72P51339L6BBGI [IDT]

FIFO, 16KX36, 3.7ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, GREEN, PLASTIC, BGA-256;
72P51339L6BBGI
型号: 72P51339L6BBGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FIFO, 16KX36, 3.7ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, GREEN, PLASTIC, BGA-256

时钟 先进先出芯片 内存集成电路
文件: 总87页 (文件大小:815K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1.8VMULTI-QUEUEFLOW-CONTROLDEVICES  
(8QUEUES)36BITWIDECONFIGURATION  
589,824bits  
1,179,648bits  
2,359,296bits  
IDT72P51339  
IDT72P51349  
IDT72P51359  
IDT72P51369  
4,718,592bits  
– x36 in to x36 out  
– x36in to x18out  
– x36in to x9out  
User selectable I/O: 1.5V HSTL, 1.8V eHSTL, or 2.5V LVTTL  
100% Bus Utilization, Read and Write on every clock cycle  
Selectable First Word Fall Through (FWFT) or IDT standard  
mode of operation  
Ability to operate on packet or word boundaries  
Mark and Re-Write operation  
– x18 in to x36 out  
– x18 in to x18 out  
– x18 in to x9 out  
– x9 in to x36 out  
– x9 in to x18 out  
– x9 in to x9 out  
FEATURES  
Choose from among the following memory density options:  
IDT72P51339  
IDT72P51349  
IDT72P51359  
IDT72P51369  
Total Available Memory = 589,824 bits  
Total Available Memory = 1,179,648 bits  
Total Available Memory = 2,359,296 bits  
Total Available Memory = 4,718,592 bits  
Configurable from 1 to 8 Queues  
Default configuration of 8 or 4 symmetrical queues  
Default multi-queue device configurations  
IDT72P51339: 2,048 x 36 x 8Q  
Mark and Re-Read operation  
Individual, Active queue flags (OR / EF, IR / FF, PAE, PAF, PR)  
8 bit parallel flag status on both read and write ports  
Direct or polled operation of flag status bus  
Expansion of up to 64 queues and/or 32Mb logical configura-  
tion using up to 8 multi-queue devices in parallel  
JTAG Functionality (Boundary Scan)  
Available in a 256-pin PBGA, 1mm pitch, 17mm x 17mm  
HIGH Performance submicron CMOS technology  
Industrial temperature range (-40°C to +85°C) is available  
Green parts available, see Ordering Information  
IDT72P51349: 4,096 x 36 x 8Q  
IDT72P51359: 8,192 x 36 x 8Q  
IDT72P51369: 16,384 x 36 x 8Q  
Default configuration can be augmented via the queue address  
bus  
Number of queues and individual queue sizes may be  
configured at master reset though serial programming  
200 MHz High speed operation (5ns cycle time)  
3.6ns access time  
Independent Read and Write access per queue  
User Selectable Bus Matching Options:  
FUNCTIONALBLOCKDIAGRAM  
MULTI-QUEUE FLOW-CONTROL DEVICE  
RADEN  
ESTR  
Q7  
WADEN  
FSTR  
RDADD  
WRADD  
8
8
REN  
RCLK  
RCS  
WEN  
Q6  
Q5  
WCLK  
WCS  
OE  
Q
out  
x36, x18 or x9  
DATA OUT  
D
in  
x36, 18 or x9  
DATA IN  
EF/OR  
FF/IR  
PAF  
PR  
PAE  
Q0  
PAFn  
PAEn  
PRn  
8
8
6716 drw01  
CIDTOandMtheMIDTElogRoaCretrIaAdemLarksAofInNtegDratedIDNevicDeTUechSnolTogyR,InIcAL TEMPERATURE RANGES  
AUGUST 2005  
1
2005 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
DSC-6716/3  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Table of Contents  
Features ........................................................................................................................................................................................................................ 1  
Description ................................................................................................................................................................................................................... 5  
Pin configuration ......................................................................................................................................................................................................... 7  
Detailed Description .................................................................................................................................................................................................... 8  
Pin Descriptions ......................................................................................................................................................................................................... 10  
Pin number table ........................................................................................................................................................................................................ 16  
Recommended DC operating conditions ................................................................................................................................................................ 17  
Absolute maximum ratings ........................................................................................................................................................................................ 17  
DC electrical characteristics ..................................................................................................................................................................................... 18  
AC electrical characteristics ...................................................................................................................................................................................... 20  
Functional description .............................................................................................................................................................................................. 22  
Serial Programming.............................................................................................................................................................................................. 23  
Default Programming ............................................................................................................................................................................................ 23  
Parallel Programming ........................................................................................................................................................................................... 23  
Queue Description ..................................................................................................................................................................................................... 25  
Configuration of the IDT Multi-queue flow-control device ....................................................................................................................................... 25  
Standard mode operation ..................................................................................................................................................................................... 26  
Read Queue Selection and Read Operation ......................................................................................................................................................... 27  
Switching Queues on the Write Port ...................................................................................................................................................................... 29  
Switching Queues on the Read Port ..................................................................................................................................................................... 31  
Flag Description......................................................................................................................................................................................................... 42  
PAFn Flag Bus Operation ..................................................................................................................................................................................... 42  
Full Flag Operation............................................................................................................................................................................................... 42  
Empty or Output Ready Flag Operation (EF/OR) .................................................................................................................................................. 42  
Almost Full Flag .................................................................................................................................................................................................... 43  
Almost Empty Flag ................................................................................................................................................................................................ 43  
Packet Ready Flag............................................................................................................................................................................................... 47  
Packet Mode Demarcation bits .............................................................................................................................................................................. 49  
JTAG Interface ............................................................................................................................................................................................................ 82  
JTAGAC electrical characteristics ............................................................................................................................................................................ 86  
Ordering Information ................................................................................................................................................................................................. 87  
List of Tables  
Table 1 — Device programming mode comparison ........................................................................................................................................................ 22  
Table 2 — Setting the queue programming mode during master reset ............................................................................................................................. 22  
Table 3 — Mode Configuration ...................................................................................................................................................................................... 25  
Table 4 — WriteAddress Bus, WRADD[7:0]................................................................................................................................................................... 26  
Table 5 — ReadAddress Bus, RDADD[7:0] .................................................................................................................................................................. 27  
Table 6 — Write Queue Switch Operation ...................................................................................................................................................................... 30  
Table 7 — Read Queue Switch Operation ..................................................................................................................................................................... 32  
Table 8 — Same Queue Switch ..................................................................................................................................................................................... 32  
Table 9 — Flag operation boundaries and Timing .......................................................................................................................................................... 45  
Table 10 — Packet Mode Valid Byte for x36 bit word configuration ................................................................................................................................. 48  
Table 11 — Bus-Matching Set-Up .................................................................................................................................................................................. 52  
AUGUST4,2005  
2
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
List of Figures  
Figure 1. Multi-Queue Flow-Control Device Block Diagram .............................................................................................................................................. 6  
Figure 2a. AC Test Load................................................................................................................................................................................................ 19  
Figure 2b. Lumped Capacitive Load, Typical Derating ................................................................................................................................................... 19  
Figure 3. Reference Signals .......................................................................................................................................................................................... 22  
Figure 4. Device Programming Hierarchy ..................................................................................................................................................................... 24  
Figure 5. IDT Standard mode illustrated (Read Port) ..................................................................................................................................................... 25  
Figure 6. First Word Fall Through (FWFT) mode illustrated (Read Port) ........................................................................................................................ 25  
Figure 7. Write Port Switching Queues Signal Sequence ................................................................................................................................................ 29  
Figure 8. Switching Queues Bus Efficiency ..................................................................................................................................................................... 29  
Figure 9. Simultaneous Queue Switching ....................................................................................................................................................................... 30  
Figure 10. Read Port Switching Queues Signal Sequence ............................................................................................................................................. 31  
Figure 11. Switching Queues Bus Efficiency ................................................................................................................................................................... 31  
Figure 12. Simultaneous Queue Switching ..................................................................................................................................................................... 32  
Figure 13. MARK and Re-Write Sequence .................................................................................................................................................................... 33  
Figure 14. MARK and Re-Read Sequence ................................................................................................................................................................... 33  
Figure 15. MARKing a Queue in Packet Mode - Write Queue MARK ............................................................................................................................. 34  
Figure 16. MARKing a Queue in Packet Mode - Read Queue MARK ............................................................................................................................ 34  
Figure 17. UN-MARKing a Queue in Packet Mode - Write Queue UN-MARK ................................................................................................................ 35  
Figure 18. UN-MARKing a Queue in Packet Mode - Read Queue UN-MARK ............................................................................................................... 35  
Figure 19. MARKing a Queue in FIFO Mode - Write Queue MARK ............................................................................................................................... 37  
Figure 20. MARKing a Queue in FIFO Mode - Read Queue MARK .............................................................................................................................. 37  
Figure 21. UN-MARKing a Queue in FIFO Mode - Write Queue UN-MARK .................................................................................................................. 38  
Figure 22. UN-MARKing a Queue in FIFO Mode - Read Queue UN-MARK ................................................................................................................. 38  
Figure 23. Leaving a MARK active on the Write Port ...................................................................................................................................................... 39  
Figure 24. Leaving a MARK active on the Read Port ..................................................................................................................................................... 39  
Figure 25. Inactivating a MARK on the Write PortActive ................................................................................................................................................. 40  
Figure 26. Inactivating a MARK on the Read PortActive ................................................................................................................................................ 40  
Figure 27. 36bit to 36bit word configuration .................................................................................................................................................................... 49  
Figure 28. 36bit to 18bit word configuration .................................................................................................................................................................... 49  
Figure 29. 36bit to 9bit word configuration ...................................................................................................................................................................... 49  
Figure 30. 18bit to 36bit word configuration .................................................................................................................................................................... 50  
Figure 31. 18bit to 18bit word configuration .................................................................................................................................................................... 50  
Figure 32. 18bit to 9bit word configuration ...................................................................................................................................................................... 50  
Figure 33. 9bit to 36bit word configuration ...................................................................................................................................................................... 51  
Figure 34. 9bit to 18bit word configuration ...................................................................................................................................................................... 51  
Figure 35. 9bit to 9bit word configuration ........................................................................................................................................................................ 51  
Figure 36. Bus-Matching ByteArrangement ................................................................................................................................................................... 53  
Figure 37. Master Reset ................................................................................................................................................................................................ 54  
Figure 38. Default Programming .................................................................................................................................................................................... 55  
Figure 39. Parallel Programming ................................................................................................................................................................................... 56  
Figure 40. Queue Programming via WriteAddress Bus .................................................................................................................................................. 57  
Figure 41. Queue Programming via ReadAddress Bus ................................................................................................................................................. 57  
Figure 42. Serial Port Connection for Serial Programming .............................................................................................................................................. 57  
Figure 43. Serial Programming ...................................................................................................................................................................................... 58  
Figure 44. Write Queue Select, Write Operation and Full Flag Operation ........................................................................................................................ 59  
Figure 45. Write Queue Select and Mark ....................................................................................................................................................................... 60  
Figure 46. Write Operations in First Word Fall Through mode ....................................................................................................................................... 61  
Figure 47. Full Flag Timing in Expansion Configuration.................................................................................................................................................. 62  
Figure 48. Read Queue Select, Read Operation (IDT mode) ......................................................................................................................................... 63  
Figure 49. Read Queue Select, Read Operation (FWFT mode) ..................................................................................................................................... 64  
Figure 50. Read Queue Select and Mark (IDT mode).................................................................................................................................................... 65  
Figure 51. Output Ready Flag Timing (In FWFT Mode) ................................................................................................................................................. 66  
Figure 52. Read Queue Selection with Read Operations (IDT mode)............................................................................................................................. 67  
Figure 53. Read Queue Select, Read Operation and OE Timing .................................................................................................................................... 68  
Figure 54. Writing in Packet Mode during a Queue change ............................................................................................................................................ 69  
AUGUST4,2005  
3
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
List of Figures (Continued)  
Figure 55. Reading in Packet Mode during a Queue change ......................................................................................................................................... 70  
Figure 56. Writing Demarcation Bits (Packet Mode) ........................................................................................................................................................ 71  
Figure 57. Data Output (Receive) Packet Mode of Operation ......................................................................................................................................... 72  
Figure 58.Almost Full FlagTiming and Queue Switch .................................................................................................................................................... 73  
Figure 59.Almost Full Flag Timing ................................................................................................................................................................................. 73  
Figure 60.Almost Empty FlagTiming and Queue Switch (FWFTmode) ......................................................................................................................... 74  
Figure 61.Almost Empty FlagTiming ............................................................................................................................................................................. 74  
Figure 62. PAEn/PRn - Direct Mode - Status Word Selection ......................................................................................................................................... 75  
Figure 63. PAFn - Direct Mode - Status Word Selection ................................................................................................................................................. 75  
Figure 64. PAEn - Direct Mode, Flag Operation............................................................................................................................................................. 76  
Figure 65. PAFn - Direct Mode, Flag Operation............................................................................................................................................................. 77  
Figure 66. PAFn Bus - Polled Mode .............................................................................................................................................................................. 78  
Figure 67. Expansion using ID codes ............................................................................................................................................................................ 79  
Figure 68. Expansion using WCS/RCS ......................................................................................................................................................................... 80  
Figure 69. Expansion Connection Read Chip Select (RCS) ........................................................................................................................................... 81  
Figure 70. Expansion Connection Write Chip Select (WCS) ........................................................................................................................................... 81  
Figure 71. Boundary ScanArchitecture ......................................................................................................................................................................... 82  
Figure 72. TAPController State Diagram ....................................................................................................................................................................... 83  
Figure 73. Standard JTAGTiming.................................................................................................................................................................................. 86  
AUGUST4,2005  
4
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
withinaqueueisavailableforreading.ThePacketReadyindicatorisgenerated  
upondetectionofthestartandendofpacketdemarcationbits.Themulti-queue  
devicethenprovidestheuserwithaninternallygeneratedpacketreadystatus  
per queue.  
DESCRIPTION  
TheIDT72P51339/72P51349/72P51359/72P51369multi-queueflow-con-  
troldevicesaresinglechipswithupto32discreteconfigurableFIFOqueues.  
Allqueues withinthe device have a commondata inputbus, (write port)and  
acommondataoutputbus,(readport).Datawrittenintothewriteportisdirected  
toaspecificqueueviaaninternalde-multiplexoperation,addressedbythewrite  
addressbus(WRADD).Datareadfromthereadportisaccessedfromaspecific  
queueviaaninternalmultiplexoperation,addressedbythereadaddressbus  
(RDADD). Data writes and reads can be performed at high speeds up to  
200MHz,withaccesstimesof3.6ns.Datawriteandreadoperationsaretotally  
independent of each other, a queue maybe selected on the write port and a  
different queue on the read port or both ports may select the same queue  
simultaneously.  
Theuserhasfullflexibilityconfiguringqueueswithinthedevice,beingable  
toprogramthetotalnumberofqueuesbetween1and32,theindividualqueue  
depthsbeingindependentofeachother.Theprogrammableflagpositionsare  
alsouserprogrammable.Allprogrammingisdoneviaadedicatedserialport.  
Iftheuserdoesnotwishtoprogramthemulti-queuedevice,adefaultoptionis  
availablethatconfiguresthedeviceinapredeterminedmanner.  
AMasterResetmustbeprovidedtothedevice.AMasterResetlatchesin  
configuration/setuppinsandmustbeperformedbeforefurtherprogrammingof  
thedevicecantakeplace.Ontherisingedgeofmasterresetthedeviceoperating  
modeisset,thedeviceprogrammingmode(serial,parallelordefault)issetand  
theexpansionconfigurationdevicetype(masterorslave)is set.  
Themulti-queueflow-controldevicehasthecapabilityofoperatingitsI/Oin  
either2.5VLVTTL,1.5VHSTLor1.8VeHSTLmode.ThetypeofI/Oisselected  
viatheIOSELinput.Thecoresupplyvoltage(VDD)tothemulti-queueis1.8V,  
however the output levels can be set independently via a separate supply,  
VDDQ.  
ThedeviceprovidesFullflagandEmptyflagstatusforthequeueselected  
forwriteandreadoperationsrespectively.AlsoaProgrammableAlmostFull  
andProgrammableAlmostEmptyflagforeachqueueis provided. Two8bit  
programmable flag busses are available, providing status of queues not  
selectedforwrite orreadoperations. When8orless queues are configured  
inthedevicetheseflagbussesprovideanindividualflagperqueue,whenmore  
than8queuesareused,eitheraPolledorDirectmodebusoperationprovides  
theflagbusseswithallqueuesstatus.  
BusMatchingisavailableonthisdevice,eitherportcanbe9bits,18bitsor  
36bitswide.WhenBusMatchingisusedthedeviceensuresthelogicaltransfer  
ofdatathroughputinaLittleEndianmanner.  
Apacketmodeofoperationisalsoprovided.Packetmodeprovidesapacket  
readyflagoutput(PR)indicatingwhenatleastone(ormore)packetsofdata  
AJTAGtestportisprovided,herethemulti-queueflow-controldevicehas  
afullyfunctionalBoundaryScanfeature,compliantwithIEEE1149.1Standard  
TestAccessPortandBoundaryScanArchitecture.  
See Figure 1, Multi-Queue Flow-Control Device Block Diagram for an  
outlineofthefunctionalblockswithinthedevice.  
AUGUST4,2005  
5
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
D
D
, D , D = TEOP  
D
35 17  
8
in  
x9, x18, x36  
- D  
, D , D = TSOP  
2
34 16  
8
D
0
35  
WCLK  
WEN WCS  
TMS  
TDI  
INPUT  
DEMUX  
JTAG  
Logic  
TDO  
TCK  
8
WRADD  
WADEN  
Write Control  
Logic  
TRST  
Write Pointers  
PR  
Packet  
Mode Logic  
8
PAF  
PRn/PAEn  
FSTR  
PAFn  
8
General Flag  
Monitor  
FSYNC  
Upto 8  
FIFO  
Queues  
FXO  
FXI  
EF/OR  
Active Q  
Flags  
PAE  
4.7 Mbit  
Dual Port  
Memory  
Active Q  
Flags  
FF/IR  
PAF  
PAE  
SI  
SO  
SCLK  
General Flag  
Monitor  
Serial  
Multi-Queue  
Programming  
ESTR  
ESYNC  
EXI  
SENI  
SENO  
EXO  
Read Pointers  
FM  
8
4
Reset  
Logic  
BM[3:0]  
RDADD  
RADEN  
RCS  
Read Control  
Logic  
MAST  
PKT  
REN  
RCLK  
ID0  
ID1  
ID2  
DF  
Device ID  
3 Bit  
OUTPUT  
MUX  
PAE/ PAF  
2
Offset  
D
, D , D = REOP  
35 17  
DFM  
8
D
, D , D = RSOP  
34 16  
8
OUTPUT  
REGISTER  
MRS  
6714 drw02  
IOSEL  
Vref  
IO Level Control  
OE  
Q
- Q  
0
35  
Q
x9, x18, x36  
out  
Figure 1. Multi-Queue Flow-Control Device Block Diagram  
AUGUST4,2005  
6
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINCONFIGURATION  
A1 BALL PAD CORNER  
A
D14  
D15  
D17  
D20  
D23  
D26  
D29  
D32  
BM3  
QSEL1  
SI  
D13  
D16  
D12  
D11  
D19  
D22  
D25  
D28  
D31  
D34  
D35  
VREF  
D10  
D9  
Q9  
Q8  
Q7  
Q15  
Q19  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TCK  
TMS  
TDO  
TDI  
ID2  
ID1  
ID0  
Q3  
Q2  
Q1  
Q6  
Q5  
Q4  
Q12  
Q11  
Q10  
Q16  
Q24  
Q14  
Q13  
Q17  
Q21  
Q23  
B
C
D
E
F
D18  
D8  
TRST  
IOSEL  
Q0  
Q18  
Q20  
Q22  
D21  
VDDQ  
VDDQ  
VDDQ  
VCC  
VCC  
VCC  
VDDQ  
VDDQ  
VDDQ  
VCC  
V
CC  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VDDQ  
VDDQ  
GND  
GND  
D24  
VDDQ  
VCC  
VDDQ  
VCC  
GND  
VCC  
VDDQ  
D27  
VDDQ  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Q27  
Q30  
Q25  
Q28  
Q26  
Q29  
G
H
J
D30  
VCC  
VCC  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
D33  
VCC  
GND  
GND  
VCC  
Q33  
PKT  
GND  
Q32  
Q31  
Q34  
FM  
GND  
GND  
QSEL0  
GND  
VCC  
VCC  
Q35  
K
L
VCC  
VCC  
VCC  
MAST  
VCC  
GND  
GND  
VDDQ  
VCC  
DFM  
DF  
SO  
VCC  
VDDQ  
BM2  
BM1  
BM0  
M
N
P
R
T
SENO  
SENI  
OE  
VDDQ  
RDADD0 RDADD1  
VDDQ  
VDDQ  
VCC  
VCC  
VCC  
VCC  
VDDQ  
VDDQ  
WRADD1 WRADD0 SCLK  
RDADD2 RDADD3 RDADD4  
RDADD5 RDADD6 RDADD7  
VDDQ  
VDDQ  
VDDQ  
VCC  
VCC  
VCC  
VCC  
V
DDQ  
V
DDQ  
PAE3  
PAE2  
PAE1  
WRADD4 WRADD3 WRADD2 WADEN  
PAF3  
PAF2  
PAF1  
PAF6  
PAF5  
WEN  
PAF7  
IR/FF  
PAF  
OR/EF  
PR  
PAE  
RCS  
PAE6  
PAE5  
PAE4  
PAE7  
FWFT  
REN  
WRADD6 WRADD5 FSYNC  
ESTR ESYNC  
RADEN  
FSTR  
PAF4  
EXO  
EXI  
WRADD7 FXI  
FXO  
WCS  
MRS  
RCLK  
PAE0  
PAF0  
WCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
6716 drw03  
PBGA (BB256-1, order code: BB)  
TOP VIEW  
AUGUST4,2005  
7
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Asmentioned,thewriteporthasafullflag,providingfullstatusoftheselected  
queue.Alongwiththefullflagadedicatedalmostfullflagisprovided,thisalmost  
fullflagissimilartothealmostfullflagofaconventionalIDTFIFO.Thedevice  
provides a user programmable almost full flag for all 8 queues and when a  
respectivequeueisselectedonthewriteport,thealmostfullflagprovidesstatus  
forthatqueue.Conversely,thereadporthasanEmptyflag,providingstatus  
ofthedatabeingreadfromthequeueselectedonthereadport.Aswellasthe  
Emptyflagthedeviceprovidesadedicatedalmostemptyflag.Thisalmostempty  
flagissimilartothealmostemptyflagofaconventionalIDTFIFO.Thedevice  
providesauserprogrammablealmostemptyflagforeach8queuesandwhen  
arespectivequeueisselectedonthereadport,thealmostemptyflagprovides  
statusforthatqueue.  
DETAILEDDESCRIPTION  
MULTI-QUEUE STRUCTURE  
The IDT multi-queue flow-control device has a single data input port and  
singledataoutputportwithupto32FIFOqueuesinparallelbufferingbetween  
thetwoports.Theusercansetupbetween1and8queueswithinthedevice.  
Thesequeuescanbeconfiguredtoutilizethetotalavailablememory,providing  
theuserwithfullflexibilityandabilitytoconfigurethequeuestobevariousdepths,  
independentofoneanother.  
MEMORYORGANIZATION/ALLOCATION  
Thememoryisorganizedintowhatisknownasblocks,eachblockbeing  
256x36bits.Whentheuserisconfiguringthenumberofqueuesandindividual  
queuesizestheusermustallocatethememorytorespectivequeues,inunits  
ofblocks,thatis,asinglequeuecanbemadeupfrom0tomblocks,wherem  
isthetotalnumberofblocksavailablewithinadevice.Alsothetotalsizeofany  
given queue must be in increments of 256 x36. For the IDT72P51339,  
IDT72P51349,IDT72P71759andIDT72P51369theTotalAvailableMemory  
is128,256,and512blocksrespectively(ablockbeing256x36).Queuescan  
bebuiltfromtheseblockstomakeanysizequeuedesiredandanynumberof  
queuesdesired.  
