71P74804S333BQ [IDT]

CABGA-165, Tray;
71P74804S333BQ
型号: 71P74804S333BQ
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

CABGA-165, Tray

时钟 静态存储器 内存集成电路
文件: 总22页 (文件大小:303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Advance  
Information  
IDT71P74204  
IDT71P74104  
IDT71P74804  
IDT71P74604  
18Mb Pipelined  
QDR™II SRAM  
Burst of 4  
Description  
Features  
TM  
The IDT QDRII Burst of four SRAMs are high-speed synchronous  
memories with independent, double-data-rate (DDR), read and write  
data ports. This scheme allows simultaneous read and write access for  
the maximum device throughput, with four data items passed with each  
read or write. Four data word transfers occur per clock cycle, providing  
quad-data-rate(QDR)performance. ComparingthiswithstandardSRAM  
common I/O (CIO), single data rate (SDR) devices, a four to one in-  
crease in data access is achieved at equivalent clock speeds. Consider-  
ing that QDRII allows clock speeds in excess of standard SRAM de-  
vices, the throughput can be increased well beyond four to one in most  
applications.  
18Mb Density (2Mx8, 2Mx9, 1Mx18, 512kx36)  
Separate, Independent Read and Write Data Ports  
Supports concurrent transactions  
-
Dual Echo Clock Output  
4-Word Burst on all SRAM accesses  
Multiplexed Address Bus One Read or One Write request  
per clock cycle  
DDR (Double Data Rate) Data Bus  
-
Four word burst data per two clock cycles on  
each port  
Four word transfers per clock cycle  
-
Using independent ports for read and write data access, simplifies  
system design by eliminating the need for bi-directional buses. All buses  
associated with the QDRII are unidirectional and can be optimized for  
signal integrity at very high bus speeds. The QDRII has scalable output  
impedance on its data output bus and echo clocks, allowing the user to  
tune the bus for low noise and high performance.  
Depth expansion through Control Logic  
HSTL (1.5V) inputs that can be scaled to receive signals  
from 1.4V to 1.9V.  
Scalable output drivers  
-
Can drive HSTL, 1.8V TTL or any voltage level  
from 1.4V to 1.9V.  
The QDRII has a single SDR address bus with read addresses and  
write addresses multiplexed. The read and write addresses interleave  
with each occurring a maximum of every other cycle. In the event that no  
operation takes place on a cycle, the subsequest cycle may begin with  
either a read or write. During write operations, the writing of individual  
bytes may be blocked through the use of byte or nibble write control  
signals.  
-
Output Impedance adjustable from 35 ohms to 70  
ohms  
1.8V Core Voltage (VDD)  
165-ball, 1.0mm pitch, 15mm x 17mm fBGA Package  
JTAG Interface  
The QDRII has echo clocks, which provide the user with a clock  
Functional Block Diagram  
(Note1)  
DATA  
D
REG  
WRITE DRIVER  
(Note2)  
(Note2)  
ADD  
SA  
REG  
(Note1)  
Q
18M  
MEMORY  
ARRAY  
R
CTRL  
LOGIC  
W
(Note3)  
BWx  
K
CLK  
CQ  
GEN  
K
CQ  
C
SELECT OUTPUT CONTROL  
C
6111 drw16  
Notes  
1) Represents 8 data signal lines for x8, 9 signal lines for x9, 18 signal lines for x18, and 36 signal lines for x36  
2) Represents 19 address signal lines for x8 and x9, 18 address signal lines for x18, and 17 address signal lines for x36.  
BW  
3) Represents 1 signal line for x9, 2 signal lines for x18, and four signal lines for x36. On x8 parts, the  
and there are 2 signal lines.  
is a “nibble write”  
MARCH 2004  
1
©2003 Integrated Device Technology, Inc. “QDR SRAMs and Quad Data Rate RAMs comprise a new family of products developed by Cypress Semiconductor, IDT, and Micron Technology, Inc. “  
DSC-6111/00  
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
that is precisely timed to the data output, and tuned with matching imped- edge of CQ, and the falling edge of CQ. The rising edge of C generates  
ance and signal quality. The user can use the echo clock for down- the rising edge ofCQ and the falling edge of CQ. This scheme improves  
stream clocking of the data. Echo clocks eliminate the need for the user the correlation of the rising and falling edges of the echo clock and will  
to produce alternate clocks with precise timing, positioning, and signal  
qualities to guarantee data capture. Since the echo clocks are generated  
bythesamesourcethatdrivesthedataoutput, therelationshiptothedata  
isnotsignificantlyaffectedbyvoltage, temperatureandprocess, aswould  
be the case if the clock were generated by an outside source.  
All interfaces of the QDRII SRAM are HSTL, allowing speeds beyond  
SRAM devices that use any form of TTL interface. The interface can be  
scaled to higher voltages (up to 1.9V) to interface with 1.8V systems if  
necessary. The device has a VDDQ and a separate Vref, allowing the  
user to designate the interface operational voltage, independent of the  
device core voltage of 1.8V VDD. The output impedance control allows  
the user to adjust the drive strength to adapt to a wide range of loads and  
transmission lines.  
The device is capable of sustaining full bandwidth on both the input  
and output ports simultaneously. All data is in two word bursts, with  
addressing capability to the burst level.  
Clocking  
improve the duty cycle of the individual signals.  
The echo clock is very closely aligned with the data, guaranteeing that  
