71342LA25PFGI [IDT]

HIGH SPEED 4K X 8 DUAL-PORT STATIC RAM;
71342LA25PFGI
型号: 71342LA25PFGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

HIGH SPEED 4K X 8 DUAL-PORT STATIC RAM

文件: 总14页 (文件大小:318K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH SPEED  
IDT71342SA/LA  
4K X 8 DUAL-PORT  
STATIC RAM  
WITH SEMAPHORE  
Features  
High-speed access  
Fully asynchronous operation from either port  
Full on-chip hardware support of semaphore signalling be-  
tween ports  
Battery backup operation—2V data retention (LA only)  
TTL-compatible; single 5V (±10%) power supply  
Available in plastic packages  
– Commercial:20/25/35/45/55/70ns(max.)  
– Industrial: 25ns (max.)  
Low-power operation  
– IDT71342SA  
Active: 700mW (typ.)  
Standby: 5mW (typ.)  
– IDT71342LA  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
Active: 700mW (typ.)  
Standby: 1mW (typ.)  
FunctionalBlockDiagram  
R/WR  
R/W  
L
CER  
CEL  
OER  
OEL  
I/O  
CONTROL  
I/O  
CONTROL  
I/O0R - I/O7R  
I/O0L- I/O7L  
MEMORY  
ARRAY  
SEMAPHORE  
LOGIC  
SEMR  
SEM  
L
ADDRESS  
DECODER  
ADDRESS  
DECODER  
A0R- A11R  
A0L- A11L  
2721 drw 01  
SEPTEMBER 2012  
1
DSC 2621/14  
©2012 IntegratedDeviceTechnology,Inc.  
IDT71342SA/LA  
High-Speed 4K x 8 Dual-Port Static RAM with Semaphore  
Industrial and Commercial Temperature Ranges  
Description  
TheIDT71342isahigh-speed4Kx8Dual-PortStaticRAMwithfull time. An automatic power down feature, controlled by CE and SEM,  
on-chip hardware support of semaphore signalling between the two permitstheon-chipcircuitryofeachporttoenteraverylowstandbypower  
ports.  
The IDT71342 provides two independent ports with separate  
mode (both CE and SEM HIGH).  
Fabricated using CMOS high-performance technology, this device  
control, address, and I/O pins that permit independent, asynchronous typically operates on only 700mW of power. Low-power (LA) versions  
access for reads or writes to any location in memory. To assist in offer battery backup data retention capability, with each port typically  
arbitrating between ports, a fully independent semaphore logic block consuming200µWfroma2Vbattery.Thedeviceispackagedineithera  
is provided. This block contains unassigned flags which can be 64-pin TQFP or a 52-pin PLCC.  
accessedbyeitherside;however,onlyonesidecancontroltheflagatany  
Pin Configurations(1,2,3)  
INDEX  
7
6
5
4
3
2
52 51 50 49 48 47  
1
46  
8
A1L  
OER  
9
45  
44  
A
A
2L  
3L  
A
A
A
A
A
A
A
A
A
A
0R  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
1R  
2R  
3R  
4R  
5R  
6R  
7R  
8R  
9R  
43  
42  
41  
40  
39  
38  
37  
36  
A
4L  
5L  
A
IDT71342J  
J52-1(4)  
A6L  
A7L  
A8L  
A9L  
52-Pin PLCC  
Top View(5)  
I/O0L  
I/O1L  
I/O2L  
I/O3L  
35  
34  
N/C  
I/O7R  
21 22 23 24 25 26 27 28 29 30 31 32 33  
2721 drw 02  
INDEX  
OE  
L
1
2
3
4
5
6
7
8
9
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
OER  
A0L  
A
A
A
A
A
A
A
0R  
1R  
2R  
3R  
4R  
5R  
6R  
A1L  
A2L  
A3L  
A4L  
A5L  
A6L  
71342PF  
PN64-1(4)  
64-Pin TQFP  
Top View(5)  
N/C  
N/C  
10  
11  
12  
A
7L  
8L  
9L  
A
A
A
7R  
8R  
9R  
A
A
N/C  
I/O0L  
I/O1L  
I/O2L  
13  
14  
15  
36  
35  
34  
33  
N/C  
N/C  
I/O7R  
I/O6R  
NOTES:  
1. All Vcc pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
16  
3. J52 package body is approximately .79 in x .79 in x .17 in.  
PN64 package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
2721 drw 03  
6.42  
2
IDT71342SA/LA  
High-Speed 4K x 8 Dual-Port Static RAM with Semaphore  
Industrial and Commercial Temperature Ranges  
Absolute Maximum Ratings(1)  
Maximum Operating  
TemperatureandSupplyVoltage(1,2)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
Grade  
Ambient  
Temperature  
GND  
Vcc  
(2)  
V
TERM  
Te r m i nal Vo l tag e  
-0.5 to +7.0  
V
with Respect  
to GND  
Commercial  
Industrial  
0OC to +70OC  
0V  
0V  
5.0V  
5.0V  
+
+
10%  
Temperature  
Under Bias  
-55 to +125  
-65 to +150  
1.5  
oC  
oC  
W
-40OC to +85OC  
10%  
TBIAS  
2721 tbl 03  
NOTES:  
Storage  
Temperature  
TSTG  
1. This is the parameter TA. This is the "instant on" case temperature.  
P
T
Power  
Dissipation  
DC Output  
Current  
50  
mA  
IOUT  
Recommended DC Operating  
Conditions  
2721 tbl 01  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect reliability.  
Symbol  
Parameter  
Min.  
Typ.  
Max. Unit  
V
CC  
Supply Voltage  
4.5  
5.0  
5.5  
0
V
V
V
GND  
Ground  
0
0
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10 ns  
maximum, and is limited to < 20mA for the period of VTERM > Vcc +10%.  
____  
V
IH  
IL  