PROGRAMMABLE FLAG BUSSES  
Inadditiontothesededicatedflags,full&almostfullonthewriteportandOutput  
Ready&almostemptyonthereadport,therearetwoflagstatus busses.An  
almostfullflagstatusbusisprovided,thisbusis8bitswide.Also,analmostempty  
flagstatusbusisprovided,againthisbusis8bitswide.Thepurposeofthese  
flagbussesistoprovidetheuserwithameansbywhichtomonitorthedatalevels  
withinqueuesthatmaynotbeselectedonthewriteorreadport.Asmentioned,  
thedeviceprovidesalmostfullandalmostemptyregisters(programmableby  
the user) for each of the 8 queues in the device.  
BUS WIDTHS  
In the IDT72P51339/72P51349/72P51359/72P51369 multi-queue flow-  
controldevicestheuserhastheoptionofutilizinganywherebetween1and8  
queues,thereforethe8bitflagstatus busses aremultiplexedbetweenthe8  
queues,aflagbuscanonlyprovidestatusfor2ofthe8queuesatanymoment,  
thisisreferredtoasaStatusWord,suchthatwhenthebusisprovidingstatus  
ofqueues1through8,thisisstatusword1,whenitisqueues9through16,this  
isstatusword2andsoonuptostatusword16.Iflessthan8queuesaresetup  
inthedevice,therearestill4statuswords,suchthatinPolled”modeofoperation  
theflagbuswillstillcyclethrough4statuswords.Ifforexampleonly22queues  
aresetup,statuswords1and2willreflectstatusofqueues1through8and9  
through16respectively.Statusword3willreflectthestatusofqueues17through  
22ontheleastsignificant6bits,themostsignificant2bitsoftheflagbusaredont  
care.Theremainingstatuswordsarenotusedastherearenoqueuestoreport.  
The flag busses are available in two user selectable modes of operation,  
Polled”orDirect.Whenoperatinginpolledmodeaflagbusprovidesstatus  
ofeachstatuswordsequentially,thatis,oneachrisingedgeofaclocktheflag  
busisupdatedtoshowthestatusofeachstatuswordinorder.Therisingedge  
ofthewriteclockwillupdatethealmostfullbus andarisingedgeontheread  
clockwillupdatethealmostemptybus.Themodeofoperationisalwaysthesame  
forboththealmostfullandalmostemptyflagbusses.Whenoperatingindirect  
mode,thestatuswordontheflagbusisselectedbytheuser.Sotheusercan  
actuallyaddressthestatuswordtobeplacedontheflagstatusbusses,these  
flagbussesoperateindependentlyofoneanother.Addressingofthealmostfull  
flagbusisdoneviathewriteportandaddressingofthealmostemptyflagbus  
is done via the read port.  
Theinputportiscommontoallqueueswithinthedevice,asistheoutputport.  
ThedeviceprovidestheuserwithBusMatchingoptionssuchthattheinputport  
andoutputportcanbeeitherx9,x18orx36bits wide,thereadandwriteport  
widthscanbesetindependentlyofoneanother.Becauseaportsarecommon  
toallqueuesthewidthofthequeuesisnotindividuallyset.Theinputwidthof  
allqueues are the same andthe outputwidthofallqueues are the same.  
WRITING TO AND READING FROM THE MULTI-QUEUE  
Databeingwrittenintothedeviceviatheinputportisdirectedtoadiscrete  
queueviathewritequeueaddressinput.Conversely,databeingreadfromthe  
devicereadportisreadfromaqueueselectedviathereadqueueaddressinput.  
Data can be simultaneously written into and read from the same queue or  
differentqueues.Onceaqueueisselectedfordatawritesorreads,thewriting  
andreadingoperationisperformedinthesamemannerasaconventionalIDT  
synchronous FIFO, utilizing clocks and enables, there is a single clock and  
enable per port. When a specific queue is addressed on the write port, data  
placedonthedatainputsiswrittentothatqueuesequentiallybasedontherising  
edgeofawriteclockprovidedsetupandholdtimesaremet.Conversely,data  
isreadontotheoutputportafteranaccesstimefromarisingedgeonareadclock.  
Theoperationofthewriteportiscomparabletothefunctionofaconventional  
FIFOoperatinginstandardIDTmode.Writeoperationscanbeperformedon  
thewriteportprovidedthatthequeuecurrentlyselectedisnotfull,afullflagoutput  
provides status of the selected queue. The operation of the read port is  
comparabletothefunctionofaconventionalFIFOoperatinginFWFTmode.  
Whenaqueueis selectedontheoutputport,thenextwordinthatqueuewill  
automaticallyfallthroughtotheoutputregister.Allsubsequentwordsfromthat  
queue require an enabled read cycle. Data cannot be read from a selected  
queueifthatqueueis empty,thereadportprovides anEmptyflagindicating  
whendata readoutis valid. Ifthe userswitches toa queue thatis empty, the  
lastwordfromthepreviousqueuewillremainontheoutputbus.Inadditionto  
FirstWordFallThrough(FWFT)thedevicecanoperateinIDTStandardmode  
or packet mode. In IDT Standard mode the read port provides a word to the  
outputbus(Qout)foreachclockcyclethatRENisasserted.RefertoFigure48,  
ReadQueueSelect,ReadOperation(IDTMode).Inpacketmodethedevice  
assertsapacketreadystatusflagtoindicateoneormorepacketsareavailable  
forreading.  
PACKETREADY  
Themulti-queueflow-controldevicealsooffersaPacketMode”operation.  
PacketModeisuserselectable.Inpacketmodewithax36bitwordlength,users  
candefinethelengthofpacketsorframebyusingthetwomostsignificantbits  
ofthe word.Ina36-bitword,bit34is usedtomarktheStartofPacket(SOP)  
andbit35isusedtomarktheEndofPacket(EOP)asshowninTable10.When  
writingdataintoagivenqueue,thefirstwordbeingwrittenis marked,bythe  
user setting bit 34 as the Start of Packet” (SOP) and the last word written is  
markedastheEndofPacket”(EOP)withallwordswrittenbetweentheStart  
ofPacket(SOP)marker(bit34)andtheEndofpacket(EOP)packetmarker  
AUGUST4,2005  
8
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
(bit35)constitutingtheentirepacket.Apacketcanbeanylengththeuserdesires, individual queues. Queue expansion means increasing the total number of  
uptothetotalavailablememoryinthemulti-queuedevice.Thedevicemonitors queuesavailable.Depthexpansionispossiblebyvirtueofthefactthatmore  
theSOP(bit34)andlooksforthewordthatcontainstheEOP(bit35).Theread memoryblockswithinamulti-queuedevicecanbeallocatedtoafewernumber  
portissuppliedwithanadditionalstatusflag,PacketReady.ThePacketReady ofqueuesto increasethedepthofeachqueue.Forexample,depthexpansion  
(PR) flag in conjunction with Empty Flag or Output Ready flag (EF/OR) of8devicesprovidesthepossibilityof8queuesof4096Kbits,eachqueuebeing  
indicateswhenatleastonepacketisavailabletoread.Wheninpacketmode setupwithinasingledeviceutilizingallmemoryblocksavailabletoproducea  
thealmostemptyflagstatus,providespacketreadyflagstatusforindividual singlequeue.This is thedeepestqueuethatcansetupwithinadevice.  
queues.  
Forqueue expansiona maximumnumberof256queues (32x8queues)  
maybe setup, witha average ofeachqueue being16,384Kx36deepusing  
8devices,eachwith8queues.Iffewerqueuesaredesired,thenmorememory  
EXPANSION (IDT STANDARD MODE)  
Expansionofmulti-queuedevicesisalsopossible.Upto8devicescanbe blockswillbeavailabletoincreasequeuedepthsifdesired.Whenconnecting  
connectedinaparallelbusconfigurationasindicatedinFigure67, Expansion multi-queuedevicesinexpansionconfigurationallrespectiveinputpins(data  
using ID codes, and Figure 68, Expansion using WCS/RCS providing both & control) and output pins (data & flags), should be connected” together  
depthexpansionand/orqueueexpansion.Expansionofdevicesissupported betweenindividualdevices.RefertoFigure67,ExpansionusingIDcodes,and  
onlyinIDTStandardmode.DepthExpansionmeansexpandingthedepthsof Figure68,ExpansionusingWCS/RCSfordeviceconnectiondetails.  
AUGUST4,2005  
9
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS  
Symbol &  
(Pin No.)  
Name  
I/OTYPE  
Description  
BM [3:0]  
BusMatching HSTL-LVTTL These pins define the bus widthofthe inputwrite portandthe outputreadportofthe device. The bus  
(J1, L14,15,16)  
INPUT  
widthsaresetduringaMasterRestcycle.TheBM[3:0]signalsmustmeetthesetupandholdtime  
requirementsofMasterResetandmustnottoggle/changestateafteraMasterReset cycle.  
D[35:0]  
DataInputBus HSTL-LVTTL These are the 36data inputpins. Data is writtenintothe device via these inputpins onthe risingedge  
Din  
INPUT  
ofWCLKprovidedthatWEN is LOW.Note,thatinPacketmodeD32-D35maybeusedas packet  
markers,pleaseseepacketreadyfunctionaldiscussionformoredetail.Duetobusmatchingnotallinputs  
maybe used, anyunusedinputs shouldbe tiedLOW.  
D[35]TransmitEndofPacket(TEOP)  
(See Pin No.  
tablefordetails)  
D[34]TransmitStartofPacket(TSOP)  
D[33:32]Userdefinablebits  
D[31:0]Datainputbits  
DF(1)  
(L3)  
DefaultFlag  
DefaultMode  
HSTL-LVTTL Iftheuserrequiresdefaultprogrammingofthemulti-queuedevice,thispinmustbesetupbeforeMaster  
INPUT  
Resetandmustnottoggleduringanydeviceoperation.Thestateofthisinputatmasterresetdetermines  
the value of the PAE/PAF flag offsets. If DF is LOW the value is 8, if DF is HIGH the value is 128.  
(1)  
DFM  
HSTL-LVTTL The multi-queue device requires programmingaftermasterreset. The usercandothis seriallyvia the  
(L2)  
INPUT  
serialport,orviaparallelprogrammingorbythedefaultprogrammingoptionThedefaultprogramming  
optionprovidesapre-definedconfiguration.IfDFMisLOWatmasterresetthenserialmodewillbe  
selected,ifHIGHthendefaultmodeisselected.  
EF/OR  
(P9)  
EmptyFlag/  
OutputReady  
HSTL-LVTTL This signalisbi-modal.WhenIDTStandardmodeisselectedthepinprovidesEmptyFlag(EF)status.  
OUTPUT  
WhenFWFTmodeisselectedthepinprovidesoutputready(OR)status.ThisoutputflagprovidesOutput  
Readystatusforthedatawordpresentonthemulti-queueflow-controldevice dataoutputbus,Qoutin  
FWFTmode.Thisflagisa2-stagedelayedtomatchthedataoutputpathdelay.Thereisa3RCLKcycle  
delayinIDTStandardmodeanda4cycledelayforFWFTmode fromthetimeagivenqueueisselected  
forreads,tothetimetheORflagrepresentsthedatainthatqueue.Whenaselectedqueueonthereadport  
isreadtoempty,theORflagwillgoHIGH,indicatingthatdataontheoutputbusisnotvalid.TheORflagalso  
hasHigh-Impedancecapability,requiredwhenmultipledevicesareusedandtheORflagsaretiedtogether.  
ESTR  
(R15)  
PAEn Flag Bus HSTL-LVTTL IfdirectoperationofthePAEnbushasbeenselected,theESTRinputisusedinconjunctionwithRCLK  
Strobe  
INPUT  
andtheRDADDbustoselectastatuswordofqueuestobeplacedontothePAEnbusoutputs.Astatus  
wordaddressedviatheRDADDbusisselectedontherisingedgeofRCLKprovidedthatESTRisHIGH.  
IfPolledoperationshasbeenselected,ESTRshouldbetiedinactive,LOW.Note,thataPAEnflagbus  
selectioncannotbemade,(ESTRmustNOTgoactive)untilprogrammingoftheparthasbeencompleted  
andSENO has gone LOW.  
ESYNC  
(R16)  
PAEn Bus Sync HSTL-LVTTL ESYNCisanoutputfromthemulti-queuedevicethatprovidesasynchronizingpulseforthePAEnbus  
OUTPUT  
duringPolledoperationofthePAEnbus.DuringPolledoperationeachstatuswordofqueuestatusflags  
is loadedontothePAEnbus outputs sequentiallybasedonRCLK. The firstRCLKrisingedge loads  
status word1ontoPAEn,thesecondRCLKrisingedgeloads status word2andsoon.ThefifthRCLK  
risingedgewillagainloadstatusword1.DuringtheRCLKcyclethatstatusword1ofaselecteddevice  
isplacedontothePAEnbus,theESYNCoutputwillbeHIGH.Forallotherstatuswordsofthatdevice,  
theESYNCoutputwillbeLOW.  
EXI  
(T16)  
PAEnBus  
ExpansionIn  
HSTL-LVTTL TheEXIinputis usedwhenmulti-queuedevices areconnectedinexpansionconfigurationandPolled  
INPUT  
PAEnbusoperationhasbeenselected.EXIofdeviceNconnectsdirectlytoEXOofdeviceN-1’.The  
EXIreceivesatokenfromthepreviousdeviceinachain.InsingledevicemodetheEXIinputmustbetied  
LOWifthe PAEnbus is operatedindirectmode. Ifthe PAEnbus is operatedinpolledmode the EXI  
inputmustbeconnectedtotheEXOoutputofthesamedevice.InexpansionconfigurationtheEXIof  
thefirstdeviceshouldbetiedLOW,whendirectmodeisselected.  
EXO  
(T15)  
PAEnBus  
ExpansionOut  
HSTL-LVTTL EXOisanoutputthatisusedwhenmulti-queuedevicesareconnectedinexpansionconfigurationand  
OUTPUT  
PolledPAEnbusoperationhasbeenselected.EXOofdeviceNconnectsdirectlytoEXIofdeviceN+1’.  
This pinpulses whendevice Nhas placedits final(4th)status wordontothe PAEnbus withrespectto  
RCLK.This pulse(token)is thenpassedontothenextdeviceinthechainN+1’andonthenextRCLK  
risingedgethefirststatuswordofdeviceN+1willbeloadedontothePAEnbus.Thiscontinuesthrough  
thechainandEXOofthelastdeviceisthenloopedbacktoEXIofthefirstdevice.TheESYNCoutputof  
eachdeviceinthechainprovides synchronizationtotheuserofthis loopingevent.  
AUGUST4,2005  
10  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
FF/IR  
(P8)  
Full Flag/  
Input Ready  
HSTL-LVTTL This pinprovidesthefullflagoutputfortheactiveQueue,thatis,thequeueselectedontheinputport  
OUTPUT  
forwriteoperations,(selectedviaWCLK,WRADDbusandWADEN).Onthe3rdWCLKcycleafteraqueue  
selection,thisflagwillshowthestatusofthenewlyselectedqueue.Datacanbewrittentothisqueueon  
thenextcycleprovidedFF is HIGH.This flaghas High-Impedancecapability,this is importantduring  
expansionofdevices,whentheFFflagoutputofupto8devicesmaybeconnectedtogetheronacommon  
line.ThedevicewithaqueueselectedtakescontroloftheFFbus,allotherdevicesplacetheirFFoutput  
intoHigh-Impedance.Whenaqueueselectionismadeonthewriteportthisoutputwillswitchfrom  
High-ImpedancecontrolonthenextWCLKcycle.ThisflagissynchronizedtoWCLK.  
(1)  
FM  
Flag Mode  
HSTL-LVTTL Thispinissetupbeforeamasterresetandmustnottoggleduringanydeviceoperation.Thestateofthe  
(K16)  
INPUT  
FMpinduringMasterResetwilldeterminewhetherthePAFnandPAEnflagbussesoperateineitherPolled  
orDirectmode.Ifthis pinis HIGHthemodeis Polled,ifLOWthenitwillbeDirect.  
FSTR  
(R4)  
PAFn Flag Bus HSTL-LVTTL IfdirectoperationofthePAFnbushasbeenselected,theFSTRinputisusedinconjunctionwithWCLK  
Strobe  
INPUT  
andtheWRADDbustoselectastatuswordofqueuestobeplacedontothePAFnbusoutputs.Astatus  
wordaddressedviatheWRADDbusisselectedontherisingedgeofWCLKprovidedthatFSTRisHIGH.  
If Polledoperationshasbeenselected,FSTRshouldbetiedinactive,LOW.Note,thataPAFnflagbus  
selectioncannotbemade,(FSTRmustNOTgoactive)untilprogrammingoftheparthasbeencompleted  
andSENO has gone LOW.  
FSYNC  
(R3)  
PAFn Bus Sync HSTL-LVTTL FSYNCisanoutputfromthemulti-queuedevicethatprovidesasynchronizingpulseforthePAFnbus  
OUTPUT  
duringPolledoperationofthePAFnbus.DuringPolledoperationeachstatuswordofqueuestatusflags  
is loadedontothePAFnbus outputs sequentiallybasedonWCLK.ThefirstWCLKrisingedgeloads  
statusword1ontoPAFn,thesecondWCLKrisingedgeloadsstatusword2andsoon.ThefifthWCLK  
risingedgewillagainloadstatusword1.DuringtheWCLKcyclethatstatusword1ofaselecteddevice  
isplacedontothePAFnbus,theFSYNCoutputwillbeHIGH.Forallotherstatuswordsofthatdevice,  
theFSYNCoutputwillbeLOW.  
FWFT  
(R11)  
FirstWordFall HSTL-LVTTL Firstwordfallthrough(FWFT)orIDTStandardmodeisselectedduringaMasterResetcycle.Toselect  
Through  
INPUT  
FWFTmodeasserttheFWFTsignal=HIGH,ifFWFT=LOWduringthemasterresetthenIDTStandard  
modeisselected.  
FXI  
(T2)  
PAFnBus  
ExpansionIn  
HSTL-LVTTL TheFXIinputisusedwhenmulti-queuedevicesareconnectedinexpansionconfigurationandPolled  
INPUT  
PAFnbusoperationhasbeenselected.FXIofdeviceNconnectsdirectlytoFXOofdeviceN-1’.The  
FXIreceives a tokenfromthe previous device ina chain. Insingle device mode the FXIinputmustbe  
tiedLOWifthePAFnbusisoperatedindirectmode.IfthePAFnbusisoperatedinpolledmodetheFXI  
inputmustbeconnectedtotheFXOoutputofthesamedevice.InexpansionconfigurationtheFXIofthe  
firstdeviceshouldbetiedLOW,whendirectmodeisselected.  
FXO  
(T3)  
PAFnBus  
ExpansionOut  
HSTL-LVTTL FXOisanoutputthatisusedwhenmulti-queuedevicesareconnectedinexpansionconfigurationand  
OUTPUT  
PolledPAFnbusoperationhasbeenselected.FXOofdeviceNconnectsdirectlytoFXIofdeviceN+1’.  
This pinpulses whendeviceNhas placedits final(4th)status wordontothe PAFnbus withrespectto  
WCLK.Thispulse(token)isthenpassedontothenextdeviceinthechainN+1’andonthenextWCLK  
risingedgethefirststatuswordofdeviceN+1willbeloadedontothePAFnbus.Thiscontinuesthrough  
thechainandFXOofthelastdeviceisthenloopedbacktoFXIofthefirstdevice.TheFSYNCoutputof  
eachdeviceinthechainprovides synchronizationtotheuserofthis loopingevent.  
(1)  
ID[2:0]  
Device ID Pins HSTL-LVTTL Forthe8Qmulti-queuedevicetheWRADDandRDADDaddressbussesare8bitswide.Whenaqueue  
(ID2-C9  
ID1-A10  
ID0-B10)  
INPUT  
selectiontakesplacethe3MSbs(bits7,6,5)ofthis8bitaddressbusareusedtoaddressthespecific  
device (the 5-7LSbs are usedtoaddress the queue withinthatdevice). Duringwrite/readoperations  
the3MSbsoftheaddressarecomparedtothedeviceIDpins.Inaneightdeviceexpansionconfiguration,  
thefirstdeviceinachainofmulti-queues(connectedinexpansionconfiguration),maybesetupas000'  
(thisisreferredtoastheMasterDevice),thesecondas001’andsoonthroughtodevice8whichis111,  
however the ID does not have to match the device order. In single device mode these pins should be  
setupas 000’andthe 3MSbs ofthe WRADDandRDADDaddress busses shouldbe tiedLOW. The  
ID[2:0]inputssetuparespectivedevicesIDduringmasterreset.TheseIDpinsmustnottoggleduring  
anydeviceoperation.Note,thedeviceselectedastheMaster’mustbeID‘000’.Inserialprogramming,  
themasterdevice(ID000)mustbeprogrammedlast.  
AUGUST4,2005  
11  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
IOSEL  
(C8)  
IOSelect  
LVTTL  
INPUT  
This pin is used to select either HSTL or 2.5V LVTTL operation for the I/O. If HSTL or eHSTL I/O are  
requiredthenIOSELshouldbetiedHIGH(VDDQ).IfLVTTLI/OarerequiredthenitshouldbetiedLOW.  
(1)  
MAST  
(K15)  
MasterDevice HSTL-LVTTL ThestateofthisinputatMasterResetdetermineswhetheragivendevice(withinachainofdevices),isthe  
INPUT  
Masterdevice ora Slave. Ifthis pinis HIGH, the device is the masterifitis LOWthenitis a Slave. The  
masterdeviceisthefirsttotakecontrolofalloutputsafteramasterreset,allslavedevicesgotoHigh-  
Impedance,preventingbuscontention.Ifamulti-queuedeviceisbeingusedinsingledevicemode,this  
pinmustbesetHIGH.  
MRS  
MasterReset  
HSTL-LVTTL AmasterresetisperformedbytakingMRSfromHIGHtoLOW,toHIGH.Deviceprogrammingisrequired  
INPUT aftermasterreset.  
OutputEnable HSTL-LVTTL TheOutputenablesignalisanAsynchronoussignalusedtoprovidethree-statecontrolofthemulti-queue  
(T9)  
OE  
(M14)  
INPUT  
dataoutputbus,Qout.IfadevicehasbeenconfiguredasaMaster”device,theQoutdataoutputswill  
beinaLowImpedanceconditioniftheOEinputisLOW.IfOEisHIGHthentheQoutdataoutputswillbe  
inHighImpedance.IfadeviceisconfiguredaSlave”device,thentheQoutdataoutputswillalwaysbe  
inHighImpedanceuntilthatdevicehasbeenselectedontheReadPort,atwhichpointOEprovidesthree-  
stateofthatrespectivedevice.  
PAE  
(P10)  
Programmable HSTL-LVTTL ThispinprovidestheAlmost-EmptyflagstatusfortheQueuethathasbeenselectedontheoutputport  
Almost-Empty  
Flag  
OUTPUT  
for read operations, (selected via RCLK, RDADD and RADEN). This pin is LOW when the selected  
Queueisalmost-empty.ThisflagoutputmaybeduplicatedononeofthePAEnbuslines.Thisflagis  
synchronizedtoRCLK.  