the echo clock will remain closely correlated with the data, within the  
tolerances designated.  
Read and Write Operations  
QDRII devices internally store the 4 words of the burst as a single,  
wide word and will retain their order in the burst. There is no ability to  
address to the single word level or reverse the burst order; however, the  
byte and nibble write signals can be used to prevent writing any indi-  
vidual bytes, or combined to prevent writing one word of the burst.  
Read and write operations may be interleaved with each occurring  
on every other clock cycle. In the event that two reads or two writes are  
requested on adjacent clock cycles, the operation in progress will com-  
plete and the second request will be ignored. In the event that both a  
read and write are requested simultaneously, the read operation will win  
and the write operation will be ignored.  
Read operations are initiated by holding the read port select (R) low,  
and presenting the read address to the address port during the rising  
edge of K which will latch the address. The data will then be read and will  
appear at the device output at the designated time in correspondence  
The QDRII SRAM has two sets of input clocks, namely the K, K clocks  
and the C, C clocks. In addition, the QDRII has an output echo” clock,  
CQ, CQ.  
The K and K clocks are the primary device input clocks. The K clock  
is, used to clock in the control signals (R, W and BWx/NWx), the ad-  
dress, first and third words of the data burst during a write operation.  
The K clock is used to clock in the control signals (BWx orNWx) and the  
second and fourth words of the data burst during a write operation. The  
K and K clocks are also used internally by the SRAM. In the event that  
the user disables the C and C clocks, the K and K clocks will be used to  
clock the data out of the output register and generate the echo clocks.  
The C and C clocks may be used to clock the data out of the output  
register during read operations and to generate the echo clocks. C and  
C must be presented to the SRAM within the timing tolerances. The  
output data from the QDRII will be closely aligned to the C andC input,  
through the use of an internal DLL. When C is presented to the QDRII  
SRAM, the DLL will have already internally clocked the data to arrive at  
the device output simultaneously with the arrival of the C clock. The C  
and second data item of the burst will also correspond. The third and  
with the C and C clocks.  
Write operations are initiated by holding the write port select (W) low  
and presenting the designated write address to the address bus. The  
QDRII SRAM will receive the address on the rising edge of clock K. On  
the following rising edge of K clock, the QDRII SRAM will receive the first  
data item of the four word burst on the data bus. Along with the data, the  
byte (BW) or nibble write (NW) inputs will be accepted, indicating which  
bytes of the data inputs should be written to the SRAM. On the rising  
edge of K, the next word of the write burst and BW/NW will be accepted.  
The following K and K will receive the last two words of the four word  
burst, with their BW/NW enables.  
Output Enables  
The QDRII SRAM automatically enables and disables the Q[X:0]  
outputs. When a valid read is in progress, and data is present at the  
output, the output will be enabled. If no valid data is present at the output  
(read not active), the output will be disabled (high impedance). The  
echo clocks will remain valid at all times and cannot be disabled or turned  
off. During power-up the Q outputs will come up in a high impedance  
fourth data items will follow on the next clock cycle.  
Single Clock Mode  
The QDRII SRAM may be operated with a single clock pair. C and C  
may be disabled by tying both signals high, forcing the outputs and echo  
clocks to be controlled instead by the K and K clocks.  
DLL Operation  
The DLL in the output structure of the QDRII SRAM can be used to  
closely align the incoming clocks C and C with the output of the data,  
generating very tight tolerances between the two. The user may disable  
the DLL by holding Doff low. With the DLL off, the C and C (or K and K  
if C and C are not used) will directly clock the output register of the SRAM.  
With the DLL off, there will be a propagation delay from the time the clock  
enters the device until the data appears at the output.  
state.  
Programmable Impedance  
An external resistor, RQ, must be connected between the ZQ pin on  
the SRAM and Vss to allow the SRAM to adjust its output drive imped-  
ance. The value of RQ must be 5X the value of the intended drive  
impedance of the SRAM. The allowable range of RQ to guarantee  
impedance matching with a tolerance of +/- 10% is between 175 ohms  
and 350 ohms, with VDDQ = 1.5V. The output impedance is adjusted  
every 1024 clock cycles to correct for drifts in supply voltage and tem-  
perature. If the user wishes to drive the output impedance of the SRAM  
Echo Clock  
The echo clocks, CQ and CQ, are generated by the C and C clocks  
(or K, K if C, C are disabled). The rising edge of C generates the rising  
to it’s lowest value, the ZQ pin may be tied to VDDQ.  
6.242  
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
