70V659S15BCGI8

更新时间:2024-10-29 23:11:08
品牌:IDT
描述:HIGH-SPEED 3.3V 128/64/32K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM

70V659S15BCGI8 概述

HIGH-SPEED 3.3V 128/64/32K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM

70V659S15BCGI8 数据手册

通过下载70V659S15BCGI8数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
IDT70V659/58/57S  
HIGH-SPEED 3.3V  
128/64/32K x 36  
ASYNCHRONOUS DUAL-PORT  
STATIC RAM  
LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018  
Features  
True Dual-Port memory cells which allow simultaneous  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
Separate byte controls for multiplexed bus and bus  
matching compatibility  
Supports JTAG features compliant to IEEE 1149.1  
LVTTL-compatible, single 3.3V (±150mV) power supply for  
core  
LVTTL-compatible, selectable 3.3V (±150mV)/2.5V (±100mV)  
power supply for I/Os and control signals on each port  
Available in a 208-pin Plastic Quad Flatpack, 208-ball fine  
pitch Ball Grid Array, and 256-ball Ball Grid Array  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
access of the same memory location  
High-speed access  
– Commercial:10/12/15ns(max.)  
– Industrial:12/15ns(max.)  
Dual chip enables allow for depth expansion without  
external logic  
IDT70V659/58/57 easily expands data bus width to 72 bits  
or more using the Master/Slave select when cascading  
more than one device  
M/S = VIH for BUSY output flag on Master,  
M/S = VIL for BUSY input on Slave  
Busy and Interrupt Flags  
On-chip port arbitration logic  
Green parts available, see ordering information  
Functional Block Diagram  
BE3L  
BE3R  
BE2R  
BE2L  
BE1L  
BE0L  
BE1R  
BE0R  
R/WL  
R/  
WR  
B B B B B B B B  
E E E E E E E E  
0
L
1
L
2
L
3
L
3
2 1  
0
CE0L  
CE1L  
CE0R  
CE1R  
R R R R  
OEL  
OER  
Dout0-8_L  
Dout0-8_R  
Dout9-17_L  
Dout9-17_R  
Dout18-26_R  
Dout27-35_R  
Dout18-26_L  
Dout27-35_L  
128/64/32K x 36  
MEMORY  
ARRAY  
I/O0L- I/O35L  
Di n_L  
Di n_R  
I/O0R -I/O35R  
(1)  
(1)  
16 L  
A
16R  
Address  
Decoder  
A
Address  
Decoder  
ADDR_L  
ADDR_R  
A0R  
A0L  
CE0L  
CE1L  
ARBITRATION  
CE0R  
CE1R  
INTERRUPT  
SEMAPHORE  
LOGIC  
OE  
L
OE  
R
R/W  
L
R/W  
R
(2,3)  
L
(2,3)  
R
BUSY  
SEM  
INT  
BUSY  
SEM  
M/S  
L
L
R
(3)  
(3)  
INT  
R
TMS  
TCK  
TDI  
JTAG  
TDO  
TRST  
NOTES:  
4869 drw 01  
1. A16 is a NC for IDT70V658. Also, Addresses A16 and A15 are NC's for IDT70V657.  
2. BUSY is an input as a Slave (M/S=VIL) and an output when it is a Master (M/S=VIH).  
3. BUSY and INT are non-tri-state totem-pole outputs (push-pull).  
JUNE 2018  
1
©2018 Integrated Device Technology, Inc.  
DSC-4869/8  
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
The IDT70V659/58/57 is a high-speed 128/64/32K x 36 Asynchro- address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
nousDual-PortStaticRAM.TheIDT70V659/58/57isdesignedtobeused reads or writes to any location in memory. An automatic power down  
asastand-alone4/2/1MbitDual-PortRAMorasacombinationMASTER/ feature controlled by the chip enables (either CE0 or CE1) permit the  
SLAVE Dual-Port RAM for 72-bit-or-more word system. Using the IDT on-chip circuitry of each port to enter a very low standby power mode.  
MASTER/SLAVE Dual-Port RAM approach in 72-bit or wider memory  
The 70V659/58/57 can support an operating voltage of either 3.3V  
systemapplicationsresultsinfull-speed,error-freeoperationwithoutthe or2.5Vononeorbothports,controlledbytheOPTpins.Thepowersupply  
needforadditionaldiscretelogic.  
for the core of the device (VDD) remains at 3.3V.  
This device provides two independent ports with separate control,  
2
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinConfigurations(3,4,5,6,7,8)  
03/19/04  
I/O16L  
156  
1
2
3
4
5
6
I/O19L  
I/O19R  
I/O20L  
I/O20R  
I/O16R  
155  
I/O15L  
154  
I/O15R  
153  
V
V
SS  
VDDQL  
152  
151  
150  
149  
148  
147  
146  
145  
144  
143  
142  
141  
140  
139  
138  
137  
136  
135  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
DDQL  
VSS  
I/O14L  
I/O14R  
I/O13L  
I/O13R  
7
8
9
I/O21L  
I/O21R  
I/O22L  
I/O22R  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
V
V
SS  
V
DDQR  
DDQR  
VSS  
I/O12L  
I/O12R  
I/O11L  
I/O11R  
I/O23L  
I/O23R  
I/O24L  
I/O24R  
V
V
SS  
VDDQL  
DDQL  
VSS  
I/O10L  
I/O10R  
I/O9L  
I/O25L  
I/O25R  
I/O26L  
I/O26R  
70V659/58/57DR  
DR-208(7)  
I/O9R  
V
V
V
V
V
V
V
V
SS  
V
DDQR  
DDQR  
DD  
VSS  
V
V
DD  
DD  
DD  
SS  
V
V
SS  
SS  
208-Pin PQFP  
Top View(8)  
SS  
SS  
VDDQL  
DDQL  
VSS  
I/O8R  
I/O8L  
I/O7R  
I/O7L  
I/O27R  
I/O27L  
I/O28R  
I/O28L  
V
V
SS  
V
DDQR  
DDQR  
VSS  
I/O6R  
I/O6L  
I/O5R  
I/O5L  
I/O29R  
I/O29L  
I/O30R  
I/O30L  
V
V
SS  
VDDQL  
DDQL  
VSS  
I/O4R  
I/O4L  
I/O3R  
I/O3L  
I/O31R  
I/O31L  
I/O32R  
I/O32L  
V
V
SS  
V
DDQR  
DDQR  
VSS  
I/O2R  
I/O2L  
I/O1R  
I/O1L  
I/O33R  
I/O33L  
I/O34R  
I/O34L  
4869 drw 02a  
NOTES:  
1. Pin is a NC for IDT70V658 and IDT70V657.  
2. Pin is a NC for IDT70V657.  
3. All VDD pins must be connected to 3.3V power supply.  
4. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (3.3V) and 2.5V if OPT pin for that port is  
set to VSS (0V).  
5. All VSS pins must be connected to ground.  
6. Package body is approximately 28mm x 28mm x 3.5mm.  
7. This package code is used to reference the package diagram.  
8. This text does not indicate orientation of the actual part-marking.  
3
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configurations(3,4,5,6,7,8) (con't.)  
