71P72804S250BQG8 [IDT]

CABGA-165, Reel;
71P72804S250BQG8
型号: 71P72804S250BQG8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

CABGA-165, Reel

文件: 总21页 (文件大小:869K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
18Mb Pipelined  
QDR™II SRAM  
Burst of 2  
IDT71P72804  
IDT71P72604  
Features  
Description  
The IDT QDRIITM Burst of two SRAMs are high-speed synchro-  
nous memories with independent, double-data-rate (DDR), read and  
write data ports. This scheme allows simultaneous read and write  
access for the maximum device throughput, with two data items passed  
with each read or write. Four data word transfers occur per clock  
cycle, providing quad-data-rate (QDR) performance. Comparing this  
with standard SRAM common I/O (CIO), single data rate (SDR) de-  
vices, a four to one increase in data access is achieved at equivalent  
clock speeds. Considering that QDRII allows clock speeds in excess of  
standard SRAM devices, the throughput can be increased well beyond  
four to one in most applications.  
18Mb Density (1Mx18, 512kx36)  
Separate, Independent Read and Write Data Ports  
Supports concurrent transactions  
-
Dual Echo Clock Output  
2-Word Burst on all SRAM accesses  
DDR (Double Data Rate) MultiplexedAddress Bus  
-
One Read and One Write request per clock cycle  
DDR (Double Data Rate) Data Buses  
-
-
Two word burst data per clock on each port  
Four word transfers per clock cycle (2 word bursts  
on 2 ports)  
Depth expansion through Control Logic  
HSTL (1.5V) inputs that can be scaled to receive signals  
from 1.4V to 1.9V.  
Using independent ports for read and write data access, simplifies  
system design by eliminating the need for bi-directional buses. All buses  
associated with the QDRII are unidirectional and can be optimized for  
signal integrity at very high bus speeds. The QDRII has scalable output  
impedance on its data output bus and echo clocks, allowing the user to  
tune the bus for low noise and high performance.  
Scalable output drivers  
-
Can drive HSTL, 1.8V TTL or any voltage level  
from 1.4V to 1.9V.  
-
Output Impedance adjustable from 35 ohms to 70  
ohms  
The QDRII has a single DDR address bus with multiplexed read  
and write addresses. All read addresses are received on the first half of  
the clock cycle and all write addresses are received on the second half  
of the clock cycle. The read and write enables are received on the first  
half of the clock cycle. The byte and nibble write signals are received on  
both halves of the clock cycle simultaneously with the data they are  
controlling on the data input bus.  
Commercial and IndustrialTemperature Ranges  
1.8V Core Voltage (VDD)  
165-ball, 1.0mm pitch, 13mm x 15mm fBGA Package  
JTAG Interface  
Functional Block Diagram  
(Note1)  
(Note1)  
(Note1)  
DATA  
DATA  
REG  
D
REG  
WRITE DRIVER  
(Note2)  
(Note3)  
ADD  
REG  
(Note2)  
SA  
(Note4)  
(Note4)  
(Note1)  
18M  
MEMORY  
ARRAY  
Q
R
W
BWx  
CTRL  
LOGIC  
K
CLK  
GEN  
CQ  
K
CQ  
C
SELECT OUTPUT CONTROL  
C
6109 drw 16  
Notes  
1) Represents 18 signal lines for x18, and 36 signal lines for x36  
2) Represents 19 address signal lines for x18, and 18 address signal lines for x36.  
3) Represents 2 signal lines for x18, and 4r signal lines for x36.  
4) Represents 36 signal lines for x18, and 72 signal lines for x36.  
OCTOBER 2008  
1
©2005 Integrated Device Technology, Inc. QDR SRAMs and Quad Data Rate RAMs comprise a new family of products developed by Cypress Semiconductor, IDT, and Micron Technology, Inc.  
DSC-6109/0A  
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
Echo Clock  
The QDRII has echo clocks, which provide the user with a clock that  
is precisely timed to the data output, and tuned with matching impedance  
and signal quality. The user can use the echo clock for downstream  
clocking of the data. Echo clocks eliminate the need for the user to  
producealternateclockswithprecisetiming, positioning, andsignalquali-  
ties to guarantee data capture. Since the echo clocks are generated by  
The echo clocks, CQ andCQ, are generated by the C and C clocks  
(or K, K if C, C are disabled). The rising edge of C generates the rising  
edge of CQ, and the falling edge of CQ. The rising edge ofC generates  
the rising edge ofCQ and the falling edge of CQ. This scheme improves  
the correlation of the rising and falling edges of the echo clock and will  
the same source that drives the data output, the relationship to the data is improve the duty cycle of the individual signals.  
not significantly affected by voltage, temperature and process, as would  
be the case if the clock were generated by an outside source.  
All interfaces of the QDRII SRAM are HSTL, allowing speeds be-  
yond SRAM devices that use any form of TTL interface. The interface  
can be scaled to higher voltages (up to 1.9V) to interface with 1.8V  