Pin Definitions  
Symbol  
Pin Function  
Description  
Data input signals, sampled on the rising edge of K and K clocks during valid write operations  
2M x 8 -- D[7:0]  
2M x 9 -- D[8:0]  
D[X:0]  
Input Synchronous  
1M x 18 -- D[17:0]  
512K x 36 -- D[35:0]  
Byte Write Select 0, 1, 2, and 3 are active LOW. Sampled on the rising edge of the K and again on the rising edge of K  
clocks during write operations. Used to select which byte is written into the device during the current portion of the write  
operations. Bytes not written remain unaltered. All the byte writes are sampled on the same edge as the data.  
BW , BW  
0
1
Input Synchronous Deselecting a Byte Write Select will cause the corresponding byte of data to be ignored and not written in to the device.  
2M x 9 -- controls D[8:0]  
BW , BW  
2
3
BW  
0
1M x 18 -- BW controls D[8:0] and BW controls D[17:9]  
0
1
512K x 36 -- BW controls D[8:0], BW controls D[17:9], BW controls D[26:18] and BW controls D[35:27]  
0
1
2
3
Nibble Write Select 0 and 1 are active LOW. Available only on x8 bit parts instead of Byte Write Selects. Sampled on the  
rising edge of the K and K clocks during write operations. Used to select which nibble is written into the device during the  
Input Synchronous current portion of the write operations. Nibbles no t written remain unaltered. All the nibble writes are sampled on the same  
edge as the data. Deselecting a Nibble Write Select will cause the corresponding nibble of data to be ignored and not  
written in to the device.  
NW0, NW1  
Address inputs are sampled on the rising edge of K clock during active read or write operations. These address inputs are  
Input Synchronous  
SA  
multiplexed so a read and write can be initiated on alternate clock cycles. These inputs are ignored when the appropriate  
port is deselected.  
Data Output signals. These pins drive out the requested data during a Read operation. Valid data is driven out on the rising  
Output Synchronous edge of both the C and C clocks during Read operations or K and K when operating in single clock mode. When the Read  
port is deselected, Q[X:0] are automatically three-stated.  
Q[X:0]  
Write Control Logic active Low. Sampled on the rising edge of the positive input clock (K). When asserted active, a write  
operation in initiated. Deasserting will deselect the Write port, causing D[X:0] to be ignored. If a write operation has  
successfully been initiated, it will continue to completion, ignoring the W on the following clock cycle. This allows the user to  
continuously hold W low while bursting data into the SRAM.  
Input Synchronous  
W
R
Read Control Logic, active LOW. Sampled on the rising edge of Positive Input Clock (K). When active, a read operation is  
initiated. Deasserting will cause the Read port to be deselected. When deselected, the pending access is allowed to  
complete and the output drivers are automatically three-stated following the next rising edge of the C clock. Each read  
Input Synchronous  
access consists of a burst of four sequential transfer. If a read operation has successfully been initiate d, it will continue to  
completion, ignoring the R on the following clock cycle. This allows the user to continuously hold R low while bursting data  
from the SRAM.  
Positive Output Clock Input. C is used in conjunction with C to clock out the Read data from the device. C and C can be  
C
used together to deskew the flight times of various devices on the board back to the controller. See application example  
for further details.  
Input Clock  
Negative Output Clock Input. C is used in conjunction with C to clock out the Read data from the device. C and C can be  
Input Clock  
used together to deskew the flight times of various devices on the board back to the controller. See application example  
for further details.  
C
Positive Input Clock Input. The rising edge of K is used to capture synchronous inputs to the device and to drive out data  
through Q[X:0] when in single clock mode. All accesses are initiated on the rising edge of K.  
K
Input Clock  
Input Clock  
Negative Input Clock Input. K is used to capture synchronous inputs being presented to the device and to drive out data  
through Q[X:0] when in single clock mode.  
K
Synchronous Echo clock outputs. The rising edges of these outputs are tightly matched to the synchronous data outputs  
CQ, CQ  
and can be used as a data valid indication. These signals are free running and do not stop when the output data is three-  
stated.  
Output Clock  
Input  
Output Impedance Matching Input. This input is us ed to tune the device outputs to the sys tem data bus impedance. Q[X:0]  
output impedance is set to 0.2 x RQ, where RQ is a resistor connected between ZQ and ground. Alternately, this pin can  
ZQ  
be connected directly to V  
which enables the minimum impedance mode. This pin cannot be connected directly to  
DDQ,  
GND or left unconnected.  
6111 tbl 02a  
6.42  
3
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
Pin Definitions continued  
Symbol Pin Function  
Description  
DLL Turn Off. When low this input will turn off the DLL inside the device. The AC timings with  
the DLL turned off will be different from those listed in this data sheet. There will be an  