70V659/58/57BC  
BC-256(7)  
256-Pin BGA  
Top View(8)  
03/19/04  
A1  
A2  
A3  
A6  
A7  
A8  
A9  
A11  
A12  
A13  
A14  
A4  
A5  
A10  
A15  
A16  
NC  
TDI  
NC  
A
11L  
A
8L  
9L  
7L  
BE2L CE1L  
INT  
L
A
5L  
A
2L  
A
0L  
NC  
A
14L  
OE  
L
NC  
NC  
B1  
B2  
B3  
B6  
B7  
B9  
CE0L  
B11  
B12  
B13  
B4  
B5  
B8  
B10  
B14  
B15  
B16  
(2)  
I/O18L NC TDO  
A
12L  
10L  
A
NC  
A
4L  
A
1L  
A15L  
NC  
BE3L  
R/W  
L
NC I/O17L NC  
C1  
C5  
C6  
C2  
C3  
C4  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C16  
C14  
C15  
(1)  
I/O18R  
A
13L  
A
I/O19L  
V
SS  
A16L  
A
BE1L BE0L SEM  
L
BUSY  
L
A
6L  
A
3L  
I/O16L  
OPT  
L
I/O17R  
D1  
D2  
D6  
DDQL  
D9  
D11  
D3  
D5  
D7  
DDQR  
D8  
D10  
D12  
D13  
D14  
D15  
D16  
D4  
I/O20R I/O19R  
V
V
DDQL  
VDDQR  
DDQL  
I/O20L  
VDDQL  
V
V
DDQR  
V
V
DDQR  
V
DD I/O15R I/O15L I/O16R  
V
DD  
E5  
E6  
E7  
E8  
E9  
E10  
E11  
E12  
E13  
E1  
E2  
E3  
E4  
DDQL  
E14  
E16  
E15  
V
DD  
V
DD  
SS  
SS  
V
SS  
SS  
V
SS  
V
SS  
SS  
SS  
SS  
V
SS  
V
DD  
V
DD  
VDDQR  
I/O21R I/O21L I/O22L  
V
I/O13L  
I/O14R  
I/O14L  
F7  
F1  
F2  
F3  
F5  
F6  
F9  
F10  
F14  
F15  
F16  
F11  
F13  
F8  
F12  
F4  
V
I/O23L I/O22R I/O23R  
V
DD  
V
V
VSS  
V
SS  
VDDQR I/O12R I/O13R I/O12L  
VDDQL  
V
SS  
SS  
SS  
V
DD  
G1  
G5  
H5  
G2  
G4  
G6  
G8  
G9  
G3  
G14  
G15  
G16  
G7  
G10  
G12  
G13  
G11  
I/O24R  
V
SS  
SS  
SS  
I/O24L  
VDDQR  
V
V
V
I/O25L  
V
SS  
V
SS  
V
SS  
V
DDQL I/O10L I/O11L I/O11R  
V
SS  
H11  
H12  
H16  
H13  
H7  
H8  
H9  
H10  
H14  
H15  
H3  
H4  
H6  
H1  
H2  
VSS  
V
SS  
I/O10R  
V
DDQL  
I/O9R IO9L  
V
SS  
V
V
VSS  
I/O26R  
VDDQR  
V
VSS  
I/O26L I/O25R  
J1  
J5  
J2  
J3  
J4  
J6  
J7  
J8  
J9  
J13  
J10  
J11  
J12  
J14  
J15  
J16  
I/O27L  
I/O28R I/O27R  
VDDQL  
V
V
SS  
V
SS  
V
SS  
V
SS  
VDDQR  
VSS  
V
SS  
SS  
VSS  
I/O8R  
I/O7R I/O8L  
K6  
K8  
K10  
K12  
K13  
K2  
K4  
K5  
L5  
K7  
L7  
K9  
K11  
K15  
K16  
K1  
K3  
K14  
V
SS  
V
SS  
SS  
SS  
V
SS  
SS  
V
SS  
V
DDQR  
I/O6R  
V
SS  
V
SS  
V
SS  
V
I/O29L  
V
DDQL  
I/O6L I/O7L  
I/O29R  
I/O28L  
L8  
L11  
L12  
L13  
L6  
L9  
L10  
L3  
L4  
L15  
L16  
L1  
L2  
L14  
V
SS  
V
V
SS  
V
DD  
V
DDQL  
I/O5L  
I/O30R  
VDDQR  
V
DD  
V
SS  
V
SS  
V
I/O4R I/O5R  
I/O30L I/O31R  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M1 M2  
M3  
M4  
M16  
M14  
M15  
V
DD  
V
DD  
V
SS  
V
V
SS  
VSS  
V
DD  
V
DD  
V
DDQL  
I/O3R I/O3L  
I/O32R I/O32L I/O31L  
VDDQR  
I/O4L  
N8  
DDQL  
N12  
N16  
N13  
N4  
N5  
N6  
DDQR  
N7  
N9  
N10  
N11  
N15  
N1  
N2  
N3  
N14  
V
V
DDQL  
I/O2R  
I/O1R  
V
DD  
V
DD  
VDDQR  
V
V
DDQL  
V
DDQR  
V
DDQR  
V
DDQL  
I/O33L I/O34R I/O33R  
I/O2L  
P1  
P2  
P3  
P4  
16R  
P5  
P7  
P8  
P9  
P10  
P11  
P12  
P14  
P15  
P16  
P6  
P13  
(1)  
I/O35R I/O34L TMS  
A
A
13R  
A
7R BE1R BE0R SEM  
R
BUSY  
R
A
6R  
I/O0L I/O0R I/O1L  
A
10R  
A
3R  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R16  
R1  
R2  
R3  
R4  
R12  
R13  
R14  
R15  
,
(2)  
A
15R  
A
12R  
A
9R  
BE3R CE0R R/W  
R
M/S  
NC  
I/O35L NC TRST NC  
A4R  
A
1R OPT  
R
NC  
T2  
T3  
T1  
T4  
T5  
T8  
T9  
T15  
T16  
T6  
T7  
T10  
T11  
T12  
T13  
T14  
TCK  
NC  
NC  
NC  
A14R  
BE2R CE1R  
NC  
NC  
A
11R  
A
8R  
OE  
R
INT  
R
A
5R  
A
2R  
A0R  
4869 drw 02c  
,
NOTES:  
1. Pin is a NC for IDT70V658 and IDT70V657.  
2. Pin is a NC for IDT70V657.  
3. All VDD pins must be connected to 3.3V power supply.  
4. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (3.3V), and 2.5V if OPT pin for that port is  
set to VSS (0V).  
5. All VSS pins must be connected to ground supply.  
6. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch.  
7. This package code is used to reference the package diagram.  
8. This text does not indicate orientation of the actual part-marking.  
4
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configuration(3,4,5,6,7,8) (con't.)  