PAEn/PRn  
(PAE7-P11  
PAE6-P12  
PAE5-R12  
PAE4-T12  
PAE3-P13  
PAE2-R13  
PAE1-T13  
PAE0-T14)  
Programmable HSTL-LVTTL Onthe 32Qdevice the PAEn/PRnbus is 8bits wide. Duringa MasterResetthis bus is setupforeither  
Almost-Empty  
OUTPUT  
AlmostEmptymodeorPacketmode.ThisoutputbusprovidesPAE/PRnstatusof8queues(1statusword),  
withinaselecteddevice,havingamaximumof16status words.DuringQueueread/writeoperations  
theseoutputsprovideprogrammableemptyflagstatusorpacketreadystatus,ineitherdirect orpolled  
mode.ThemodeofflagoperationisdeterminedduringmasterresetviathestateoftheFMinput.  
ThisflagbusiscapableofHigh-Impedancestate,thisisimportantduringexpansionofmulti-queuedevices.  
DuringdirectoperationthePAEn/PRnbusisupdatedtoshowthePAE/PRstatusofastatuswordofqueues  
withinaselecteddevice. Selectionis madeusingRCLK, ESTRandRDADD. DuringPolledoperation  
thePAEn/PRnbusisloadedwiththePAE/PRnstatusofmulti-queueflow-controlstatuswordssequentially  
basedonthe rising edgeofRCLK.PAEorPRoperationisdeterminedbythestateofPKTduringmaster  
reset.  
FlagBus/Packet  
Ready Flag Bus  
PAF  
(R8)  
Programmable HSTL-LVTTL ThispinprovidestheAlmost-FullflagstatusfortheQueuethathasbeenselectedontheinputportfor  
Almost-FullFlag OUTPUT  
writeoperations,(selectedviaWCLK,WRADDandWADEN).ThispinisLOWwhentheselected  
Queueisalmost-full.ThisflagoutputmaybeduplicatedononeofthePAFnbuslines.Thisflagis  
synchronizedtoWCLK.  
PAFn  
Programmable HSTL-LVTTL Onthe 32Qdevice the PAFnbus is 8bits wide. Atanyone time this outputbus provides PAF status  
(PAF7-P7  
PAF6-P6  
PAF5-R6  
PAF4-R7  
PAF3-P5  
PAF2-R5  
PAF1-T5  
PAF0-T4)  
Almost-FullFlag OUTPUT  
Bus  
of8queues(1statusword),withinaselecteddevice,havingamaximumof16statuswords.DuringQueue  
read/writeoperationstheseoutputsprovideprogrammablefullflagstatus,ineitherdirectorpolledmode.  
ThemodeofflagoperationisdeterminedduringmasterresetviathestateoftheFMinput.Thisflagbus  
iscapableofHigh-Impedancestate,thisisimportantduringexpansionofmulti-queuedevices.Duringdirect  
operationthePAFnbusisupdatedtoshowthePAFstatusofastatuswordofqueueswithinaselected  
device.SelectionismadeusingWCLK,FSTR,WRADDandWADEN.DuringPolledoperationthePAFn  
busisloadedwiththePAFstatusofmulti-queueflow-controlstatuswordssequentiallybasedontherising  
edgeofWCLK.  
(1)  
PKT  
PacketMode  
HSTL-LVTTL ThestateofthispinduringaMasterResetwilldeterminewhetherthepartisoperatinginPacketmode  
(J14)  
INPUT  
providingbothaPacketReady(PR)outputandaProgrammableAlmostEmpty(PAE)discreteoutput,  
or standard mode, providing a (PAE) output only. If this pin is HIGH during Master Reset the part will  
operateinpacketmode,ifitisLOWthenalmostemptymode.Ifpacketmodehasbeenselectedtheread  
portflagbusbecomespacketreadyflagbus,PRnandthediscretepacketreadyflag,PRisfunctional.  
Ifalmostemptyoperationhasbeenselectedthentheflagbusprovidesalmostemptystatus,PAEnand  
thediscretealmostemptyflag,PAEisfunctional,thePRflagisinactiveandshouldnotbeconnected.  
PacketReadyutilizesusermarkedlocationstoidentifystartandendofpacketsbeingwrittenintothedevice.  
AUGUST4,2005  
12  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
PR  
(R9)  
PacketReady HSTL-LVTTL IfpacketmodehasbeenselectedthisflagoutputprovidesPacketReadystatusoftheQueueselected  
Flag  
OUTPUT  
forreadoperations.DuringamasterresetthestateofthePKTinputdetermineswhetherPacketmode  
ofoperationwillbeused.IfPacketmodeisselected,thentheconditionofthePRflagandEF/ORsignal  
areassertedindicatesapacketisreadyforreading.Theusermustmarkthestartofapacketandtheend  
ofapacketwhenwritingdataintoaqueue.UsingtheStartOfPacket(SOP)andEndOfPacket(EOP)  
markers,themulti-queuedevicesetsPRLOWifoneormorecomplete”packetsareavailableinthequeue.  
Acompletepacket(s)mustbewrittenbeforetheuserisallowedtoswitchqueues.  
Q[35:0]  
DataOutputBus HSTL-LVTTL Thesearethe36dataoutputpins.Dataisreadoutofthedeviceviatheseoutputpinsontherisingedge  
Qout  
(See Pin No.  
tablefordetails)  
OUTPUT  
ofRCLKprovidedthatRENisLOW,OEisLOWandtheQueueisselected.Note,thatinPacketReady  
modeQ32-Q35maybeusedaspacketmarkers,pleaseseepacketreadyfunctionaldiscussionformore  
detail.Duetobusmatchingnotalloutputsmaybeused,anyunusedoutputsshouldnotbeconnected.  
QSEL[1:0]  
(QSEL1-K1  
QSEL0-J2  
QueueSelect HSTL-LVTTL The QSEL pins provides various queue programming options. Refer to Table 2, for details.  
INPUT  
1.AQSELvalueof00,enablestheusertoprogramthenumberofqueuesusingtheWriteAddressbus.  
2.AQSELvalueof01,enablestheusertoprogramthenumberofqueuesusingtheReadAddressbus.  
3. AQSELvalue of10, Selects a configurationof4queues.  
4. AQSELvalue of11, selects a configurationof8queues  
RADEN  
(R14)  
ReadAddress HSTL-LVTTL The RADENinputis usedinconjunctionwithRCLKandthe RDADDaddress bus toselecta queue to  
Enable  
INPUT  
bereadfrom.AqueueaddressedviatheRDADDbusisselectedontherisingedgeofRCLKprovided  
thatRADENisHIGH.RADENshouldbeasserted(HIGH)onlyduringaqueuechangecycle(s).RADEN  
shouldnotbepermanentlytiedHIGH.RADENcannotbeHIGHforthesameRCLKcycleasESTR.Note,  
thatareadqueueselectioncannotbemade,(RADENmustNOTgoactive)untilprogrammingofthe  
parthas beencompletedandSENO has goneLOW.  
RCLK  
(T10)  
ReadClock  
HSTL-LVTTL When enabledbyREN, the risingedge ofRCLKreads data fromthe selectedqueue via the output  
INPUT  
bus Qout. The queue to be read is selected via the RDADD address bus and a rising edge of RCLK  
whileRADENisHIGH.ArisingedgeofRCLKinconjunctionwithESTRandRDADDwillalsoselectthe  
PAEn/PRnflagstatuswordtobeplacedonthePAEn/PRnbusduringdirectflagoperation.Duringpolled  
flagoperationthePAEn/PRnbusiscycledwithrespecttoRCLKandtheESYNCsignalissynchronized  
toRCLK.ThePAE,PRandORoutputsareallsynchronizedtoRCLK.DuringdeviceexpansiontheEXO  
and EXI signals are based on RCLK. RCLK must be continuous and free-running.  
RCS  
(R10)  
Read Chip  
Select  
HSTL-LVTTL TheRCSsignalinconcertwithRENsignalprovidescontroltoenabledataontotheoutputreaddatabus.  
INPUT Duringa MasterResetcycle theRCS itis dontcare signal.  
RDADD  
ReadAddress HSTL-LVTTL For the 8Q device the RDADD bus is 8 bits. The RDADD bus is a dual purpose address bus. The first  
[7:0]  
Bus  
INPUT  
functionofRDADDistoselectaQueuetobereadfrom.Theleastsignificant5bitsofthebus,RDADD[4:0]  
areusedtoaddress 1of32possiblequeueswithinamulti-queuedevice.Themostsignificant3bits,  
RDADD[7:5]areusedtoselect1of8possiblemulti-queuedevicesthatmaybeconnectedinexpansion  
mode.Aninexpansionconfigurationthe3MSbswilladdressadevicewiththematchingIDcode.The  
addresspresentontheRDADDbuswillbeselectedonarisingedgeofRCLKprovidedthatRADENis  
HIGH,(note,thatdatacanbeplacedontotheQoutbus,readfromthepreviouslyselectedqueueonthis  
RCLKedge). TwoRCLKrisingedgesafterreadqueueselect,datawillbeplacedontotheQoutoutputs  
fromthenewlyselectedqueue,regardlessofRENduetothefirstwordfallthrougheffect.  
The secondfunctionofthe RDADDbus is toselectthe status wordofqueues tobe loadedontothe  
PAEn/PRnbusduringstrobedflagmode.Theleastsignificant4bits,RDADD[3:0]areusedtoselectthe  
statuswordofadevicetobeplacedonthePAEnbus.Themostsignificant3bits,RDADD[7:5]areagain  
usedtoselect1of8possiblemulti-queuedevicesthatmaybeconnectedinexpansionconfiguration.  
Address bits RDADD[4]is dontcareduringstatus wordselection.Thestatus wordaddress present  
ontheRDADDbuswillbeselectedontherisingedgeofRCLKprovidedthatESTRisHIGH,(note,that  
data canbe placedontothe Qoutbus, readfromthe previouslyselectedQueue onthis RCLKedge).  
Please refer to Table 5 for details on RDADD bus.  
(RDADD7-P16  
RDADD6-P15  
RDADD5-P14  
RDADD4-N16  
RDADD3-N15  
RDADD2-N14  
RDADD1-M16  
RDADD0-M15)  
REN  
(T11)  
ReadEnable  
HSTL-LVTTL The REN input enables read operations from a selected Queue based on a rising edge of RCLK.  
INPUT  
IntheFWFTmode,aqueuetobereadfromcanbeselectedviaRCLK,RADENandtheRDADDaddress  
bus regardless ofthestateofREN.Areadenableis notrequiredtocyclethe PAEn/PRnbus (inpolled  
mode)ortoselectthePAEnstatus word,(indirectmode).  
AUGUST4,2005  
13  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
(Pin No.)  
Name  
I/OTYPE  
Description  
SCLK  
SerialClock  
HSTL-LVTTL Ifserialprogrammingofthemulti-queuedevicehasbeenselectedduringmasterreset,theSCLKinput  
(N3)  
INPUT  
clockstheserialdatathroughthemulti-queuedevice.DatasetupontheSIinputisloadedintothedevice  
ontherisingedgeofSCLKprovidedthatSENIisenabled,LOW.Whenexpansionofdevicesisperformed  
theSCLKofalldevices shouldbeconnectedtothesamesource.  
SENI  
(M2)  
SerialInput  
Enable  
HSTL-LVTTL Duringserialprogrammingofamulti-queuedevice,dataloadedontotheSIinputwillbeclockedintothe  
INPUT  
part(via a risingedge ofSCLK), providedthe SENI inputofthatdevice is LOW. Ifmultiple devices are  
cascaded,theSENIinputshouldbeconnectedtotheSENOoutputofthepreviousdevice.Sowhenserial  
loadingofagivendeviceiscomplete,itsSENOoutputgoesLOW,allowingthenextdeviceinthechain  
tobeprogrammed(SENOwillfollowSENIofagivendeviceoncethatdeviceisprogrammed).TheSENI  
inputofthe masterdevice (orsingle device), shouldbe controlledbythe user.  
SENO  
(M1)  
SerialOutput  
Enable  
HSTL-LVTTL Thisoutputisusedtoindicatethatserialprogrammingordefaultprogrammingofthemulti-queuedevice  
OUTPUT  
hasbeencompleted.SENOfollowsSENIonceprogrammingofadeviceiscomplete.Therefore,SENO  
willgoLOWafterprogrammingprovidedSENIisLOW,onceSENIistakenHIGHagain,SENOwillalso  
goHIGH.WhentheSENOoutputgoesLOW,thedeviceisreadytobeginnormalread/writeoperations.  
Ifmultipledevicesarecascadedandserialprogrammingofthedeviceswillbeused,theSENOoutput  
shouldbeconnectedtotheSENIinputofthenextdeviceinthechain.Whenserialprogrammingofthe  
firstdeviceiscomplete,SENO willgoLOW,therebytakingtheSENIinputofthenextdeviceLOWand  
soonthroughoutthe chain. Whena givendevice inthe chainis fullyprogrammedtheSENO output  
essentiallyfollowstheSENIinput.TheusershouldmonitortheSENOoutputofthefinaldeviceinthechain.  
WhenthisoutputgoesLOW,serialloadingofalldeviceshasbeencompleted.  
SI  
SerialIn  
HSTL-LVTTL Duringserialprogrammingthispinisloadedwiththeserialdatathatwillconfigurethemulti-queuedevices.  
(L1)  
INPUT  
Data present on SI will be loaded on a rising edge of SCLK provided that SENI is LOW. In expansion  
modetheserialdatainputisloadedintothefirstdeviceinachain.WhenthatdeviceisloadedanditsSENO  
hasgoneLOW,thedatapresentonSIwillbedirectlyoutputtotheSOoutput.TheSOpinofthefirstdevice  
connectstotheSIpinofthesecondandsoon.Themulti-queuedevicesetupregistersareshiftregisters.  
SO  
SerialOut  
HSTL-LVTTL Thisoutputisusedinexpansionconfigurationandallowsserialdatatobepassedthroughdevicesinthe  
(M3)  
OUTPUT  
chaintocompleteprogrammingofalldevices.TheSIofadeviceconnectstoSOofthepreviousdevice  
inthe chain. The SOofthe finaldevice ina chainshouldnotbe connected.  
(2)  
TCK  
JTAGClock  
HSTL-LVTTL ClockinputforJTAGfunction.Oneoffourterminals requiredbyIEEEStandard1149.1-1990.Test  
(A8)  
INPUT  
operationsofthedevicearesynchronoustoTCK.DatafromTMSandTDIaresampledontherisingedge  
ofTCKandoutputschangeonthefallingedgeofTCK.IftheJTAGfunctionisnotusedthissignalneeds  
tobe tiedtoGND.  
(2)  
TDI  
JTAGTestData HSTL-LVTTL OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.DuringtheJTAGboundaryscanoperation,  
(B9)  
Input  
INPUT  
testdataseriallyloadedviatheTDIontherisingedgeofTCKtoeithertheInstructionRegister,IDRegister  
andBypassRegister.Aninternalpull-upresistorforcesTDIHIGHifleftunconnected.  
(2)  
TDO  
JTAGTestData HSTL-LVTTL One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan  
(A9)  
Output  
OUTPUT  
operation,testdataseriallyloadedoutputviatheTDOonthefallingedgeofTCKfromeithertheInstruction  
Register,IDRegisterandBypassRegister.Thisoutputishighimpedanceexceptwhenshifting,whilein  
SHIFT-DR and SHIFT-IR controller states.  
TMS(2)  
(B8)  
JTAGMode  
Select  
HSTL-LVTTL TMSisaserialinputpin.OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.TMSdirectsthe  
INPUT devicethroughitsTAPcontrollerstates.Aninternalpull-upresistorforcesTMSHIGHifleftunconnected.  
HSTL-LVTTL TRSTisanasynchronousresetpinfortheJTAGcontroller.TheJTAGTAPcontrollerdoesnotautomatically  
(2)  
TRST  
JTAGReset  
(C7)  
INPUT  
resetuponpower-up,thusitmustberesetbyeitherthissignalorbysettingTMS=HIGHforfiveTCKcycles.  
IftheTAPcontrollerisnotproperlyresetthentheoutputswillalwaysbeinhigh-impedance.IftheJTAG  
function is used but the user does not want to use TRST, thenTRST can be tied withMRS to ensure  
properqueue operation. Ifthe JTAGfunctionis notusedthenthis signalneeds tobe tiedtoGND. An  
internalpull-upresistorforcesTRSTHIGHifleftunconnected.  
WADEN  
(P4)  
WriteAddress HSTL-LVTTL TheWADENinputisusedinconjunctionwithWCLKandtheWRADDaddressbustoselectaqueueto  
Enable  
INPUT  
bewritteninto.AqueueaddressedviatheWRADDbusisselectedontherisingedgeofWCLKprovided  
thatWADENisHIGH.WADENshouldbeasserted(HIGH)onlyduringaqueuechangecycle(s).WADEN  
shouldnotbepermanentlytiedHIGH.WADENcannotbeHIGHforthesameWCLKcycleasFSTR.Note,  
AUGUST4,2005  
14  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
WADEN  
WriteAddress HSTL-LVTTL thatawritequeueselectioncannotbemade,(WADENmustNOTgoactive)untilprogrammingofthepart  
(Continued)  
Enable  
INPUT  
has beencompletedandSENO has goneLOW.  
WCLK  
(T7)  
WriteClock  
HSTL-LVTTL WhenenabledbyWEN,therisingedgeofWCLKwrites dataintotheselectedQueueviatheinput  
INPUT  
bus, Din. The Queue to be written to is selected via the WRADD address bus and a rising edge of  
WCLKwhile WADENis HIGH. Arisingedge ofWCLKinconjunctionwithFSTRandWRADDwillalso  
selecttheflagstatuswordtobeplacedonthePAFnbusduringdirectflagoperation.Duringpolledflag  
operationthePAFnbusiscycledwithrespecttoWCLKandtheFSYNCsignalissynchronizedtoWCLK.  
The PAFn, PAF and FF outputs are allsynchronizedtoWCLK. Duringdevice expansionthe FXOand  
FXIsignals are basedonWCLK. The WCLKmustbe continuous andfree-running.  
WCS  
(T8)  
WriteChip  
Select  
HSTL-LVTTL The WCS pin can be regarded as a second WEN input, enabling/disabling write operations.  
INPUT  
WEN  
(T6)  
WriteEnable  
HSTL-LVTTL The WEN input enables write operations to a selected Queue based on a rising edge of WCLK. A  
INPUT  
queue tobe writtentocanbe selectedvia WCLK, WADENandthe WRADDaddress bus regardless  
ofthestateofWEN.DatapresentonDincanbewrittentoanewlyselectedqueueonthesecondWCLK  
cycleafterqueueselectionprovidedthatWENisLOW.AwriteenableisnotrequiredtocyclethePAFn  
bus (in polled mode) or to select the PAFn status word , (in direct mode).  
WRADD  
WriteAddress HSTL-LVTTL For the 32Q device the WRADD bus is 8 bits. The WRADD bus is a dual purpose address bus. The  
[7:0]  
Bus  
INPUT  
firstfunctionofWRADDistoselectaQueuetobewrittento. The leastsignificant5bits ofthe bus,  
WRADD[4:0] are usedtoaddress 1of32possible queues withina multi-queue device. Inexpansion  
configurationthemostsignificant3bits,WRADD[7:5]areusedtoselect1of8possiblemulti-queuedevices  
(dependantonthenumberofqueuesaddressed)thatmaybeconnectedinexpansionconfiguration.These  
3MSbs willaddress adevicewiththematchingIDcode.Theaddress presentontheWRADDbus will  
beselectedonarisingedgeofWCLKprovidedthatWADENisHIGH,(note,thatdatapresentontheDin  
buscanbewrittenintothepreviouslyselectedqueueonthisWCLKedgeandonthenextrisingWCLK  
also,providingthatWENisLOW).TwoWCLKrisingedgesafterwritequeueselect,datacanbewritten  
intothenewlyselectedqueue.  
(WRADD7-T1  
WRADD6-R1  
WRADD5-R2  
WRADD4-P1  
WRADD3-P2  
WRADD2-P3  
WRADD1-N1  
WRADD0-N2)  
ThesecondfunctionoftheWRADDbusistoselectthestatuswordofqueuestobeloadedontothePAFn  
busduringstrobedflagmode.Theleastsignificant4bits,WRADD[3:0]areusedtoselectthestatusword  
ofa device tobe placedonthe PAFnbus. The mostsignificant3bits, WRADD[7:5]are againusedto  
select1of8possiblemulti-queuedevicesthatmaybeconnectedinexpansionconfiguration.Addressbits  
WRADD[4]isdontcareduringstatuswordselection.ThestatuswordaddresspresentontheWRADD  
bus will be selected on the rising edge of WCLK provided that FSTR is HIGH, (note, that data can be  
writtenintothepreviouslyselectedqueueonthisWCLKedge).PleaserefertoTable4fordetailsonthe  
WRADDbus.  
VDD  
(See pg. 16)  
+1.8VSupply  
Power  
Power  
These are VDD power supply pins and must all be connected to a +1.8V supply rail.  
VDDQ  
(See pg. 16)  
O/PRailVoltage  
Thesepinsmustbetiedtothedesiredoutputrailvoltage.ForLVTTLI/Othesepinsmustbeconnected  
to+2.5V,forHSTLthesepinsmustbeconnectedto+1.5VandforeHSTLthesepinsmustbeconnected  
to+1.8V.  
GND  
GroundPin  
Ground  
These are Ground pins and must all be connected to the GND supply rail.  
(See pg. 16)  
Vref  
(K3)  
Reference  
Voltage  
HSTL  
INPUT  
ThisisaVoltageReferenceinputandmustbeconnectedtoavoltageleveldeterminedfromthetable  
"RecommendedDCOperatingConditions". The inputprovides the reference levelforHSTL/eHSTL  
inputs. ForLVTTLI/Omode this inputshouldbe tiedtoGND.  
NOTES:  
1. Inputs should not change after Master Reset.  
2. These pins are for the JTAG port. Please refer to pages 82-86 and Figures 71-73.  
AUGUST4,2005  
15  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PIN NUMBER TABLE  
Symbol  
Name  
I/OTYPE  
Pin Number  
D[35:0]  
Din  
DataInputBus HSTL-LVTTL D35-J3, D(34-32)-H(3-1), D(31-29)-G(3-1), D(28-26)-F(3-1), D(25-23)-E(3-1), D(22-20)-D(3-1),  
INPUT  
D(19-17)-C(3-1), D(16,15)-B(2,1), D(14-12)-A(1-3), D11-B3, D10-A4, D9-B4, D8-C4, D7-A5, D6-B5,  
D5-C5, D4-A6, D3-B6, D2-C6, D1-A7, D0-B7  
Q[35:0]  
Qout  
DataOutputBus HSTL-LVTTL Q(35,34)-J(15,16), Q(33-31)-H(14-16), Q(30-28)-G(14-16), Q(27-25)-F(14-16), Q(24-22)-E(14-16),  
OUTPUT Q(21,20)-D(15,16), Q19-B16, Q(18,17)-C(16,15), Q16-D14, Q(15,14)-A(16,15), Q13-B15, Q12-A14,  
Q11-B14, Q10-C14, Q9-A13, Q8-B13, Q7-C13, Q6-A12, Q5-B12, Q4-C12, Q3-A11, Q2-B11,  
Q(1,0)-C(11,10)  
VDD  
+1.8VSupply  
O/PRailVoltage  
GroundPin  
Power  
Power  
Ground  
D(7-10),E(6,7,10,11),F(5,12),G(4,5,12,13),H(4,13),J(4,13),K(4,5,12,13),L(5,12),M(6,7,10,11),N(7-10)  
D(4-6,11-13), E(4,5,12,13), F(4,13), L(4,13), M(4,5,12,13), N(4-6,11-13)  
VDDQ  
GND  
E(8-9), F(6-11), G(6-11), H(5-12), J(1,5-12), K(2,6-11,14), L(6-11), M(8-9)  
AUGUST4,2005  
16  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ABSOLUTEMAXIMUMRATINGS  
CAPACITANCE(TA = +25°C, f = 1.0MHz)  
Symbol  
Rating  
Commercial  
Unit  
Symbol  
Parameter(1)  
Conditions  
Max.  