Input High Voltage  
Input Low Voltage  
2.2  
6.0(2)  
0.8  
____  
V
-0.5(1)  
V
2721 tbl 04  
NOTES:  
1. VIL (min.) > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
Capacitance(1) (TA = +25°C, f = 1.0MHz)  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2 )  
Max. Unit  
CIN  
V
IN = 3dV  
9
pF  
COUT  
V
OUT = 3dV  
10  
pF  
2721 tbl 02  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested.  
2. 3dv references the interpolated capacitance when the input and output signals  
switch from 0V to 3V and from 3V to 0V.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage (VCC = 5V ± 10%)  
71342SA  
71342LA  
Symbol  
|ILI  
|ILO  
Parameter  
Input Leakage Current(1)  
Output Leakage Current  
Test Conditions  
Min.  
Max.  
10  
Min.  
Max.  
Unit  
µA  
µA  
V
___  
___  
___  
___  
___  
___  
___  
___  
|
V
CC = 5.5V, VIN = 0V to VCC  
5
5
|
10  
CE = VIH, VOUT = 0V to VCC  
OL = 6mA  
OL = 8mA  
OH = -4mA  
I
0.4  
0.4  
Output Low Voltage  
V
OL  
I
0.5  
0.5  
V
___  
___  
V
OH  
Output High Voltage  
I
2.4  
2.4  
V
2721 tbl 05  
NOTE:  
1. At Vcc < 2.0V input leakages are undefined.  
3
6.42  
IDT71342SA/LA  
High-Speed 4K x 8 Dual-Port Static RAM with Semaphore  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (VCC = 5.0V ± 10%)  
71342X20  
71342X25  
Com'l & Ind  
71342X35  
Com'l Only  
Com'l Only  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating Current  
(Both Ports Active)  
SA  
LA  
170  
170  
280  
240  
160  
160  
280  
240  
150  
150  
260  
200  
mA  
CE = VIL  
,
Outputs Disabled  
SEM = Don't Care  
____  
____  
____  
____  
(3)  
IND  
SA  
LA  
160  
160  
310  
260  
150  
150  
300  
250  
f = fMAX  
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
IND  
SA  
LA  
25  
25  
80  
80  
25  
25  
80  
50  
25  
25  
75  
45  
mA  
mA  
mA  
mA  
CE  
SEM  
f = fMAX  
L
and CE  
R
= VIH  
L
= SEMR > VIH  
(3)  
____  
____  
____  
____  
SA  
LA  
25  
25  
100  
80  
25  
25  
75  
55  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
IND  
SA  
LA  
105  
105  
180  
150  
95  
95  
180  
150  
85  
85  
170  
140  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
____  
____  
____  
____  
SA  
LA  
95  
95  
210  
170  
85  
85  
200  
160  
ISB3  
Full Standby Current (Both  
Ports -  
CMOS Level Inputs)  
Both Ports CE  
CE > VCC - 0.2V,  
IN > VCC - 0.2V or VIN < 0.2V  
SEM = SEM > VCC - 0.2V  
f = 0(3)  
L
and  
COM'L  
IND  
SA  
LA  
1.0  
0.2  
15  
4.5  
1.0  
0.2  
15  
4.0  
1.0  
0.2  
15  
4.0  
R
V
____  
____  
____  
____  
SA  
LA  
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
L
R
ISB4  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
One Port CE"A" or  
CE"B" > VCC - 0.2V  
COM'L  
IND  
SA  
LA  
105  
105  
170  
130  
95  
95  
170  
120  
85  
85  
150  
110  
VIN > VCC - 0.2V or VIN < 0.2V  
____  
____  
____  
____  
SA  
LA  
95  
95  
210  
190  
85  
85  
190  
130  
SEM  
L
= SEMR > VCC - 0.2V  
Active Port Outputs Disabled,  
(3)  
f = fMAX  
2721 tbl 06a  
71342X45  
Com'l Only  
71342X55  
Com'l Only  
71342X70  
Com'l Only  
Symbol  
Parameter  
Test Condition  
Version  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating Current  
(Both Ports Active)  
COM'L  
SA  
LA  
140  
140  
240  
200  
140  
140  
240  
200  
140  
140  
240  
200  
mA  
CE = VIL  
,
Outputs Disabled  
SEM = Don't Care  
____  
____  
____  
____  
____  
____  
____  
____  
(3)  
IND  
SA  
LA  
140  
140  
270  
220  
f = fMAX  
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
IND  
SA  
LA  
25  
25  
70  
40  
25  
25  
70  
40  
25  
25  
70  
40  
mA  
mA  
mA  
mA  
CE  
SEM  
f = fMAX  
L
and CE  
R
= VIH  
L
= SEM  
R > VIH  
(3)  
____  
____  
____  
____  
____  
____  
____  
____  
SA  
LA  
25  
25  
70  
50  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
IND  
SA  
LA  
75  
75  
160  
130  
75  
75  
160  
130  
75  
75  
160  
130  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
SA  
LA  
75  
75  
180  
150  
ISB3  
Full Standby Current (Both  
Ports -  
CMOS Level Inputs)  
Both Ports CE  
CE > VCC - 0.2V,  
IN > VCC - 0.2V or VIN < 0.2V  
SEM = SEM > VCC - 0.2  
f = 0(3)  
L and  
COM'L  
IND  
SA  
LA  
1.0  
0.2  
15  
4.0  
1.0  
0.2  
15  
4.0  
1.0  
0.2  
15  
4.0  
R
V
____  
____  
____  
____  
____  
____  
____  
____  
L
R
V
SA  
LA  
1.0  
2.0  
30  
10  
ISB4  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
One Port CE"A" or  
CE"B" > VCC - 0.2V  
COM'L  
IND  
SA  
LA  
75  
75  
150  
100  
75  
75  
150  
100  
75  
75  
150  