systems if necessary. The device has a VDDQ and a separate Vref,  
allowing the user to designate the interface operational voltage, inde-  
pendent of the device core voltage of 1.8V VDD. The output impedance  
control allows the user to adjust the drive strength to adapt to a wide  
range of loads and transmission lines.  
The echo clock is very closely aligned with the data, guaranteeing  
that the echo clock will remain closely correlated with the data, within the  
tolerances designated.  
Read and Write Operations  
QDRII devices internally store the two words of the burst as a single,  
wide word and will retain their order in the burst. There is no ability to  
address to the single word level or reverse the burst order; however, the  
byte and nibble write signals can be used to prevent writing any indi-  
vidual bytes, or combined to prevent writing one word of the burst.  
Read operations are initiated by holding the read port select (R) low,  
and presenting the read address to the address port during the rising  
edge of K which will latch the address. The data will then be read and will  
appear at the device output at the designated time in correspondence  
with the C and C clocks.  
Write operations are initiated by holding the write port select (W) low  
and designating with the Byte Write inputs (BWx) which bytes are to be  
written. The first word of the data must also be present on the data input  
bus D[X:0]. Upon the rising edge of K the first word of the burst will be  
latched into the input register. After K has risen, and the designated hold  
times observed, the second half of the clock cycle is initiated by present-  
ing the write address to the address bus SA[X:0], theBWx inputs for the  
seconddatawordoftheburst, andtheseconddataitemofthebursttothe  
data bus D[X:0]. Upon the rising edge of K, the second word of the burst  
will be latched, along with the designated address. Both the first and  
second words of the burst will then be written into memory as designated  
by the address and byte write enables.  
The device is capable of sustaining full bandwidth on both the input  
and output ports simultaneously. All data is in two word bursts, with  
addressing capability to the burst level.  
Clocking  
The QDRII SRAM has two sets of input clocks, namely the K, K  
clocks and the C, C clocks. In addition, the QDRII has an output echo”  
clock, CQ, CQ.  
The K andKclocks are the primary device input clocks. The K clock  
is, used to clock in the control signals (R, W and BWx), the read ad-  
dress, and the first word of the data burst during a write operation. The  
K clock is used to clock in the control signals (BWx), write address and  
the second word of the data burst during a write operation. The K and  
Kclocks are also used internally by the SRAM. In the event that the user  
disables the C andC clocks, the K andK clocks will also be used to clock  
the data out of the output register and generate the echo clock. The C  
and C clocks may be used to clock the data out of the output register  
during read operations and to generate the echo clocks. C and C must  
be presented to the SRAM within the timing tolerances. The output data  
from the QDRII will be closely aligned to the C andC input, through the  
use of an internal DLL. When C is presented to the QDRII SRAM, the  
DLL will have already internally clocked the first data word to arrive at  
the device output simultaneously with the arrival of the C clock.  
The C clock and second data word of the burst will also correspond.  
Output Enables  
The QDRII SRAM automatically enables and disables the Q[X:0]  
outputs. When a valid read is in progress, and data is present at the  
output, the output will be enabled. If no valid data is present at the output  
(read not active), the output will be disabled (high impedance). The  
echo clocks will remain valid at all times and cannot be disabled or turned  
off. During power-up the Q outputs will come up in a high impedance  
state.  
Single Clock Mode  
The QDRII SRAM may be operated with a single clock pair. C and  
C may be disabled by tying both signals high, forcing the outputs and  
echo clocks to be controlled instead by the K and K clocks.  
Programmable Impedance  
An external resistor, RQ, must be connected between the ZQ pin on  
the SRAM and Vss to allow the SRAM to adjust its output drive imped-  
ance. The value of RQ must be 5X the value of the intended drive  
impedance of the SRAM. The allowable range of RQ to guarantee  
impedance matching with a tolerance of +/- 10% is between 175 ohms  
and 350 ohms, with VDDQ = 1.5V. The output impedance is adjusted  
every 1024 clock cycles to correct for drifts in supply voltage and tem-  
perature. If the user wishes to drive the output impedance of the SRAM  
to it’s lowest value, the ZQ pin may be tied to VDDQ.  
DLL Operation  