Unit  
VTERM  
TerminalVoltage  
–0.5to+2.9(2)  
V
(2,3)  
CIN  
Input  
VIN = 0V  
10(3)  
pF  
with respect to GND  
Capacitance  
TSTG  
IOUT  
StorageTemperature  
DCOutputCurrent  
–55 to +125  
–50 to +50  
°C  
mA  
(1,2)  
COUT  
Output  
VOUT = 0V  
15  
pF  
Capacitance  
NOTES:  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
1. With output deselected, (OE VIH).  
2. Characterized values, not currently tested.  
3. CIN for Vref is 20pF.  
2. Compliant with JEDEC JESD8-5. VDD terminal only.  
RECOMMENDEDDCOPERATINGCONDITIONS  
Symbol  
VDD  
Parameter  
Min.  
Typ.  
Max.  
Unit  
SupplyVoltage  
1.7  
1.8  
1.9  
V
VDDQ  
OutputRailVoltageforI/Os LVTTL  
2.375  
1.7  
1.4  
2.5  
1.8  
1.5  
2.625  
1.9  
1.6  
V
V
V
eHSTL  
HSTL  
GND  
SupplyVoltage  
0
0
0
V
(2)  
VIH  
InputHighVoltage  
LVTTL  
eHSTL  
HSTL  
1.7  
VREF+0.2  
VREF+0.2  
2.625  
V
V
V
VIL  
InputLowVoltage  
LVTTL  
eHSTL  
HSTL  
-0.3  
0.7  
VREF-0.2  
VREF-0.2  
V
V
V
VREF(1)  
(HSTL only)  
VoltageReferenceInput  
eHSTL  
HSTL  
0.8  
0.68  
0.9  
0.75  
1.0  
0.9  
V
V
TA  
TA  
OperatingTemperatureCommercial  
OperatingTemperatureIndustrial  
0
70  
85  
°C  
°C  
-40  
NOTE:  
1. VREF is only required for HSTL or eHSTL inputs. VREF should be tied LOW for LVTTL operation.  
2. VIH AC Component = VREF + 0.4V  
AUGUST4,2005  
17  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
DCELECTRICALCHARACTERISTICS  
(Commercial: VDD = 1.8V ± 0.10V, TA = 0°C to +70°C;Industrial: VDD = 1.8V ± 0.10V, TA = -40°C to +85°C)  
Symbol  
Parameter  
Min.  
–10  
–10  
Max.  
10  
Unit  
µA  
µA  
V
V
V
ILI  
InputLeakageCurrent  
OutputLeakageCurrent  
ILO  
10  
(3)  
VOH  
OutputLogic1Voltage, IOH = –8 mA @VDDQ = 2.5V ± 0.125V (LVTTL)  
IOH = –8 mA @VDDQ = 1.8V ± 0.1V (eHSTL)  
VDDQ-0.4  
VDDQ-0.4  
VDDQ-0.4  
IOH = –8 mA @VDDQ = 1.5V ± 0.1V (HSTL)  
VOL  
OutputLogic0Voltage, IOL = 8 mA @VDDQ = 2.5V ± 0.125V (LVTTL)  
IOL = 8 mA @VDDQ = 1.8V ± 0.1V (eHSTL)  
0.4V  
0.4V  
0.4V  
V
V
V
IOL = 8 mA @VDDQ = 1.5V ± 0.1V (HSTL)  
IDD1(1,2)  
IDD2(1, 5)  
Active VDD Current (VDD = 1.8V)  
I/O = LVTTL  
I/O = HSTL  
I/O = eHSTL  
80  
150  
150  
mA  
mA  
mA  
Standby VDD Current (VDD = 1.8V)  
I/O = LVTTL  
I/O = HSTL  
I/O = eHSTL  
25  
100  
100  
mA  
mA  
mA  
(1,2)  
IDDQ  
ActiveVDDQ Current (VDDQ =2.5VLVTTL)  
(VDDQ = 1.5V HSTL)  
I/O = LVTTL  
I/O = HSTL  
I/O = eHSTL  
10  
10  
10  
mA  
mA  
mA  
(VDDQ = 1.8V eHSTL)  
NOTES:  
1. Both WCLK and RCLK toggling at 20MHz.  
2. Data inputs toggling at 10MHz.  
3. Total Power consumed: PT = [(VDD x IDD) + (VDDQ x IDDQ)].  
4. Outputs are not 3.3V tolerant.  
5. The following inputs should be pulled to GND: WRADD, RDADD, WADEN, FSTR, ESTR, SCLK, SI, EXI, FXI and all Data Inputs.  
The following inputs should be pulled to VDD: WEN, REN, SENI, MRS, TDI, TMS and TRST.  
All other inputs are don't care and should be at a known state.  
AUGUST4,2005  
18  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
HSTL  
AC TEST LOADS  
1.5V AC TEST CONDITIONS  
VDDQ/2  
InputPulseLevels  
0.25to1.25V  
0.4ns  
InputRise/FallTimes  
50Ω  
InputTimingReferenceLevels  
OutputReferenceLevels  
0.75  
Z0 = 50Ω  
VDDQ/2  
I/O  
6716 drw04  
NOTE:  
1. VDDQ = 1.5V ± 0.1V.  
Figure 2a. AC Test Load  
EXTENDEDHSTL  
1.8V AC TEST CONDITIONS  
6
5
4
3
2
1
InputPulseLevels  
0.4 to 1.4V  
0.4ns  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
0.9  
VDDQ/2  
NOTE:  
1. VDDQ = 1.8V ± 0.1V.  
20 30 50 80 100  
200  
Capacitance (pF)  
6716 drw04a  
2.5VLVTTL  
2.5V AC TEST CONDITIONS  
Figure 2b. Lumped Capacitive Load, Typical Derating  
InputPulseLevels  
GND to 2.5V  
1ns  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
VDD/2  
VDDQ/2  
NOTE:  
1. VDDQ = 2.5V ± 0.125V.  
OUTPUT ENABLE & DISABLE TIMING  
Output  
Enable  
Output  
Disable  
VIH  
OE  
VIL  
tOE &  
tOLZ  
tOHZ  
Output  
Normally  
LOW  
V
CC/2  
OL  
V
CC/2  
100mV  
100mV  
100mV  
V
V
OH  
Output  
Normally  
HIGH  
100mV  
VCC/2  
VCC/2  
6716 drw05  
NOTE:  
1. REN is HIGH.  
AUGUST4,2005  
19  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ACELECTRICALCHARACTERISTICS  
(Commercial: VDD = 1.8V ± 0.10V, TA = 0°C to +70°C;Industrial: VDD = 1.8V ± 0.10V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)  
Commercial  
Com'l & Ind'l(1)  
IDT72P51339L5  
IDT72P51349L5  
IDT72P51359L5  
IDT72P51369L5  
IDT72P51339L6  
IDT72P51349L6  
IDT72P51359L6  
IDT72P51369L6  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
fS  
Clock Cycle Frequency (WCLK & RCLK)  
DataAccessTime  
0.6  
5
200  
3.6  
0.6  
6
166  
3.7  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tA  
tCLK  
tCLKH  
tCLKL  
tDS  
Clock Cycle Time  
Clock High Time  
2.25  
2.25  
1.5  
0.5  
1.5  
0.5  
30  
2.7  
2.7  
2.0  
0.5  
2.0  
0.5  
30  
Clock Low Time  
DataSetupTime  
tDH  
DataHoldTime  
tENS  
tENH  
tRS  
EnableSetupTime  
EnableHoldTime  
ResetPulseWidth  
tRSS  
tRSF  
tRSR  
ResetSetupTime  
15  
15  
ResetOutputStatus  
10  
10  
10  
ResetRecoveryTime  
3.7  
3.7  
3.7  
10  
(2)  
tOLZ(OE-Qn)  
OutputEnabletoOutputinLow-Impedance  
OutputEnabletoOutputinHigh-Impedance  
OutputEnabletoDataOutputReady  
Clock Cycle Frequency (SCLK)  
Serial Clock Cycle  
0.6  
0.6  
0.6  
100  
45  
3.6  
3.6  
3.6  
10  
0.6  
0.6  
0.6  
100  
45  
(2)  
tOHZ  
tOE  
fC  
tSCLK  
tSCKH  
tSCKL  
tSDS  
tSDH  
tSENS  
tSENH  
tSDO  
tSENO  
tSDOP  
tSENOP  
tPCSF  
tAS  
20  
Serial Clock High  
Serial Clock Low  
45  
45  
SerialDataInSetup  
20  
20  
Serial Data In Hold  
1.2  
20  
1.2  
20  
SerialEnableSetup  
SerialEnableHold  
1.2  
0.6  
0.6  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
0.6  
0.6  
0.6  
0.6  
0.6  
1.2  
0.6  
0.6  
2.0  
0.5  
1.5  
0.5  
2.0  
0.5  
0.6  
0.6  
0.6  
0.6  
0.6  
SCLK to Serial Data Out  
SCLK to Serial Enable Out  
SerialDataOutPropagationDelay  
SerialEnablePropagationDelay  
ProgrammingCompletetoStatusFlag  
AddressSetup  
20  
20  
20  
3.7  
3.7  
7+1 SCLK  
3.7  
3.7  
7+1 SCLK clock cycles  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAH  
Address Hold  
tWFF  
tREF  
tSTS  
tSTH  
tQS  
Write Clock to Full Flag  
Read Clock to Empty Flag  
PAE/PAF Strobe Setup  
PAE/PAF Strobe Hold  
QueueSetup  
3.6  
3.6  
tQH  
QueueHold  
tWAF  
tRAE  
tPAF  
tPAE  
WCLK to PAF flag  
RCLK to PAE flag  
Write ClocktoSynchronous Almost-FullFlagBus  
Read Clock to Synchronous Almost-Empty Flag Bus  
RCLK to PAE Flag Bus to Low-Impedance  
3.6  
3.6  
3.6  
3.6  
3.6  
(2)  
tPAELZ  
NOTES:  
1. Industrial temperature range product for the 6ns is available as a standard device. All other speed grades available by special order.  
2. Values guaranteed by design, not currently tested.  
AUGUST4,2005  
20  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ACELECTRICALCHARACTERISTICS(CONTINUED)  
(Commercial: VDD = 1.8V ± 0.10V, TA = 0°C to +70°C;Industrial: VDD = 1.8V ± 0.10V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)  
Commercial  
Com'l & Ind'l(1)  
IDT72P51339L5  
IDT72P51349L5  
IDT72P51359L5  
IDT72P51369L5  
IDT72P51339L6  
IDT72P51349L6  
IDT72P51359L6  
IDT72P51369L6  
Symbol  
Parameter  
Min.  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
5
Max.  
Min.  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
6
Max.  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
Unit  
ns  
(2)  
tPAEHZ  
RCLK to PAE Flag Bus to High-Impedance  
WCLK to PAF Flag Bus to Low-Impedance  
WCLK to PAF Flag Bus to High-Impedance  
WCLKtoFullFlag/InputReadytoHigh-Impedance  
WCLKtoFullFlag/InputReadytoLow-Impedance  
RCLKtoEmptyFlag/OutputReadyFlagtoLow-Impedance  
RCLKtoEmptyFlag/OutputReadyFlagtoHigh-Impedance  
WCLK to PAF Bus Sync to Output  
WCLK to PAF Bus Expansion to Output  
RCLK to PAE Bus Sync to Output  
RCLK to PAE Bus Expansion to Output  
RCLK to Packet Ready Flag  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
(2)  
tPAFLZ  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
tPAFHZ  
(2)  
tFFHZ  
(2)  
tFFLZ  
(2)  
tEFLZ  
(2)  
tEFHZ  
tFSYNC  
tFXO  
tESYNC  
tEXO  
tPR  
tSKEW1  
tSKEW2  
tSKEW3  
tSKEW4  
tXIS  
SKEW time between RCLK and WCLK for FF/IR and EF/OR  
SKEW time between RCLK and WCLK for PAF and PAE  
SKEW time between RCLK and WCLK for PAF[0:7] and PAE[0:7]  
SKEW time between RCLK and WCLK for PR and EF/OR  
ExpansionInputSetup  
5
6
5
6
5
6
1.5  
0.5  
15  
2.0  
0.5  
15  
tXIH  
ExpansionInputHold  
tPPMS  
tPPMH  
NOTES:  
ParallelProgrammingSetup  
ParallelProgrammingHold  
5
5
1. Industrial temperature range product for the 6ns is available as a standard device. All other speed grades available by special order.  
2. Values guaranteed by design, not currently tested.  
AUGUST4,2005  
21  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
DFMProgrammingmode,serialordefault  
DF – Offset value for PAE and PAF  
Onceamasterresethastakenplace,thedevicemustbeprogrammedeither  
seriallyorviathedefaultmethodbeforeanyread/writeoperationscanbegin.  
See Figure 37, Master Reset for relevant timing.  
FUNCTIONALDESCRIPTION  
MASTERRESET  
AMasterResetisperformedbytogglingtheMRSinputfromHIGHtoLOW  
toHIGH.Duringamasterresetallinternalmulti-queuedevicesetupandcontrol  
registersareinitializedandrequireprogrammingeitherseriallybytheuservia  
theserialport,orviaparallelprogrammingorbyusingthedefaultsettings.Refer  
to Figure 4, Device Programming Hierarchy for the programming hierarchy  
structure.Duringamasterresetthestateofthefollowinginputsdeterminethe  
functionalityofthepart,thesepinsshouldbeheldHIGHorLOW.  
PKT–PacketMode  
PROGRAMMINGMODECAPTURED  
On the rising of /MRS the programming mode signals (QSEL 0 &1,  
DEFAULT)arecaptured.Oncetheprogrammingmodesignalsarecaptured  
(latched),refertoTable1fordetails.Itwillthenrequireanumberofclockcycles  
forthedevicetocompletetheconfiguration.Configurationcompletionisindicated  
whentheSENOsignaltransitionsfromhightolow.Theconfigurationcompletion  
indicationisconsistentwiththepreviousMQdevice.  
FM – Flag bus Mode  
BM[3:0]Bus Matchingoptions  
MAST – Master Device  
ID0, 1, 2 – Device ID  
MRS  
QSEL0  
QSEL1  
See Table 2 for definition of value  
See Table 2 for definition of value  
Default mode  
(DFM)  
DFM = LOW for Serial Programming mode  
6716 drw06  
Figure 3. Reference Signals  
TABLE 1 — DEVICE PROGRAMMING MODE COMPARISON  
ProgrammableParameter Serial Programming  
ParallelProgramming  
Default Programming  
Number of Queues  
Queue Depth  
Any number from 1 to 8  
Any number from 1 to 8  
4 or 8  
Each queue depth can be  
individualized  
The total memory is evenly divided  
acrossthequeues  
The total memory is evenly divided  
acrossthequeues  
PAE/PAF Offset Value  
Programmable to any value  
Fixed value  
Fixed value  
Bus Matching  
Any combination of x9 or x18 or x36 can Any combination of x9 or x18 or x36 Any combination of x9, x18, or x36 can  
beselectedusingtheBM[3:0]bits.  
canbeselectedusingtheBM[3:0]bits. beselectedusingtheBM[3:0]bits  
I/O voltage  
LVTTL, eHSTL, HSTL  
LVTTL, eHSTL, HSTL LVTTL, eHSTL, HSTL  
TABLE2—SETTINGTHEQUEUEPROGRAMMINGMODEDURINGMASTERRESET  
Default  
Queue Programming Method  
Mode  
MRS (DFM) QSEL 1 QSEL 0  
0
0
0
0
0
1
RESERVED  
RESERVED  
0
1
0
RESERVED  
0
1
1
0
1
0
Serial programming mode  
Enables the user to program the number  
of Queues using the Write Address bus  
1
1
1
0
1
1
1
0
1
Enables the user to program the number  
of Queues using the Read Address bus  
Selects 4 Queue  
Selects 8 Queue  
6716 drw07  
AUGUST4,2005  
22  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
SERIAL PROGRAMMING  
SeeFigure42,SerialPortConnectionandFigure43,SerialProgramming  
Themulti-queueflow-controldeviceisafullyprogrammabledevice,provid- forconnectionandtiminginformation.  
ingtheuserwithflexibilityinhowqueuesareconfiguredintermsofthenumber  
of queues, depth of each queue and position of the PAF/PAE flags within DEFAULTPROGRAMMING  
respectivequeues.Alluserprogrammingisdoneviatheserialportafteramaster  
Duringa MasterResetifthe DFM(DefaultMode)inputis HIGHthe multi-  
resethas takenplace. Internallythe multi-queue device has setupregisters queuedevicewillbeconfiguredfordefaultprogramming,(serialprogramming  
whichmustbeseriallyloaded,theseregisterscontainvaluesforeveryqueue is not permitted). Default programming provides the user with a simpler,  
within the device, such as the depth and PAE/PAF offset values. The howeverlimitedmeanstosetupthemulti-queueflow-controldevice,ratherthan  
IDT72P51339/72P51349/72P51359/72P51369devicesarecapableofupto usingtheserialprogrammingmethod.Thedefaultmodewillconfigureamulti-  
8queuesandthereforecontain128setsofregistersforthesetupofeachqueue. queuedevicewiththemaximumnumberofqueues setup,andtheavailable  
DuringaMasterResetiftheDFM(DefaultMode)inputisLOW,thenthedevice memoryallocatedequallybetweenthequeues.Thevalues ofthePAE/PAF  
willrequire serialprogrammingbythe user. Itis recommendedthatthe user offsetsisdeterminedbythestateoftheDF(default)pinduringamasterreset.  
utilizeaC’programprovidedbyIDT,thisprogramwillprompttheuserforall  
FortheIDT72P51339/72P51349/72P51359/72P51369devicesthedefault  
informationregardingthemulti-queuesetup.Theprogramwillthengenerate mode willsetup8queues, eachqueue being512x36, 1024x36, 2048x36,  
aserialbitstreamwhichshouldbeseriallyloadedintothedeviceviatheserial and4096x36deeprespectively.Foreachdevice,thevalueofthePAE/PAF  
port. For the IDT72P51339/72P51349/72P51359/72P51369 devices the offsetsisdeterminedatmasterresetbythestateoftheDFinput.IfDFisLOW  
serialprogrammingrequiresatotalnumberofseriallyloadedbitsperdevice, then both the PAE & PAF offsetwillbe 8, ifHIGHthenthe value is 128.  
(SCLKcycles withSENI enabled), calculatedby:19+(Qx72)where Qis the  
numberofqueues theuserwishes tosetupwithinthedevice.  
WhenconfiguringtheIDT72P51339/72P51349/72P51359/72P51369de-  
vicesindefaultmodetheusersimplyhastoapplyWCLKcyclesafteramaster  
Once the master reset is complete and MRS is HIGH, the device can be reset,untilSENOgoesLOW,thissignalsthatdefaultprogrammingiscomplete.  
seriallyloaded.DatapresentontheSI(serialin),inputisloadedintotheserial Theseclockcyclesarerequiredforthedevicetoloaditsinternalsetupregisters.  
port on a rising edge of SCLK (serial clock), provided that SENI (serial in Whenasinglemulti-queuedeviceisused,thecompletionofdeviceprogram-  
enable),isLOW.Onceserialprogrammingofthedevicehasbeensuccessfully mingissignaledbytheSENOoutputofadevicegoingfromHIGHtoLOW.Note,  
completedthedevicewillindicatethisviatheSENO(serialoutputenable)going thatSENImustbeheldLOWwhenadeviceissetupfordefaultprogramming  
active,LOW.Upondetectionofcompletionofprogramming,theusershould mode.  
ceaseallprogrammingandtakeSENIinactive,HIGH.Note,SENOfollowsSENI  
Whenmulti-queuedevicesareconnectedinexpansionconfiguration,the  
onceprogrammingofadeviceiscomplete.Therefore,SENOwillgoLOWafter SENIofthefirstdeviceinachaincanbeheldLOW.TheSENOofadeviceshould  
programmingprovidedSENIisLOW,onceSENIistakenHIGHagain,SENO connecttotheSENIofthenextdeviceinthechain.TheSENOofthefinaldevice  
willalsogoHIGH.TheoperationoftheSOoutputissimilar,whenprogramming isusedtoindicatethatdefaultprogrammingofalldevicesiscomplete.Whenthe  
ofagivendeviceiscomplete,theSOoutputwillfollowtheSIinput.  
master(ID='000')SENOgoesLOWnormaloperationsmaybegin.Again,all  
Ifdevicesarebeingusedinexpansionconfigurationtheserialportsofdevices devices will be programmed with their maximum number of queues and the  
shouldbecascaded.Theusercanloadalldevicesviatheserialinputportcontrol memory divided equally between them. Please refer to Figure 38, Default  
pins,SI&SENI,ofthefirstdeviceinthechain.Again,theusermayutilizethe Programming.  
‘C’programtogeneratetheserialbitstream,theprogrampromptingtheuser  
forthenumberofdevicestobeprogrammed.TheSENOandSO(serialout) PARALLELPROGRAMMING  
ofthefirstdeviceshouldbeconnectedtotheSENIandSIinputsofthesecond  
DuringaMasterResetcycle(i.e.theMRSsignaltransitionsfromHIGHto  
devicerespectivelyandsoon,withtheSENO&SOoutputsconnectingtothe LOWthenLOWtoHIGH)iftheDFM(DefaultMode)inputsignalisHIGHand  
SENI&SIinputsofalldevicesthroughthechain.Alldevicesinthechainshould the QSEL 1 input signal is LOW the Multi-Queue Flow Control device is  
beconnectedtoacommonSCLK.Theserialoutputportofthefinaldeviceshould configured for Parallel Programming. Parallel Programming enables the  
be monitored by the user. When SENO of the final device goes LOW, this numberofqueueswithinthedevicetobesetthrougheithertheWriteAddress  
indicates thatserialprogrammingofalldevices has beensuccessfullycom- (WRADD)busorReadAddress(RDADD)busaftertheMasterResetcycle.  
pleted.Upondetectionofcompletionofprogramming,theusershouldceaseall WithinParallelProgrammingmodetheMulti-Queue(MQ)deviceprogram-  
programmingandtakeSENIofthefirstdeviceinthechaininactive,HIGH.  
mableparametersare;numberofqueues,queuedepth,PAE/PAFflagoffset  
Asmentioned,thefirstdeviceinthechainhasitsserialinputportcontrolled value, bus matching and the I/O voltage level. As previously indicated, the  
bytheuser,thisisthefirstdevicetohaveitsinternalregistersseriallyloaded number of queues are configured using the write or read address bus,  
bytheserialbitstream.Whenprogrammingofthisdeviceiscompleteitwilltake howeverbusmatchingissetduringtheMasterResetcycle.Thevaluethatis  
its SENOoutputLOWandbypasstheserialdataloadedontheSIinputtoits setduringtheMasterResetcycleisdeterminedbytheBusMatching(BM)bits.  
SOoutput.Theserialinputoftheseconddeviceinthechainisnowloadedwith FortheIDT72P51339/72P51349/72P51359/72P51369devices inParallel  
thedatafromtheSOofthefirstdevice,whiletheseconddevicehasitsSENI Programming Mode the value of the PAE/PAF offsets at master reset is  
input LOW. This process continues through the chain until all devices are determinedbythestateoftheDFinput.IfDFisLOWthenboththePAE&PAF  
programmedandthe SENO ofthe finaldevice (ormasterdevice, ID='000') offsetwillbe 8, ifHIGHthenthe value is 128.  
goesLOW.  