increased propagation delay from the incidence of C and C to Q, or K and K to Q as  
configured. The propagation delay is not a tested parameter, but will be similar to the  
propagation delay of other SRAM devices in this speed grade.  
Input  
Doff  
TDO  
TCK  
TDI  
Output  
Input  
Input  
Input  
TDO pin for JTAG.  
TCK pin for JTAG.  
TDI pin for JTAG. An internal resistor will pull TDI to VDD when the pin is unconnected.  
TMS pin for JTAG. An internal resistor will pull TMS to VDD when the pin is unconnected.  
TMS  
NC  
No Connect No connects inside the package. Can be tied to any voltage level  
Input  
Reference Voltage input. Static input used to set the reference le vel for HSTL inputs and  
VREF  
Reference Outputs as well as AC measurement points.  
Power  
Supply  
Power supply inputs to the core of the device. Should be connected to a 1.8V power  
supply.  
VDD  
VSS  
Ground  
Ground for the device. Should be connected to ground of the system.  
Power  
Supply  
Power supply for the outputs of the device. Should be connected to a 1.5V power supply  
for HSTL or scaled to the desired output voltage.  
VDDQ  
6111 tbl 02b  
6.442  
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
Pin Configuration 2M x 8  
1
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
2
3
4
5
6
7
8
9
10  
11  
VSS/  
SA (2)  
SA  
NC  
SA  
VSS/  
CQ  
W
NW1  
NC  
K
R
A
B
C
D
E
F
SA (1)  
NC  
NC  
NC  
NC  
SA  
K
SA  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
NC  
Q
3
NW0  
SA  
NC  
VSS  
SA  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
SA  
D
3
D
4
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
NC  
NC  
NC  
Q
4
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
D
2
Q
2
NC  
NC  
NC  
NC  
NC  
ZQ  
D
5
Q
5
G
H
J
VREF  
NC  
VDDQ  
NC  
VREF  
Q
1
D
1
NC  
NC  
NC  
NC  
NC  
K
L
Q
6
D
6
Q
0
NC  
NC  
NC  
NC  
D
0
M
N
P
R
D
7
VSS  
NC  
NC  
NC  
TDI  
NC  
Q
7
SA  
SA  
SA  
NC  
TCK  
SA  
SA  
SA  
SA  
SA  
TMS  
C
6111 tbl 12  
165-ball FBGA Pinout  
TOP VIEW  
NOTES:  
1. A10 is reserved for the 36Mb expansion address.  
2. A2 is reserved for the 72Mb expansion address.  
6.42  
5
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
Pin Configuration 2M x 9  
1
2
3
4
5
6
K
7
8
9
SA  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
10  
11  
VSS/  
SA  
NC  
NC  
NC  
NC  
NC  
VSS/  
CQ  
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
W
R
A
B
C
D
E
F
SA (2)  
SA (1)  
NC  
NC  
SA  
NC  
K
SA  
NC  
NC  
NC  
Q
3
BW  
SA  
VSS  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
SA  
SA  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
SA  
D
3
D
4
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
NC  
NC  
NC  
Q
4
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
D
2
Q
2
NC  
NC  
NC  
NC  
NC  
ZQ  
D
5
Q
5
G
H
J
VREF  
NC  
VDDQ  
NC  
VREF  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
Q
1
D
1
NC  
NC  
NC  
NC  
NC  
NC  
NC  
K
L
Q
6
D
6
Q
0
NC  
NC  
NC  
D
0
M
N
P
R
D
7
VSS  
NC  
NC  
Q
7
SA  
SA  
D
8
Q
8
TCK  
SA  
SA  
SA  
SA  
TMS  
TDI  
C
6111 tb l 12a  
165-ball FBGA Pinout  
TOP VIEW  
NOTES:  
1. A10 is reserved for the 36Mb expansion address.  
2. A2 is reserved for the 72Mb expansion address.  
6.642  
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
Pin Configuration 1M x 18  
1
2
3
4
5
6
K
7
8
9
SA  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
10  
11  
VSS/  
NC/  
NC  
VSS/  
CQ  
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
W
BW  
R
A
B
C
D
E
F
1
SA (3)  
SA (1)  
SA (2)  
Q
9
D
9
SA  
NC  
SA  
VSS  
VSS  
K
SA  
NC  
Q
8
BW  
0
NC  
D
10  
VSS  
NC  
VSS  
VSS  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
SA  
Q
7
D
8
D
11  
Q
10  
VSS  
NC  
D
7
NC  
Q
11  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
D
6
Q
6
Q
12  
D
12  
V
DD  
V
SS  
NC  
NC  
Q
5
D
13  
Q
13  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
D
5
G
H
J
VREF  
NC  
VDDQ  
VREF  
ZQ  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
D
14  
Q
4
D
4
NC  
Q
14  
V
SS  
D
3
Q
3
K
L
Q
15  
D
15  
V
SS  
V
SS  
NC  
Q
2
NC  
D
16  
VSS  
SA  
SA  
SA  
VSS  
SA  
C
Q
1
D
2
M
N
P
R
D
17  
Q
16  
VSS  
NC  
D
1
NC  
Q
17  
SA  
SA  
D
0
Q
0
TCK  
SA  
SA  
SA  
SA  
TMS  
TDI  
C
6111 tbl 12b  
165-ball FBGA Pinout  
TOP VIEW  
NOTES:  
1. A3 is reserved for the 36Mb expansion address.  
2. A10 is reserved for the 72Mb expansion address. This must be tied or driven to VSS on the 1M x 18 QDRII Burst of 4 (71P74804) devices.  
3. A2 is reserved for the 144Mb expansion address. This must be tied or driven to VSS on the 1M x 18 QDRII Burst of 4 (71P74804) devices.  
6.42  
7
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
Pin Configuration 512K x 36  
1
2
3
4
5
6
7
8
9
10  
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
VSS/  
SA (4)  
NC/  
SA (2)  
NC/  
SA (1)  
VSS  
SA (3)  
CQ  
Q27  
D27  
D28  
Q29  
Q30  
D30  
W
BW2  
BW3  
SA  
K
BW1  
BW0  
SA  
R
A
B
C
D
E
F
Q18  
Q28  
D20  
D29  
Q21  
D22  
D18  
D19  
Q19  
Q20  
D21  
Q22  
SA  
K
SA  
D17  
D16  
Q16  
Q15  
D14  
Q13  
Q17  
Q7  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
SA  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
VSS  
VSS  
VSS  
VDD  
VDD  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
D15  
D6  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
Q14  
D13  
G
H
J