The DLL in the output structure of the QDRII SRAM can be used to  
closely align the incoming clocks C and C with the output of the data,  
generating very tight tolerances between the two. The user may disable  
the DLLby holding Doff low. With the DLLoff, the C andC (or K and K  
if C and C are not used) will directly clock the output register of the  
SRAM. With the DLL off, there will be a propagation delay from the time  
the clock enters the device until the data appears at the output.  
6.242  
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
Pin Definitions  
Symbol  
Pin Function  
Description  
Data input signals, sampled on the rising edge of K and K clocks during valid write operations  
Input  
D[X:0]  
Synchronous 1M x 18 -- D[17:0]  
512K x 36 -- D[35:0]  
Byte Write Select 0, 1, 2, and 3 are active LOW. Sampled on the rising edge of the K and again on the rising edge of K  
clocks during write operations. Used to select which byte is written into the device during the current portion of the write  
operations. Bytes not written remain unaltered. All the byte writes are sampled on the same edge as the data.  
BW  
BW  
0
, BW  
1
Input  
2, BW  
3
Synchronous Deselecting a Byte Write Select will cause the corresponding byte of data to be ignored and not written in to the device.  
1M x 18 -- BW controls D[8:0] and BW controls D[17:9]  
512K x 36 -- BW controls D[8:0], BW controls D[17:9], BW  
0
1
0
1
2
controls D[26:18] and BW3 controls D[35:27]  
Address Inputs. Read addresses are sampled on the rising edge of K clock during active read operations. Write  
addresses are sampled on the rising edge of K clock during active write operations. These address inputs are  
multiplexed, so that both a read and write operation can occur on the same clock cycle. These inputs are ignored when  
the appropriate port is deselected.  
Input  
Synchronous  
SA  
Output  
Data Output signals. These pins drive out the requested data during a Read operation. Valid data is driven out on the rising  
Q[X:0]  
Synchronous edge of both the C and C clocks during Read operations or K and K when operating in single clock mode. When the  
Read port is deselected, Q[X:0] are automatically three-stated.  
Write Control Logic active Low. Sampled on the rising edge of the positive input clock (K). When asserted active, a write  
operation in initiated. Deasserting will deselect the Write port. Deselecting the Write port will cause  
D[X:0] to be ignored.  
Input  
Synchronous  
W
R
Read Control Logic, active LOW. Sampled on the rising edge of Positive Input Clock (K). When active, a Read  
operation is initiated. Deasserting will cause the Read port to be deselected. When deselected, the pending access is  
allowed to complete and the output drivers are automatically three-stated following the next rising edge of the C clock.  
Input  
Synchronous  
Each read access consists of a burst of two sequential transfer.  
Positive Output Clock Input. C is used in conjunction with C to clock out the Read data from the device. C and C can be  
Input Clock used together to deskew the flight times of various devices on the board back to the controller. See application example  
for further details.  
C
Negative Output Clock Input. C is used in conjunction with C to clock out the Read data from the device. C and C can  
Input Clock  
C
be used together to deskew the flight times of various devices on the board back to the controller. See application  
example for further details.  
K
Input Clock Positive Input Clock Input. The rising edge of K is used to capture synchronous inputs to the device and to drive out  
data through Q[X:0] when in single clock mode. All accesses are initiated on the rising edge of K.  
K
Input Clock Negative Input Clock Input. K is used to capture synchronous inputs being presented to the device and to drive out data  
through Q[X:0] when in single clock mode.  
Synchronous Echo clock outputs. The rising edges of these outputs are tightly matched to the synchronous data outputs  
Output Clock and can be used as a data valid indication. These signals are free running and do not stop when the output data is tri-  
stated.  
CQ, CQ  
Output Impedance Matching Input. This input is used to tune the device outputs to the system data bus impedance.  
ZQ  
Input  
Q[X:0] output impedance is set to 0.2 x RQ, where RQ is a resistor connected between ZQ and ground. Alternately, this  
pin can be connected directly to VDDQ, which enables the minimum impedance mode. This pin cannot be connected  
directly to GND or left unconnected.  
6109 tbl 02a  
6.42  
3
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
Pin Definitions continued  
Symbol  
Pin Function  
Description  
DLL Turn Off. When low this input will turn off the DLL inside the device. The AC timings with the DLL turned off will be  
different from those listed in this data sheet. There will be an increased propagation delay from the incidence of C and C  