When configuring the IDT72P51339/72P51349/72P51359/72P51369  
Once all serial programming has been successfully completed, normal devices inParallelProgrammingMode the usersimplyhas toapplyWCLK  
operations,(queueselectionsonthereadandwriteports)maybegin.When cycles aftera masterreset, untilSENO goes LOW,this signals thatParallel  
connectedinexpansionconfiguration,theIDT72P51339/72P51349/72P51359/ Programmingiscomplete.Theseclockcyclesarerequiredforthedeviceto  
72P51369devicesrequireatotalnumberofseriallyloadedbitsperdeviceto loaditsinternalsetupregisters.Whenasinglemulti-queuedeviceisused,the  
completeserialprogramming,(SCLKcycleswithSENIenabled),calculatedby: completionofdeviceprogrammingissignaledbytheSENOoutputofadevice  
n[19+(Qx72)]whereQisthenumberofqueuestheuserwishestosetupwithin goingfromHIGHtoLOW.Note,thatSENImustbeheldLOWwhenadevice  
the device, where n is the number of devices in the chain.  
issetupforParallelProgrammingmode.  
AUGUST4,2005  
23  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WhenMulti-QueuedevicesareconnectedinanExpansionConfiguration, PROGRAMMINGHIERARCHY  
theSENIsignalofthefirstdeviceinachainmustbeheldLOW.TheSENOsignal  
Configuring the device is a 2 stage sequence. The first stage is to set the  
ofadeviceshouldconnecttotheSENIofthenextdeviceinthechain.TheSENO expansion device type, the desired programming mode and the device  
of the final device is used to indicate that the programming of all devices is operatingmodeduringthemasterresetcycle(i.e.ontherisingedgeofMaster  
complete. When the master device (ID=000') SENO signal goes LOW the Reset(MRS)).ThesecondstageistosetvaluessuchasPAE/PAF,number  
internalprogrammingiscompleteandqueuewrite/readoperationmaybegin. of queues, queue depth, etc. using the programming mode (serial, parallel,  
PleaserefertoFigure39,ParallelProgrammingforsignaltimingdetails.  
default)selectedinstage1.RefertoFigure4,DeviceProgrammingHierarchy.  
Master Reset Cycle  
Device Operating Mode  
Selected  
Expansion  
Device Type  
Selected  
Device  
Programming  
Mode Selected  
(Packet Mode)  
(FIFO Mode)  
(IDT Mode)  
(FWFT Mode)  
(IDT Mode)  
(FWFT Mode)  
Master  
Device  
Slave  
Device  
Serial  
Programming  
Parallel Queue  
Programming  
Default  
Programming  
6716 drw08  
Figure 4. Device Programming Hierarchy  
AUGUST4,2005  
24  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
mode,Standardmode,andFWFTmode.Toconfigurethedeviceoperational  
mode setthe configurationpins (PKT, FWFT)as indicatedinTable 3, Mode  
Configuration.  
QUEUEDESCRIPTION  
CONFIGURATIONOFTHEIDTMULTI-QUEUEFLOW-CONTROLDEVICE  
TheIDT72P51339/72P51349/72P51359/72P51369multi-queueflow-con-  
troldevicescanbeconfiguredindistinctmodes,namelyPacketmode,FIFO  
TABLE 3 — MODE CONFIGURATION  
Configuration Signals  
Modes  
Operational Modes  
PKT  
FWFT  
LOW  
Packet Mode  
FIFO Mode  
LOW  
LOW  
HIGH  
HIGH  
FIFO mode - IDT Standard Mode  
FIFO mode - FWFT  
HIGH  
LOW  
Packet mode - IDT Standard Mode  
Packetmode-FWFT  
IDT Standard  
Mode  
FWFTMode  
IDTStandard FWFTMode  
Mode  
HIGH  
InIDTStandardmodethereadportsignalEF/OR is configuredforempty forfullflag(FF)signaling.FFisanactiveLOWsignal.WhenFFisLOWitsignifies  
flag(EF)signaling.EFisanactiveLOWsignal.WhenEFisLOWitsignifiesthe the selected (present) queue is full. Refer to Figure 5, IDT Standard mode  
selected(present)queueisempty.Onthewriteport,signalFF/IRisconfigured illustrated (Read Port).  
RCLK  
EF  
Last Data Word  
Qout  
REN  
6716 drw09  
Figure 5. IDT Standard mode illustrated (Read Port)  
InFWFTmodethereadportsignalEF/ORisconfiguredforoutputready(OR) ready(IR)signaling.IRisanactiveLOWsignal.WhenIRisLOWitsignifiesthe  
signaling.ORisanactiveLOWsignal.WhenORisHIGH,itsignifiesthereisno writeportisreadyforwritingintotheselectedqueue.RefertoFigure6,FWFT  
available wordtoread. Onthe write port, signalFF/IR is configuredforinput mode illustrated (Read Port).  
RCLK  
OR  
Qout  
Data Bus  
Last Data Word  
REN  
6716 drw10  
Figure 6. First Word Fall Through (FWFT) mode illustrated (Read Port)  
AUGUST4,2005  
25  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
STANDARDMODEOPERATION  
Changingqueuesrequires4WCLKcyclesonthewriteport(seeFigure44,  
WriteQueueSelect,WriteOperationandFullflagOperation).WADENgoes  
highsignalingachangeofqueue(clockcycleA”).Theaddress onWRADD  
atthattimedeterminesthenextqueue.Datapresentedduringeachcycle,will  
WRITE QUEUE SELECTION AND WRITE OPERATION  
(STANDARDMODE)  
TheIDT72P51339/72P51349/72P51359/72P51369multi-queueflow-con- bewrittentotheactivequeue,providedWENisLOW.IfWENisHIGH(inactive),  
troldevices canbeconfigureduptoamaximumof8queues whichdatacan datawillnotbewritteninaqueue.Thewriteportdiscretefullflagwillupdateto  
be written via a common write port using the data inputs (Din), write clock showthefullstatusofthenewlyselectedqueue.Datapresentonthedatainput  
(WCLK)andwriteenable(WEN).Thequeuetobewrittenis selectedbythe bus (Din), canbe writtenintothe newlyselectedqueue onthe risingedge of  
address presentonthewriteaddress bus (WRADD)duringarisingedgeon WCLKachangeofqueue,providedWENisLOWandthequeueisnotfull.If  
WCLKwhilewriteaddressenable(WADEN)isHIGH.ThestateofWENdoes theselectedqueueisfullatthepointofitsselection,anywritestothatqueuewill  
notimpactthequeueselection.Thequeueselectionrequires4WCLKcycle. be prevented. Data cannotbe writtenintoa fullqueue.  
Allsubsequentdatawriteswillbetothisqueueuntilanotherqueueisselected.  
Refer to Figure 44, Write Queue Select, Write Operation and Full flag  
Standardmodeoperationisdefinedasindividualwordswillbewrittentothe Operation,Figure46, WriteOperations inFirstWordFallThroughfortiming  
deviceasopposedtoPacketModewherecompletepacketsarewritten.The diagramsandFigure47,FullFlagTiminginExpansionConfigurationfortiming  
write port is designed such that 100% bus utilization can be obtained. This diagrams.  
means that data can be written into the device on every WCLK rising edge  
includingthe cycle thata newqueue is beingaddressed.  
TABLE 4 — WRITE ADDRESS BUS, WRADD[7:0]  
Operation WCLK WADEN FSTR  
WRADD[7:0]  
7 6 5 4 3 2 1 0  
Write  
Queue  
Select  
1
0
0
1
Device Select  
(Compared to  
ID2,1,0)  
Write Queue Address  
(2 bits = 4 Queues  
3 bits = 8 Queues)  
7 6 5  
4
3 2 1 0  
PAFn  
Quadrant  
Select  
Device Select  
(Compared to  
ID2,1,0)  
X
Status Word  
Address  
Status Word  
Address  
Queue Status on PAFn Bus  
Q0 : Q7 PAF0 : PAF7  
0000  
6716 drw11  
AUGUST4,2005  
26  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
READ QUEUE SELECTION AND READ OPERATION  
(STANDARDMODE)  
TheIDT72P51339/72P51349/72P51359/72P51369multi-queueflow-con-  
obtained.ThismeansthatdatacanbereadoutofthedeviceoneveryRCLK  
risingedge includingthe cycle that a newqueue is beingaddressed.  
ChangingqueuesrequiresaminimumoffourRCLKcyclesonthereadport  
troldevices canbe configureduptoa maximumof8queues whichdata can (see Figure 48, Read Queue Select, Read Operation). RADEN goes high  
be read via a common read port using the data outputs (Qout), read clock signalingachangeofqueue(clockcycleD”).TheaddressonRDADDatthat  
(RCLK) and read enable (REN). An output enable, OE control pin is also time determines the next queue. Data presented during that cycle will be  
providedtoallowHigh-ImpedanceselectionoftheQoutdataoutputs.Themulti- read.Readingdatacancontinuefromtheactive,providedRENisLOW.IfREN  
queue device readportoperates instandardIDTmode andFirstWordFall isHIGH(inactive)forthesetwoclockcycles,datawillnotbereadfromthequeue.  
Through”mode(seeFigure46,WriteOperationsinFirstWordFallThrough). Ifanewselectedqueueisempty,anyreadsfromthatqueuewillbeprevented.  
Thequeuetobereadisselectedbytheaddresspresentedonthereadaddress Datacannotbereadfromanemptyqueue. RememberthatOEallowstheuser  
bus (RDADD) during a rising edge on RCLK while read address enable toplacethedataoutputbus(Qout)intoHigh-Impedanceandthedatacanbe  
(RADEN)isHIGH.ThestateofRENdoesnotimpactthequeueselection.The readintotheoutputregisterregardless ofOE.  
queueselectionrequires4RCLKcycles.Allsubsequentdatareadswillbefrom  
thisqueueuntilanotherqueueisselected.  
RefertoTable5,forReadAddressBusarrangement.Also,refertoFigures  
13,15,and16forreadqueueselectionandreadportoperationtimingdiagrams.  
Standardmodeoperationisdefinedasindividualwordswillbereadfromthe  
device. The read port is designed such that 100% bus utilization can be  
TABLE 5 — READ ADDRESS BUS, RDADD[7:0]  
Operation  
RCLK RADEN ESTR  
RDADD[7:0]  
7 6 5 4 3 2 1 0  
Read Queue  
Select  
1
0
Device Select  
(Compared to  
ID2,1,0)  
Read Queue Address  
(2 bits = 4 Queues  
3 bits = 8 Queues)  
7 6 5  
Device Select  
(Compared to  
ID2,1,0)  
4
X
3 2 1 0  
Status Word  
Address  
PAEn/PRn  
Quadrant  
Select  
0
1
Status Word  
Address  
Queue Status on PAEn/PRn Bus  
0000  
Q0 : Q7 PAF0 : PAF7  
6716 drw12  
AUGUST4,2005  
27  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PACKETMODEOPERATION  
READ QUEUE SELECTION AND READ OPERATION (PACKET MODE)  
The Packet mode operation provides the capability where, user defined  
Changingqueuesrequires4RCLKcyclesonthereadport(seeFigure55,  
packetsorframescanbewrittentothedeviceasopposedtoStandardmode Reading in Packet Mode during a Queue Change). RADEN goes high  
whereindividualwordsarewritten.Forclarification,inPacketMode,apacket signalinga change ofqueue (clockcycle BorI”). The address onRDADD  
canbewrittentothedevicewiththestartinglocationdesignatedasTransmitStart atthe risingedge ofRCLKdetermines the queue. As illustratedinFigure 55  
ofPacket(TSOP)andtheendinglocationdesignatedasTransmitEndofPacket during cycle (B” or I”), and the next cycle (C” or J) data can continue to  
(TEOP). Inconjunction, a packetreadfromthe device willbe designatedas bereadfromtheactive(old)queue(QA orQBrespectively),providedbothREN  
Receive StartofPacket(RSOP)anda Receive EndofPacket(REOP). The andOEareLOW(active)simultaneouslywithchangingqueues.Inapplications  
minimumsizeforapacketisfourwords(SOP,twowordsofdataandEOP).The where the multi-queue flow-control device is connected to a shared bus, an  
4words mustbe the largestwordthatis configured. Forexample ina x18to outputenable,OEcontrolpinisalsoprovidedtoallowHigh-Impedanceselection  
x9busmatchingconfigurationthefourwordsmustbex18bitwords.Thealmost ofthedataoutputs(Qout).  
emptyflagbus becomes the PacketReady” PRflagbus whenthedeviceis  
Refer to Figure 55, Reading in Packet Mode during a Queue Change as  
configuredforpacketmode.ValidpacketsareindicatedwhenbothPRandOR wellasFigure38,39,40,41, and42fortimingdiagramsandTable5,forRead  
areasserted.  
Addressbusarrangement.  
Note,thealmostemptyflagbusbecomesthePacketReady”flagbuswhen  
WRITEQUEUESELECTIONANDWRITEOPERATION(PACKETMODE) thedeviceis configuredforpacketreadymode.  
Changingqueuesrequires 4WCLKcyclesonthewriteport(seeFigure54,  
WritinginPacketModeduringaQueueChange).WADENgoeshighsignaling EXPANDING UP TO 256 QUEUES OR PROVIDING DEEPER QUEUES  
achangeofqueue(clockcycleB”orI”).TheaddressonWRADDattherising  
ExpansioncantakeplaceonlyinIDTStandardmode.Inthe8Queuemulti-  
edgeofWCLKdeterminesthenextqueue.DatapresentedonDinduringthat queuedevice,theWRADDaddressbusis8bitswide.The7LeastSignificant  
cycle (B” or I”) and the next cycle (C” or J) can continue to be written to bits(LSbs)areusedtoaddressoneofthe32availablequeueswithinasingle  
theactive(old)queue(QA orQB respectively),providedWENisLOW(active). multi-queuedevice.TheMostSignificantbit(MSbs)isusedwhenadeviceis  
IfWENisHIGH(inactive)forthesetwoclockcycles(H),datawillnotbewritten connectedinexpansionconfigurationwithupto8devicesconnectedinwidth  
intothepreviousqueue(QA). Thewriteportdiscretefullflagwillupdatetoshow expansion,eachdevicehavingitsownbitaddress.Whenlogicallyexpanded  
thefullstatusofthenewlyselectedqueue(QB)atthislastcyclesrisingedge(D” withmultipleparts,eachdeviceisstaticallysetupwithauniquechipIDcodeon  
orK”).Datavaluespresentedonthedatainputbus(Din),canbewritteninto theIDpins,ID0,ID1,andID2.AdeviceisselectedwhentheMostSignificant  
thenewlyselectedqueue(QX)ontherisingedgeofWCLKonthethirdcycle bit of the WRADD address bus matches the ID code. The maximum logical  
(E)followingarequestforchangeofqueue,providedWENisLOW(active) expansion is 64 queues (8 queues x 8 devices).  
andthenewqueueisnotfull.Ifaselectedqueueisfull(FFisLOW),thenwrites  
Note:TheWRADDbusisalsousedinconjunctionwithFSTR(almostfullflag  
tothatqueuewillbeprevented.Note,datacannotbewrittenintoafullqueue. busstrobe),toaddressthealmostfullflagbusduringdirectmodeofoperation.  
RefertoFigure54,WritinginPacketModeduringaQueueChangefortiming  
diagrams.  
RefertoTable4,forWriteAddressbusarrangement.Also,refertoFigure  
47,FullFlagTimingExpansionConfiguration,Figure51,OutputReadyFlag  
Timing (In Expansion Configuration), and Figure 67, Expansion using ID  
codes,fortimingdiagrams.  
AUGUST4,2005  
28  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
SWITCHING QUEUES ON THE WRITE PORT  
WriteAddressbus(WRADD)duringarisingedgeofWCLKwhileWriteAddress  
TheIDT72P51339/72P51349/72P51359/72P51369multi-queueflow-con- Enable(WADEN)isHIGH.Forreference,thestateofWriteEnable(WEN)is  
troldevicescanbeconfigureduptoamaximumof8queues.Dataiswritteninto aDontCare”duringaqueueselection.WENhassignificanceduringthequeue  
aqueueusingtheDataInput(Din)bus,WriteClock(WCLK)andWriteEnable markoperation. Selectinga queue requires 4WCLKcycles. RefertoFigure  
(WEN)signals.Selectingaqueueoccursbyplacingthequeueaddressonthe 7, Write PortSwitchingQueues SignalSequence.  
Queue Switch Cycle  
QS-1  
QS0  
QS1  
QS2  
QS3  
WCLK  
Queue  
address  
Queue  
address  
WRADD  
WADEN  
6716 drw13  
Figure 7. Write Port Switching Queues Signal Sequence  
TheIDT72P51339/72P51349/72P51359/72P51369multi-queueflow-con-  
Formaximumefficiency,duringthe4clockcyclesrequiredtoswitchqueues  
troldevicesupportschanging(switching)queueseveryfour(4)clockcycles. theIDT72P51339/72P51349/72P51359/72P51369multi-queueflow-control  
To switch from the Present Queue (PQ) to another queue requires a queue devicecancontinuetowriteintothePresentQueue(PQ).ThePresentQueue  
addresstobeplacedontheWriteAddressBus(WRADD)busandarisingedge isdefinedasthecurrentselectedqueue.RefertoFigure8,SwitchingQueues  
ofWriteClock(WCLK)andWriteAddressEnable(WADEN)isHIGH.There BusEfficiency.  
arenorestrictionsastotheordertowhichqueuesareselectedorswitchedinto  
oroutof.  
*
Queue Switch Cycles  
WCLK  
WEN  
WADEN  
PQ  
PQ  
PQ  
PQ  
NQ  
NQ  
Din  
6716 drw14  
NOTES:  
1. PQ = Present Queue  
NQ = Next Queue  
* Requires 4 clock cycles to switch queues.  
Figure 8. Switching Queues Bus Efficiency  
AUGUST4,2005  
29  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TheIDT72P51339/72P51349/72P51359/72P51369multi-queueflow-con- the write andreadports. The simultaneous queue switchingmayoccurwith  
trol device supports writing and reading from either the same queue of from eithertheWriteClockandReadClocksynchronousorasynchronoustoeach  
differentqueues.Thedevicealsosupportssimultaneousqueueswitchingon other. For reference refer to Figure 9, Simultaneous Queue Switching.  
WCLK  
WEN  
WADEN  
PQ  
PQ  
PQ  
PQ  
PQ  
NQ  
Din  
RCLK  
REN  
RADEN  
Qout  
PQ  
PQ  
PQ  
PQ  
PQ  
PQ  
NQ  
6716 drw15  
Figure 9. Simultaneous Queue Switching  
Themulti-queueflow-controldevicerequires4clockcyclestoswitchqueues  
onthewriteport.RefertoTable6,WriteQueueSwitchOperationforadetailed  
descriptionofeachqueueswitchclockcycle.  
TABLE 6 — WRITE QUEUE SWITCH OPERATION  
Queue Switch  
Cycle  
IDT Mode  
FWFT Mode  
QS-1  
QS0  
QS1  
QS2  
QueueSwitchInitiated,Rewrite/NoRewriteselection QueueSwitchInitiated,Rewrite/NoRewriteselection  
Queue MARK / Un-MARK  
Queue MARK / Un-MARK  
PAF signal updated for Next Queue (NQ)  
Packet Ready (PR) signal updated  
Full Flag (FF) updated for NQ  
PAF signal updated for Next Queue (NQ)  
Packet Ready (PR) signal updated  
IR flag updated for NQ  
QS3  
StartofWriteDataOperation  
StartofWriteDataOperation  
AUGUST4,2005  
30  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
SWITCHING QUEUES ON THE READ PORT  
of RCLK while Read Address Enable (RADEN) is HIGH. For reference, the  
TheIDT72P51339/72P51349/72P51359/72P51369multi-queueflow-con- stateofReadEnable(REN)isaDontCare”duringareadportqueueselection.  
troldevicescanbeconfigureduptoamaximumof8queues.Dataisreadfrom REN has significance during the queue mark operation. Selecting a queue  
a queue using the Data Output (Qout) bus, Read Clock (RCLK) and Read requires 4 WCLK cycles. Refer to Figure 10, Read Port Switching Queues  
Enable (REN)signals. Selectinga queue onthe readportoccurs byplacing SignalSequence.  
the queue address onthe ReadAddress bus (RDADD)duringa risingedge  
Queue Switch Cycle  
QS-1  
QS0  
QS1  
QS2  
QS3  
RCLK  
Queue  
address  
Queue  
address  
RDADD  
RADEN  
6716 drw16  
Figure 10. Read Port Switching Queues Signal Sequence  
TheIDT72P51339/72P51349/72P51359/72P51369multi-queueflow-con-  
Formaximumefficiency,duringthe4clockcyclesrequiredtoswitchqueues  
troldevicesupportschanging(switching)queueseveryfour(4)clockcycles. theIDT72P51339/72P51349/72P51359/72P51369multi-queueflow-control  
To switch from the Present Queue (PQ) to another queue requires a queue devicecancontinuetoreadfromthePresentQueue(PQ).ThePresentQueue  
addresstobeplacedontheReadAddressBus(RDADD)busandarisingedge isdefinedasthecurrentselectedqueue.RefertoFigure11,SwitchingQueues  
of Read Clock (RCLK) and Read Address Enable (RADEN) is HIGH. There BusEfficiency.  
arenorestrictionsastotheordertowhichqueuesareselectedorswitchedinto  
oroutof.  
Queue Switch Cycles  
RCLK  
REN  
RADEN  
PQ  
PQ  
PQ  
PQ  
PQ  
NQ  
NQ  
Qout  
6716 drw17  
NOTE:  
PQ = Present Queue  
NQ = Next Queue  
Figure 11. Switching Queues Bus Efficiency  
AUGUST4,2005  
31  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
SIMULTANEOUS QUEUE SWITCHING  
the readandwrite ports. The simultaneous queue switchingmayoccurwith  
TheIDT72P51339/72P51349/72P51359/72P51369multi-queueflow-con- eithertheReadClockandWriteClocksynchronousorasynchronoustoeach  
trol device supports reading and writing from either the same queue of from other. For reference refer to Figure 12, Simultaneous Queue Switching.  
differentqueues.Thedevicealsosupportssimultaneousqueueswitchingon  
WCLK  
WEN  
WADEN  
PQ  
PQ  
PQ  
PQ  
NQ  
Din  
RCLK  
REN  
RADEN  
Qout  
PQ  
PQ  
PQ  
PQ  
PQ  
PQ  
NQ  
6716 drw18  
Figure 12. Simultaneous Queue Switching  
Themulti-queueflow-controldevicerequires4clockcyclestoswitchqueues  
onthereadport,refertoTable7,ReadQueueSwitchOperationforadetailed  
descriptionofeachqueueswitchclockcycles.  
TABLE 7 — READ QUEUE SWITCH OPERATION  
Queue Switch  
Cycle  
IDT Mode  
FWFT Mode  
QS-1  
QS0  
QS1  
QS2  
QueueSwitchInitiated,Re-read/NoRe-readselection QueueSwitchInitiated,Re-read/NoRe-readselection  
Queue MARK / Un-MARK Queue MARK / Un-MARK  
PAE signal updated for Next Queue (NQ)  
Packet Ready (PR) signal updated  
Empty Flag (EF) updated for NQ  
PAE signal updated for Next Queue (NQ)  
Packet Ready (PR) signal updated  
QS3  
StartofReadDataOperation  
StartofReadData Operation  
OR updated for NQ  
TABLE 8 — SAME QUEUE SWITCH  
PQ  
NQ  
Supported  
Comment  
NotMarked  
NotMarked  
Marked  
NotMarked  
Marked  
Yes  
Yes  
QueueSwitchisignored  
Add Mark to current queue  
Not Marked, No Reread  
Not Marked, Reread  
Marked, No Reread  
Marked, Reread  
NotAllowed  
Yes  
Marked  
Remove Mark  
Legend:  
PQ = Present Queue  
NQ = Next Queue  
Marked  
NotAllowed  
Yes  
Marked  
Keep Mark  
AUGUST4,2005  
32  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
QUEUE MARKing  
MARK AND REWRITE/ MARK AND REREAD  
TheoverallintentoftheMARKfunctionistoprovidetheabilitytoeitherre-  
writeand/orre-readinformationthatis storedintoaqueue.  