03/19/04  
1
2
3
4
5
6
7
8
9
11 12 13 14  
10  
16 17  
15  
(1)  
I/O19L  
A
12L  
V
V
V
DD  
SS  
SS  
A
B
C
D
E
F
I/O18L  
V
SS  
A
8L  
A
0L  
I/O17L  
VSS  
A4  
L
OPTL  
TDO  
NC  
A
16L  
BE1L  
SEM  
L
INTL  
A
B
C
D
E
F
I/O20R  
V
SS  
A
9L  
I/O18R  
I/O15R  
A5  
L
I/O16L  
TDI  
NC  
NC  
A
13L  
A
1L  
VDDQR  
V
V
SS  
DD  
CE0L  
BUSY  
L
BE2L  
BE3L  
A
A
10L  
VSS  
I/O19R  
V
DD  
A
14L  
CE1L  
A6L  
A
2L  
I/O16R I/O15L  
V
DDQL  
VDDQR  
R/WL  
(2)  
I/O22L  
VSS  
I/O17R  
I/O12L  
I/O21L  
A
11L  
7L  
V
DD  
V
DDQL  
I/O14L I/O14R  
I/O13L  
I/O20L  
A
15L  
NC  
VDD  
BE0L  
A3L  
OE  
L
I/O23L I/O22R  
VDDQR I/O21R  
I/O13R  
I/O12R  
V
SS  
V
DDQL  
I/O23R  
VSS  
VDDQR  
I/O24L  
I/O25L  
V
SS  
I/O11L  
I/O10L  
I/O26L  
V
SS  
I/O9L  
VDDQL  
I/O24R  
I/O25R  
I/O11R  
I/O10R  
G
H
J
G
H
J
70V659/58/57BF  
BF-208(7)  
V
DD  
I/O26R  
V
DDQR  
V
DD  
I/O9R  
V
SS  
V
DD  
VDDQL  
V
SS  
V
SS  
VDDQR  
V
DD  
V
SS  
VSS  
208-Ball BGA  
Top View(8)  
V
DDQL  
I/O7R  
I/O6R  
VSS  
I/O8R  
I/O28R  
VSS  
I/O27R  
K
L
V
SS  
K
L
I/O29R I/O28L  
VDDQR  
I/O27L  
I/O7L  
I/O6L  
V
SS  
I/O8L  
V
DDQL  
I/O30R  
VSS  
I/O29L  
V
SS  
I/O5R  
I/O4R  
VDDQR  
M
N
P
R
T
M
N
P
R
T
I/O31L  
I/O32R  
VSS  
I/O3R  
I/O2L  
V
DDQL  
I/O31R I/O30L  
I/O5L  
I/O4L  
(1)  
I/O3L  
I/O32L  
I/O33L  
VDDQR  
V
DD  
INT  
R
A
4R  
VSS  
TRST  
A
12R  
A8R  
I/O35R  
TCK  
A
16R  
BE1R  
SEMR  
V
SS  
V
DDQL  
I/O1R  
VDDQR  
V
V
SS  
SS  
A
5R  
A
1R  
2R  
A
13R  
A9R  
NC  
NC  
V
SS  
I/O34R  
BE2R  
BE3R  
CE0R  
BUSYR  
I/O0R  
V
SS  
VSS  
A
I/O2R  
I/O1L  
A6R  
A
14R  
A10R  
CE1R  
I/O33R I/O34L  
V
DDQL TMS  
R/WR  
V
DD  
(2)  
15R  
OPT  
R
I/O0L  
V
DD  
A
3R  
A
0R  
A
11R  
A7R  
V
SS  
V
DD  
M/S  
I/O35L  
NC  
BE0R  
OER  
A
U
U
4869 drw 02b  
NOTES:  
1. Pin is a NC for IDT70V658 and IDT70V657.  
2. Pin is a NC for IDT70V657.  
3. All VDD pins must be connected to 3.3V power supply.  
4. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (3.3V) and 2.5V if OPT pin for that port is  
set to VSS (0V).  
5. All VSS pins must be connected to ground.  
6. Package body is approximately 15mm x 15mm x 1.4mm with 0.8mm ball pitch.  
7. This package code is used to reference the package diagram.  
8. This text does not indicate orientation of the actual part-marking.  
5
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
CE1R  
Names  
Chip Enables - (Input)  
CE0L  
R/W  
OE  
,
CE1L  
CE0R  
R/W  
OE  
,
L
R
Read/Write Enable - (Input)  
Output Enable - (Input)  
Address - (Input)  
L
R
(3)  
(3)  
A
0L - A16L  
A0R - A16R  
I/O0L - I/O35L  
I/O0R - I/O35R  
Data Input/Output  
Semaphore Enable - (Input)  
Interrupt Flag - (Output)  
Busy Flag - (Output)(4)  
Byte Enables (9-bit bytes) - (Input)  
SEM  
INT  
BUSY  
BE0L - BE3L  
L
SEM  
INT  
BUSY  
BE0R - BE3R  
R
L
R
L
R
(1)  
VDDQL  
VDDQR  
Power (I/O Bus) (3.3V or 2.5V) - (Input)  
(1,2)  
OPTL  
OPTR  
Option for selecting VDDQX - (Input)  
M/S  
Master or Slave Select - (Input)  
(1)  
VDD  
Power (3.3V) - (Input)  
V
SS  
Ground (0V) - (Input)  
Test Data Input  
NOTES:  
1. VDD, OPTX, and VDDQX must be set to appropriate operating levels prior to  
applying inputs on I/OX.  
TDI  
TDO  
TCK  
TMS  
TRST  
2. OPTX selects the operating voltage levels for the I/Os and controls on that port.  
If OPTX is set to VIH (3.3V), then that port's I/Os and controls will operate at 3.3V  
levels and VDDQX must be supplied at 3.3V. If OPTX is set to VIL (0V), then that  
port's I/Os and controls will operate at 2.5V levels and VDDQX must be supplied  
at 2.5V. The OPT pins are independent of one anotherboth ports can operate  
at 3.3V levels, both can operate at 2.5V levels, or either can operate at 3.3V  
with the other at 2.5V.  
Test Data Output  
Test Logic Clock (10MHz)  
Test Mode Select  
Reset (Initialize TAP Controller)  
4869 tbl 01  
3. Addresses A16x is a NC for IDT70V658. Also, Addresses A16x and A15x are  
NC's for IDT70V657.  
4. BUSY is an input as a slave (M/S = VIL).  
6
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I—Read/Write and Enable Control(1,2)  
Byte 3  
I/O27-35  
Byte 2  
I/O18-26  
Byte 1  
I/O9-17  
Byte 0  
I/O0-8  
CE  
X
1
R/W  
X
X
X
L
MODE  
OE  
X
X
X
X
X
X
X
X
X
X
L
SEM CE  
0
BE  
3
BE  
2
BE  
1
BE0  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
X
H
H
H
H
L
X
X
H
H
H
L
X
X
H
H
L
X
X
H
L
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z Deselected–Power Down  
High-Z Deselected–Power Down  
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
High-Z  
All Bytes Deselected  
Write to Byte 0 Only  
Write to Byte 1 Only  
Write to Byte 2 Only  
Write to Byte 3 Only  
Write to Lower 2 Bytes Only  
Write to Upper 2 bytes Only  
Write to All Bytes  
DIN  
H
H
H
L
L
D
IN  
High-Z  
High-Z  
High-Z  
H
H
L
L
D
IN  
High-Z  
High-Z  
H
H
L
L
D
IN  
High-Z  
High-Z  
H
L
L
High-Z  
DIN  
DIN  
H
L
H
L
L
D
IN  
IN  
D
IN  
IN  
High-Z  
High-Z  
L
L
L
D
D
DIN  
DIN  
H
H
H
L
H
H
L
H
L
L
H
H
H
H
H
H
H
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
DOUT  
Read Byte 0 Only  
L
H
H
H
L
DOUT  
High-Z Read Byte 1 Only  
High-Z Read Byte 2 Only  
High-Z Read Byte 3 Only  
L
H
H
L
DOUT  
High-Z  
High-Z  
L
H
H
L
DOUT  
High-Z  
High-Z  
L
H
L
High-Z  
DOUT  
DOUT  
Read Lower 2 Bytes Only  
High-Z Read Upper 2 Bytes Only  
Read All Bytes  
High-Z Outputs Disabled  
L
H
L
H
L
D
OUT  
OUT  
D
OUT  
OUT  
High-Z  
L
L
L
D
D
DOUT  
DOUT  
H
L
L
L
L
High-Z  
High-Z  
High-Z  
4869 tbl 02  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. It is possible to read or write any combination of bytes during a given access. A few representative samples have been illustrated here.  