to Q, or K and K to Q as configured. The propagation delay is not a tested parameter, but will be similar to the  
propagation delay of other SRAM devices in this speed grade.  
Input  
Doff  
TDO  
TCK  
TDI  
Output  
Input  
Input  
Input  
TDO pin for JTAG  
TCK pin for JTAG.  
TDI pin for JTAG. An internal resistor will pull TDI to VDD when the pin is unconnected.  
TMS pin for JTAG. An internal resistor will pull TMS to VDD when the pin is unconnected.  
TMS  
NC  
No Connect No connects inside the package. Can be tied to any voltage level  
Input Reference Voltage input. Static input used to set the reference level for HSTL inputs and Outputs as well as AC  
V
REF  
Reference measurement points.  
Power  
V
DD  
Power supply inputs to the core of the device. Should be connected to a 1.8V power supply.  
Supply  
VSS  
Ground  
Ground for the device. Should be connected to ground of the system.  
Power  
Supply  
Power supply for the outputs of the device. Should be connected to a 1.5V power supply for HSTL or scaled to the  
desired output voltage.  
VDDQ  
6109 tbl 02b  
6.442  
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
Pin Configuration IDT71P72804 (1M x 18)  
1
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
2
3
4
W
5
6
K
7
8
R
9
10  
11  
V
SS/  
NC/  
SA (1)  
VSS/  
SA (2)  
NC  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
CQ  
A
B
C
D
E
F
BW  
1
SA (3)  
Q9  
D9  
SA  
NC  
SA  
K
SA  
NC  
Q8  
BW  
0
NC  
D10  
VSS  
SA  
SA  
VSS  
Q7  
D8  
D11  
Q10  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
D7  
NC  
Q11  
VDDQ  
VSS  
VSS  
VSS  
VDDQ  
D6  
Q6  
Q12  
D12  
VDDQ  
VDD  
VSS  
VDD  
VDDQ  
NC  
NC  
Q5  
D13  
Q13  
VDDQ  
VDD  
VSS  
VDD  
VDDQ  
D5  
G
H
J
VREF  
VDDQ  
VDDQ  
VDD  
VSS  
VDD  
VDDQ  
V
DDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
VREF  
ZQ  
NC  
NC  
D14  
VDDQ  
VDD  
VSS  
VDD  
VDDQ  
Q4  
D4  
Q14  
VDDQ  
VDD  
VSS  
VDD  
VDDQ  
D3  
Q3  
K
L
Q15  
D15  
VDDQ  
VSS  
VSS  
VSS  
VDDQ  
NC  
Q2  
NC  
D16  
VSS  
VSS  
VSS  
VSS  
VSS  
Q1  
D2  
M
N
P
R
D17  
Q16  
VSS  
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
VSS  
NC  
D1  
NC  
Q17  
SA  
SA  
SA  
SA  
D0  
Q0  
TCK  
SA  
TMS  
TDI  
C
6109 tbl 12b  
165-ball FBGA Pinout  
TOP VIEW  
NOTES:  
1. A3 is reserved for the 36Mb expansion address.  
2. A10 is reserved for the 72Mb expansion address. This must be tied or driven to VSS on the 1M x 18 QDRII Burst of 2 (71P72804) devices.  
3. A2 is reserved for the 144Mb expansion address. This must be tied or driven to VSS on the 1M x 18 QDRII Burst of 2 (71P72804) devices.  
6.42  
5
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
Pin Configuration IDT71P72604 (512K x 36)  
1
2
3
4
W
5
BW  
BW  
6
K
7
8
R
9
10  
11  
V
SS/  
NC/  
SA (2)  
NC/  
SA (1)  
V
SS/  
CQ  
A
B
C
D
E
F
CQ  
2
3
BW  
1
SA (4)  
SA (3)  
Q27  
Q18  
D18  
SA  
K
SA  
D17  
Q17  
Q8  
BW  
0
D
27  
Q
28  
D
19  
V
SS  
SA  
SA  
SA  
V
SS  
D
16  
Q
7
D8  
D28  
D20  
Q19  
VSS  
VSS  
VSS  
VSS  
VSS  
Q16  
D15  
D7  
Q29  
D29  
Q20  
VDDQ  
VSS  
VSS  
VSS  
VDDQ  
Q15  
D6  
Q6  
Q30  
Q21  
D21  
VDDQ  
VDD  
VSS  
VDD  
VDDQ  
D14  
Q14  
Q5  
D
30  
D
22  
Q
22  
V
DDQ  
V
DD  
V
SS  
V
DD  
V
DDQ  
Q
13  
D
13  
D5  
G
H
J
VREF  
VDDQ  
VDDQ  
VDD  
VSS  
VDD  
VDDQ  
VDDQ  
VREF  
ZQ  
Doff  
D31  
Q31  
D23  
VDDQ  
VDD  
VSS  
VDD  
VDDQ  
D12  
Q
4
D4  
Q
32  
D
32  
Q
23  
V
DDQ  
V
DD  
V
SS  
V
DD  
V
DDQ  
Q
12  
D
3
Q3  
K
L
Q33  
Q24  
D24  
VDDQ  
VSS  
VSS  
VSS  
VDDQ  
D11  
Q11  
Q2  
D
33  
Q
34  
D
25  
V
SS  
V
SS  
V
SS  
V
SS  
V
SS  
D
10  
Q
1
D2  
M
N
P
R
D34  
D26  
Q25  
VSS  
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
VSS  
Q10  
D9  
D1  
Q35  
D35  
Q26  
SA  
SA  
SA  
SA  
Q
9
D0  
Q0  
TDO  
TCK  
SA  
SA  
TMS  
TDI  
C
6109 tbl 12c  
165-ball FBGA Pinout  
TOP VIEW  
NOTES:  
1. A9 is reserved for the 36Mb expansion address.  
2. A3 is reserved for the 72Mb expansion address.  
3. A10 is reserved for the 144Mb expansion address. This must be tied or driven to VSS on the 512K x 36 QDRII Burst of 2 (71P72604)  
devices.  
4. A2 is reserved for the 288Mb expansion address. This must be tied or driven to VSS on the 512K x 36 QDRII Burst of 2 (71P72604)  
devices.  
6.642  
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
Absolute Maximum Ratings(1) (2)  
Capacitance (TA = +25°C, f = 1.0MHz)  
(1)  
Symbol  
Rating  
Value  
Unit  
Symbol  
Parameter  
Input Capacitance  
Conditions  
Max.  
Unit  
pF  
VTERM  
Supply Voltage on VDD with  
Respect to GND  
–0.5 to +2.9  
V
CIN  
5
6
7
VDD = 1.8V  
CCLK  
Clock Input Capacitance  
Output Capacitance  
pF  
VDDQ = 1.5V  
VTERM  
Supply Voltage on VDDQ with  
Respect to GND  
–0.5 to VDD +0.3  
–0.5 to VDD +0.3  
-0.5 to VDDQ +0.3  
V
V
V
CO  
pF  
6109 tbl 06  
NOTE:  
VTERM  
Voltage on Input terminals with  