TheMARKfunctionalityoperatesinanymodecombination (Packetmode,  
IDTStandardMode,FIFOMode,FWFTMode),FWFT). QueuesontheWrite  
AqueuecanbeMARKedbyeitherthewriteportorthereadport.TheMARK Portare MARKedusingthe WCLK& WADENsignals. Queues onthe Read  
operationisportindependent.Thesamequeuecanbemarkedbythewriteport PortareMARKedusingtheRCLKandRADENsignals.Refertothefollowing  
and the read port simultaneously. Only the active queue can be MARKed, timingdiagramsforadditionalqueueMARKdetails.RefertoFigure13through  
multiplequeuescanNOTbeMARKedbyaport.Aport(writeorread)mayonly 18forfurtherinformation.  
designateonequeueMARKedatatime. Uponaqueueswitchadecisionmust  
bemadeastowhethertoreturntotheMarkedlocationorthelastaccessaddress.  
A
QS-1  
B
QS0  
C
QS1  
D
E
QS2  
QS3  
WCLK  
WEN  
QS  
WADEN  
DIN  
Present Queue (PQ)  
Next Queue (NQ)  
6716 drw29  
@QS-1, if WEN=0 and WADEN=1, PQ will be updated in QS0,1, and 2, and NQ data will be written in QS3.  
@QS-1,ifWEN_N=1andWADEN=1,there is noupdate forPQduringQS0-QS2.Nexttime PQis switchedback,data willbe writtenintolastupdate  
location(rewrite).  
@QS0, WADENstatus is usedtodetermine if a mark”is requestedforNQ. IfWADEN=1inQS0, NQwillbe marked. InFIFOmode, the firstNQ  
positionafterQSis marked(latchWFCRvalues before QS3), data cantbe readoutbeyondthis location. Inpacketmode, everySOPpositionis  
markedtillnextSOPcomes,thenthemarkmovestonewposition.  
@QS0,ifWADEN=0,NQisnotmarked.  
Figure 13. MARK and Re-Write Sequence  
A
QS-1  
B
QS0  
C
QS1  
D
E
QS2  
QS3  
RCLK  
REN  
QS  
RADEN  
QOUT  
Present Queue  
Next Queue  
6716 drw30  
@QS-1(A),ifREN=0andRADEN=1,(requestforaQueueSwitchoccurs RADEN=1andsimultaneouslyreadingfromaqueue)theQueueAddress  
Register will be updated in QS2, and the data from the Next Queue (NQ) will be available in QS3.  
@QS-1,ifREN=1andRADEN=1,(requestforaQueueSwitchoccurs RADEN=1)theQueueAddress RegisterwillbeupdatedinQS2.ThePresent  
Queueaddress pointerwillnotincrementduringQS0-QS2.TheNexttimePQis selected,thedatawillbefromthelastaddressedlocation.  
@QS0,RADENstatusisusedtodetermineifamark”isrequestedforNQ.IfRADEN=1inQS0,NQwillbemark.InFIFOmode,firstNQpositionafter  
QSismarked(latchRFCRvaluesbeforeQS3),datacant overwritethislocation.Inpacketmode,everySOPpositionismarkedtillnextSOPcomes,  
thenthemarkmovestonewposition.  
Figure 14. MARK and Re-Read Sequence  
AUGUST4,2005  
33  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
This rising edge of  
WCLK is the start of  
the 1st cycle  
Write Queue MARK  
A
B
Wri te Queue  
Select Cycle  
Write Queue  
MARK Cycle  
WCLK  
WADEN  
WADEN  
ACTION  
A
B
1
1
1
0
Selects a Queue & MARK the Queue  
Selects a Queue  
6716 drw31  
Figure 15. MARKing a Queue in Packet Mode - Write Queue MARK  
Read Queue MARK  
This rising edge of RCLK is  
the start of the 1st cycle  
B
A
Read Queue  
Select Cycle  
Read Queue  
MARK Cycle  
RCLK  
RADEN  
RADEN  
ACTION  
A
B
1
1
1
0
Selects a Queue & MARK the Queue  
Selects a Queue  
6716 drw32  
Figure 16. MARKing a Queue in Packet Mode - Read Queue MARK  
AUGUST4,2005  
34  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
This rising edge of  
WCLK isthestart  
Write Queue UN-MARK  
of the 1st cycle.  
B
A
Write Queue  
Select Cycle  
Write Queue  
MARK Cycle  
WCLK  
WADEN  
WADEN  
ACTION  
B
A
1
1
1
0
Selects a Queue and MARK the Queue  
Selects a Queue and Remove MARK  
6716 drw33  
Figure 17. UN-MARKing a Queue in Packet Mode - Write Queue UN-MARK  
This rising edge of  
RCLK isthestart  
Read Queue UN-M A RK  
of the 1st cycle.  
B
A
Read Queue  
Select Cycle  
Read Queue  
MARK Cycle  
RCLK  
RADEN  
RADEN  
ACTION  
B
A
1
1
1
0
Selects a Queue and MARK the Queue  
Selects a Queue & Remove MARK  
6716 drw34  
Figure 18. UN-MARKing a Queue in Packet Mode - Read Queue UN-MARK  
AUGUST4,2005  
35  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
MARKOPERATIONAL NOTES:  
IN PACKET MODE  
WritePort  
-
-
-
-
-
-
-
MARKing a location can only occur during a Queue switch cycle  
There is only one MARKed location within a Queue  
Only1packetcanbe MARKedata time withina Queue.  
Inpacketmode,forafullpacketre-writetheMARKmustoccurattheSOPlocationofthepacket.  
Inpacketmodedatacanbere-writtenfromtheMARK  
InpacketmodetheMARKmovesfrompackettopacketwithinaqueuewhenthenextpacketiswritten.  
The sequence tomove the MARKtothe nextpacketis, firstanEOPmustoccur, thena validwrite occurs.  
MARK Move Sequence  
EOP  
SOP  
Queue MARK  
6716 drwX35  
ReadPort  
- MARKing can only occur during a Queue switch cycle  
-
-
Only1packetcanbe MARKedata time withina Queue.  
Inpacketmode,MARKismovedtoalocationofthepacket.  
- Inpacketmode the MARKcanbe movedfromSOP(startofpacket)toSOP(startofpacket)withinthe queue bya validread.  
AUGUST4,2005  
36  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
This rising edge of  
Wri te Queue M A RK  
WCLK isthestart of the  
1st cycle  
A
B
Wri te Queue  
Select Cycle  
Write Queue  
MARK Cycle  
WCLK  
WADEN  
WADEN  
ACTION  
B
A
1
1
1
0
Selects the Queue and MARK the Queue  
Selects a Queue  
6716 drw36  
Figure 19. MARKing a Queue in FIFO Mode - Write Queue MARK  
This rising edge of  
Read Queue MARK  
RCLK isthestart  
of the1st cycle  
A
B
Read Queue  
Select Cycle  
Read Queue  
MARK Cycle  
RCLK  
RADEN  
RADEN  
ACTION  
B
A
1
1
1
0
Selects the Queue and MARK the Queue  
Selects a Queue  
6716 drw37  
Figure 20. MARKing a Queue in FIFO Mode - Read Queue MARK  
MARK Operational Notes:  
In FIFO Mode  
WritePort  
ReadPort  
-
-
-
MARKing can only occur during a Queue switch cycle  
The entire Queue is MARKedata time.  
InIDTStandard/FWFTmode,MARKisusedtomarkthefirstlocation  
-
-
MARKing can only occur during a Queue switch cycle  
OnlythefirstlocationoftheQueuecanbeMARKedinStandard/FWFT  
mode.  
oftheQueue.  
-
InIDTStandardmodetheMARKcanNOTbemovedlocationtolocation  
withinthequeue.  
-
InIDTStandard/FWFTmodetheMARKcanNOTbemovedwithinthe  
queue.  
AUGUST4,2005  
37  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Un-MARKing a Queue  
UN-MARKing a Queue in FIFO Mode  
This rising edge of  
Write Queue UN-MARK  
WCLK i s the start  
of the1st cycle  
A
B
Write Queue  
Select Cycle  
Write Queue  
MARK Cycle  
WCLK  
WADEN  
WADEN  
ACTION  
B
A
1
0
Selects a Queue and UN-MARK the Queue  
6716 drw38  
Figure 21. UN-MARKing a Queue in FIFO Mode - Write Queue UN-MARK  
This rising edge of  
Read Queue UN-MARK  
RCLK isthestart  
of the1st cycle  
A
B
Read Queue  
Select Cycle  
Read Queue  
MARK Cycle  
RCLK  
RADEN  
RADEN  
ACTION  
B
A
1
0
Selects a Queue and UN-MARK the Queue  
6716 drw39  
Figure 22. UN-MARKing a Queue in FIFO Mode - Read Queue UN-MARK  
UN-MARK Operational Notes:  
In FIFO Mode  
WritePort  
ReadPort  
-
-
Un-MARKing can only occur during a Queue switch cycle.  
-
-
Un-MARKing can only occur during a Queue switch cycle.  
InFIFOMode,UN-MARKingaQueuecanbeaccomplishedbyeither  
switchingtothesamequeueorswitchingtoanotherqueue.  
Note only 1 queue can be marked at any given time.  
InStandard/FIFOmode the MARKcanNOTbe movedlocationto  
locationwithinthequeue.  
InStandard/FIFOmode,UN-MARKingaQueuecanbeaccomplished  
byeitherswitchingtothesamequeueorswitchingtoanotherqueue.  
Note only 1 queue can be marked at any given time.  
InStandard/FIFOmode the MARKcanNOTbe movedlocationto  
locationwithinthequeue.  
-
-
-
-
AUGUST4,2005  
38  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Leaving a MARK Active  
DuringaQueueswitchthevalueofWENforthewriteportandRENforthe  
readportdetermineswhethertheMARKremainsactiveorisde-activated.  
Leaving a MARK active on the Write Port  
Write Queue  
Select Cycle  
Write Queue  
MARK Cycle  
WCLK  
WADEN  
Leave the MARK  
WEN  
(A rewrite  
request)  
6716 drw40  
Figure 23. Leaving a MARK active on the Write Port  
Leaving a MARK active on the Read Port  
Read Queue  
Select Cycle  
Read Queue  
MARK Cycle  
RCLK  
RADEN  
Leave the MARK  
REN  
(A re-read  
request)  
6716 drw41  
Figure 24. Leaving a MARK active on the Read Port  
AUGUST4,2005  
39  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Inactivating a MARK  
DuringaQueueswitchthevalueofWENforthewriteportandRENforthe  
readportdetermineswhethertheMARKremainsactiveorisde-activated.  
Inactivating a MARK on the Write Port  
Write Queue  
Select Cycle  
Write Queue  
MARK Cycle  
WCLK  
WADEN  
Inactivate the  
Write Port MARK  
WEN  
6716 drw42  
(No re-write)  
Figure 25. Inactivating a MARK on the Write Port Active  
Inactivating a MARK on the Read Port  
Read Queue  
Select Cycle  
Read Queue  
MARK Cycle  
RCLK  
RADEN  
Inactivate the  
Read Port MARK  
REN  
6716 drw43  
(No re-read)  
Figure 26. Inactivating a MARK on the Read Port Active  
AUGUST4,2005  
40  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Write Cycle  
1st Cycle  
2nd Cycle  
WEN  
(active LOW)  
WEN  
(active LOW)  
0
Action  
WADEN  
(active HIGH)  
0
WADEN  
(active HIGH)  
0
NO  
0
Operation  
Selects a  
Queue  
NO  
Operation  
NO  
0
1
1
1
0
1
1
0
0
1
1
1
Operation  
6716 drw44  
Read Cycle  
Action  
1st Cycle  
2nd Cycle  
REN  
REN  
(active LOW)  
0
RADEN  
(active HIGH)  
0
RADEN  
(active HIGH)  
0
(active LOW)  
NO  
0
0
1
1
Operation  
Selects a  
Queue  
NO  
Operation  
NO  
0
1
1
1
0
1
1
0
1
Operation  
6716 drw45  
AUGUST4,2005  
41  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
madeonlyasingledevicedrivestheFFflagbusandallotherFF flagoutputs  
connectedtotheFFflagbusareplacedintoHigh-Impedance.Theuserdoes  
nothavetoselectthisHigh-Impedancestate,agivenmulti-queueflow-control  
devicewillautomaticallyplaceitsFFflagoutputintoHigh-Impedancewhennone  
ofitsqueuesareselectedforwriteoperations.  
FLAGDESCRIPTION  
PAFn FLAG BUS OPERATION  
TheIDT72P51339/72P51349/72P51359/72P51369multi-queueflow-con-  
trol device can be configured for up to 8 queues, each queue having its own  
almostfullstatus.Anactivequeuehasitsflagstatusoutputtothediscreteflags,  
FFandPAF,onthewriteport.Queuesthatarenotselectedforawriteoperation  
canhavetheirPAFstatusmonitoredviathePAFnbus.ThePAFnflagbusis  
8bitswide,sothat8queuesatatimecanhavetheirstatusoutputtothebus.  
If9ormorequeuesaresetupwithinadevicethenthereare2methodsbywhich  
thedevicecansharethebusbetweenqueues,Direct”modeandPolled”mode  
dependingonthestateoftheFM(FlagMode)inputduringaMasterReset.If  
8orlessqueuesaresetupwithinadevicetheneachwillhaveitsowndedicated  
outputfromthe bus. If8orless queues are setupinsingle device mode, itis  
recommendedtoconfigurethePAFnbustopolledmodeasitdoesnotrequire  
usingthewriteaddress (WRADD).  
Whenqueueswithinasingledeviceareselectedforwriteoperations,theFF  
flagoutputofthatdevicewillmaintaincontroloftheFFflagbus.ItsFFflagwill  
simplyupdatebetweenqueueswitchestoshowtherespectivequeuefullstatus.  
Themulti-queuedeviceplacesitsFFflagoutputintoHigh-Impedancebased  
onthe1-3bitIDcode(1iftwomulti-queueareconfiguredwithamaximumtotal  
of256queues,2iffourdevicesareusedtotallingamaximumof256queues,  
and3ifthereareuptoeightdeviceswithamaximumtotalof256queues)found  
inthe1-3mostsignificantbitsofthewritequeueaddressbus,WRADD.Ifthe  
1-3mostsignificantbitsofWRADDmatchthe1-3bitIDcodesetuponthestatic  
inputs,ID0,ID1andID2thentheFFflagoutputoftherespectivedevicewillbe  
inaLow-Impedancestate.Iftheydonotmatch,thentheFFflagoutputofthe  
respectivedevicewillbeinaHigh-Impedancestate.SeeFigure47,FullFlag  
TiminginExpansionConfigurationfordetailsofflagoperation,includingwhen  
more thanone device is connectedinexpansion.  
FULL FLAG OPERATION  
Themulti-queueflow-controldeviceprovidesasingleFullFlagoutput,FF.  
TheFFflagoutputprovidesafullstatusofthequeuecurrentlyselectedonthe  
writeportforwriteoperations.Internallythemulti-queueflow-controldevice  
monitorsandmaintainsastatusofthefullconditionofallqueueswithinit,however  
onlythequeuethatisselectedforwriteoperationshasitsfullstatusoutputtothe  
FF flag.This dedicatedflagis oftenreferredtoas theactivequeuefullflag.  
Whenqueueswitchesarebeingmadeonthewriteport,theFFflagoutput  
willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
onthe3rdcycleafteranewqueueselectionismade.Theuserthenhasafull  
status forthenewqueueonecycleaheadoftheWCLKrisingedgethatdata  
can be written into the new queue. That is, a new queue can be selected on  
thewriteportviatheWRADDbus,WADENenableandarisingedgeofWCLK.  
Onthe4thrisingedgeofWCLK,theFFflagoutputwillshowthefullstatusofthe  
newlyselectedqueue.OntheforthrisingedgeofWCLKfollowingthequeue  
selection,datacanbewrittenintothenewlyselectedqueueprovidedthatdata  
andenablesetup&holdtimesaremet.  
Note,theFFflagwillprovidestatusofanewlyselectedqueuethreeWCLK  
cycleafterqueueselection,whichisonecyclebeforedatacanbewrittentothat  
queue.Thispreventstheuserfromwritingdatatoaqueuethatisfull,(assuming  
thataqueueswitchhas beenmadetoaqueuethatis actuallyfull).  
TheFFflagissynchronoustotheWCLKandalltransitionsoftheFFflagoccur  
basedonarisingedgeofWCLK.Internallythemulti-queuedevicemonitorsand  
keepsarecordofthefullstatusforallqueues.Itispossiblethatthestatusofa  
FFflagmaybechanginginternallyeventhoughthatflagisnottheactivequeue  
flag (selected on the write port). A queue selected on the read port may  
experienceachangeofitsinternalfullflagstatusbasedonreadoperations.  
See Figure 44, Write Queue Select, Write Operation and Full Flag  
OperationandFigure47,FullFlagTiminginExpansionConfigurationfortiming  
information.  
EMPTYOROUTPUTREADYFLAGOPERATION(EF/OR)  
The multi-queue flow-control device provides a single Empty or Output  
Readyflagoutput,EF/OR.TheOR provides anemptystatus ordataOutput  
Readystatusforthedatawordcurrentlyavailableontheoutputregisterofthe  
readport.TherisingedgeofanRCLKcyclethatplacesnewdataontotheoutput  
registerofthereadport,alsoupdatestheORflagtoshowwhetherornotthat  
newdatawordisactuallyvalid.Internallythemulti-queueflow-controldevice  
monitorsandmaintainsastatusoftheemptyconditionofallqueueswithinit,  
howeveronlythequeuethatisselectedforreadoperationshasitsOutputReady  
(empty)statusoutputtotheORflag,givingavalidstatusforthewordbeingread  
atthattime.  
Thenatureofthefirstwordfallthroughoperationmeansthatwhenthelast  
datawordisreadfromaselectedqueue,theORflagwillgoHIGHonthenext  
enabled read, that is, on the next rising edge of RCLK while REN is LOW.  
Whenqueueswitchesarebeingmadeonthereadport,theORflagwillswitch  
toshowstatusofthenewqueueinlinewiththedataoutputfromthenewqueue.  
Whenaqueueselectionismadethefirstdatafromthatqueuewillappearon  
theQoutdataoutputs4RCLKcycleslater,theORwillchangestatetoindicate  
validityofthedatafromthenewlyselectedqueueonthis3rd RCLKcyclealso.  
Thepreviouscycleswillcontinuetooutputdatafromthepreviousqueueand  
theORflagwillindicatethestatusofthoseoutputs.Again,theORflagalways  
indicatesstatusforthedatacurrentlypresentontheoutputregister.  
TheORflagissynchronoustotheRCLKandalltransitionsoftheORflagoccur  
basedonarisingedgeofRCLK.Internallythemulti-queuedevicemonitorsand  
keepsarecordoftheOutputReady(empty)statusforallqueues.Itispossible  
that the status of an OR flag may be changing internally even though that  
respectiveflagisnottheactivequeueflag(selectedonthereadport).Aqueue  
selectedonthewriteportmayexperienceachangeofitsinternalORflagstatus  
basedonwriteoperations,thatis,datamaybewrittenintothatqueuecausing  
ittobecomenotempty.  
EXPANSION CONFIGURATION - FULL FLAG OPERATION  
Whenmulti-queuedevicesareconnectedinExpansionconfigurationtheFF  
flagsofalldevicesshouldbeconnectedtogether,suchthatasystemcontroller  
monitoring and managing the multi-queue devices write port only looks at a  
singleFFflag(asopposedtoadiscreteFFflagforeachdevice).ThisFFflag  
isonlypertinenttothequeuebeingselectedforwriteoperationsatthattime.  
Remember,thatwheninexpansionconfigurationonlyonemulti-queuedevice  
canbewrittentoatanymomentintime,thustheFFflagprovidesstatusofthe  
active queue onthe write port.  
SeeFigure48,ReadQueueSelect,ReadOperationandFigure51,Output  
ReadyFlagTimingfordetailsofthetiming.  
EXPANSIONEMPTYFLAGOPERATION  
Whenmulti-queuedevicesareconnectedinExpansionconfiguration,theEF  
flagsofalldevicesshouldbeconnectedtogether,suchthatasystemcontroller  
monitoring and managing the multi-queue devices read port only looks at a  
singleEFflag(asopposedtoadiscreteEFflagforeachdevice).ThisEFflag  
ThisconnectionofflagoutputstocreateasingleflagrequiresthattheFFflag  
outputhaveaHigh-Impedancecapability,suchthatwhenaqueueselectionis  
AUGUST4,2005  
42  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
is onlypertinenttothequeuebeingselectedforreadoperations atthattime.  
SothePAFflagdelayfromawriteoperationtoPAFflagLOWis2WCLK+  
Remember,thatwheninexpansionconfigurationonlyonemulti-queuedevice tWAF.ThedelayfromareadoperationtoPAFflagHIGHistSKEW2 +WCLK+  
canbereadfromatanymomentintime,thustheEFflagprovidesstatusofthe tWAF.  
active queue on the read port.  
Note, if tSKEW is violated there will be one added WCLK cycle delay.  
ThisconnectionofflagoutputstocreateasingleflagrequiresthattheEFflag  
ThePAFflagissynchronoustotheWCLKandalltransitionsofthePAFflag  
outputhaveaHigh-Impedancecapability,suchthatwhenaqueueselectionis occur based on a rising edge of WCLK. Internally the multi-queue device  
madeonlyasingledevicedrivestheEFflagbusandallotherEFflagoutputs monitorsandkeepsarecordofthealmostfullstatusforallqueues.Itispossible  
connectedtotheEFflagbusareplacedintoHigh-Impedance.Theuserdoes thatthestatusofaPAFflagmaybechanginginternallyeventhoughthatflagis  
nothavetoselectthisHigh-Impedancestate,agivenmulti-queueflow-control nottheactivequeueflag(selectedonthewriteport).Aqueueselectedonthe  
devicewillautomaticallyplaceitsEFflagoutputintoHigh-Impedancewhennone readportmayexperienceachangeofitsinternalalmostfullflagstatusbased  
ofitsqueuesareselectedforreadoperations.  
on read operations. The multi-queue flow-control device also provides a  
Whenqueueswithinasingledeviceareselectedforreadoperations,theEF duplicateofthePAFflagonthePAF[7:0]flagbus,thiswillbediscussedindetail  
flagoutputofthatdevicewillmaintaincontroloftheEFflagbus.ItsEFflagwill inalatersectionofthedatasheet.  
simplyupdatebetweenqueueswitchestoshowtherespectivequeuestatus.  
SeeFigures 23and24forAlmostFullflagtimingandqueueswitching.  
Themulti-queuedeviceplacesitsEFflagoutputintoHigh-Impedancebased  
onthe1-3bitIDcode(1iftwomulti-queueareconfiguredwithamaximumtotal ALMOSTEMPTYFLAG  
of256queues,2iffourdevicesareusedtotallingamaximumof256queues,  
As previously mentioned the multi-queue flow-control device provides a  
and3ifthereareuptoeightdeviceswithamaximumtotalof256queues)found single Programmable Almost Empty flag output, PAE. The PAE flag output  
inthe3mostsignificantbitsofthereadqueueaddressbus,RDADD.Ifthe3most providesastatusofthealmostemptyconditionfortheactivequeuecurrently  
significantbitsofRDADDmatchthe1-3bitIDcodesetuponthestaticinputs,ID0, selectedonthereadportforreadoperations.Internallythemulti-queueflow-  
ID1andID2thenthe EF flagoutputofthe respective device willbe ina Low- controldevicemonitorsandmaintainsastatusofthealmostemptyconditionof  
Impedancestate.Iftheydonotmatch,thentheEFflagoutputoftherespective allqueueswithinit,howeveronlythequeuethatisselectedforreadoperations  
devicewillbeinaHigh-Impedancestate.SeeFigure51,OutputReadyFlag hasitsemptystatusoutputtothePAEflag.Thisdedicatedflagisoftenreferred  
Timing for details of flag operation, including when more than one device is toastheactivequeuealmostemptyflag.ThepositionofthePAEflagboundary  
connectedinexpansion.  
withinaqueuecanbeatanypointwithinthatqueuesdepth.Thislocationcan  
beuserprogrammedviatheserialportoroneofthedefaultvalues(8or128)  
canbeselectediftheuserhasperformeddefaultprogramming.  