V
REF  
V
V
DD  
V
DDQ  
V
REF  
DDQ  
Doff  
D31  
Q32  
Q33  
D33  
D34  
Q35  
TDO  
Q31  
D32  
Q24  
Q34  
D26  
D35  
TCK  
D23  
Q23  
D24  
D25  
Q25  
Q26  
SA  
VDD  
VDD  
VSS  
VSS  
SA  
SA  
SA  
D12  
Q12  
D11  
D10  
Q10  
Q9  
Q4  
D3  
K
L
Q11  
Q1  
M
N
P
R
VSS  
SA  
D9  
SA  
D0  
SA  
SA  
SA  
SA  
TMS  
C
6111 tbl 12c  
165-ball FBGA Pinout  
TOP VIEW  
NOTES:  
1. A9 is reserved for the 36Mb expansion address.  
2. A3 is reserved for the 72Mb expansion address.  
3. A10 is reserved for the 144Mb expansion address. This must be tied or driven to VSS on the 512K x 36 QDRII Burst of 4 (71P74604) devices.  
4. A2 is reserved for the 288Mb expansion address. This must be tied or driven to VSS on the 512K x 36 QDRII Burst of 4 (71P74604) devices.  
6.842  
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
Capacitance (TA = +25°C, f = 1.0MHz)(1)  
Absolute Maximum Ratings(1) (2)  
Symbol  
Rating  
Value  
Unit  
Symbol  
CIN  
Parameter  
Input Capacitance  
Conditions  
Max.  
Unit  
pF  
VTE RM  
Supply Voltage on VDD with  
Respect to GND  
–0.5 to +2.9  
V
5
6
7
VDD = 1.8V  
VDDQ = 1.5V  
CCLK  
CO  
Clock Input Capacitance  
Output Capacitance  
pF  
VTE RM  
VTE RM  
VTE RM  
Supply Voltage on VDDQ with  
Respect to GND  
–0.5 to VDD +0.3  
–0.5 to VDD +0.3  
–0.5 to VDDQ +0.3  
V
V
V
pF  
Voltage on Input terminals with  
respect to GND  
6111 tbl 06  
NOTE:  
1. Tested at characterization and retested after any design or process change that  
may affect these parameters.  
Voltage on Output and I/O  
terminals with respect to GND.  
TBIAS  
TSTG  
Temperature Under Bias  
Storage Temperature  
–55 to +125  
–65 to +150  
+ 20  
°C  
°C  
Recommended DC Operating and  
Temperture Conditions  
IOUT  
Continuous Current into Outputs  
mA  
NOTES:  
6111 tbl 05  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Power Supply  
Voltage  
VDD  
1.7  
1.8  
1.9  
V
VDDQ  
VSS  
I/O Supply Voltage  
Ground  
1.4  
0
1.5  
0
1.9  
0
V
V
2. VDDQ must not exceed VDD during normal operation.  
Input Reference  
Voltage  
VREF  
TA  
0.68  
0
VDDQ/2  
25  
0.95  
+70  
V
Ambient  
o
c
(1)  
Temperature  
6111 tbl 04  
NOTE:  
1. During production testing, the case temperarure equals the ambient  
temperature.  
Write Descriptions(1,2)  
Signal  
BW0  
L
BW1  
X
BW2  
X
BW3  
X
NW0  
X
NW1  
X
Write Byte 0  
Write Byte 1  
Write Byte 2  
Write Byte 3  
Write Nibble 0  
Write Nibble 1  
X
L
X
X
X
X
X
X
L
X
X
X
X
X
X
L
X
X
X
X
X
X
L
X
X
X
X
X
X
L
6111 tbl 09  
NOTES:  
1) All byte write (BWx) and nibble write (NWx) signals are sampled on the  
rising edge of K and again on K. The data that is present on the data bus in the  
designated byte/nibble will be latched into the input if the corresponding BWx or  
NWx is held low. The rising edge of K will sample the first and third bytes/  
nibbles of the four word burst and the rising edge of K will sample the second  
and fourth bytes/nibbles of the four word burst.  
2) The availability of the BWx or NWx on designated devices is described in  
the pin description table.  
3) The QDRII Burst of four SRAM has data forwarding. A read request that is  
initiated on the cycle following a write request to the same address will produce  
the newly written data in response to the read request.  
6.42  
9
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
Application Example  
SRAM #1  
SRAM #4  
ZQ  
Q
ZQ  
Q
250  
250  
D
D
VT  
K
K
SA  
1
W B W0 B W  
K
SA  
R
C
K
R W BW0 BW1  
C
C
C
R
Data In  
Data Out  
Address  
R
R
R
R
R
R
T
V
W
BWx/NWx  
MEMORY  
VT VT  
CONTROLLER  
R
R
Return CLK  
Source CLK  
Return CLK  
Source CLK  
T
REF  
V = V  
R = 50Ω  
6111 drw 20  
61.402  
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
DC Electrical Characteristics Over the Operating Temperature and  
Supply Voltage Range(VDD = 1.8 ± 100mV, VDDQ = 1.4V to 1.9V)  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Unit  
Note  
µ
A
A
Input Le akage Curre nt  
Output Le akage Curre nt  
I
IL  
V
DD = Max VIN = VSS to VDDQ  
-10  
-10  
+10  
+10  
Output Disable d  
µ
I
OL  
333MH  
300MH  
250MH  
Z
-
-
-
-
-
-
-
-
-
-
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
T
B
D  
TBD  
Z
V
I
DD
= M
a
x,  
OUT = 0mA (outputs ope n),  
Cycle Time > tKHKH Min  
Ope rating Curre nt  
(x36,x18,x9,x8): DDR  
DD  
I
Z
mA  
1
300MHz  
167MHz  
333MH  
300MH  
250MH  
Z
Z
De vice De s e le cte d (in NOP state )  
I
OUT = 0mA (outputs ope n),  
f=Max,  
Standby Curre nt: NOP  
I
S B1  
Z
mA  
2
All Inputs <0.2V or > VDD -0.2V  
200MHz  
167MHz  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
Output Low Voltage  
NOTES:  
RQ = 250Ω,  
RQ = 250Ω,  
I
OH = -15mA  
V
DDQ/2-0.12  
V
DDQ /2+0.12  
V
V
V
V
3,7  
4,7  
5
V
OH1  
I
OL = 15mA  
V
DDQ/2-0.12  
V
DDQ /2+0.12  
V
OL1  
I
OH = -0.1mA  
V
DDQ -0.2  
V
DDQ  
V
OH2  
I
OL = 0.1mA  
V
SS  
0.2  
6
V
OL2  
6111 tb l 10 c  
1. Operating Current is measured at 100% bus utilization.  
2. Standby Current is only after all pending read and write burst operations are completed.  
3. Outputs are impedance-controlled. IOH = -(VDDQ/2)/(RQ/5) and is guaranteed by device characterization for 175< RQ < 350Ω. This  
parameter is tested at RQ = 250Ω, which gives a nominal 50output impedance.  
4. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) and is guaranteed by device characterization for 175< RQ < 350Ω. This  