respect to GND.  
1. Tested at characterization and retested after any design or process  
change that may affect these parameters.  
VTERM  
Voltage on Output and I/O  
terminals with respect to GND.  
Recommended DC Operating and  
Temperature Conditions  
T
BIAS  
Temperature Under Bias  
Storage Temperature  
–55 to +125  
–65 to +150  
+ 20  
°C  
°C  
TSTG  
Symbol  
VDD  
Parameter  
Power Supply Voltage  
I/O Supply Voltage  
Ground  
Min.  
1.7  
1.4  
0
Typ.  
1.8  
1.5  
0
Max. Unit  
IOUT  
Continuous Current into Outputs  
mA  
1.9  
VDD  
0
V
V
V
V
6109 tbl 05  
NOTES:  
VDDQ  
VSS  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM  
RATINGSmaycausepermanentdamagetothedevice. Thisisastress  
ratingonlyandfunctionaloperationofthedeviceattheseoranyother  
conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating  
conditionsforextendedperiodsmayaffectreliability.  
VREF  
Input Reference Voltage  
0.68 VDDQ/2 0.95  
0 to +70  
o
c
Commercial  
Industrial  
Ambient  
Temperature  
TA  
(1)  
o
c
-40 to +85  
2. VDDQ must not exceed VDD during normal operation.  
6109 tbl 04  
NOTE:  
1. During production testing, the case temperature equals the ambient  
temperature.  
Write Descriptions(1,2,3)  
Signal  
BW  
0
BW  
1
BW  
X
2
BW  
X
3
Write Byte 0  
Write Byte 1  
Write Byte 2  
Write Byte 3  
L
X
X
L
X
X
X
X
L
X
X
X
X
L
6109 tbl 09  
NOTES:  
1) All byte write (BWx) signals are sampled on  
the rising edge of K and again on K. The data that is present on the  
data bus in the designated byte will be latched into the input if  
the corresponding BWx is held low. The rising edge of K will  
sample the first byte of the two word burst and the rising edge  
of K will sample the second byte of the two word burst.  
2) The availability of the BWx on designated devices is de  
scribed in the pin description table.  
3) The QDRII Burst of two SRAM has data forwarding. Aread request  
that is initiated on the same cycle as a write request to the same  
address will produce the newly written data in response to the read  
request.  
6.42  
7
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
Application Example  
SRAM #1  
SRAM #4  
ZQ  
Q
ZQ  
Q
250  
250  
D
D
V
T
K
K
R
C
K
K
R W BW  
0
BW  
1
C
C
SA  
W BW  
0
BW  
1
C
SA  
R
Data In  
Data Out  
Address  
R
R
R
R
R
R
V
T
W
BW x  
V
T
VT  
MEMORY  
CONTROLLER  
R
R
Return CLK  
Source CLK  
Return CLK  
Source CLK  
VT = VREF  
R = 50Ω  
6109 drw 20  
6.842  
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
DC Electrical Characteristics Over the Operating Temperature and  
Supply Voltage Range(VDD = 1.8 ± 100mV, VDDQ = 1.4V to 1.9V)  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Unit  
Note  
µA  
Input Leakage Current  
Output Leakage Current  
I
IL  
V
DD = Max VIN = VSS to VDDQ  
-2  
-2  
+2  
+2  
Output Disabled  
µA  
IOL  
Com'l  
Ind  
V
I
DD = Max,  
OUT = 0mA (outputs open),  
Cycle Time > tKHKH Min  
200MH  
Z
-
-
950  
1000  
Operating Current  
(x36): DDR  
I
DD  
mA  
mA  
1
167MH  
Z
850  
850  
750  
650  
375  
335  
300  
900  
-
250MH  
200MH  
167MH  
250MH  
200MH  
167MH  
Z
-
-
-
-
-
-
VDD = Max,  
Operating Current  
(x18): DDR  
IDD  
IOUT = 0mA (outputs open),  
Z
800  
700  
-
1,8  
Cycle Time > tKHKH Min  
Z
Device Deselected (in NOP state),  
Iout = 0mA (outputs open),  
f=Max,  
Z
Standby Current: NOP  
ISB1  
Z
385  
350  
mA  
2,8  
All Inputs <0.2V or > VDD -0.2V  
Z
Output High Voltage  
Output Low Voltage  
Output High Voltage  
Output Low Voltage  
RQ = 250Ω, IOH = -15mA  
RQ = 250Ω, IOL = 15mA  
V
OH1  
OL1  
OH2  
OL2  
V
DDQ/2-0.12  
DDQ/2-0.12  
DDQ-0.2  
SS  
V
DDQ/2+0.12  
DDQ/2+0.12  
DDQ  
V
V
V
V
3,7  
4,7  
5
V
V
V
IOH = -0.1mA  
V
V
V
IOL = 0.1mA  
V
V
0.2  
6
6109 tbl 10c  
NOTES:  
1. Operating Current is measured at 100% bus utilization.  
2. Standby Current is only after all pending read and write burst operations are completed.  
3. Outputs are impedance-controlled. IOH = -(VDDQ/2)/(RQ/5) and is guaranteed by device characterization for 175< RQ < 350Ω. This  
parameter is tested at RQ = 250, which gives a nominal 50output impedance.  
4. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) and is guaranteed by device characterization for 175< RQ < 350Ω. This  
parameter is tested at RQ = 250, which gives a nominal 50output impedance.  
5. This measurement is taken to ensure that the output has the capability of pulling to the VDDQ rail, and is not intended to be used as an  
impedance measurement point.  
6. This measurement is taken to ensure that the output has the capability of pulling to Vss, and is not intended to be used as an impedance  
measurement point.  
7. Programmable Impedance Mode.  
8. Industrial temperature range is not available for the 250MHz speed grade.  
6.42  
9
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
Input Electrical Characteristics Over  
the Operating Temperature and  