Truth Table II – Semaphore Read/Write Control(1)  
Inputs(1)  
BE  
Outputs  
(2)  
R/W  
H
I/O1-35  
I/O  
0
Mode  
CE  
OE  
L
BE  
3
2
BE  
1
BE  
0
SEM  
H
H
L
L
X
X
L
X
X
L
X
X
L
L
L
L
L
DATAOUT  
DATAOUT Read Data in Semaphore Flag(3)  
X
X
DATAIN  
Write I/O  
0 into Semaphore Flag  
______  
______  
X
X
X
Not Allowed  
4869 tbl 03  
NOTES:  
1. There are eight semaphore flags written to I/O0 and read from all the I/Os (I/O0-I/O35). These eight semaphore flags are addressed by A0-A2.  
2. CE = L occurs when CE0 = VIL and CE1 = VIH.  
3. Each byte is controlled by the respective BEn. To read data BEn = VIL.  
7
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
RecommendedDCOperating  
RecommendedDCOperating  
Conditions with VDDQ at 2.5V  
Conditions with VDDQ at 3.3V  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min. Typ.  
Max.  
Unit  
V
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min. Typ.  
3.15 3.3  
3.15 3.3  
Max.  
Unit  
V
V
DD  
DDQ  
SS  
3.15 3.3  
3.45  
V
DD  
DDQ  
SS  
3.45  
V
2.4  
0
2.5  
2.6  
V
V
3.45  
V
V
0
0
V
V
0
0
0
V
Input High Voltage(3)  
(Address & Control Inputs)  
1.7  
V
DDQ + 150mV(2)  
V
____  
____  
V
V
DDQ + 100mV(2)  
V
IH  
Input High Voltage  
2.0  
V
V
V
IH  
(Address & Control Inputs)(3)  
DDQ + 150mV(2)  
0.8  
V
____  
____  
____  
____  
V
IH  
IL  
Input High Voltage - I/O(3)  
Input Low Voltage  
1.7  
DDQ + 100mV(2)  
0.7  
V
V
IH  
IL  
Input High Voltage - I/O(3)  
Input Low Voltage  
2.0  
V
-0.5(1)  
V
V
-0.3(1)  
V
4869 tbl 06  
4869 tbl 07  
NOTES:  
NOTES:  
1. VIL > -1.5V for pulse width less than 10 ns.  
2. VTERM must not exceed VDDQ + 100mV.  
1. VIL > -1.5V for pulse width less than 10 ns.  
2. VTERM must not exceed VDDQ + 150mV.  
3. To select operation at 2.5V levels on the I/Os and controls of a given port, the 3. To select operation at 3.3V levels on the I/Os and controls of a given port, the  
OPT pin for that port must be set to VSS (0V), and VDDQX for that port must be  
supplied as indicated above.  
OPT pin for that port must be set to VDD (3.3V), and VDDQX for that port must be  
supplied as indicated above.  
Capacitance(1)  
MaximumOperating  
TemperatureandSupplyVoltage(1)  
(TA = +25°C, F = 1.0MHZ) PQFP ONLY  
Ambient  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions  
IN = 0V  
OUT = 0V  
Max. Unit  
Grade  
Commercial  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
V
+
+
DD  
CIN  
V
8
pF  
3.3V  
3.3V  
150mV  
150mV  
(2)  
OUT  
C
V
10.5  
pF  
Industrial  
0V  
4869 tbl 08  
NOTES:  
4869 tbl 04  
NOTE:  
1. These parameters are determined by device characterization, but are not  
production tested.  
1. This is the parameter TA. This is the "instant on" case temperature.  
2. COUT also references CI/O.  
AbsoluteMaximumRatings(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
(2)  
TERM  
V
V
DD Terminal Voltage  
-0.5 to + 4.6  
V
(VDD  
)
with Respect to GND  
Temperature Under Bias  
Storage Temperature  
Junction Temperature  
NOTES:  
(3)  
T
BIAS  
STG  
JN  
-55 to +125  
-65 to +150  
+150  
oC  
oC  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS  
may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may  
affect reliability.  
T
T
oC  
2. VTERM must not exceed VDD + 150mV for more than 25% of the cycle time  
or 4ns maximum, and is limited to < 20mA for the period of VTERM > VDD  
+ 150mV.  
I
OUT(For VDDQ = 3.3V) DC Output Current  
50  
mA  
IOUT(For VDDQ = 2.5V) DC Output Current  
40  
mA  
3. Ambient Temperature under DC Bias. No AC Conditions. Chip Deselected.  
4869 tbl 05  
8
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 3.3V ± 150mV)  
70V659/58/57S  
Min. Max.  
Symbol  
|ILI  
|ILO  
Parameter  
Input Leakage Current(1)  
Output Leakage Current  
Test Conditions  
DDQ = Max., VIN = 0V to VDDQ  
CE  
OL = +4mA, VDDQ = Min.  
OH = -4mA, VDDQ = Min.  
OL = +2mA, VDDQ = Min.  
OH = -2mA, VDDQ = Min.  
Unit  
µA  
µA  
V
___  
___  
___  
|
V
10  
10  
|
0
= VIH or CE1 = VIL, VOUT = 0V to VDDQ  
V
OL (3.3V) Output Low Voltage(2)  
OH (3.3V) Output High Voltage(2)  
OL (2.5V) Output Low Voltage(2)  
OH (2.5V) Output High Voltage(2)  
I
0.4  
___  
V
I
2.4  
V
___  
V
I
0.4  
V
___  
V
I
2.0  
V
4869 tbl 09  
NOTE:  
1. At VDD < - 2.0V input leakages are undefined.  
2. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to p.6 for details.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(3) (VDD = 3.3V ± 150mV)  
70V659/58/57S10 70V659/58/57S12 70V659/58/57S15  
Com'l Only  
Com'l  
& Ind  
Com'l  
& Ind  
Symbol  
Parameter  
Test Condition  
= VIL  
Version  
COM'L  
Typ.(4)  
340  
Max.  
500  
Typ.(4)  
Max.  