100  
VIN > VCC - 0.2V or VIN < 0.2V  
____  
____  
____  
____  
____  
____  
____  
____  
SEM  
L
= SEM  
R
> VCC - 0.2V  
SA  
LA  
75  
75  
170  
120  
Active Port Outputs Disabled,  
(3)  
f = fMAX  
2721 tbl 06b  
NOTES:  
1. 'X' in part number indicates power rating (SA or LA).  
2. VCC = 5V, TA = +25°C for typical, and parameters are not production tested.  
3. fMAX = 1/tRC = All inputs cycling at f = 1/tRC (except Output Enable). f = 0 means no address or control lines change. Applies only to inputs at CMOS level standby ISB3.  
6.42  
4
IDT71342SA/LA  
High-Speed 4K x 8 Dual-Port Static RAM with Semaphore  
Industrial and Commercial Temperature Ranges  
Data Retention Characteristics  
(LA Version Only) VLC = 0.2V, VHC = VCC - 0.2V  
Symbol  
Parameter  
CC for Data Retention  
Test Condition  
Min.  
Typ.(1)  
Max.  
Unit  
V
___  
___  
V
DR  
CCDR  
(3)  
V
2.0  
___  
I
Data Retention Current  
VCC = 2V, CE > VHC  
COM'L. & IND.  
100  
1500  
µA  
ns  
___  
___  
t
CDR  
Chip Deselect to Data Retention Time  
Operation Recovery Time  
0
SEM > VHC  
IN > VHC or < VLC  
(3)  
(2)  
___  
___  
t
R
V
tRC  
ns  
2721 tbl 07  
NOTES:  
1. VCC = 2V, TA = +25°C, and are not production tested.  
2. tRC = Read Cycle Time.  
3. This parameter is guaranteed by device characterization, but is not production tested.  
Data Rention Waveform  
DATA RETENTION MODE  
DR > 2V  
VCC  
4.5V  
4.5V  
V
t
CDR  
tR  
VDR  
CE  
VIH  
VIH  
2721 drw 04  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
5ns  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V  
1.5V  
Figures 1 and 2  
2721 tbl 08  
+5V  
+5V  
1250  
1250  
DATAOUT  
775Ω  
DATAOUT  
775Ω  
5pF *  
30pF  
,
,
2721 drw 05  
2721 drw 06  
Figure 1. AC Output Test Load  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
*Including scope and jig  
5
6.42  
IDT71342SA/LA  
High-Speed 4K x 8 Dual-Port Static RAM with Semaphore  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
71342X20  
71342X25  
Com'l & Ind  
71342X35  
Com'l Only  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
t
RC  
AA  
ACE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
WDD  
DDD  
SAA  
Read Cycle Time  
20  
25  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
t
Address Access Time  
20  
20  
25  
25  
35  
35  
Chip Enable Access Time(3)  
____  
____  
____  
____  
____  
____  
t
t
Output Enable Access Time  
15  
15  
20  
____  
____  
____  
t
Output Hold from Address Change  
Output Low-Z Time(1,2)  
0
0
0
____  
____  
____  
t
0
0
0
Output High-Z Time(1,2)  
15  
15  
20  
____  
____  
____  
t
t
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
SEM Flag Update Pulse (OE or SEM)  
Write Pulse to Data Delay(4)  
0
0
0
____  
____  
____  
____  
____  
____  
t
50  
50  
50  
____  
____  
____  
t
10  
10  
15  
____  
____  
____  
t
40  
50  
30  
25  
60  
35  
35  
Write Data Valid to Read Data Delay(4)  
Semaphore Address Access Time  
30  
____  
____  
____  
____  
____  
____  
t
____  
t
ns  
2721 tbl 09a  
71342X45  
Com'l Only  
71342X55  
Com'l Only  
71342X70  
Com'l Only  
Symbol  
READ CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
t
RC  
AA  
ACE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
WDD  
DDD  
SAA  
Read Cycle Time  
45  
55  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
t
Address Access Time  
45  
45  
55  
55  
70  
70  
Chip Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time (1,2)  
____  
____  
____  
____  
____  
____  
t
t
25  
30  
40  
____  
____  
____  
t
0
0
0
____  
____  
____  
t
5
5
5
Output High-Z Time(1,2)  
20  
25  
30  
____  
____  
____  
t
t
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
SEM Flag Update Pulse (OE or SEM)  
Write Pulse to Data Delay(4)  
Write Data Valid to Read Data Delay(4)  
Semaphore Address Access Time  
0
0
0
____  
____  
____  
____  
____  
____  
t
50  
50  
50  
____  
____  
____  
t
15  
20  
20  
____  
____  
____  
t
70  
45  
45  
80  
55  
55  
90  
70  
70  
____  
____  
____  
____  
____  
____  
t
t
ns  
2721 tbl 09b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Ouput Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access SRAM, CE = VIL, SEM = VIH. To access semaphore, CE = VIH, and SEM = VIL.  
4. 'X' in part number indicates power rating (SA or LA).  
5. Port-to-port delay through RAM cells from writing port to reading port, refer to “Timing Waveform of Write with Port-to-Port Read”.  
6.42  
6
IDT71342SA/LA  
High-Speed 4K x 8 Dual-Port Static RAM with Semaphore  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Read Cycle No. 1, Either Side(1,2,4)  