parameter is tested at RQ = 250Ω, which gives a nominal 50output impedance.  
5. This measurement is taken to ensure that the output has the capability of pulling to the VDDQ rail, and is not intended to be used as an  
impedance measurement point.  
6. This measurement is taken to ensure that the output has the capability of pulling to Vss, and is not intended to be used as an impedance  
measurement point.  
7. Programmable Impedance Mode.  
6.42  
11  
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
Input Electrical Characteristics Over the Operating Temperature and  
Supply Voltage Range (VDD = 1.8 ± 100mV, VDDQ = 1.4V to 1.9V)  
PARAMETER  
SYMBOL  
VIH (DC)  
VIL (DC)  
VIH (AC)  
VIL (AC)  
MIN  
VREF +0.1  
-0.3  
MAX  
VDDQ +0.3  
VREF -0.1  
-
UNIT  
V
NOTES  
1,2  
Input High Voltage, DC  
Input Low Voltage, DC  
Input High Voltage, AC  
Input Low Voltage, AC  
V
1,3  
VREF +0.2  
-
V
4,5  
VREF -0.2  
V
4,5  
6111 tbl 10d  
NOTES:  
1. These are DC test criteria. DC design criteria is VREF + 50mV. The AC VIH/VIL levels are defined separately for measuring timing parameters.  
2. VIH (Max) DC = VDDQ+0.3, VIH (Max) AC = VDD +0.5V (pulse width <20% tKHKH (min))  
3. VIL (Min) DC = -0.3V, VIL (Min) AC = -0.5V (pulse width <20% tKHKH (min))  
4. This conditon is for AC function test only, not for AC parameter test.  
5. To maintain a valid level, the transitioning edge of the input must:  
a) Sustain a constant slew rate from the current AC level through the target AC level, VIL(AC) or VIH(AC)  
b) Reach at least the target AC level.  
c) After the AC target level is reached, continue to maintain at least the target DC level, VIL(DC) or VIH(DC)  
Undershoot Timing  
Overshoot Timing  
20% tKHKH (MIN)  
VIH  
V
DD  
+0.5  
VDD +0.25  
VDD  
VSS  
VSS-0.25V  
VSS-0.5V  
VIL  
6111 drw 22  
6111 drw 21  
20% tKHKH (MIN)  
AC Test Load  
AC Test Conditions  
Parameter  
Core Power Supply Voltage  
Output Power Supply Voltage  
Input High/Low Level  
Input Reference Level  
Input Rise/Fall Time  
Symbol  
Value  
1.7-1.9  
1.4-1.9  
1.25/0.25  
0.75  
Unit  
V
DD  
V
DDQ  
V
V
0.75V  
V
R EF  
IH IL  
V /V  
V
OUTPUT  
VREF  
TR/TF  
V
=50  
Z0  
0.6/0.6  
ns  
V
Device  
Under  
Test  
RL = 50  
DDQ  
V /2  
Output Timing Reference Level  
Q
= 250  
R
6111tbl 11a  
NOTE:  
ZQ  
DDQ/2  
V
1. Parameters are tested with RQ=250Ω  
6111 drw 04  
1.25V  
0.75V  
0.25V  
6111 drw 06  
61.422  
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
(3,8)  
AC Electrical Characteristics (VDD = 1.8 ± 100mV, VDDQ = 1.4V to 1.9V,TA = 0 TO 70°C)  
333MHz  
300MHz  
250MHz  
200MHz  
167MHz  
Min.  
Max  
Min.  
Max  
Min.  
Max  
Min.  
Max  
Min.  
Max  
Symbol  
Parameter  
Unit  
Notes  
Clock Parameters  
tKHKH  
tKC var  
tKHKL  
tKLKH  
Average clock cycle time (K,K,C,C)  
3.00  
-
3.47  
3.30  
-
5.25  
4.00  
-
6.30  
5.00  
-
7.88  
6.00  
-
8.40  
ns  
ns  
Cycle to Cycle Period Jitter (K,K,C,C)  
Clock High Time (K,K,C,C)  
Clock LOW Time (K,K,C,C)  
Clock to clock (KK,CC)  
Cl oc k to clock (KK,CC)  
Clock to data clock (KC,KC)  
DLL lock time (K, C)  
0.20  
0.20  
0.20  
0.20  
0.20  
1,5  
9
1.20  
1.20  
1.35  
1.35  
0.00  
1024  
30  
-
1.32  
1.32  
1.49  
1.49  
0.00  
1024  
30  
-
1.60  
1.60  
1.80  
1.80  
0.00  
1024  
30  
-
2.00  
2.00  
2.20  
2.20  
0.00  
1024  
30  
-
2.40  
2.40  
2.70  
2.70  
0.00  
1024  
30  
-
ns  
-
-
-
-
-
ns  
9
K
tKH H  
-
-
-
-
-
ns  
10  
10  
K
t HKH  
-
-
-
-
-
ns  
tKHCH  
1.30  
1.45  
1.80  
2.30  
2.80  
ns  
tKC lock  
-
-
-
-
-
-
-
-
-
-
cycles  
ns  
2
tKC reset K static to DLL reset  
Output Parameters  
tCHQV  
C,C HIGH to output valid  
C,C HIGH to output hold  
C,C HIGH to echo clock valid  
C,C HIGH to echo clock hold  
CQ,CQ HIGH to output valid  
CQ,CQ HIGH to output hold  
C HIGH to output High-Z  
C HIGH to output Low-Z  
-
-0.45  
-
0.45  
-
0.45  
-
0.45  
-
-0.45  
-
0.45  
-
0.50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
3
3
3
tCHQX  
-
0.45  
-
-0.45  
-
-
0.45  
-
-0.45  
-
-
0.45  
-
-
0.45  
-
-0.50  
-
-
0.50  
-
tCHCQV  
tCHCQX  
tCQHQV  
tCQHQX  
tCHQZ  
-0.45  
-
-0.45  
-
-0.45  
-
-0.45  
-
-0.50  
-
0.25  
-
0.27  
-
0.30  
-
0.35  
-
0.40  
-
-0.25  
-
-0.27  
-
-0.30  
-
-0.35  
-
-0.40  
-
0.45  
-
0.45  
-
0.45  
-
0.45  
-
0.50  
-
3,4,5  
3,4,5  
tCHQX1  
-0.45  
-0.45  
-0.45  
-0.45  
-0.50  
Set-Up Times  
tAVKH  
tIV KH  
Address valid to K,K rising edge  
0.40  
0.40  
0.30  
-
-
-
0.40  
0.40  
0.30  
-
-
-
0.50  
0.50  
0.35  
-
-
-
0.60  
0.60  
0.40  
-
-
-
0.70  
0.70  
0.50  
-
-
-
ns  
ns  
ns  
6
7
Control inputs valid to K,K rising edge  
Date-in valid to K, K rising edge  
tDVKH  
Hold Times  
tKHAX  
K,K rising edge to address hold  
K,Krising edge to control inputs hold  
K, K rising edge to data-in hold  
0.40  
0.40  
0.30  
-
-
-
0.40  
0.40  
0.30  
-
-
-
0.50  
0.50  
0.35  
-
-
-
0.60  
0.60  
0.40  
-
-
-
0.70  
0.70  
0.50  
-
-
-
ns  
ns  
ns  
6
7
tKHIX  
tKHDX  
6111 tbl 11  
NOTES:  
1. Cycle to cycle period jitter is the variance from clock rising edge to the next expected clock rising edge, as defined per JEDEC Standard No.65 (EIA/JESD65) pg.10  
2. Vdd slew rate must be less than 0.1V DC per 50 ns for DLL lock retention. DLL lock time begins once Vdd and input clock are stable.  