465  
515  
125  
150  
325  
365  
Typ.(4)  
300  
350  
75  
Max. Unit  
IDD  
Dynamic Operating  
Current (Both  
Ports Active)  
mA  
mA  
mA  
mA  
CE  
L
and CE  
R
,
S
S
S
S
S
S
315  
365  
90  
440  
490  
100  
125  
315  
350  
Outputs Disabled  
____  
____  
(1)  
IND  
f = fMAX  
ISB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
CE  
f = fMAX  
L
= CE  
R
= VIH  
COM'L  
IND  
115  
165  
(1)  
____  
____  
115  
200  
225  
100  
175  
200  
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
COM'L  
IND  
225  
340  
____  
____  
(1)  
f=fMAX  
ISB3  
Full Standby Current Both Ports CE  
(Both Ports - CMOS CE  
Level Inputs)  
L and  
> VDDQ - 0.2V,  
VIN > VDDQ - 0.2V or VIN < 0.2V,  
COM'L  
IND  
S
S
3
15  
3
6
15  
15  
3
6
15  
15  
R
____  
____  
f = 0(2)  
ISB4  
Full Standby Current  
(One Port - CMOS  
Level Inputs)  
mA  
CE"A" < 0.2V and  
COM'L  
IND  
S
S
220  
335  
195  
220  
320  
360  
170  
195  
310  
345  
CE"B" > VDDQ - 0.2V(5)  
V
IN > VDDQ - 0.2V or VIN < 0.2V,  
Active Port, Outputs Disabled,  
____  
____  
(1)  
f = fMAX  
4869 tbl 10  
NOTES:  
1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, using "AC TEST CONDITIONS" at input  
levels of GND to 3V.  
2. f = 0 means no address or control lines change. Applies only to input at CMOS level standby.  
3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
4. VDD = 3.3V, TA = 25°C for Typ, and are not production tested. IDD DC(f=0) = 120mA (Typ).  
5. CEX = VIL means CE0X = VIL and CE1X = VIH  
CEX = VIH means CE0X = VIH or CE1X = VIL  
CEX < 0.2V means CE0X < 0.2V and CE1X > VDDQ - 0.2V  
CEX > VDDQ - 0.2V means CE0X > VDDQ - 0.2V or CE1X - 0.2V  
"X" represents "L" for left port or "R" for right port.  
9
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
2.5V  
AC Test Conditions (VDDQ - 3.3V/2.5V)  
Input Pulse Levels  
GND to 3.0V / GND to 2.5V  
2ns Max.  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
833  
1.5V/1.25V  
1.5V/1.25V  
DATAOUT  
Figures 1 and 2  
4869 tbl 11  
5pF*  
770Ω  
,
3.3V  
590Ω  
5pF*  
50  
50Ω  
,
DATAOUT  
DATAOUT  
1.5V/1.25  
10pF  
435Ω  
(Tester)  
4869 drw 03  
Figure 1. AC Output Test load.  
,
4869 drw 04  
Figure 2. Output Test Load  
(For tCKLZ, tCKHZ, tOLZ, and tOHZ).  
*Including scope and jig.  
10.5pF is the I/O capacitance of this  
device, and 10pF is the AC Test Load  
Capacitance.  
7
6
5
4
3
tAA  
(Typical, ns)  
2
1
,
30  
20.5  
50  
80 100  
200  
-1  
Figure 3. Typical Output Derating (Lumped Capacitive Load).  
Capacitance (pF)  
4869 drw 05  
10  
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(5)  
70V659/58/57S10 70V659/58/57S12 70V659/58/57S15  
Com'l Only  
Com'l  
& Ind  
Com'l  
& Ind  
Symbol  
Parameter  
Min. Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
10  
12  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
t
Address Access Time  
10  
10  
5
12  
12  
6
15  
15  
7
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
t
5
6
7
____  
____  
____  
t
Output Hold from Address Change  
Output Low-Z Time (1,2)  
3
0
0
3
0
0
3
0
0
____  
____  
____  
t
t
Output High-Z Time(1,2)  
4
6
8
t
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
0
____  
____  
____  
____  
____  
____  
t
10  
4
10  
6
15  
8
____  
____  
____  
t
t
3
10  
3
12  
3
20  
ns  
4869 tbl 12  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
70V659/58/57S10 70V659/58/57S12 70V659/58/57S15  
Com'l Only  
Com'l  
& Ind  
Com'l  
& Ind  
Symbol  
Parameter  
Min. Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
tAS  
Write Cycle Time  
10  
8
12  
10  
10  
0
15  
12  
12  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
8
0
tWP  
tWR  
tDW  
tDH  
8
10  
0
12  
0
Write Recovery Time  
Data Valid to End-of-Write  
Data Hold Time(4)  
0
6
8
10  
0
0
0
Write Enable to Output in High-Z(1,2)  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
4
4
4
____  
____  
____  
tWZ  
____  
____  
____  
tOW  
tSWRD  
tSPS  
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
ns  
4869 tbl 13  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. Thisparameterisguaranteedbydevicecharacterization,butisnotproductiontested.  
3. To access RAM, CE= VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
5. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 6 for details.  
11  
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE  
OE  
(4)  
tAOE  
(4)  
tABE  
BEn  
R/W  
tOH  
(1)  
tLZ  
VALID DATA(4)  
DATAOUT  
BUSYOUT  
(2)  
tHZ  
.
(3,4)  
4869 drw 06  
t
BDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE, CE or BEn.  
2. Timing depends on which signal is de-asserted first CE, OE or BEn.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
Timing of Power-Up Power-Down  
CE  
t
PU  
tPD  
ICC  
50%  
50%  
.
4869 drw 07  
ISB  
12  
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE or SEM(9)  
BEn(9)  
R/W  
(3)  
(2)  
(6)  
tWR  
tAS  
tWP  
(7)  
tOW  
t
WZ  
(4)  
(4)  
DATAOUT  
DATAIN  
tDW  
tDH  
4869 drw 08  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)  
t
WC  
ADDRESS  
t
AW  
CE or SEM(9)  
BEn(9)  
(6)  
AS  
(3)  
(2)  
tWR  
tEW  
t
R/W  
tDW  
tDH  
DATAIN  
4869 drw 09  
NOTES:  
1. R/W or CE or BEn = VIH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a CE = VIL and a R/W = VIL for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load  
(Figure 2).  
8. If OE = VIL during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the  
specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
13  
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tAW  
tWR  
tACE  
t
EW  
SEM/BEn(1)  
tOH  
tSOP  
t
DW  
OUT  
DATA  
VALID(2)  
I/O  
IN  
DATA VALID  
tAS  
tWP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
tSOP  
Write Cycle  
Read Cycle  
4869 drw 10  
NOTES:  
1. CE = VIH for the duration of the above timing (both write and read cycle) (Refer to Chip Enable Truth Table). Refer also to Truth Table II for appropriate BE controls.  
2. "DATAOUT VALID" represents all I/O's (I/O0 - I/O35) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
(2)  
SIDE "A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
(2)  
SIDE  
R/W"B"  
SEM"B"  
"B"  
4869 drw 11  
NOTES:  
1. DOR = DOL = VIL, CEL = CER = VIH. Refer to Truth Table II for appropriate BE controls.  
2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A".  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied,the semaphore will fall positively to one side or the other, but there is no guarantee which side will be granted the semaphore flag.  