tRC  
ADDRESS  
t
AA or tSAA  
tOH  
tOH  
DATAOUT  
PREVIOUS DATA VALID  
DATA VALID  
2721 drw 07  
Timing Waveform of Read Cycle No. 2, Either Side(1,3)  
t
SOP  
tACE  
CE or SEM (5)  
(2)  
(4)  
AOE  
tSOP  
t
tHZ  
OE  
(2)  
(1)  
tHZ  
tLZ  
DATAOUT  
VALID DATA(4)  
(1)  
t
LZ  
tPU  
tPD  
I
CC  
CURRENT  
50%  
50%  
I
SB  
2721 drw 08  
NOTES:  
1. Timing depends on which signal is asserted last, OE or CE.  
2. Timing depends on which signal is de-asserted first, OE or CE.  
3. R/W = VIH and OE = VIL, unless otherwise noted.  
4. Start of valid data depends on which timing becomes effective last; tAOE, tACE, or tAA  
5. To access SRAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tAA is for SRAM Address Access and tSAA is for Semaphore Address Access.  
Timing Waveform of Write with Port-to-Port Read(2,3)  
tWC  
ADDR "A"  
MATCH  
tWP  
(1)  
R/W "A"  
tDH  
tDW  
DATAIN "A"  
ADDR "B"  
VALID  
MATCH  
tWDD  
VALID  
DATAOUT "B"  
tDDD  
2721 drw 09  
NOTES:  
1. Write cycle parameters should be adhered to, in order to ensure proper writing.  
2. CEL = CER = VIL. CE"B" = VIL.  
3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
7
6.42  
IDT71342SA/LA  
High-Speed 4K x 8 Dual-Port Static RAM with Semaphore  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureSupplyVoltage(5)  
71342X20  
Com'l Only  
71342X25  
Com'l & Ind  
71342X35  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWR  
SPS  
Write Cycle Time  
20  
15  
15  
0
25  
20  
20  
0
35  
30  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time  
t
t
t
Write Pulse Width  
15  
0
20  
0
25  
0
t
Write Recovery Time  
t
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
15  
15  
20  
____  
____  
____  
t
15  
15  
20  
t
Data Hold Time(4)  
0
0
3
____  
____  
____  
Write Enable to Output in High-Z(1,2)  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
15  
15  
20  
____  
____  
____  
t
____  
____  
____  
t
3
3
3
____  
____  
____  
____  
____  
____  
t
10  
10  
10  
10  
10  
10  
t
ns  
2721 tbl 10a  
71342X45  
Com'l Only  
71342X55  
Com'l Only  
71342X70  
Com'l Only  
Symbol  
WRITE CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWR  
SPS  
Write Cycle Time  
45  
40  
40  
0
55  
50  
50  
0
70  
60  
60  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time  
t
t
t
Write Pulse Width  
40  
0
50  
0
60  
0
t
Write Recovery Time  
t
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
20  
25  
30  
____  
____  
____  
t
20  
25  
30  
t
Data Hold Time(4)  
3
3
3
____  
____  
____  
Write Enable to Output in High-Z(1,2)  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
20  
25  
30  
____  
____  
____  
t
____  
____  
____  
t
3
3
3
____  
____  
____  
____  
____  
____  
t
10  
10  
10  
10  
10  
10  
t
ns  
2721 tbl 10b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization but is not production tested.  
3. To access SRAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the SRAM under all operating conditions. Although tDH and tOW values will vary over voltage and  
temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part number indicates power rating (SA or LA).  
6.42  
8
IDT71342SA/LA  
High-Speed 4K x 8 Dual-Port Static RAM with Semaphore  
Industrial and Commercial Temperature Ranges  
TIMING WAVEFORM OF WRITE CYCLE NO. 1, R/W CONTROLLED TIMING(1,5,8)  
tWC  
ADDRESS  
OE  
(6)  
tAS  
(3)  
tAW  
tWR  
CE or SEM(9)  
(7)  
(2)  
tHZ  
tWP  
R/W  
(7)  
(7)  
tWZ  
tHZ  
t
LZ  
tOW  
(4)  
(4)  
DATAOUT  
DATAIN  
tDH  
tDW  
2721 drw 10  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1, 5)  
t
WC  
ADDRESS  
tAW  
CE or SEM(9)  
(2)  
(6)  
AS  
(3)  
t
tEW  
t
WR  
R/W  
t
DW  
t
DH  
DATAIN  
2721 drw 11  
NOTES:  
1. R/W or CE must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of either CE or SEM = VIL and R/W = VIL.  
3. tWR is measured from the earlier of CE or R/W going HIGH to the end-of-write cycle.  
4. During this period, the I/O pins are in the output state, and input signals must not be applied.  
5. If the CE LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal (CE or R/W) is asserted last.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load  
(Figure 2).  
8. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off data to be placed on the bus  
for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified tWP.  
9. To access SRAM, CE =VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
9
6.42  
IDT71342SA/LA  