Undershoot Timing  
Supply Voltage Range  
VIH  
(VDD = 1.8 ± 100mV, VDDQ = 1.4V to 1.9V)  
Parameter  
Symbol  
Min  
Max  
DDQ +0.3  
Unit Notes  
V
SS  
Input High Voltage, DC  
Input Low Voltage, DC  
Input High Voltage, AC  
Input Low Voltage, AC  
NOTES:  
V
IH (DC  
IL (DC)  
IH (AC)  
IL (AC)  
)
V
REF +0.1  
V
V
V
V
V
1,2  
1,3  
4,5  
4,5  
V
SS-0.25V  
V
-0.3  
VREF -0.1  
V
SS-0.5V  
V
V
REF +0.2  
-
6109 drw 22  
20% tKHKH (MIN)  
V
-
VREF -0.2  
6109 tbl 10d  
Overshoot Timing  
1.These are DC test criteria. DC design criteria is VREF +50mV. The  
AC VIH/VILlevels are defined separately for measuring timing param  
eters.  
20% tKHKH (MIN)  
V
DD +0.5  
2. VIH (Max) DC = VDDQ+0.3, VIH (Max) AC = VDD +0.5V (pulse  
width <20% tKHKH (min))  
3. VIL (Min) DC = -0.3V, VIL (Min) AC = -0.5V (pulse width <20%  
tKHKH (min))  
VDD +0.25  
VDD  
4. This conditon is forAC function test only, not forAC parameter test.  
5. To maintain a valid level, the transitioning edge of the input must:  
a) Sustain a constant slew rate from the currentAC level through the  
target AC level, VIL(AC) or VIH(AC)  
VIL  
6109 drw 21  
b) Reach at least the targetAC level.  
c)After theAC target level is reached, continue to maintain at least the  
target DC level, VIL(DC) or VIH(DC)  
61.402  
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
AC Test Conditions(1)  
Parameter  
Core Power Supply Voltage  
I/O Power Supply Voltage  
Input High Level  
Symbol  
Value  
Unit  
V
V
DD  
DDQ  
IH  
IL  
1.7 to 1.9  
V
1.4 to VDD  
(VDDQ/2)+ 0.5  
(VDDQ/2)- 0.5  
V
V
V
Input Low Level  
V
V
Input Reference Level  
Input Rise/Fall Time  
VREF  
TR/TF  
V
DDQ/2  
0.3/0.3  
DDQ/2  
V
ns  
Output Timing Reference Level  
V
V
6109tbl 11a  
NOTE:  
1. Parameters are tested with RQ=250Ω  
Input Waveform  
(VDDQ/2) + 0.5V  
Test points  
VDDQ/2  
V
DDQ/2  
(VDDQ/2) - 0.5V  
6109 drw 06  
Output Waveform  
Test points  
VDDQ/2  
VDDQ/2  
6109 drw 06a  
AC Test Load  
VDDQ  
/2  
DDQ/2  
V
RL = 50  
REF  
V
OUTPUT  
=50  
Z0  
Device  
Under  
Test  
Q = 250  
R
ZQ  
6109 drw 04  
6.42  
11  
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
AC Electrical Characteristics  
(VDD = 1.8 ± 100mV, VDDQ = 1.4V to 1.9V, Commercial and Industrial Temperature Ranges) (3,7)  
250MHz(10,11)  
200MHz  
167MHz  
Min.  
Max  
Min.  
Max  
Min.  
Max  
Symbol  
Parameter  
Unit  
Notes  
Clock Parameters  
t
KHKH  
KC var  
KHKL  
KLKH  
KHKH  
KHKH  
KHCH  
KC lock  
Clock Cycle Time (K,K,C,C)  
Clock Phase Jitter (K,K,C,C)  
Clock High Time (K,K,C,C)  
Clock LOW Time (K,K,C,C)  
Clock to clock (KK,CC)  
Clock to clock (KK,CC)  
4.00  
-
6.30  
5.00  
-
7.88  
6.00  
-
8.40  
ns  
ns  
t
0.20  
0.20  
0.20  
1,5  
8
t
1.60  
1.60  
1.80  
1.80  
0.00  
1024  
30  
-
2.00  
2.00  
2.20  
2.20  
0.00  
1024  
30  
-
2.40  
2.40  
2.70  
2.70  
0.00  
1024  
30  
-
ns  
t
-
-
-
ns  
8
t
-
-
-
ns  
9
t
-
-
-
ns  
9
t
Clock to data clock (KC,KC)  
1.80  
2.30  
2.80  
ns  
t
DLL lock time (K, C)  
-
-
-
-
-
-
cycles  
ns  
2
t
KC reset K static to DLL reset  
Output Parameters  
t
CHQV  
CHQX  
CHCQV  
CHCQX  
CQHQV  
CQHQX  
CHQZ  
CHQX1  
C,C HIGH to output valid  
C,C HIGH to output hold  
-
0.45  
-
0.45  
-
-0.50  
-
0.50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
3
3
3
t
-0.45  
-
-
0.45  
-
-0.45  
-
-
0.45  
-
-
0.50  
-
t
C,C HIGH to echo clock valid  
C,C HIGH to echo clock hold  
CQ,CQ HIGH to output valid  
CQ,CQ HIGH to output hold  
C HIGH to output High-Z  
C HIGH to output Low-Z  
t
-0.45  
-
-0.45  
-
-0.50  
-
t
0.30  
-
0.35  
-
0.40  
-
t
-0.30  
-
-0.35  
-
-0.40  
-
t
0.45  
-
0.45  
-
0.50  
-
3,4,5  
3,4,5  
t
-0.45  
-0.45  
-0.50  
Set-Up Times  
t
AVKH  
IVKH  
DVKH  
Address valid to K,K rising edge  
0.35  
0.35  
0.35  
-
-
-
0.40  
0.40  
0.40  
-
-
-
0.50  
0.50  
0.50  
-
-
-
ns  
ns  
ns  
6
R, W inputs valid to K,K rising edge  
Data-in and BWx valid to K, K rising edge  
t
t
Hold Times  
t
KHAX  
KHIX  
KHDX  
K,K rising edge to address hold  
0.35  
0.35  
0.35  
-
-
-
0.40  
0.40  
0.40  
-
-
-
0.50  
0.50  
0.50  
-
-
-
ns  
ns  
ns  
6
t
K,K rising edge to R, W inputs hold  
K, K rising edge to data-in and BWx hold  
t
6109 tbl 11  
NOTES:  
1. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
2. Vdd slew rate must be less than 0.1V DC per 50 ns for DLL lock retention. DLL lock time begins once Vdd and input clock are stable.  
3. If C,C are tied High, K,K become the references for C,C timing parameters.  
4. To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ.  
The specs as shown do not imply bus contention because tCHQX1 is a MIN parameter that is worse case at totally different test conditions  
(0°C, 1.9V) than tCHQZ, which is a MAX parameter (worst case at 70°C, 1.7V)  
It is not possible for two SRAMs on the same board to be at such different voltage and temperature.  