3. If C,C are tied High, K,K become the references for C,C timing parameters.  
4. To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ.  
The specs as shown do not imply bus contention because tCHQX1 is a MIN parameter that is worse case at totally different test conditions  
(0°C, 1.9V) than tCHQZ, which is a MAX parameter (worst case at 70°C, 1.7V)  
It is not possible for two SRAMs on the same board to be at such different voltage and temperature.  
5. This parameter is guaranteed by device characterization, but not production tested.  
6. All address inputs must meet the specified setup and hold times for all latching clock edges.  
7. Control signals are R, W,BW0,BW1 and (NW0,NW1, for x8) and (BW2,BW3 also for x36)  
8. During production testing, the case temperature equals TA.  
9. Clock High Time (tKHKL) and Clock Low Time (tKLKH) should be within 40% to 60% of the cycle time (tKHKH).  
10. Clock to clock time (tKHKH) and Clock to clock time (tKHKH) should be within 45% to 55% of the cycle time (tKHKH).  
6.42  
13  
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
Timing Waveform of Combined Read and Write Cycles  
NOP  
7
Write A1  
Read A2  
4
Write A3  
NOP  
6
NOP  
1
Read A0  
3
2
5
K
tKHKL  
tKH H  
K
tKLKH  
tKHKH  
K
R
tIVKH  
tKHIX  
tIVKH  
tKHIX  
W
A3  
A1  
A2  
SA  
D
A0  
tKHDX  
tDVKH  
tKHDX  
tDVKH  
tAVKH tKHAX  
D10  
D12  
Q02  
D13  
D32 D33  
D11  
Q01  
D30 D31  
Qx2  
Q03  
Q20  
Q21  
Q22  
Q23  
Qx3  
Q00  
Q
tCHQX  
tCHQV  
tCHQZ  
tCQHQV  
tKHCH  
tCQHQX  
tCHQX1  
tCHQX  
tCHQV  
C
tKHKH  
tKH H  
K
tKHCH  
tKLKH  
tKHKL  
.
C
tCHCQV  
tCHCQX  
CQ  
tCHCQV  
tCHCQX  
CQ  
6111 drw09  
61.442  
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG  
This part contains an IEEE standard 1149.1 Compatible Test Access Port (TAP). The package pads are monitored by the Serial Scan circuitry  
when in test mode. This is to support connectivity testing during manufacturing and system diagnostics. In conformance with IEEE 1149.1, the  
SRAM contains a TAP controller, Instruction register, Bypass Register and ID register. The TAP controller has a standard 16-state machine that  
resets internally upon power-up; therefore, the TRST signal is not required. It is possible to use this device without utilizing the TAP. To disable  
the TAP controller without interfacing with normal operation of the SRAM, TCK must be tied to VSS to preclude a mid level input. TMS and TDI  
are designed so an undriven input will produce a response identical to the application of a logic 1, and may be left unconnected, but they may  
also be tied to VDD through a register. TDO should be left unconnected.  
JTAG Block Diagram  
JTAG Instruction Coding  
IR2 IR1 IR0  
Instruction  
EXTEST  
TDO Output  
Notes  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Boundary Scan Register  
Identification register  
Boundary Scan Register  
Do Not Use  
IDCODE  
2
1
5
4
5
5
A,D  
S
SAMPLE-Z  
RESERVED  
K,  
K
C,C  
SRAM  
CO RE  
Q
SAMPLE/PRELOAD Boundary Scan register  
CQ  
CQ  
RESERVED  
RESERVED  
BYPASS  
Do Not Use  
Do Not Use  
TDI  
BYPASS R eg.  
Identification R eg.  
Instruction Reg.  
TDO  
Bypass Register  
3
6111tbl 13  
NOTES:  
1. Places Qs in Hi-Z in order to sample all input data regardless of  
other SRAM inputs.  
2. TDI is sampled as an input to the first ID register to allow for the  
serial shift of the external TDI data.  
Control Signal  
s
TMS  
TCK  
TAP Controller  
6111 drw 18  
3. Bypass register is initialized to Vss when BYPASS instruction is  
invoked. The Bypass Register also holds serially loaded TDI when  
existing the Shift DR states.  
4. SAMPLE instruction does not place output pins in Hi-Z.  
5. This instruction is reserved for future use.  
TAP Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
0
Select IR  
0
0
1
1
1
Capture DR  
0
Capture IR  
0
Shift DR  
1
Shift IR  
1
0
0
1
Exit 1 DR  
0
Exit 1 IR  
0
Pause DR  
1
Pause IR  
1
0
0
0
0
Exit 2 DR  
1
Exit 2 IR  
1
0
1
Update DR  
0
Update IR  
1
6111 drw 17  
6.42  
15  
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
Scan Register Definition  
Part  
Instrustion Register  
Bypass Register  
ID Register  
32 bits  
Boundry Scan  
107 bits  
512Kx36  
1Mx18  
3 bits  
3 bits  
3 bits  
1 bit  
1 bit  
1 bit  
32 bits  
107 bits  
2Mx8/x9  
32 bits  
107 bits  
6111 tbl 14  
Identification Register Definitions  
INSTRUCTION FIELD  
Revision Number (31:29)  
Device ID (28:12)  
ALL DEVICES  
DESCRIPTION  
PART NUMBER  
000  
Revision Number  
0 0000 0010 0100 0000 512Kx36  
0 0000 0010 0100 0001 1Mx18  
0 0000 0010 0100 0010 2Mx9  
0 0000 0010 0100 0011 2Mx8  
QDRII BURSTOF 4  
71P74604S  
71P74804S  
71P74104S  
71P74204S  
IDT JEDEC ID CODE (11:1)  
000 0011 0011  
1
Allows unique identification of SRAM  
vendor.  
ID Register Presence  
Indicator (0)  
Indicates the presence of an ID register.  
6111 tbl 15  
61.462  
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
Boundary Scan Exit Order (2M x 8-Bit, 2M x 9-Bit)  
ORDER  
73  
PIN ID  
3E  
2C  
1D  
2E  
1E  
2F  
ORDER  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
PIN ID  
10D  
9E  
ORDER  
PIN ID  
1
6R  
74  
2
6P  
75  
10C  
11D  
9C  
3
6N  
76  
4
7P  
77  
5
7N  
78  
6
7R  
9D  
79  
3F  
7
8R  
11B  
11C  
9B  
80  
2G  
3G  
1F  
8
8P  
81  
9