High-Speed 4K x 8 Dual-Port Static RAM with Semaphore  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read After Write Timing, Either Side(1)  
tSAA  
tOH  
A0 - A2  
VALID ADDRESS  
VALID ADDRESS  
tAW  
tWR  
tACE  
tEW  
SEM  
tDW  
tSOP  
OUT  
VALID  
DATA  
DATA  
0
DATAIN VALID  
tAS  
tWP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
tSOP  
2721 drw 12  
Test Cycle  
(Read Cycle)  
Write Cycle  
NOTE:  
1. CE = VIH for the duration of the above timing (both write and read cycle).  
Timing Waveform of Semaphore Condition(1,3,4)  
A0"A" - A2"A"  
MATCH  
SIDE(2) "A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B" - A2"B"  
MATCH  
SIDE(2) "B"  
R/W"B"  
SEM"B"  
2721 drw 13  
NOTES:  
1. D0R = D0L = VIL, CER = CEL = VIH, Semaphore Flag is released from both sides (reads as ones from both sides) at cycle start.  
2. All timing is the same for left and right ports. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
3. This parameter is measured from the point where R/W "A" or SEM "A" goes HIGH until R/W "B" or SEM "B" goes HIGH.  
4. If tSPS is violated, the semaphore will fall positively to one side or the other, but there is no guarantee which side will obtain the flag.  
6.42  
10  
IDT71342SA/LA  
High-Speed 4K x 8 Dual-Port Static RAM with Semaphore  
Industrial and Commercial Temperature Ranges  
test sequence. Once the right side has relinquished the token, the left  
side should succeed in gaining control.  
The semaphore flags are active LOW. A token is requested by  
writing a zero into a semaphore latch and is released when the same  
side writes a one to that latch.  
FUNCTIONAL DESCRIPTION  
The IDT71342 is an extremely fast Dual-Port 4K x 8 CMOS Static  
RAM with an additional 8 address locations dedicated to binary  
semaphore flags. These flags allow either processor on the left or right  
side of the Dual-Port RAM to claim a privilege over the other processor  
forfunctionsdefinedbythesystemdesigner’ssoftware.Asanexample,  
the semaphore can be used by one processor to inhibit the other from  
accessing a portion of the Dual-Port RAM or any other shared  
resource.  
TheeightsemaphoreflagsresidewithintheIDT71342inaseparate  
memory space from the Dual-Port RAM. This address space is  
accessed by placing a LOW input on the SEMpin (which acts as a chip  
select for the semaphore flags) and using the other control pins  
(Address, OE, and R/W) as they would be used in accessing  
a standard Static RAM. Each of the flags has a unique address  
which can be accessed by either side through the address pins A0–A2.  
When accessing the semaphores, none of the other address pins has  
any effect.  
When writing to a semaphore, only data pin D0 is used. If a LOW  
level is written into an unused semaphore location, that flag will be set  
to a zero on that side and a one on the other (see Truth Table II). That  
semaphore can now only be modified by the side showing the zero.  
When a one is written into the same location from the same side, the  
flag will be set to a one for both sides (unless a semaphore request  
fromtheothersideispending)andthencanbewrittentobybothsides.  
The fact that the side which is able to write a zero into a semaphore  
subsequently locks out writes from the other side is what makes  
semaphoreflagsusefulininterprocessorcommunications.(Athorough  
discussionontheuseofthisfeaturefollowsshortly.)Azerowritteninto  
the same location from the other side will be stored in the semaphore  
request latch for that side until the semaphore is freed by the first side.  
When a semaphore flag is read, its value is spread into all data bits  
so that a flag that is a one reads as a one in all data bits and a flag  
containing a zero reads as all zeros. The read value is latched into one  
side’s output register when that side’s semaphore select (SEM) and  
output enable (OE) signals go active. This serves to disallow the  
semaphore from changing state in the middle of a read cycle due to a  
write cycle from the other side. Because of this latch, a repeated read  
of a semaphore in a test loop must cause either signal (SEM or OE) to  
go inactive or the output will never change.  
A sequence of WRITE/READ must be used by the semaphore in  
order to guarantee that no system level contention will occur. A  
processor requests access to shared resources by attempting to write  
a zero into a semaphore location. If the semaphore is already in use,  
the semaphore request latch will contain a zero, yet the semaphore  
flag will appear as a one, a fact which the processor will verify by the  