14  
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70V659/58/57S10 70V659/58/57S12 70V659/58/57S15  
Com'l Only  
Com'l  
& Ind  
Com'l  
& Ind  
Symbol  
BUSY TIMING (M/S=VIH  
Parameter  
Unit  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
10  
10  
10  
12  
12  
12  
15  
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Disable Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
t
10  
12  
15  
____  
____  
____  
t
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
t
10  
12  
15  
t
Write Hold After BUSY(5)  
8
10  
12  
____  
____  
____  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
8
0
0
ns  
ns  
tWH  
10  
12  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
22  
20  
25  
22  
30  
25  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
4869 tbl 14  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of the Max. spec, tWDD – tWP (actual), or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
15  
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadandBUSY (M/S =VIH)(2,4,5)  
tWC  
MATCH  
ADDR"A"  
tWP  
R/W"A"  
tDW  
tDH  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
t
BAA  
tBDA  
tBDD  
BUSY"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
.
4869 drw 12  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave), BUSY is an input. Then for this example BUSY"A" = VIH and BUSY"B" input is shown above.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY (M/S = VIL)  
tWP  
R/W"A"  
(3)  
WB  
t
BUSY"B"  
(1)  
tWH  
(2)  
R/W"B"  
4869 drw 13  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the 'slave' version.  
16  
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(M/S = VIH)(1)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
t
APS  
CE"B"  
t
BAC  
tBDC  
BUSY"B"  
4869 drw 14  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(M/S = VIH)(1)  
ADDR"A"  
ADDRESS "N"  
(2)  
t
APS  
ADDR"B"  
MATCHING ADDRESS "N"  
tBAA  
tBDA  
BUSY"B"  
4869 drw 15  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70V659/58/57S10  
Com'l Only  
70V659/58/57S12  
Com'l  
70V659/58/57S15  
Com'l  
& Ind  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
t
0
0
0
____  
____  
____  
t
10  
10  
12  
12  
15  
15  
____  
____  
____  
t
Interrupt Reset Time  
ns  
4869 tbl 15  
17  
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
tWC  
INTERRUPT SET ADDRESS(2)  
ADDR"A"  
(4)  
(3)  
tWR  
tAS  
CE"A"  
R/W"A"  
INT"B"  
(3)  
t
INS  
4869 drw 16  
tRC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
t
AS  
OE"B"  
(3)  
tINR  
INT"B"  
4869 drw 17  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. Refer to Interrupt Truth Table.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
Truth Table III — Interrupt Flag(1,4)  
Left Port  
Right Port  
(5,6)  
(5,6)  
R/W  
L
A
16L-A0L  
R/W  
R
A
16R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CE  
L
OE  
L
INT  
L
CE  
R
OE  
R
INTR  
L
X
X
X
L
X
X
L
X
1FFFF  
X
X
X
X
X
L
L
X
X
X
L(2)  
H(3)  
X
R
X
X
L
1FFFF  
1FFFE  
X
R
X
X
L(3)  
H(2)  
L
X
L
L
1FFFE  
X
X
X
L
4869 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTL and INTR must be initialized at power-up.  
5. A16x is a NC for IDT70V658, therefore Interrupt Addresses are FFFF and FFFE.  
6. A16x and A15x are NC's for IDT70V657, therefore Interrupt Addresses are 7FFF and 7FFE.  
18  
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table IV —  
AddressBUSY Arbitration  
Inputs  
Outputs  
(4)  
A
OL-A16L  
(1)  
(1)  
A
OR-A16R  
Function  
Normal  
Normal  
Normal  
CE  
X
L
CE  
R
BUSY  
L
BUSYR  
X
NO MATCH  
MATCH  
H
H
H
H
X
H
X
H
L
MATCH  
H
H
L
MATCH  
(2)  
(2)  
Write Inhibit(3)  
4869 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the  
IDT70V659/58/57 are push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
4. A16X is a NC for IDT70V658, therefore Address comparison will be for A0 - A15. Also, A16X and A15X are NC's for IDT70V657, therefore Address comparison will  
be for A0 - A14.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D35 Left  
D0  
- D35 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
4869 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70V659/58/57.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O35). These eight semaphores are addressed by A0 - A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
Interrupts  
FunctionalDescription  
Iftheuserchoosestheinterruptfunction,amemorylocation(mail box  
ormessagecenter)isassignedtoeachport. Theleftportinterruptflag  
(INTL)isassertedwhentherightportwritestomemorylocation1FFFE  
(HEX)(FFFEforIDT70V658and 7FFEforIDT70V657), whereawrite  
isdefinedasCER=R/WR=VIL pertheTruthTableIII.Theleftportclears  
the interrupt through access of address location 1FFFE (FFFE for  
IDT70V658 and 7FFE for IDT70V657) when CEL = OEL = VIL, R/W is  
The IDT70V659/58/57 provides two ports with separate control,  
addressandI/Opinsthatpermitindependentaccessforreadsorwrites  
toanylocationinmemory.TheIDT70V659/58/57hasanautomaticpower  
down feature controlled by CE. The CE0 and CE1 control the on-chip  
powerdowncircuitrythatpermitstherespectiveporttogointoastandby  
mode when not selected (CE= HIGH). When a port is enabled, access  
totheentirememoryarrayispermitted.  
19  
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
a"don'tcare".Likewise,therightportinterruptflag(INTR)isassertedwhen numberofslavestobeaddressedinthesameaddressrangeasthemaster  
theleftportwritestomemorylocation1FFFF(HEX)(FFFFforIDT70V658 usetheBUSYsignalasawriteinhibitsignal.ThusontheIDT70V659/58/  
and7FFFforIDT70V657)andtocleartheinterruptflag(INTR),theright 57RAMtheBUSYpinisanoutputifthepartisusedasamaster(M/Spin  
port must read the memory location 1FFFF (FFFF for IDT70V658 and = VIH), and the BUSY pin is an input if the part used as a slave (M/S pin  
7FFF for IDT70V657). The message (36 bits) at 1FFFE (FFFE for = VIL) as shown in Figure 3.  
IDT70V658 and 7FFE for IDT70V657)or 1FFFF (FFFF for IDT70V658  
and 7FFF for IDT70V657) is user-defined since it is an addressable  
SRAM location. If the interrupt function is not used, address locations  
1FFFE (FFFE for IDT70V658 and 7FFE for IDT70V657) and 1FFFF  
(FFFF for IDT70V658 and 7FFF for IDT70V657) are not used as mail  
boxes,butaspartoftherandomaccessmemory.RefertoTruthTableIII  
fortheinterruptoperation.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
array and another master indicating BUSY on one other side of  
thearray.Thiswouldinhibitthewriteoperationsfromoneportforpartof  
awordandinhibitthewriteoperationsfromtheotherportforthe otherpart  
of the word.  
