industrial
Speed in nanoseconds
S
Standard Power
70V659
70V658
70V657
4Mbit (128K x 36) 3.3V Asynchronous Dual-Port RAM
2Mbit (64K x 36) 3.3V Asynchronous Dual-Port RAM
1Mbit (32K x 36) 3.3V Asynchronous Dual-Port RAM
4869 drw 21
NOTES:
1. Contact your local sales office for Industrial temp range in other speeds, packages and powers.
2. Greenpartsavailable.Forspecificspeeds,packagesandpowerscontactyourlocalsalesoffice.
LEADFINISH(SnPb)partsareinEOLprocess.ProductDiscontinuationNotice-PDN#SP-17-02
DatasheetDocumentHistory:
06/02/00:
08/11/00:
06/20/01:
InitialPublicOffering
Page 6, 13 & 20 Inserted additional BEn information
Page 14 Increased BUSY TIMING parameters tBDA, tBAC, tBDC and tBDD for all speeds
Page 21 ChangedmaximumvalueforJTAGACElectricalCharacteristicsfortJCD from20nsto25ns
Page 2, 3 & 4 Added date revision for pin configurations
Page 8, 10, 14 & 16 Removed I-temp 15ns speed from DC & AC Electrical Characteristics
Page23 RemovedI-temp15nsspeedfromorderinginformation
Added I-temp footnote
12/17/01:
Page 1 & 23 Replaced TM logo with ® logo
03/19/04:
03/22/05:
Consolidatedmultipledevicesintoonedatasheet
Removed"Preliminary"Status
Page 1 Added green availability to features
Page 24 Added green indicator to ordering information
Page 1 & 24 Replaced old IDT TM with new IDT TM logo
Page 9 Corrected a typo in the DC Chars table
07/25/08:
Page 24 Removed "IDT" from orderable part number
Page 24 AddedT&RindicatortoOrderingInformation
ProductDiscontinuationNotice-PDN#SP-17-02
10/23/08:
06/18/18:
Last time buy expires June 15, 2018
CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138
for SALES:
for Tech Support:
408-284-2794
DualPortHelp@idt.com
800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com
The IDT logo is a registered trademark of Integrated Device Technology, Inc.
24
70V659S15BCGI8 相关器件
型号 | 制造商 | 描述 | 价格 | 文档 |
70V659S15BCI8 | IDT | Application Specific SRAM, 128KX36, 15ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, BGA-256 | 获取价格 | |
70V659S15BF8 | IDT | CABGA-208, Reel | 获取价格 | |
70V659S15BFG | IDT | HIGH-SPEED 3.3V 128/64/32K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM | 获取价格 | |
70V659S15BFG8 | IDT | HIGH-SPEED 3.3V 128/64/32K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM | 获取价格 | |
70V659S15BFGI | IDT | HIGH-SPEED 3.3V 128/64/32K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM | 获取价格 | |
70V659S15BFGI8 | IDT | HIGH-SPEED 3.3V 128/64/32K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM | 获取价格 | |
70V659S15DR8 | IDT | Dual-Port SRAM, 128KX36, 15ns, CMOS, PQFP208, 28 X 28 MM, 3.50 MM HEIGHT, PLASTIC, QFP-208 | 获取价格 | |
70V659S15DR9 | IDT | Dual-Port SRAM, 128KX36, 15ns, CMOS, PQFP208, 28 X 28 MM, 3.50 MM HEIGHT, PLASTIC, QFP-208 | 获取价格 | |
70V659S15DRG | IDT | HIGH-SPEED 3.3V 128/64/32K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM | 获取价格 | |
70V659S15DRG8 | IDT | HIGH-SPEED 3.3V 128/64/32K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM | 获取价格 |
70V659S15BCGI8 相关文章
- 2024-10-31
- 6
- 2024-10-31
- 6
- 2024-10-31
- 7
- 2024-10-31
- 8