subsequent read (see Truth Table II). As an example, assume a  
processorwritesazerointheleftportatafreesemaphorelocation. On  
a subsequent read, the processor will verify that it has written  
successfully to that location and will assume control over the resource  
in question. Meanwhile, if a processor on the right side attempts to  
write a zero to the same semaphore flag it will fail, as will be verified  
by the fact that a one will be read from that semaphore on the right side  
during a subsequent read. Had a sequence of READ/WRITE been  
usedinstead,systemcontentionproblemscouldhaveoccurredduring  
the gap between the read and write cycles.  
The Dual-Port RAM features a fast access time, and both ports are  
completely independent of each other. This means that the activity on  
the left port in no way slows the access time of the right port. Both ports  
are identical in function to standard CMOS Static RAMs and can be  
read from or written to at the same time, with the only possible conflict  
arising from the simultaneous writing of, or a simultaneous READ/  
WRITE of, a non-semaphore location. Semaphores are protected  
against such ambiguous situations and may be used by the system  
program to avoid any conflicts in the non-semaphore portion of the  
Dual-Port SRAM. These devices have an automatic power-down  
feature controlled by CE, the Dual-Port SRAM enable, and SEM, the  
semaphoreenable. TheCEand SEMpinscontrolon-chippowerdown  
circuitry that permits the respective port to go into standby mode when  
not selected. This is the condition which is shown in Truth Table I  
where CE and SEM are both HIGH.  
Systems which can best use the IDT71342 contain multiple  
processors or controllers and are typically very high-speed systems  
which are software controlled or software intensive. These systems  
can benefit from a performance increase offered by the IDT71342’s  
hardware semaphores, which provide a lockout mechanism without  
requiring complex programming.  
Software handshaking between processors offers the maximum in  
system flexibility by permitting shared resources to be allocated in  
varying configurations. The IDT71342 does not use its semaphore  
flags to control any resources through hardware, thus allowing the  
system designer total flexibility in system architecture.  
An advantage of using semaphores rather than the more common  
methods of hardware arbitration is that wait states are never incurred  
in either processor. This can prove to be a major advantage in very  
high-speed systems.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
of the Dual-Port RAM. These latches can be used to pass a flag, or  
token, from one port to the other to indicate that a shared resource is  
inuse.Thesemaphoresprovideahardwareassistforauseassignment  
method called “Token Passing Allocation.” In this method, the state of  
asemaphorelatchisusedasatokenindicatingthatasharedresource  
is in use. If the left processor wants to use this resource, it requests the  
token by setting the latch. This processor then verifies its success in  
setting the latch by reading it. If it was successful, it proceeds to  
assume control over the shared resource. If it was not successful in  
setting the latch, it determines that the right side processor had set the  
latch first, has the token and is using the shared resource. The left  
processor can then either repeatedly request that semaphore’s status  
or remove its request for that semaphore to perform another task and  
occasionally attempt again to gain control of the token via the set and  
It is important to note that a failed semaphore request must be  
followed by either repeated reads or by writing a one into the same  
location. The reason for this is easily understood by looking at the  
simplelogicdiagramofthesemaphoreflaginFigure3.Twosemaphore  
11  
6.42  
IDT71342SA/LA  
High-Speed 4K x 8 Dual-Port Static RAM with Semaphore  
Industrial and Commercial Temperature Ranges  
request latches feed into a semaphore flag. Whichever latch is first to sidereceivesthetoken.Ifonesideisearlierthantheotherinmakingthe  
present a zero to the semaphore flag will force its side of the request, the first side to make the request will receive the token. If both  
semaphore flag LOW and the other side HIGH. This condition will requestsarriveatthesametime,theassignmentwillbearbitrarilymade  
continue until a one is written to the same semaphore request latch. to one port or the other.  
Should the other side’s semaphore request latch have been written to  