ALMOST FULL FLAG  
As previously mentioned the multi-queue flow-control device provides a  
Asmentioned,everyqueuewithinamulti-queuedevicehasitsownalmost  
singleProgrammableAlmostFullflagoutput,PAF.ThePAFflagoutputprovides emptystatus,whenaqueueisselectedonthereadport,thisstatusisoutputvia  
astatusofthealmostfullconditionfortheactivequeuecurrentlyselectedonthe thePAEflag.ThePAEflagvalueforeachqueueisprogrammedduringmulti-  
writeportforwriteoperations.Internallythemulti-queueflow-controldevice queuedeviceprogramming(alongwiththenumberofqueues,queuedepths  
monitorsandmaintainsastatusofthealmostfullconditionofallqueueswithin andalmostfullvalues).ThePAEoffsetvalue,n,forarespectivequeuecanbe  
it,howeveronlythequeuethatisselectedforwriteoperationshasitsfullstatus programmedtobeanywherebetween0’andD’,whereDisthetotalmemory  
outputtothePAFflag.Thisdedicatedflagisoftenreferredtoastheactivequeue depthforthatqueue.ThePAEvalueofdifferentqueueswithinthesamedevice  
almostfullflag.ThepositionofthePAFflagboundarywithinaqueuecanbe canbedifferentvalues.  
atanypointwithinthatqueuesdepth.Thislocationcanbeuserprogrammed  
viatheserialportoroneofthedefaultvalues(8or128)canbeselectedifthe willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
userhasperformeddefaultprogramming. onthethirdcycleafteranewqueueselectionismade,onthesameRCLKcycle  
Whenqueueswitchesarebeingmadeonthereadport,thePAEflagoutput  
Asmentioned,everyqueuewithinamulti-queuedevicehasitsownalmost thatdataactuallyfallsthroughtotheoutputregisterfromthenewqueue.That  
fullstatus,whenaqueueisselectedonthewriteport,thisstatusisoutputviathe is,anewqueuecanbeselectedonthereadportviatheRDADDbus,RADEN  
PAFflag.ThePAFflagvalueforeachqueueisprogrammedduringmulti-queue enableandarisingedgeofRCLK.OnthethirdrisingedgeofRCLKfollowing  
device programming (along with the number of queues, queue depths and a queue selection, the data wordfromthe newqueue willbe available atthe  
almostemptyvalues).ThePAFoffsetvalue,m,forarespectivequeuecanbe outputregisterandthePAEflagoutputwillshowtheemptystatusofthenewly  
programmedtobeanywherebetween0’andD’,whereDisthetotalmemory selectedqueue.ThePAEisflagoutputisdoubleregisterbuffered,sowhena  
depthforthatqueue.ThePAFvalueofdifferentqueueswithinthesamedevice readoperationoccursatthealmostemptyboundarycausingtheselectedqueue  
canbedifferentvalues.  
statustogoalmostemptythePAEwillgoLOW2RCLKcyclesaftertheread.  
Whenqueueswitchesarebeingmadeonthewriteport,thePAFflagoutput Thesameistruewhenawriteoccurs,therewillbea3RCLKcycledelayafter  
willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus, thewriteoperation.  
onthethirdcycleafteranewqueueselectionismade,onthesameWCLKcycle  
thatdata canactuallybe writtentothe newqueue. Thatis, a newqueue can tRAE.ThedelayfromawriteoperationtoPAEflagHIGHis tSKEW2 +RCLK+  
beselectedonthewriteportviatheWRADDbus,WADENenableandarising tRAE.  
SothePAEflagdelayfromareadoperationtoPAEflagLOWis2RCLK+  
edgeofWCLK.OnthethirdrisingedgeofWCLKfollowingaqueueselection,  
Note, if tSKEW is violated there will be one added RCLK cycle delay.  
thePAFflagoutputwillshowthefullstatusofthenewlyselectedqueue.ThePAF  
ThePAEflagissynchronoustotheRCLKandalltransitionsofthePAEflag  
isflagoutputisdoubleregisterbuffered,sowhenawriteoperationoccursat occur based on a rising edge of RCLK. Internally the multi-queue device  
thealmostfullboundarycausingtheselectedqueuestatustogoalmostfullthe monitorsandkeepsarecordofthealmostemptystatusforallqueues.Itispossible  
PAFwillgoLOW2WCLKcyclesafterthewrite.Thesameistruewhenaread thatthestatusofaPAEflagmaybechanginginternallyeventhoughthatflagis  
occurs, there will be a 2 WCLK cycle delay after the read operation.  
nottheactivequeueflag(selectedonthereadport).Aqueueselectedonthe  
AUGUST4,2005  
43  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
writeportmayexperienceachangeofitsinternalalmostemptyflagstatusbased synchronizetothePAFnbus,FSYNCisalwaysHIGHfortheWCLKcyclethat  
on write operations. The multi-queue flow-control device also provides a the firststatus wordofa device is presentonthe PAFnbus.  
duplicateofthePAEflagonthePAE[7:0]flagbus,thiswillbediscussedindetail  
inalatersectionofthedatasheet.  
Whendevicesareconnectedinexpansionconfiguration,onlyonedevice  
willbesetastheMaster(ID='000'),MASTinputtiedHIGH,allotherdevices  
SeeFigures25and26forAlmostEmptyflagtimingandqueueswitching. willhaveMASTtiedLOW.Themasterdeviceisthefirstdevicetotakecontrol  
ofthePAFnbusandwillplaceitsfirststatuswordonthebusontherisingedge  
ofWCLK. ForthenextnWCLKcycles(n=numberofqueuesdividedby8with  
PAFn - DIRECT BUS  
IfFMisLOWatmasterresetthenthePAFnbusoperatesinDirect(addressed) nbeingincreasedbyone foranyremainder)the masterdevice willmaintain  
mode. In direct mode the user can address the status word of queues they controlofthePAFnbusandcycleitsstatuswordsthroughit,allotherdevices  
require and it will be placed on to the PAFn bus. For example, consider the holdtheirPAFnoutputsinHigh-Impedance.Whenthemasterdevicehascycled  
operationofthePAFnbuswhen26queueshavebeensetup.Tooutputstatus allofitsstatuswordsitpassesatokentothenextdeviceinthechainandthat  
ofthefirststatusword,Queue[0:7]theWRADDbusisusedinconjunctionwith deviceassumescontrolofthePAFnbusandthencyclesitsstatuswordsand  
the FSTR (PAF flag strobe) input and WCLK. The address present on the 4 soon,thePAFnbuscontroltokenbeingpassedonfromdevicetodevice.This  
leastsignificantbitsoftheWRADDbuswithFSTRHIGHwillbeselectedasthe tokenpassingisdoneviatheFXOoutputsandFXIinputsofthedevices(PAF  
status word address on a rising edge of WCLK. To address status word 0, ExpansionOut”andPAFExpansionIn).TheFXOoutputofthemasterdevice  
Queue[0:7]theWRADDbusshouldbeloadedwith0010000,thePAFnbus connectstotheFXIoftheseconddeviceinthechainandtheFXOofthesecond  
willchangestatustoshowthenewstatuswordselected1WCLKcycleafterstatus connectstotheFXIofthethirdandsoon.ThefinaldeviceinachainhasitsFXO  
wordselection.PAFn[0:7]getsstatusofqueues,Queue[0:7]respectively.  
connectedtotheFXIofthefirstdevice,sothatoncethePAFnbushascycled  
Toaddressstatusword1,Queue[8:15],theWRADDaddressis00100001. throughallstatuswordsofalldevices,controlofthePAFnwillpasstothemaster  
PAFn[0:7]getsstatusofqueues,Queue[8:15]respectively.Toaddressthe2nd device again and so on. The FSYNC of each respective device will operate  
statusword,Queue[16:23],theWRADDaddressis00100010.PAF[0:7]gets independentlyandsimplyindicatewhenthatrespectivedevicehastakencontrol  
statusofqueues,Queue[16:23]respectively.Toaddressthe3rdstatusword, ofthebus andis placingits firststatus wordontothePAFnbus.  
Queue[24:31], the WRADD address is 00100011. PAF[0:1] gets status of  
WhenoperatinginsingledevicemodetheFXIinputmustbeconnectedto  
queues,Queue[24:25]respectively.Remember,only26queuesweresetup, theFXOoutputofthesamedevice.Insingledevicemodeatokenisstillrequired  
sowhenstatusword4isselectedtheunusedoutputsPAF[2:7]willbedon'tcare tobe passedintothe device foraccessingthePAFnbus.  
states.  
Note, that if a read or write operation is occurring to a specific queue, say  
queuex’onthesamecycleasastatuswordswitchwhichwillincludethequeue PAEn/PRn FLAG BUS OPERATION  
PleaserefertoFigure66,PAFnBusPolledModefortiminginformation.  
‘x’,thentheremaybeanextraWCLKcycledelaybeforethatqueuesstatusis  
TheIDT72P51339/72P51349/72P51359/72P51369multi-queueflow-con-  
correctlyshownontherespectiveoutputofthePAFnbus.However,theactive trol device can be configured for up to 8 queues, each queue having its own  
PAFflagwillshowcorrectstatusatalltimes.  
almostempty/packetreadystatus.Anactivequeuehasitsflagstatusoutputto  
Statuswordscanbeselectedonconsecutiveclockcycles,thatisthestatus the discrete flags, OR, PAE and PR, on the read port. Queues that are not  
wordonthePAFnbuscanchangeeveryWCLKcycle.Also,datapresenton selectedforareadoperationcanhavetheirPAE/PRstatusmonitoredviathe  
theinputbus,Din,canbewrittenintoaQueueonthesameWCLKrisingedge PAEn/PRnbus. The PAEn/PRnflagbus is 8bits wide, sothat8queues ata  
thatastatuswordisbeingselected,theonlyrestrictionbeingthatawritequeue timecanhavetheirstatusoutputtothebus.If9ormorequeuesaresetupwithin  
selectionandPAFnstatuswordselectioncannotbemadeonthesamecycle. a device then there are 2 methods by which the device can share the bus  
If8orlessqueuesaresetupthenqueues,Queue[0:7]havetheirPAFstatus betweenqueues,"Direct"modeand"Polled"modedependingonthestateof  
outputonPAF[0:7]constantly.  
theFM(FlagMode)inputduringaMasterReset.If8orlessqueuesaresetup  
Whenthemulti-queuedevicesareconnectedinexpansionofmorethanone withinadevicetheneachwillhaveitsowndedicatedoutputfromthebus.If8  
devicethePAFnbussesofalldevicesareconnectedtogether,whenswitching orlessqueuesaresetupinsingledevicemode,itisrecommendedtoconfigure  
betweenstatus words ofdifferentdevices the usermustutilize the 1-3most the PAFn bus to polled mode as it does not require using the write address  
significantbitsoftheWRADDaddressbus(aswellasthe2LSBs).These1- (WRADD).  
3MSbscorrespondtothedeviceIDinputs,whicharethestaticinputs,ID0,ID1  
& ID2.  
Please refer to Figure 63 PAFn - Direct Mode Status Word Selection for  
PAEn/PRn - DIRECT BUS  
If FM is LOW at master reset then the PAEn/PRn bus operates in Direct  
(addressed) mode. In direct mode the user can address the status word of  
queues they require to be placed on to the PAEn/PRn bus. For example,  
considertheoperationofthePAEn/PRnbuswhen26queueshavebeensetup.  
timinginformation.AlsorefertoTable4,WriteAddressBus,WRADD.  
PAFn – POLLED BUS  
IfFMisHIGHatmasterresetthenthePAFnbusoperatesinPolled(looped) Tooutputstatusofthefirststatusword,Queue[0:7]theRDADDbusisusedin  
mode.InpolledmodethePAFnbusonlycyclesthroughthenumberofstatus conjunctionwiththeESTR(PAE/PRflagstrobe)inputandRCLK.Theaddress  
words requiredtodisplaythestatus ofthenumberofqueues thathavebeen presentonthe2leastsignificantbitsoftheRDADDbuswithESTRHIGHwill  
setupinthepart.EveryrisingedgeoftheWCLKcausesthenextstatusword beselectedasthestatuswordaddressonarisingedgeofRCLK.Sotoaddress  
to be loaded on the PAFn bus. The device configured as the master (MAST statusword1,Queue[0:7]theRDADDbusshouldbeloadedwithxxxx0000,  
inputtiedHIGH),willtakecontrolofthePAFnafterMRSgoesLOW.Forthewhole thePAEn/PRnbuswillchangestatustoshowthenewstatuswordselected1  
WCLKcyclethatthefirststatuswordisonPAFntheFSYNC(PAFnbussync) RCLK cycle after status word selection. PAEn[0:7] gets status of queues,  
outputwillbeHIGH,forallotherstatuswords,thisFSYNCoutputwillbeLOW. Queue[0:7]respectively.  
This FSYNC output provides the user with a mark with which they can  
Toaddress thesecondstatus word,Queue[8:15],theRDADDaddress is  
“xxxx0001. PAEn[0:7]gets status ofqueues,Queue[8:15]respectively.To  
AUGUST4,2005  
44  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 9 — FLAG OPERATION BOUNDARIES & TIMING  
Output Ready, EF Flag Boundary  
Full Flag, FF Boundary  
FF Boundary Condition  
I/O Set-Up  
EF Boundary Condition  
I/O Set-Up  
In36 to out36  
In36 to out36 (Almost Empty Mode)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
EF Goes LOWafterLastRead  
FF Goes LOW after D+1 Writes  
(Bothportsselectedforsamequeue  
(seenotebelowfortiming)  
when the 1st Word is written in)  
In36 to out36  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after D Writes  
In36toout36(PacketMode)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
EF Goes LOWafterLastRead  
EF Goes LOWafterLastRead  
EF Goes LOWafterLastRead  
EF Goes LOWafterLastRead  
EF Goes LOWafterLastRead  
(seenotebelowfortiming)  
In36 to out18  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In36 to out18  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
In36 to out18  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In36 to out9  
(Writeportonlyselectedforqueue  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
when the 1st Word is written in)  
In36 to out9  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In18 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
In36 to out9  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In9 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
In18 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after ([D+1] x 2) Writes  
(seenotebelowfortiming)  
In18 to out36  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after (D x 2) Writes  
(seenotebelowfortiming)  
In9 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after ([D+1] x 4) Writes  
(seenotebelowfortiming)  
Programmable Almost Full Flag, PAF & PAFn Bus Boundary  
I/O Set-Up PAF & PAFn Boundary  
In9 to out36  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after (D x 4) Writes  
(seenotebelowfortiming)  
in36 to out36  
PAF/PAFn Goes LOW after  
(Bothportsselectedforsamequeuewhenthe1st D+1-mWrites  
Wordiswritteninuntiltheboundaryisreached) (seenotebelowfortiming)  
NOTE:  
in36 to out36  
PAF/PAFn Goes LOW after  
(Writeportonlyselectedforsamequeuewhenthe D-mWrites  
D = Queue Depth  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
FF Timing  
Assertion:  
Write Operation to FF LOW: tWFF  
De-assertion:  
Read to FF HIGH: tSKEW1 + tWFF  
in36 to out18  
in36 to out9  
in18 to out36  
PAF/PAFn Goes LOW after  
D-mWrites(seebelowfortiming)  
PAF/PAFn Goes LOW after  
D-mWrites(seebelowfortiming)  
If tSKEW1 is violated there may be 1 added clock: tSKEW1+WCLK +tWFF  
PAF/PAFn Goes LOW after  
([D+1-m] x 2) Writes  
(seenotebelowfortiming)  
in9 to out36  
PAF/PAFn Goes LOW after  
([D+1-m] x 4) Writes  
(seenotebelowfortiming)  
NOTE:  
D = Queue Depth  
m = Almost Full Offset value.  
Default values: if DF is LOW at Master Reset then m = 8  
if DF is HIGH at Master Reset then m= 128  
PAF Timing  
Assertion:  
Write Operation to PAF LOW: 2 WCLK + tWAF  
De-assertion: Read to PAF HIGH: tSKEW2 + WCLK + tWAF  
If tSKEW2 is violated there may be 1 added clock: tSKEW2 + 2 WCLK + tWAF  
PAFn Timing  
Assertion:  
Write Operation to PAFn LOW: 2 WCLK* + tPAF  
De-assertion: Read to PAFn HIGH: tSKEW3 + WCLK* + tPAF  
If tSKEW3 is violated there may be 1 added clock: tSKEW3 + 2 WCLK* + tPAF  
* If a queue switch is occurring on the write port at the point of flag assertion or de-assertion  
there may be one additional WCLK clock cycle delay.  
AUGUST4,2005  
45  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 9 — FLAG OPERATION BOUNDARIES & TIMING (CONTINUED)  
Programmable Almost Empty Flag, PAE Boundary  
I/O Set-Up PAE Assertion  
PAE Goes HIGH after n+2  
(Bothportsselectedforsamequeuewhenthe1st Writes  
Programmable Almost Empty Flag Bus, PAEn Boundary  
I/O Set-Up PAEn Boundary Condition  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st n+2Writes  
in36 to out36  
in36 to out36  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
in36 to out36  
PAEn Goes HIGH after  
in36 to out18  
PAE Goes HIGH after n+1  
(Bothportsselectedforsamequeuewhenthe1st Writes  
(Writeportonlyselectedforsamequeuewhenthe n+1Writes  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
in36 to out18  
in36 to out9  
in18 to out36  
PAEn Goes HIGH after n+1  
in36 to out9  
PAE Goes HIGH after n+1  
Writes (seebelowfortiming)  
(Bothportsselectedforsamequeuewhenthe1st Writes  
PAEn Goes HIGH after n+1  
Writes(seebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached) (seenotebelowfortiming)  
in18 to out36  
PAE Goes HIGH after  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 2) Writes  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 2) Writes  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
PAE Goes HIGH after  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
in9 to out36  
in18 to out36  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 4) Writes  
(Writeportonlyselectedforsamequeuewhenthe ([n+1] x 2) Writes  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
NOTE:  
in9 to out36  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 4) Writes  
n = Almost Empty Offset value.  
Default values: if DF is LOW at Master Reset then n = 8  
if DF is HIGH at Master Reset then n = 128  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
PAEn Goes HIGH after  
in9 to out36  
PAE Timing  
(Writeportonlyselectedforsamequeuewhenthe ([n+1] x 4) Writes  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
NOTE:  
Assertion:  
Read Operation to PAE LOW: 2 RCLK + tRAE  
De-assertion: Write to PAE HIGH: tSKEW2 + RCLK + tRAE  
If tSKEW2 is violated there may be 1 added clock: tSKEW2 + 2 RCLK + tRAE  
n = Almost Empty Offset value.  
Default values: if DF is LOW at Master Reset then n = 8  
if DF is HIGH at Master Reset then n = 128  
PAEn Timing  
Assertion:  
De-assertion: Write to PAEn HIGH: tSKEW3 + RCLK* + tPAE  
If tSKEW3 is violated there may be 1 added clock: tSKEW3 + 2 RCLK* + tPAE  
Read Operation to PAEn LOW: 2 RCLK* + tPAE  
* If a queue switch is occurring on the read port at the point of flag assertion or de-assertion  
there may be one additional RCLK clock cycle delay.  
PACKETREADYFLAG,PRBOUNDARY  
Assertion:  
PACKET READY FLAG BUS, PRn BOUNDARY  
Assertion:  
Both the rising and falling edges of PR are synchronous to RCLK.  
Both the rising and falling edges of PRn are synchronous to RCLK.  
PR Falling Edge occurs upon writing the first TEOP marker, on input D35, PRn Falling Edge occurs upon writing the first TEOP marker, on input D35,  
(assumingaTSOPmarker,oninputD34has previouslybeenwritten).i.e.a (assumingaTSOPmarker,oninputD34has previouslybeenwritten).i.e.a  
completepacketisavailablewithinaqueue.  
completepacketisavailablewithinaqueue.  
Timing:  
Timing:  
FromWCLKrisingedgewritingtheTEOPwordPRgoes LOWafter:tSKEW4 FromWCLKrisingedgewritingtheTEOPwordPRgoes LOWafter:tSKEW4  
+ 2 RCLK + tPR  
+ 2 RCLK* + tPAE  
IftSKEW4isviolated:  
PR goes LOW after tSKEW4 + 3 RCLK + tPR  
De-assertion:  
If tSKEW4 is violated PRn goes LOW after tSKEW4 + 3 RCLK* + tPAE  
*Ifaqueueswitchisoccurringonthereadportatthepointofflagassertionthere  
may be one additional RCLK clock cycle delay.  
PRRisingEdgeoccursuponreadingthelastRSOPmarker,fromoutputQ34. De-assertion:  
i.e.therearenomorecompletepacketsavailablewithinthequeue.  
Timing:  
PRRisingEdgeoccursuponreadingthelastRSOPmarker,fromoutputQ34.  
i.e.therearenomorecompletepacketsavailablewithinthequeue.  
From RCLK rising edge Reading the RSOP word the PR goes HIGH after: Timing:  
3 RCLK + tPR  
From RCLK rising edge Reading the RSOP word the PR goes HIGH after:  
(PleaserefertoFigure57,DataOutput(Receive)PacketModeofOperation 3 RCLK* + tPAE  
fortimingdiagram).  
*Ifaqueueswitchisoccurringonthereadportatthepointofflagassertionor  
de-assertionthere maybe one additionalRCLKclockcycle delay.  
AUGUST4,2005  
46  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
addressthethirdstatusword,Queue[16:23],theRDADDaddressisxxxx0010. independentlyandsimplyindicatewhenthatrespectivedevicehastakencontrol  
PAE[0:7]gets status ofqueues, Queue[16:23]respectively. Toaddress the ofthebus andis placingits firststatus wordontothePAEn/PRnbus.  
fourth status word, Queue[24:31], the RDADD address is xxxx0011.  
WhenoperatinginsingledevicemodetheEXIinputmustbeconnectedto  
PAE[0:1]getsstatusofqueues,Queue[24:25]respectively.Remember,only theEXOoutputofthesamedevice.Insingledevicemodeatokenisstillrequired  
26queuesweresetup,sowhenstatusword4isselectedtheunusedoutputs tobepassedintothedeviceforaccessingthePAEnbus.  
PAE[2:7]willbedon'tcarestates.  
Note, that if a read or write operation is occurring to a specific queue, say PACKETREADYFLAG  
queuex’onthesamecycleasastatuswordswitchwhichwillincludethequeue  
‘x’,thentheremaybeanextraRCLKcycledelaybeforethatqueuesstatusis Readyfeature.DuringaMasterResetPacketModeisselectedbyPKT=HIGH.  
correctlyshownontherespectiveoutputofthePAEn/PRnbus. ThePRdiscreteflag,providesapacketreadystatusoftheactivequeueselected  
The36-bitmulti-queueflow-controldeviceprovidestheuserwithaPacket  
Statuswordscanbeselectedonconsecutiveclockcycles,thatisthestatus onthereadport.Apacketreadystatusisindividuallymaintainedonallqueues;  
wordonthePAEn/PRnbuscanchangeeveryRCLKcycle.Also,datacanbe howeveronlythequeueselectedonthereadporthasitspacketreadystatus  
readoutofaQueueonthesameRCLKrisingedgethatastatuswordisbeing indicatedonthePRoutputflag.Apacketisavailableontheoutputforreading  
selected,theonlyrestrictionbeingthatareadqueueselectionandPAEn/PRn whenbothPRandORareassertedLOW.Iflessthanafullpacketisavailable,  
statuswordselectioncannotbemadeonthesameRCLKcycle.  