The BUSY arbitration on a master is based on the chip enable and  
address signals only. It ignores whether an access is a read or write. In  
a master/slave array, both address and chip enable must be valid long  
enoughforaBUSYflagtobeoutputfromthemasterbeforethe actualwrite  
pulsecanbeinitiatedwiththeR/Wsignal.Failureto observethistiming  
canresultinaglitchedinternalwriteinhibitsignalandcorrupteddatainthe  
slave.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisBusy”.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
Semaphores  
TheIDT70V659/58/57isanextremelyfastDual-Port128/64/32Kx  
36CMOSStaticRAMwithanadditional8addresslocationsdedicatedto  
binarysemaphoreflags.Theseflagsalloweitherprocessorontheleftor  
right sideoftheDual-PortRAMtoclaimaprivilegeovertheotherprocessor  
forfunctionsdefinedbythesystemdesigner’ssoftware.Asanexample,  
the semaphore can be used by one processor to inhibit the other from  
accessingaportionoftheDual-PortRAMoranyothersharedresource.  
TheDual-PortRAMfeaturesafastaccesstime,withbothportsbeing  
completelyindependentofeachother.Thismeansthatthe activityonthe  
leftportinnowayslowstheaccesstimeoftherightport. Bothportsare  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom  
orwrittentoatthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chip power down circuitry that permits the respective port to go into  
standbymodewhennotselected.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
and use any BUSY indication as an interrupt source to flag the event of  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
The BUSY outputs on the IDT70V659/58/57 RAM in master mode,  
arepush-pulltypeoutputsanddonotrequirepullupresistorstooperate.  
If these RAMs are being expanded in depth, then the BUSY indication  
for the resulting array requires the use of an external AND gate.  
(1,2)  
17  
A
CE0  
CE0  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY  
R
BUSY  
R
BUSY  
L
BUSYL  
SystemswhichcanbestusetheIDT70V659/58/57containmultiple  
processors or controllers and are typically very high-speed systems  
which are software controlled or software intensive. These systems  
canbenefitfromaperformanceincreaseofferedbytheIDT70V659/58/  
57shardwaresemaphores,whichprovidealockoutmechanismwithout  
requiringcomplexprogramming.  
Softwarehandshakingbetweenprocessorsoffersthemaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations. The IDT70V659/58/57 does not use its semaphore  
flagstocontrolanyresourcesthroughhardware,thusallowingthesystem  
designertotalflexibilityinsystemarchitecture.  
CE  
1
CE1  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY  
L
BUSY  
L
BUSYR  
BUSY  
R
.
Figure 3. Busy and chip enable routing for both width and48d6e9pdrtwh18  
expansion with IDT70V659/58/57 RAMs.  
NOTES:  
1. A16 for IDT70V658.  
2. A15 for IDT70V657.  
Width Expansion with Busy Logic  
Master/SlaveArrays  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
When expanding an IDT70V659/58/57 RAM array in width while  
usingBUSYlogic,onemasterpartisusedtodecidewhichsideoftheRAMs  
array will receive a BUSY indication, and to output that indication. Any  
20  
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTable  
V).Asanexample,assumeaprocessorwritesazerototheleftportata  
freesemaphorelocation.On usedinstead,systemcontentionproblems  
couldhaveoccurredduringthegapbetweenthereadandwritecycles.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
from one port to the other to indicate that a shared resource  
isinuse.Thesemaphoresprovideahardwareassistforauseassignment  
methodcalledTokenPassingAllocation.Inthismethod,thestateofa  
semaphorelatchisusedasatokenindicatingthatasharedresourceis  
inuse.Iftheleftprocessorwantstousethisresource,itrequeststhetoken  
bysettingthelatch.Thisprocessorthenverifiesitssuccessinsettingthe  
latchbyreadingit. Ifitwassuccessful,itproceedstoassumecontrolover  
thesharedresource.Ifitwasnotsuccessfulinsettingthelatch,itdetermines  
thattherightsideprocessorhassetthelatchfirst, hasthetokenandisusing  
thesharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
that semaphore’s status or remove its request for that semaphore to  
performanothertaskandoccasionallyattemptagaintogaincontrolofthe  
tokenviathesetandtestsequence.Oncetherightsidehasrelinquished  
byeitherrepeatedreadsorbywritingaoneintothesamelocation. The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
semaphorerequestlatch.Shouldtheotherside’ssemaphorerequestlatch  
havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
overtotheothersideassoonasaoneiswrittenintothefirstside’srequest  
latch.Thesecondside’sflagwillnowstayLOWuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requested and the processor which requested it no longer needs the  
thetoken,theleftsideshouldsucceedingainingcontrol.  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites  
aonetothatlatch.  
The eight semaphore flags reside within the IDT70V659/58/57 in a  
separatememoryspacefromtheDual-PortRAM.Thisaddressspaceis  
accessedbyplacingalowinputontheSEMpin(whichactsasachipselect  
forthesemaphoreflags)andusingtheothercontrolpins(Address,CE,  
R/WandBEo)astheywouldbeusedinaccessingastandardStaticRAM.  
Eachoftheflagshasauniqueaddresswhichcanbeaccessedbyeither  
sidethroughaddresspinsA0A2.Whenaccessingthesemaphores,none  
oftheotheraddresspinshasanyeffect.  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
on that side and a one on the other side (see Truth Table V). That  
semaphorecannowonlybemodifiedbythesideshowingthezero.When  
aoneiswrittenintothesamelocationfromthesameside,the flagwillbe  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
ispending)andthencanbewrittentobybothsides.Thefactthattheside  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
freedbythefirstside.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintooneside’soutput  
registerwhenthatside'ssemaphoreselect(SEM,BEn)andoutputenable  
(OE) signals go active. This serves to disallow the semaphore from  
changingstateinthemiddleofareadcycleduetoawritecyclefromthe  
otherside.Becauseofthislatch,arepeatedreadofasemaphoreinatest  
loopmustcauseeithersignal(SEMorOE)togoinactiveortheoutputwill  
neverchange. However, duringreads BEnfunctionsonlyasanoutput  
forsemaphore.Itdoesnothaveanyinfluenceonthesemaphore control  
logic.  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
4869 drw 19  
Figure 4. IDT70V659/58/57 Semaphore Logic  
The critical case of semaphore timing is when both sides request a  
single token by attempting to write a zero into it at the same time. The  
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst  
sidetomaketherequestwillreceivethetoken.Ifbothrequestsarriveat  
thesametime,theassignmentwillbearbitrarilymadetooneportorthe  
other.  
One caution that should be noted when using semaphores is that  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
or misinterpreted, a software error can easily happen.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
21  
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
JTAGTimingSpecifications  
t
JCYC  
t
JR  
tJF  
t
JCL  
tJCH  
TCK  
Device Inputs(1)/  
TDI/TMS  
tJDC  
tJS  
tJH  
Device Outputs(2)/  
TDO  
t
JRSR  
tJCD  
TRST  
x
4869 drw 20  
t
JRST  
NOTES:  
1. Device inputs = All device inputs except TDI, TMS, and TRST.  
2. Device outputs = All device outputs except TDO.  
JTAG AC Electrical  
Characteristics(1,2,3,4)  
Symbol  
Parameter  
JTAG Clock Input Period  
JTAG Clock HIGH  
JTAG Clock Low  
JTAG Clock Rise Time  
JTAG Clock Fall Time  
JTAG Reset  
Min.  
100  
40  
Max.  