One caution that should be noted when using semaphores is that  
a zero in the meantime, the semaphore flag will now stay LOWuntil its semaphores alone do not guarantee that access to  
semaphore request latch is written to a one. From this it is easy to a resource is secure. As with any powerful programming technique, if  
understand that, if a semaphore is requested and the processor which semaphores are misused or misinterpreted, a software error can  
requesteditnolongerneedstheresource,theentiresystemcanhangup easily happen. Code integrity is of the utmost importance when  
untilaoneiswrittenintothatsemaphorerequestlatch.  
semaphores are used instead of slower, more restrictive hardware  
The critical case of semaphore timing is when both sides request intensive schemes.  
a single token by attempting to write a zero into it at the same time. The  
Initialization of the semaphores is not automatic and must be  
semaphore logic is specially designed to resolve this problem. If handledviatheinitializationprogramatpowerup.Sinceanysemaphore  
simultaneous requests are made, the logic guarantees that only one request flag which contains a zero must be reset to a one, all  
Truth Table I — Non-Contention Read/Write Control(2)  
Left or Right Port(1)  
R/W  
X
D
0-7  
Function  
CE  
H
H
X
SEM  
H
OE  
X
Z
Port Disabled and in Power Down Mode  
H
L
L
DATAOUT Data in Semaphore Flag Output on Port  
X
X
H
X
Z
Output Disabled  
Port Data Bit D0 Written Into Semaphore Flag  
H
L
L
DATAIN  
H
H
L
DATAOUT Data in Memory Output on Port  
L
L
H
X
DATAIN  
Data on Port Written Into Memory  
Not Allowed  
____  
X
L
L
X
2721 tbl 11  
NOTE:  
1. AOL - A11L A0R - A11R.  
2. "H" = VIH, "L" = VIL, "X" = Don’t Care, "Z" = High-Impedance.  
Truth Table II — Example Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D15 Left  
D0  
- D15 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
NOTE:  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
2721 tbl 12  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT71342.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's. These eight semaphores are addressed by A0-A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the semaphore Read/Write Control Truth Table.  
6.42  
12  
IDT71342SA/LA  
High-Speed 4K x 8 Dual-Port Static RAM with Semaphore  
Industrial and Commercial Temperature Ranges  
semaphores on both sides should have a one written into them at two processors to swap 2K blocks of Dual-Port RAM with each other.  
initialization from both sides to assure that they will be free when  
needed.  
The blocks do not have to by any particular size and can even be  
variable, depending upon the complexity of the software using the  
semaphore flags. All eight semaphores could be used to divide the  
Dual-PortRAMorothersharedresourcesintoeightparts.Semaphores  
canevenbeassigneddifferentmeaningsondifferentsidesratherthan  
being given a common meaning as was shown in the example above.  
Semaphores are a useful form of arbitration in systems like disk  
interfaces where the CPU must be locked out of a section of memory  
during a transfer and the I/O device cannot tolerate any wait states.  
With the use of semaphores, once the two devices had determined  
which memory area was “off limits” to the CPU, both the CPU and the  
I/Odevicescouldaccesstheirassignedportionsofmemorycontinuously  
without any wait states.  
Using Semaphores–Some  
examples  
Perhapsthesimplestapplicationofsemaphoresistheirapplication  
as resource markers for the IDT71342’s Dual-Port RAM. Say the 4K  
x 8 RAM was to be divided into two 2K x 8 blocks which were to be  
dedicated at any one time to servicing either the left or right port.  
Semaphore 0 could be used to indicate the side which would control  
thelowersectionofmemory,andSemaphore1couldbedefinedasthe  
indicator for the upper section of the memory.  
To take a resource, in this example the lower 2K of Dual-Port RAM,  
the processor on the left port could write and then read a zero into  
Semaphore 0. If this task were successfully completed (a zero was  
read back rather than a one), the left processor would assume control  
of the lower 2K. Meanwhile, the right processor would attempt to  
perform the same function. Since this processor was attempting to  
gain control of the resource after the left processor, it would read back  
a one in response to the zero it had attempted to write into Semaphore  
0. At this point, the software could choose to try and gain control of the  