5. This parameter is guaranteed by device characterization, but not production tested.  
6. All address inputs must meet the specified setup and hold times for all latching clock edges.  
7. During production testing, the case temperature equals TA.  
8. Clock High Time (tKHKL) and Clock Low Time (tKLKH) should be within 40% to 60% of the cycle time (tKHKH).  
9. Clock to Clock time (tKHKH) and Clock to Clock time (tKHKH) should be within 45% to 55% of the cycle time (tKHKH).  
10. The 250MHz speed grade is not available in the 512K x 36-bit option.  
11. Industrial temperature range is not available for the 250MHz speed grade.  
61.422  
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
Timing Waveform of Combined Read and Write Cycles  
Read A0  
1
Write A1  
Read A2  
Write A3  
4
Read A4  
Write A5  
Write A6  
8
NOP  
9
NOP  
10  
NOP  
7
3
6
2
5
K
tKHKL  
tKLKH  
tKHKH  
tKHKH  
K
R
tIVKH  
tKHIX  
W
A0  
A6  
A4  
A5  
SA  
D
A2  
A3  
A1  
tKHAX  
tAVKH  
tAVKH tKHAX  
D11  
D30  
D31  
D51  
D10  
D50  
D60  
D61  
tDVKH tKHDX  
tDVKH tKHDX  
Q00  
Q40  
Q01  
Q20  
Q21  
Q41  
Q
tCHQX1  
tCHQV  
tCHQZ  
tCHQX  
tCHQX  
tCQHQV  
tCQHQX  
tKHCH  
tKLKH  
tCHQV  
C
tKHKL  
tKHKH  
tKHKH  
tKHCH  
C
tCHCQV  
tCHCQX  
CQ  
tCHCQV  
tCHCQX  
CQ  
6109 drw 09a  
6.42  
13  
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG  
required. It is possible to use this device without utilizing the TAP. To  
This part contains an IEEE standard 1149.1 Compatible TestAc-  
cess Port (TAP). The package pads are monitored by the Serial Scan  
circuitry when in test mode. This is to support connectivity testing during  
manufacturingandsystemdiagnostics. InconformancewithIEEE1149.1,  
the SRAM contains aTAPcontroller, Instruction register, Bypass Regis-  
ter and ID register. TheTAPcontroller has a standard 16-state machine  
that resets internally upon power-up; therefore, the TRST signal is not  
disable theTAPcontroller without interfacing with normal operation of the  
SRAM, TCK must be tied to VSS to preclude a mid level input. TMS and  
TDI are designed so an undriven input will produce a response identical  
to the application of a logic 1, and may be left unconnected, but they may  
also be tied to VDD through a resistor. TDO should be left unconnected.  
JTAG Instruction Coding  
JTAG Block Diagram  
IR2 IR1 IR0  
Instruction  
TDO Output  
Notes  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
EXTEST  
Boundary Scan Register  
Identification register  
Boundary Scan Register  
Do Not Use  
IDCODE  
2
1
5
4
5
5
SAMPLE-Z  
RESERVED  
S
A,D  
K,K  
C,C  
SRAM  
CORE  
SAMPLE/PRELOAD Boundary Scan register  
Q
CQ  
CQ  
RESERVED  
RESERVED  
BYPASS  
Do Not Use  
Do Not Use  
TDI  
Bypass Register  
3
BYPASS Reg.  
TDO  
Identification Reg.  
6109tbl 13  
NOTES:  
Instruction Reg  
Control Signal  
TAP Controller  
.
1. Places Qs in Hi-Z in order to sample all input data regardless of other  
SRAM inputs.  
2. TDI is sampled as an input to the first ID register to allow for the serial  
shift of the external TDI data.  
s
TMS  
TCK  
3. Bypass register is initialized to Vss when BYPASS instruction is in  
voked. The Bypass Register also holds serially loaded TDI when  
exiting the Shift DR states.  
6109 drw 18  
4. SAMPLE instruction does not place output pins in Hi-Z.  
5. This instruction is reserved for future use.  
TAP Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Select IR  
0
Run Test Idle  
Select DR  
0
0
1
1
1
Capture IR  
0
Capture DR  
0
Shift DR  
1
Shift IR  
1
0
0
1
Exit 1 DR  
0
Exit 1 IR  
0
Pause IR  
1
Pause DR  
1
0
0
0
0
Exit 2 IR  
1
Exit 2 DR  
1
1
0
Update DR  
0
Update IR  
1
6109 drw 17  
61.442  
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
Scan Register Definition  
Part  
Instruction Register  
Bypass Register  
ID Register  
32 bits  
Boundary Scan  
107 bits  
512Kx36  
1Mx18  
3 bits  
3 bits  
1 bit  
1 bit  
32 bits  
107 bits  
6109 tbl 14  
Identification Register Definitions  
INSTRUCTION FIELD  
ALL DEVICES  
DESCRIPTION  
PART NUMBER  
Revision Number (31:29)  
0x0  
Revision Number  
0x0284  
0x0285  
512Kx36  
1Mx18  
QDRII Burst of 2  
71P72604S  
71P72804S  
Device ID (28:12)  
IDT JEDEC ID CODE (11:1)  
Allows unique identification of SRAM  
vendor.  
0x033  
1
ID Register Presence  
Indicator (0)  
Indicates the presence of an ID register.  
6109 tbl 15  
6.42  
15  
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
Boundary Scan Exit Order  
ORDER  
PIN ID  
ORDER  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
PIN ID  
10D  
9E  
ORDER  
73  
PIN ID  
2C  
3E  
2D  
2E  
1E  
2F  
1
6R  
2
6P  
74  
3
6N  
10C  
11D  
9C  
75  
4
7P  
76  
5
7N  
77  
6
7R  
9D  
78  
7
8R  
11B  
11C  
9B  
79  
3F  
8
8P  
80  
1G  
1F  
9
9R  
81  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
11P  
10P  
10N  
9P  
10B  
11A  
Internal  
9A  
82  
3G  
2G  
1J  
83  
84  
85  
2J  
10M  
11N  
9M  