Units  
ns  
____  
t
JCYC  
JCH  
JCL  
JR  
JF  
JRST  
JRSR  
JCD  
JDC  
JS  
JH  
____  
____  
t
ns  
t
40  
ns  
t
3(1)  
ns  
____  
t
3(1)  
ns  
____  
____  
t
50  
ns  
____  
t
JTAG Reset Recovery  
JTAG Data Output  
JTAG Data Output Hold  
JTAG Setup  
50  
ns  
____  
t
25  
ns  
____  
t
0
ns  
____  
____  
t
15  
15  
ns  
t
JTAG Hold  
ns  
4869 tbl 19  
NOTES:  
1. Guaranteed by design.  
2. 30pF loading on external output signals.  
3. Refer to AC Electrical Test Conditions stated earlier in this document.  
4. JTAG operations occur at one speed (10MHz). The base device may run at  
any speed specified in this datasheet.  
22  
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Identification Register Definitions  
Instruction Field  
Value  
Description  
Revision Number (31:28)  
0x0  
Reserved for version number  
0x303(1)  
0x33  
1
IDT Device ID (27:12)  
IDT JEDEC ID (11:1)  
ID Register Indicator Bit (Bit 0)  
NOTE:  
Defines IDT part number  
Allows unique identification of device vendor as IDT  
Indicates the presence of an ID register  
4869 tbl 20  
1. Device ID for IDT70V658 is 0x30B. Device ID for IDT70V657 is 0x323.  
ScanRegisterSizes  
Register Name  
Bit Size  
Instruction (IR)  
Bypass (BYR)  
4
1
Identification (IDR)  
32  
Boundary Scan (BSR)  
Note (3)  
4869 tbl 21  
SystemInterfaceParameters  
Instruction  
Code  
Description  
EXTEST  
0000  
Forces contents of the boundary scan cells onto the device outputs(1)  
Places the boundary scan register (BSR) between TDI and TDO.  
.
BYPASS  
IDCODE  
1111  
Places the by pass registe r (BYR) betwe en TDI and TDO.  
0010  
Loads the ID register (IDR) with the vendor ID code and places the  
register between TDI and TDO.  
0100  
Places the bypass register (BYR) between TDI and TDO. Forces all  
device output drivers to a High-Z state.  
HIGHZ  
Uses BYR. Forces contents of the boundary scan cells onto the device  
outputs. Places the bypass register (BYR) between TDI and TDO.  
CLAMP  
0011  
0001  
SAMPLE/PRELOAD  
Places the boundary scan register (BSR) between TDI and TDO.  
SAMPLE allows data from device inputs(2) and outputs(1) to be captured  
in the boundary scan cells and shifted serially through TDO. PRELOAD  
allows data to be input serially into the b oundary scan cells via the TDI.  
RESERVED  
All other codes  
Several combinations are reserved. Do not use codes other than those  
identified above.  
4869 tbl 22  
NOTES:  
1. Device outputs = All device outputs except TDO.  
2. Device inputs = All device inputs except TDI, TMS, and TRST.  
3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local  
IDT sales representative.  
23  
IDT70V659/58/57S  
High-Speed 3.3V 128/64/32K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Ordering Information  
XXXXX  
A
999  
A
A
A
A
Device  
Type  
Power Speed  
Package  
Process/  
Temperature  
Range  
Tube or Tray  
Tape and Reel  
Blank  
8
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Blank  
I(1)  
G(2)  
Green  
208-ball fpBGA (BF208)  
208-pin PQFP (DR208)  
256-ball BGA (BC256)  
BF  
DR  
BC  
10  
12  
15  
Commercial Only  
Commercial & Industrial  
Commercial & Industrial  
Speed in nanoseconds  
S
Standard Power  
70V659  
70V658  
70V657  
4Mbit (128K x 36) 3.3V Asynchronous Dual-Port RAM  
2Mbit (64K x 36) 3.3V Asynchronous Dual-Port RAM  
1Mbit (32K x 36) 3.3V Asynchronous Dual-Port RAM  
4869 drw 21  
NOTES:  
1. Contact your local sales office for Industrial temp range in other speeds, packages and powers.  
2. Greenpartsavailable.Forspecificspeeds,packagesandpowerscontactyourlocalsalesoffice.  
LEADFINISH(SnPb)partsareinEOLprocess.ProductDiscontinuationNotice-PDN#SP-17-02  
DatasheetDocumentHistory:  
06/02/00:  
08/11/00:  
06/20/01:  
InitialPublicOffering  
Page 6, 13 & 20 Inserted additional BEn information  
Page 14 Increased BUSY TIMING parameters tBDA, tBAC, tBDC and tBDD for all speeds  
Page 21 ChangedmaximumvalueforJTAGACElectricalCharacteristicsfortJCD from20nsto25ns  
Page 2, 3 & 4 Added date revision for pin configurations  
Page 8, 10, 14 & 16 Removed I-temp 15ns speed from DC & AC Electrical Characteristics  
Page23 RemovedI-temp15nsspeedfromorderinginformation  
Added I-temp footnote  
12/17/01:  
Page 1 & 23 Replaced TM logo with ® logo  
03/19/04:  
03/22/05:  
Consolidatedmultipledevicesintoonedatasheet  
Removed"Preliminary"Status  
Page 1 Added green availability to features  
Page 24 Added green indicator to ordering information  
Page 1 & 24 Replaced old IDT TM with new IDT TM logo  
Page 9 Corrected a typo in the DC Chars table  
07/25/08:  
Page 24 Removed "IDT" from orderable part number  
Page 24 AddedT&RindicatortoOrderingInformation  
ProductDiscontinuationNotice-PDN#SP-17-02  
10/23/08:  
06/18/18:  
Last time buy expires June 15, 2018  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
24  

70V659S15BCGI8 相关器件

型号 制造商 描述 价格 文档
70V659S15BCI8 IDT Application Specific SRAM, 128KX36, 15ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, BGA-256 获取价格
70V659S15BF8 IDT CABGA-208, Reel 获取价格
70V659S15BFG IDT HIGH-SPEED 3.3V 128/64/32K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM 获取价格
70V659S15BFG8 IDT HIGH-SPEED 3.3V 128/64/32K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM 获取价格
70V659S15BFGI IDT HIGH-SPEED 3.3V 128/64/32K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM 获取价格
70V659S15BFGI8 IDT HIGH-SPEED 3.3V 128/64/32K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM 获取价格
70V659S15DR8 IDT Dual-Port SRAM, 128KX36, 15ns, CMOS, PQFP208, 28 X 28 MM, 3.50 MM HEIGHT, PLASTIC, QFP-208 获取价格
70V659S15DR9 IDT Dual-Port SRAM, 128KX36, 15ns, CMOS, PQFP208, 28 X 28 MM, 3.50 MM HEIGHT, PLASTIC, QFP-208 获取价格
70V659S15DRG IDT HIGH-SPEED 3.3V 128/64/32K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM 获取价格
70V659S15DRG8 IDT HIGH-SPEED 3.3V 128/64/32K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM 获取价格

70V659S15BCGI8 相关文章

  • HARTING(浩亭)圆形连接器产品选型手册
    2024-10-31
    6
  • HYCON(宏康科技)产品选型手册
    2024-10-31
    6
  • GREEGOO整流二极管和晶闸管产品选型手册
    2024-10-31
    7
  • 西门子豪掷106亿美元,战略收购工程软件巨头Altair
    2024-10-31
    8