second 2K section by writing, then reading a zero into Semaphore 1.  
If it succeeded in gaining control, it would lock out the left side.  
Once the left side was finished with its task, it would write a one to  
Semaphore 0 and may then try to gain access to Semaphore 1. If  
Semaphore 1 was still occupied by the right side, the left side could  
undo its semaphore request and perform other tasks until it was able  
to write, then read a zero into Semaphore 1. If the right processor  
performsasimilartaskwithSemaphore0,thisprotocolwouldallowthe  
Semaphores are also useful in applications where no memory  
“WAIT” state is available on one or both sides. Once a semaphore  
handshake has been performed, both processors can access their  
assigned RAM segments at full speed.  
Anotherapplicationisintheareaofcomplexdatastructures. Inthis  
case, block arbitration is very important. For this application one  
processor may be responsible for building and updating a data  
structure. The other processor then reads and interprets that data  
structure. If the interpreting processor reads an incomplete data  
structure, a major error condition may exist. Therefore, some sort of  
arbitration must be used between the two different processors. The  
building processor arbitrates for the block, locks it and then is able to  
goinandupdatethedatastructure.Whentheupdateiscompleted,the  
data structure block is released. This allows the interpreting processor  
to come back and read the complete data structure, thereby  
guaranteeing a consistent data structure.  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
D0  
D
Q
Q
D
D0  
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
2721 drw 14  
Figure 3. IDT71342 Semaphore Logic  
13  
6.42  
IDT71342SA/LA  
High-Speed 4K x 8 Dual-Port Static RAM with Semaphore  
Industrial and Commercial Temperature Ranges  
Ordering Information  
A
XXXX  
A
999  
A
A
A
Device Type Power  
Speed  
Package  
Process/  
Temperature  
Range  
Tube or Tray  
Tape and Reel  
Blank  
8
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Blank  
I
G
Green  
J
PF  
52-pin PLCC (J52-1)  
64-pin TQFP (PN64-1)  
Commercial Only  
20  
25  
35  
45  
55  
70  
Commercial & Industrial  
Commercial Only  
Speed in nanoseconds  
Commercial Only  
Commercial Only  
Commercial Only  
Standard Power  
Low Power  
SA  
LA  
32K (4K x 8-Bit) Dual-Port RAM w/ Semaphore  
71342  
2721 drw 15  
DatasheetDocumentHistory  
01/12/99:  
Initiateddatasheetdocumenthistory  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Addedadditionalnotestopinconfigurations  
Changeddrawingformat  
AddedIndustrialTemperatureRangesandremovedcorrespondingnotes  
Replaced IDT Logo  
Madecorrectionstodrawing  
Increasedstoragetemperatureparameters  
ClarifiedTAparameter  
06/09/99:  
10/01/99:  
11/10/99:  
12/22/99:  
06/26/00:  
Page 1  
Page 3  
Page 4  
DCElectricalparameters–changedwordingfrom"open"to"disabled"  
Changed±500mVto0mVinnotes  
01/12/00:  
Pages 1 & 2  
Page 1  
Moved "Description" to page 2 and adjusted page layouts  
Added "(LA only)" to paragraph  
Page 2  
FixedJ52packagedescriptioninnotes  
Page 8  
Page 14  
Page 1  
Replacedbottomtablewithcorrect10btable  
Removed "IDT" from orderable part number  
Industrial speed access update for 35 & 55  
Removed"IDT's"fromdescriptiontext  
01/29/09:  
09/26/12:  
Page 2  
Page 3  
RemovedfootnotenotationfromPTinAbsoluteMaximumRatingstable01  
Page 4, 6 & 8  
Replaced"&Ind"withCom'lonlyforspeedgrades35& 55intheDCChars,ACCharsRead&Writetables  
06a, 06b, 09a, 09b, 10a & 10b  
Page 12  
Page 12  
Page 14  
Added the word "system" to How the Semaphore Flags Work paragraph  
Corrected equation for footnote 1 . Changed symbol "=" to - and "1" to not equal ()  
Added T&R and Green indicators to the ordering information as well as updated the "commercial only"  
offering for speed grades 35 & 55  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
14  

相关型号:

71342LA25PFGI8

HIGH SPEED 4K X 8 DUAL-PORT STATIC RAM
IDT

71342LA25PFI8

TQFP-64, Reel
IDT

71342LA35J8

PLCC-52, Reel
IDT

71342LA35JG

HIGH SPEED 4K X 8 DUAL-PORT STATIC RAM
IDT

71342LA35JG8

HIGH SPEED 4K X 8 DUAL-PORT STATIC RAM
IDT

71342LA35JGI

HIGH SPEED 4K X 8 DUAL-PORT STATIC RAM
IDT

71342LA35JGI8

HIGH SPEED 4K X 8 DUAL-PORT STATIC RAM
IDT

71342LA35L52B

Multi-Port SRAM, 4KX8, 35ns, CMOS, CQCC52
IDT

71342LA35PF

TQFP-64, Tray
IDT

71342LA35PFG

HIGH SPEED 4K X 8 DUAL-PORT STATIC RAM
IDT

71342LA35PFG8

HIGH SPEED 4K X 8 DUAL-PORT STATIC RAM
IDT

71342LA35PFGI

HIGH SPEED 4K X 8 DUAL-PORT STATIC RAM
IDT