9N  
8B  
86  
3K  
3J  
7C  
87  
6C  
88  
2K  
1K  
2L  
3L  
1M  
1L  
3N  
3M  
1N  
2M  
3P  
8A  
89  
11L  
11M  
9L  
7A  
90  
7B  
91  
6B  
92  
10L  
11K  
10K  
9J  
6A  
93  
5B  
94  
5A  
95  
4A  
96  
9K  
5C  
97  
10J  
11J  
11H  
10G  
9G  
4B  
98  
3A  
99  
2N  
2P  
1H  
100  
101  
102  
103  
104  
105  
106  
107  
1A  
1P  
2B  
11F  
11G  
9F  
3R  
4R  
4P  
3B  
1C  
1B  
10F  
11E  
10E  
5P  
3D  
3C  
5N  
5R  
1D  
6109 tbl 16  
6109 tbl 17  
6109 tbl 18  
61.462  
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
JTAG DC Operating Conditions  
Parameter  
Symbol  
Min  
1.4  
1.7  
1.3  
-0.3  
-5  
Typ  
Max  
Unit Note  
I/O Power Supply  
V
DDQ  
DD  
IH  
IL  
IL  
IL  
0L  
OH  
OL  
-
1.8  
-
VDD  
V
V
Power Supply Voltage  
Input High Level  
V
1.9  
V
V
DD+0.3  
V
Input Low Level  
V
-
0.5  
V
TCK Input Leakage Current  
TMS, TDI Input Leakage Current  
TDO Output Leakage Current  
Output High Voltage (IOH = -1mA)  
Output Low Voltage (IOL = 1mA)  
NOTE:  
I
-
+5  
µA  
µA  
µA  
I
-15  
-5  
-
+15  
+5  
I
-
V
V
DDQ - 0.2  
-
VDDQ  
V
V
1
V
VSS  
-
0.2  
1
6109 tbl 19  
1. The output impedance of TDO is set to 50 ohms (nominal process) and does not vary with the external  
resistor connected to ZQ.  
JTAG AC Test Conditions  
Parameter  
Symbol  
Value  
1.8  
Unit Note  
Input High Level  
V
IH  
IL  
V
V
ns  
Input Low Level  
V
0
Input Rise/Fall Time  
Input and Output Timing Reference Level  
NOTE:  
TR/TF  
1.0/1.0  
0.9  
V
1
6109 tbl 20  
1. For SRAM outputs see AC test load on page 11.  
JTAG Input Test WaveForm  
JTAG AC Test Load  
1.8 V  
0.9 V  
Test points  
0.9 V  
0.9 V  
0 V  
6109 drw 23  
50Ω  
Z = 50Ω  
0
JTAG Output Test WaveForm  
TDO  
,
6109 drw 24  
Test points  
0.9 V  
0.9 V  
6109 drw 23a  
6.42  
17  
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
JTAG AC Characteristics  
Parameter  
Symbol  
Min  
50  
20  
20  
5
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note  
TCK Cycle Time  
t
CHCH  
CHCL  
CLCH  
MVCH  
CHMX  
DVCH  
CHDX  
SVCH  
CHSX  
CLQV  
-
-
TCK High Pulse Width  
TCK Low Pulse Width  
TMS Input Setup Time  
TMS Input Hold Time  
TDI Input Setup Time  
TDI Input Hold Time  
SRAM Input Setup Time  
SRAM Input Hold Time  
t
t
-
t
-
t
5
-
t
5
-
t
5
-
t
5
-
t
5
-
Clock Low to Output  
Valid  
t
0
10  
6109 tbl.21  
JTAG Timing Diagram  
TCK  
tCHCH  
tCHCL  
tCLCH  
tMVCH  
tCHMX  
TMS  
tDVCH  
tCHDX  
TDI/  
SRAM  
Inputs  
tSVCH  
tCHSX  
SRAM  
Outputs  
tCLQV  
TDO  
6109 drw 19  
61.482  
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
Package Diagram Outline for 165-Ball Fine Pitch Grid Array  
6.42  
19  
71P72804 (1M x 18-Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial and IndustrialTemperature Range  
Ordering Information  
S
XXX  
BQ  
X
71P72XXX  
X
Process  
Temperature  
Range  
Device  
Type  
Power Speed  
Package  
o
o
o
Commercial (0 C to +70 C)  
Blank  
I
o
Industrial (-40 C to +85 C)  
G
Restricted Hazardous Substance Device  
BQ  
165 Fine Pitch Ball Grid Array (fBGA)  
Clock Frequency in MegaHertz  
250(1,2)  
200  
167  
IDT71P72804 1M x 18 QDR II SRAM Burst of 2  
IDT71P72604 512K x 36 QDR II SRAM Burst of 2  
Notes:  
6109 drw 15  
1) The 250MHz speed grade is not available in the 512K x36-bit option.  
2) Industrial temperature range is not available for the 250MHz speed grade.  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
sramhelp@idt.com  
408-284-4532  
800-345-7015 or  
408-284-8200  
fax: 408-284-2775  
www.idt.com  
“QDR SRAMs and Quad Data Rate RAMs comprise a new family of products developed by Cypress Semiconductor, IDT, and Micron Technology, Inc. “  
62.402  
IDT71P72204 (2M x 8-Bit), 71P72104 (2M x 9-Bit), 71P72804 (1M x 18 x -Bit) 71P72604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 2  
Commercial Temperature Range  
RevisionHistory  
REVISION  
DATE  
PAGES  
p.1-22  
DESCRIPTION  
0
07/20/05  
04/21/06  
Released Final datasheet  
A
p.1-3,7-9  
12,15,20  
p. 7,11,17  
p.1,7,9,12,20  
p.20  
Removed x8 and x9 information from the datasheet.  
Clarified Max VDDQ equals VDD.  
Added Industrial temperature to the datasheet.  
Added Green to the datasheet “Restricted hazardous substance device”  
Removed "IDT" from orderable part number  
B
10/13/08  
p.20  

相关型号:

71P73104S300BQ

Standard SRAM, 2MX9, 0.45ns, CMOS, PBGA165
IDT

71P73104S333BQ8

Standard SRAM, 2MX9, 0.45ns, CMOS, PBGA165
IDT

71P73204S167BQ

Standard SRAM, 2MX8, 0.5ns, CMOS, PBGA165
IDT

71P73204S200BQ

Standard SRAM, 2MX8, 0.45ns, CMOS, PBGA165
IDT

71P73204S250BQ8

Standard SRAM, 2MX8, 0.45ns, CMOS, PBGA165
IDT

71P73204S300BQ

Standard SRAM, 2MX8, 0.45ns, CMOS, PBGA165
IDT

71P73604S167BQ

CABGA-165, Tray
IDT

71P73604S200BQ

CABGA-165, Tray
IDT

71P73604S200BQ8

CABGA-165, Reel
IDT

71P73604S250BQ

CABGA-165, Tray
IDT

71P73604S250BQ8

CABGA-165, Reel
IDT

71P73604S300BQ

CABGA-165, Tray
IDT