9R  
82  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
11P  
10P  
10N  
9P  
10B  
11A  
Internal  
9A  
83  
1G  
1J  
84  
85  
2J  
86  
3K  
3J  
10M  
11N  
9M  
9N  
8B  
87  
7C  
88  
3L  
2L  
1K  
2K  
1M  
1L  
3N  
3M  
2N  
3P  
6C  
89  
8A  
90  
11L  
11M  
9L  
7A  
91  
7B  
92  
6B  
93  
10L  
11K  
10K  
9J  
6A  
94  
5B  
95  
5A  
96  
4A  
97  
9K  
5C  
98  
2M  
1N  
2P  
10J  
11J  
11H  
10G  
9G  
4B  
99  
3A  
100  
101  
102  
103  
104  
105  
106  
107  
2A  
1P  
1A  
3R  
4R  
4P  
2B  
11F  
11G  
9F  
3B  
1C  
5P  
1B  
5N  
5R  
10F  
11E  
10E  
3D  
3C  
6111 tbl 18a  
2D  
6111 tbl 16a  
6111 tbl 17a  
6.42  
17  
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
Boundary Scan Exit Order (1M x 18-Bit, 512K x 36-Bit)  
ORDER  
PIN ID  
ORDER  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
PIN ID  
10D  
9E  
ORDER  
73  
PIN ID  
2C  
3E  
2D  
2E  
1E  
2F  
1
6R  
2
6P  
74  
3
6N  
10C  
11D  
9C  
75  
4
7P  
76  
5
7N  
77  
6
7R  
9D  
78  
7
8R  
11B  
11C  
9B  
79  
3F  
8
8P  
80  
1G  
1F  
9
9R  
81  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
11P  
10P  
10N  
9P  
10B  
11A  
Internal  
9A  
82  
3G  
2G  
1J  
83  
84  
85  
2J  
10M  
11N  
9M  
9N  
8B  
86  
3K  
3J  
7C  
87  
6C  
88  
2K  
1K  
2L  
3L  
1M  
1L  
3N  
3M  
1N  
2M  
3P  
89  
8A  
11L  
11M  
9L  
90  
7A  
91  
7B  
92  
6B  
10L  
11K  
10K  
9J  
93  
6A  
94  
5B  
95  
5A  
96  
4A  
97  
9K  
5C  
98  
10J  
11J  
4B  
99  
2N  
2P  
3A  
100  
101  
102  
103  
104  
105  
106  
107  
11H  
10G  
9G  
1H  
1P  
1A  
3R  
4R  
4P  
2B  
11F  
11G  
9F  
3B  
1C  
5P  
1B  
5N  
5R  
10F  
11E  
10E  
3D  
3C  
6111 tbl 18  
1D  
6111 tbl 16  
6111 tbl 17  
61.482  
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
JTAG DC Operating Conditions  
Parame te r  
Symbol  
DDQ  
DD  
IH  
Min  
1.4  
Ty p  
Max  
1.9  
Unit  
V
Note  
Output Powe r S upply  
V
-
Powe r Supply Voltage  
Inp ut High Le v e l  
V
1.7  
1.8  
1.9  
V
V
1.3  
-
-
-
-
V
DD+0.3  
V
Inp ut Lo w Le v e l  
V
IL  
-0.3  
0.5  
V
1
Output High Voltage (IOH = -1mA)  
Output Low Voltage (IOL = 1mA)  
NOTE:  
V
OH  
OL  
V
DDQ - 0.2  
V
DDQ  
V
1
V
V
SS  
0.2  
V
6111 tbl 1 9  
1. The output impedance of TDO is set to 50 ohms (nominal process) and does not vary with the external resistor connected to ZQ.  
JTAG AC Test Conditions  
Parameter  
Symbol  
VIH/VIL  
TR/TF  
Min  
Unit  
V
Note  
1
Input High/Low Level  
1.3/0.5  
1.0/1.0  
VDDQ/2  
Input Rise/Fall Time  
ns  
Input and Output Timing Reference Level  
V
6111 tbl 20  
NOTE:  
1. See AC test load on page 12.  
JTAG AC Characteristics  
Parameter  
Symbol  
Min  
50  
20  
20  
5
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note  
CHCH  
t
TCK Cycle Time  
-
-
CHCL  
t
TCK High Pulse Width  
TCK Low Pulse Width  
TMS Input Setup Time  
TMS Input Hold Time  
TDI Input Setup Time  
TDI Input Hold Time  
CLCH  
t
-
MVCH  
t
-
CHMX  
t
5
-
DVCH  
t
5
-
CHDX  
t
5
-
SVCH  
t
SRAM Input Setup Time  
SRAM Input Hold Time  
Clock Low to Output Valid  
5
-
CHSX  
t
5
-
CLQV  
t
0
10  
6111 tbl.21  
JTAG Timing Diagram  
TCK  
CHCH  
t
t
CHCL  
t
CLCH  
MVCH  
DVCH  
t
t
CHMX  
t
TMS  
t
CHDX  
TDI/  
SRAM  
Inputs  
t
SVCH  
t
CHSX  
SRAM  
Outputs  
CLQV  
t
TDO  
61 11 drw 19  
6.42  
19  
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
Package Diagram Outline for 165-Ball Fine Pitch Grid Array  
62.402  
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18-Bit) 71P74604 (512K x 36-Bit)  
18 Mb QDR II SRAM Burst of 4  
Advance Information  
Commercial Temperature Range  
Ordering Information  
IDT  
71P74XXX  
S
XXX  
BQ  
X
Device  
Type  
Power  
Speed  
Package  
Process  
Temperature  
Range  
Blank  
BQ  
Commercial (0 C to +70 C)  
165 Fine Pitch Ball Grid Array (fBGA)  
Clock Frequency in MegaHertz  
333  
300  
250  
200  
167  
IDT71P74204 2M x 8 QDR II SRAM Burst of 4  
IDT71P74104 2M x 9 QDR II SRAM Burst of 4  
IDT71P74804 1M x 18 QDR II SRAM Burst of 4  
IDT71P74604 512K x 36 QDR II SRAM Burst of 4  
6111 drw 15  
CORPORATE HEADQUARTERS  
2975 Stender Way  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
for Tech Support:  
sramhelp@idt.com  
800-544-7726  
www.idt.com  
“QDR SRAMs and Quad Data Rate RAMs comprise a new family of products developed by Cypress Semiconductor, IDT, and Micron Technology, Inc. “  
6.42  
21  
IDT71P74204 (2M x 8-Bit), 71P74104 (2M x 9-Bit), 71P74804 (1M x 18 x -Bit) 71P74604 (512K x 36-Bit)  
Advance Information  
18 Mb QDR II SRAM Burst of 4  
Commercial Temperature Range  
Revision History  
REVISION DATE  
PAGES  
DESCRIPTION  
O
03/30/04 1-21  
Initial Advance Information Data Sheet Release  

相关型号:

71P79104S167BQ

Standard SRAM, 2MX9, 0.5ns, CMOS, PBGA165
IDT

71P79104S167BQI

Standard SRAM, 2MX9, 0.5ns, CMOS, PBGA165
IDT

71P79104S200BQ

Standard SRAM, 2MX9, 0.45ns, CMOS, PBGA165
IDT

71P79104S200BQI

Standard SRAM, 2MX9, 0.45ns, CMOS, PBGA165
IDT

71P79104S250BQ

Standard SRAM, 2MX9, 0.45ns, CMOS, PBGA165
IDT

71P79104S250BQI

Standard SRAM, 2MX9, 0.45ns, CMOS, PBGA165
IDT

71P79604S167BQI8

CABGA-165, Reel
IDT

71P79604S200BQ

CABGA-165, Tray
IDT

71P79604S200BQ8

CABGA-165, Reel
IDT

71P79604S200BQI

CABGA-165, Tray
IDT

71P79604S200BQI8

CABGA-165, Reel
IDT

71P79604S250BQ8

CABGA-165, Reel
IDT