If8orless queues aresetupthenqueues,Queue[0:7]havetheirPAE/PR readfroma queue untila complete packethas beenwrittenintothatqueue,  
statusoutputonPAE[0:7]constantly.  
Whenthemulti-queuedevicesareconnectedinexpansionofmorethanone  
thePRflagwillbeHIGH(packetnotready).Inpacketmode,nowordscanbe  
regardless ofREN.  
WhenpacketmodeisselectedtheProgrammableAlmostEmptybus,PAEn,  
device the PAEn/PRn busses of all devices are connected together, when becomes thePacketReadybus,PRn.WhenconfiguredinDirectBus (FM=  
switchingbetweenstatuswordsofdifferentdevicestheusermustutilizethe3 LOW during a master reset), the PRn bus provides packet ready status in 8  
mostsignificantbitsoftheRDADDaddressbus(aswellasthe2LSBs).These queue increments. The PRn bus supports either Polled or Direct modes of  
3MSbscorrespondtothedeviceIDinputs,whicharethestaticinputs,ID0,ID1 operation. The PRnmode ofoperationis configuredthroughthe FlagMode  
& ID2.  
PleaserefertoFigure62,PAEn/PRn-DirectModeStatusWordSelection  
(FM) bit during a Master Reset.  
Whenthemulti-queueisconfiguredforpacketmodeoperation,the twomost  
significantbitsofthe36-bitdatabusareusedaspacketmarkers.Onthewrite  
portthesearebitsD34(TransmitStartofPacket,)D35(TransmitEndofPacket)  
andonthereadportQ34,Q35.Allfourbitsaremonitoredbythepacketcontrol  
fortiminginformation.AlsorefertoTable5,ReadAddress Bus,RDADD.  
PAEn – POLLED BUS  
If FM is HIGH at master reset then the PAEn/PRn bus operates in Polled logicasdataiswrittenintoandreadoutfromthequeues.Thepacketreadystatus  
(looped)mode.InpolledmodethePAEn/PRnbusautomaticallycyclesthrough forindividualqueues is thendeterminedbythepacketreadylogic.  
the4statuswordswithinthedeviceregardlessofhowmanyqueueshavebeen  
OnthewriteportD34is usedtomark”thefirstwordbeingwrittenintothe  
setupinthepart.EveryrisingedgeoftheRCLKcauses thenextstatus word selectedqueueastheTransmitStartofPacket,TSOP.Tofurtherclarify,when  
tobeloadedonthePAEn/PRnbus.Thedeviceconfiguredasthemaster(MAST theuserrequiresawordbeingwrittentobemarkedasthestartofapacket,the  
inputtiedHIGH),willtakecontrolofthePAEn/PRnafterMRSgoesLOW.For TSOPinput(D34)mustbeHIGHforthesameWCLKrisingedgeastheword  
the whole RCLKcycle thatthe firststatus wordis onPAEn/PRnthe ESYNC thatiswritten.TheTSOPmarkerisstoredinthequeuealongwiththedataitwas  
(PAEn/PRnbussync)outputwillbeHIGH,forallotherstatuswords,thisESYNC written in until the word is read out of the queue via the read port.  
outputwillbeLOW.ThisESYNCoutputprovidestheuserwithamarkwithwhich  
OnthewriteportD35isusedtomark”thelastwordofthepacketcurrently  
theycan synchronize tothe PAEn/PRnbus, ESYNCis always HIGHforthe beingwrittenintotheselectedqueueastheTransmitEndofPacket”TEOP.  
RCLKcyclethatthefirststatuswordofadeviceispresentonthePAEn/PRn Whentheuserrequiresawordbeingwrittentobemarkedastheendofapacket,  
bus.  
theTEOPinputmustbeHIGHforthesameWCLKrisingedgeasthewordthat  
Whendevicesareconnectedinexpansionconfiguration,onlyonedevice iswrittenin.TheTEOPmarkerisstoredinthequeuealongwiththedataitwas  
willbe setas the Master(ID='000'), MASTinputtiedHIGH, allotherdevices written in until the word is read out of the queue via the read port.  
willhaveMASTtiedLOW.Themasterdeviceisthefirstdevicetotakecontrol  
Thepacketreadylogicmonitorsallstartandendofpacketmarkersbothas  
ofthePAEn/PRnbusandwillplaceitsfirststatuswordonthebusontherising theyenterrespectivequeuesviathewriteportandastheyexitqueuesviathe  
edge of RCLK after the MRS input goes LOW. For the next n RCLK cycles readport.Themulti-queueinternallogicincrementsanddecrementsapacket  
(n=numberofqueuesdividedby8withnincrementingbyoneshouldtherebe counter,whichisprovidedforeachqueue.Thefunctionalityofthepacketready  
aremainder) themasterdevicewillmaintaincontrolofthePAEn/PRnbusand logicprovidesstatusastowhetheratleastonefullpacketofdataisavailable  
cycleitsstatuswordsthroughit,allotherdevicesholdtheirPAEn/PRnoutputs withintheselectedqueue.Apartialpacketinaqueueisregardedasapacket  
inHigh-Impedance.Whenthemasterdevicehascycledallofitsstatuswords notreadyandPR (activeLOW)willbeHIGH.InPacketmode,nowords can  
itpassesatokentothenextdeviceinthechainandthatdeviceassumescontrol bereadfromaqueueuntilatleastonecompletepackethasbeenwritteninto  
ofthePAEn/PRnbusandthencyclesitsstatuswordsandsoon,thePAEn/PRn thequeue,regardless ofREN.Forexample,ifaTSOPhas beenwrittenand  
buscontroltokenbeingpassedonfromdevicetodevice.Thistokenpassing somenumberofwordslateraTEOPiswrittenafullpacketofdataisdeemed  
isdoneviatheEXOoutputsandEXIinputsofthedevices(PAEExpansionOut” tobeavailable,andthePRflagandORwillgoactiveLOW.Consequentlyifreads  
andPAEExpansionIn).TheEXOoutputofthemasterdeviceconnectstothe beginfromaqueuethathasonlyonecompletepacketandtheRSOPisdetected  
EXIoftheseconddeviceinthechainandtheEXOofthesecondconnectsto ontheoutputportasdataisbeingreadout,PRwillgoinactiveHIGH.ORwill  
theEXIofthethirdandsoon.ThefinaldeviceinachainhasitsEXOconnected remainLOWindicatingthereisstillvaliddatabeingreadoutofthatqueueuntil  
totheEXIofthefirstdevice,sothatoncethePAEn/PRnbushascycledthrough theREOPisread.Theusermayproceedwiththereadingoperationuntilthe  
allstatuswordsofalldevices,controlofthePAEn/PRnwillpasstothemaster currentpackethasbeenreadoutandnofurthercompletepacketsareavailable.  
device again and so on. The ESYNC of each respective device will operate Ifduringthattimeanothercompletepackethasbeenwrittenintothequeueand  
AUGUST4,2005  
47  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
thePRflagwillagaingoneactive,thenreadsfromthenewpacketmayfollow  
afterthecurrentpackethasbeencompletelyreadout.  
See Figure 55, Reading in Packet Mode during a Queue Change, Figure  
57, Data Output (Receive) Packet Mode of Operation.  
Thepacketcountersthereforelookforstartofpacketmarkersfollowedbyend  
ofpacketmarkers andregarddatainbetweentheTSOPandTEOPas afull PACKETMODEMODULOOPERATION  
packetofdata.Thepacketmonitoringhasnolimitationastohowmanypackets  
The internal packet ready control logic performs no operation on these  
arewrittenintoaqueue,theonlyconstraintisthedepthofthequeue.Note,there modulobits,theyareonlyinformationalbitsthatarepassedthroughwiththe  
isaminimumallowablepacketsizeoffourwords,inclusiveoftheTSOPmarker respectivedatabyte(s).  
andTEOPmarker. Whenutilizingthemulti-queueflow-controldeviceinpacketmode,theuser  
The packet logic does expect a TSOP marker to be followed by a TEOP mayalsowanttoconsidertheimplementationofModulo”operationorvalid  
marker.  
byte marking. Modulo operation may be useful when the packets being  
If a second TSOP marker is written after a first, it is ignored and the logic transferredthroughaqueueareinaspecificbytearrangementeventhough  
regardsdatabetweenthefirstTSOPandthefirstsubsequentTEOPasthefull thedatabuswidthis36bits.InModulooperationtheusercanconcatenatebytes  
packet.ThesameistrueforTEOP;asecondconsecutiveTEOPmarkisignored. toformaspecificdatastringthroughthemulti-queuedevice.Apossiblescenario  
On the read side the user should regard a packet as being between the first is where a limited number of bytes are extracted from the packet for either  
RSOP and the first subsequent REOP and disregard consecutive RSOP analysisorfilteredforsecurityprotection.Thiswillonlyoccurwhenthefirst36  
markersand/orREOPmarkers.ThisiswhyaTEOPmaybewrittentwice,using bitwordofapacketiswritteninandthelast36bitwordofpacketiswrittenin.  
the secondTEOPas the filler”word.  
Themodulooperationisameansbywhichtheusercanmarkandidentifyspecific  
Asanexample,theusermayalsowishtoimplementtheuseofanAlmost datawithintheQueue.  
EndofPacket”(AEOP)marker. Forexample, the AEOPcanbe assignedto  
Onthewriteportdatainputbits,D32(transmitmodulobit2,TMOD2)andD33  
datainputbitD33.ThepurposeofthisAEOPmarkeristoprovideanindicator (transmitmodulobit1,TMOD1)canbeusedasdatamarkers.Anexampleof  
thatthe endofpacketis a fixed(known)numberofreads awayfromthe end thiscouldbetouseD32andD33tocodewhichbytesofawordarepartofthe  
of packet. This is a useful feature when due to latencies within the system, packetthatis alsobeingmarkedas the StartofMarker”orEndofMarker.  
monitoringtheREOPmarkeralonedoesnotpreventoverreading”ofthedata Conversely on the read port when reading out these marked words, data  
fromthequeueselected.Forexample,anAEOPmarkerset4writesbeforethe outputs Q32(receive modulobit2, RMOD2)andQ33(receive modulobit1,  
TEOPmarkerprovidesthedeviceconnectedtothereadportwithandalmost RMOD1)willpassonthebytevalidityinformationforthatword.RefertoTable  
endofpacket”indication4cyclesbeforetheendofpacket.  
10foroneexampleofhowthemodulobitsmaybesetupandused.SeeFigure  
The AEOP can be set any number of words before the end of packet 57, Data Output (Receive) Packet Mode of Operation.  
determinedbyuserrequirementsorlatenciesinvolvedinthesystem.  
TABLE 10 — PACKET MODE VALID BYTE FOR x36 BIT WORD CONFIGURATION  
BYTE A  
BYTE D  
BYTE C  
BYTE B  
TMOD1 (D33)  
RMOD1 (Q33)  
TMOD2 (D32)  
RMOD2 (Q32)  
VALID BYTES  
0
0
1
1
0
1
0
1
A, B, C, D  
A
A, B  
A, B, C  
6716 drw19  
AUGUST4,2005  
48  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PACKETMODEDEMARCATIONBITS  
Duringpacketmodebusmatching,whichistheabilitytosetthewriteinterface  
TheIDT72P51339/72P51349/72P51359/72P51369canbeconfiguredfor andreadinterfacetoindependentwordlengths(i.e.9bitword,18bitword,36  
packetmodeoperation.InpacketmodetheIDT72P51339/72P51349/72P51359/ bitword),thedemarcationbitsarelocatedwithintheirrespectivewordlength.  
72P51369providesthefunctionalitytodemarcatepacketswithinaqueue.The Forexamplewithina36bitto36bitwordbusmatchingconfigurationbit35is  
demarcation functionality is only available in packet mode and is used to designatedastheEndofPacket(EOP)andbit34isStartofPacket(SOP).In  
generate the PacketReady(PR)flag.  
an18bitto18bitwordbusmatchingconfigurationbit17isdesignatedEndof  
Thedemarcationofpackets/informationisaccomplishedwiththedemarcation Packet(EOP)andbit16isStartofPacket.Theminimumpacketwordlength  
bits[35:32].Thedemarcationbitassignmentsare;bit35EndofPacket(EOP), requiredbytheIDT72P51339/72P51349/72P51359/72P51369isfour(4)of  
bit34StartofPacket(SOP),bit33AlmostEndofPacket(AEOP)andbit32Almost thelargestwordsspecifiedwithinabusmatchingconfiguration.RefertoFigure  
StartofPacket(ASOP).  
27-35fordesignatedlocations ofthedemarcationbits withinaspecificword  
configuration.  
35  
0
6716 drw20  
NOTES:  
1. A Start of Packet (SOP) and End of Packet (EOP) may not occur within a same word.  
2. The x36 bit words locate SOP and EOP as follows;  
a. bit 35 is EOP  
b. bit 34 is SOP.  
Figure 27. 36bit to 36bit word configuration  
8
0
A
34  
32  
33  
35  
<7:0>  
B
17  
0
(even word)  
<15:8>  
<23:16>  
<31:24>  
C
32, 34  
17  
<15:0>  
0
D
(odd word)  
35,33  
<31:16>  
6716 drw21  
6716 drw22  
NOTES:  
1. In a 36 bit word to 9 bit word configuration the 36 bit word is converted into four (4)  
9 bit words.  
NOTES:  
1. In a 36 bit word to 18 bit word configuration the 36 bit word is converted to two (2)  
18 bit words.  
2. An SOP and EOP may not occur within a same word.  
2. An SOP and EOP may not occur within a same word.  
3. The x9 bit words contain the demarcation bits as follows;  
a. Bit 8 in Word “A” is the Start of Packet (SOP)  
3. The x18 bit even words (0,2,4, etc.) contain demarcation bits 32 (ASOP) and 34  
(SOP).  
4. The x18 bit odd words (1,3,5, etc.) contain demarcation bits 33 (AEOP) and 35  
(EOP).  
b. Bit 8 in Word “B” is the Almost Start of Packet (ASOP).  
c. Bit 8 in Word “C” is the Almost End of Packet (AEOP).  
d. Bit 8 in Word “D” is the End of Packet (EOP).  
Figure 28. 36bit to 18bit word configuration  
Figure 29. 36bit to 9bit word configuration  
AUGUST4,2005  
49  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
35 34 33 32  
0
6716 drw23  
2nd <15:0>, 1st <15:0>  
NOTES:  
1. In a 18bit word to 36 bit word configuration two (2) eighteen bit words are concatenated to form one x36  
bit word.  
2. The x36 bit words contain demarcation bits as follows;  
a. Bit 35 is End of Packet (EOP)  
b. Bit 34 is Start of Packet (SOP).  
c. Bit 33 Almost End of Packet (AEOP).  
d. Bit 32 Almost Start of Packet (ASOP).  
Figure 30. 18bit to 36bit word configuration  
17 16  
0
6716 drw24  
NOTES:  
1. An SOP and EOP may not occur within a same word.  
2. The x18 bit words contain the demarcation bits as follows;  
a. Bit 17 is the End of Packet (EOP).  
b. Bit 16 is the Start of Packet (SOP).  
3. In this configuration there is no ASOP or AEOP demarcation bits.  
Figure 31. 18bit to 18bit word configuration  
8
0
9
A
B
17  
17  
<7:0>  
<15:8>  
6716 drw24a  
NOTES:  
1. In a 18 bit word to 9 bit word configuration a single eighteen bit word is converted into two (2) nine bit words.  
2. The x9 bit words contain demarcation bits as follows;  
a. Bit 17 is End of Packet (EOP)  
b. Bit 16 is Start of Packet (SOP).  
3. An SOP and EOP may not occur within the same word.  
4. In this configuration there is no ASOP or AEOP demarcation bits.  
Figure 32. 18bit to 9bit word configuration  
AUGUST4,2005  
50  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
35 34 33 32  
0
4th<7:0>, 3rd<7:0>, 2nd<7:0>, 1st<7:0>  
6716 drw25  
NOTES:  
1. In a 9 bit word to 36 bit word configuration four (4), nine bit words are concatenated  
to form one x36 bit word.  
2. The x36 bit words contain demarcation bits as follows;  
a. Bit 35 is End of Packet (EOP)  
b. Bit 34 is Start of Packet (SOP).  
c. Bit 33 Almost End of Packet (AEOP).  
d. Bit 32 Almost Start of Packet (ASOP).  
Figure 33. 9bit to 36bit word configuration  
17 16  
0
6716 drw26  
NOTES:  
1. In a 9 bit word to 18 bit word configuration two (2), nine bit words are concatenated  
to form one x18 bit word.  
2. The x18 bit words contain demarcation bits as follows;  
a. Bit 17 is End of Packet (EOP)  
b. Bit 16 is Start of Packet (SOP).  
3. An SOP and EOP may not occur within the same word.  
Figure 34. 9bit to 18bit word configuration  
8
0
6716 drw27  
NOTES:  
1. An SOP and EOP may not occur within the same word.  
2. Bit 8 of the x9 bit even words (0,2,4, etc.) is checked for a Start of Packet (SOP).  
3. Bit 8 of the x9bit odd words (1,3,5, etc.) is checked for End of Packet (EOP).  
4. The minimum packet word length is 4 words.  
Figure 35. 9bit to 9bit word configuration  
AUGUST4,2005  
51  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
BUS MATCHING OPERATION  
TABLE 11 — BUS-MATCHING SET-UP  
BusMatchingoperationbetweentheinputportandoutputportisavailable.  
Duringamasterresetofthemulti-queuethestateofthethreesetuppins,BM  
[3:0](BusMatching),determinetheinputandoutputportbuswidthsasshown  
inTable11,BusMatchingSet-Up”.9bitwords,18bitwordsand36bitwords  
canbewrittenintoandreadfromthequeues.Whenwritingtoorreadingfrom  
the multi-queue in a bus matching mode, the device orders data in a Little  
Endian”format. See Figure 36, Bus MatchingByte Arrangementfordetails.  
TheFullflagandAlmostFullflagoperationis always basedonwrites and  
readsofdatawidthsdeterminedbythewriteportwidth.Forexample,iftheinput  
portisx36andtheoutputportisx9,thenfourdatareadsfromafullqueuewill  
berequiredtocausethefullflagtogoHIGH(queuenotfull).Conversely,the  
EmptyflagandAlmostEmptyflagoperationsarealwaysbasedonwritesand  
readsofdatawidthsdeterminedbythereadport.Forexample,iftheinputport  
isx18andtheoutputportisx36,twowriteoperationswillberequiredtocause  
the Empty flag (EF) of an empty queue to go HIGH (queue is not empty).  
Note,thattheinputportservesallqueueswithinadevice,asdoestheoutput  
port,thereforetheinputbuswidthtoallqueuesisequal(determinedbytheinput  
portsize)andtheoutputbuswidthfromallqueuesisequal(determinedbythe  
outputportsize).  
BM3  
BM2  
BM1  
BM0  
Write Port Read Port  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
1
0
1
0
0
1
0
1
1
0
0
1
1
x36  
x36  
x36  
x18  
x18  
x18  
x9  
x36  
x18  
x9  
x36  
x18  
x9  
x36  
x18  
x9  
x9  
x9  
AUGUST4,2005  
52  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
D35-D27  
D26-D18  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
Write to Queue  
A
B
C
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BM  
L
A
B
C
D
Read from Queue  
(a) x36 INPUT to x36 OUTPUT  
Q35-Q27  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BM  
H
1st: Read from Queue  
2nd: Read from Queue  
C
D
Q26-Q18  
Q17-Q9  
Q8-Q0  
A
B
(b) x36 INPUT to x18 OUTPUT  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BM  
H
D
1st: Read from Queue  
2nd: Read from Queue  
Q35-Q27  
Q35-Q27  
Q26-Q18  
Q26-Q18  
Q17-Q9  
Q17-Q9  
Q8-Q0  
C
Q8-Q0  
B
3rd: Read from Queue  
4th: Read from Queue  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
A
(c) x36 INPUT to x9 OUTPUT  
D35-D27  
D35-D27  
D26-D18  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
A
1st: Write to Queue  
2nd: Write to Queue  
B
D26-D18  
D17-D9  
D8-D0  
C
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BM  
H
D
B
C
A
Read from Queue  
(d) x18 INPUT to x36 OUTPUT  
BYTE ORDER ON INPUT PORT:  
D35-D27  
D35-D27  
D35-D27  
D35-D27  
D26-D18  
D26-D18  
D26-D18  
D26-D18  
D17-D9  
D17-D9  
D17-D9  
D17-D9  
D8-D0  
A
1st: Write to Queue  
2nd: Write to Queue  
D8-D0  
B
D8-D0  
C
3rd: Write to Queue  
4th: Write to Queue  
D8-D0  
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BM  
H
D
C
B
A
Read from Queue  
6716 drw28  
(e) x9 INPUT to x36 OUTPUT  
NOTE:  
1. Please refer to Table 11, Bus-Matching set-up for details.  
Figure 36. Bus-Matching Byte Arrangement  
AUGUST4,2005  
53  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
tRS  
MRS  
t
RSS  
RSS  
WEN  
REN  
t
tRSR  
SENI  
tRSS  
FSTR,  
ESTR  
tRSS  
WADEN,  
RADEN  
t
RSS  
RSS  
RSS  
ID0, ID1,  
ID2  
t
BM  
FM  
t
HIGH = Polled mode  
LOW = Strobed (Direct)  
tRSS  
HIGH = Master Device  
LOW = Slave Device  
MAST  
PKT  
t
RSS  
RSS  
HIGH = Packet Ready Mode  
t
HIGH = Queue Programming  
LOW = Serial Programming  
DFM  
t
RSS  
RSS  
QSEL [1:0]  
See Table 2, for setting the Queue Programming  
t
HIGH = Offset Value is 128  
LOW = Offset value is 8  
DF  
FF/IR  
t
RSF  
RSF  
HIGH-Z if Slave Device  
LOGIC "0" if Master Device  
t
HIGH-Z if Slave Device  
EF/OR  
LOGIC "0" if Master Device  
t
RSF  
RSF  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
PAF  
PAE  
t
HIGH-Z if Slave Device  
LOGIC "0" if Master Device  
tRSF  
tRSF  
tRSF  
tRSF  
tRSF  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
PAFn  
PAEn  
PR  
HIGH-Z if Slave Device  
LOGIC "0" if Master Device  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
PRn  
LOGIC "1" if OE is LOW and device is Master  
Qn  
HIGH-Z if OE is HIGH or Device is Slave  
NOTE:  
1. OE can toggle during this period.  
6716 drw46  
Figure 37. Master Reset  
AUGUST4,2005  
54  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
AUGUST4,2005  
55  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
AUGUST4,2005  
56  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WCLK  
tQH  
tQS  
WADEN  
WEN  
tENS  
tENS  
tAS  
tAH  
WRADD  
Qx  
tWFF  
FF  
tWAF  
PAF  
tPAF  
Active Bus  
PAF-Qx  
6716 drw48  
Figure 40. Queue Programming via Write Address Bus  
RCLK  
tENS  
tENS  
REN  
tQS  
tQH  
RADEN  
tAS  
tAH  
RDADD  
Qx  
tREF  
OR  
tRAE  
PAE  
tPAE  
Active Bus  
PAE-Qx(6)  
r-2  
r-1  
r
r+1  
r+2  
r+3  
r+4  
6716 drw49  
Figure 41. Queue Programming via Read Address Bus  
Master Reset  
Default Mode  
DFM = 0  
MRS  
MRS  
MRS  
DFM  
DFM  
DFM  
MQ2  
MQ1  
MQn  
SENI MasterSENO  
Serial Loading  
Complete  
SENI  
SENO  
SO  
SENI  
SENO  
SO  
Serial Enable  
ID=‘OOO’ SO  
SI  
SI  
SI  
Serial Input  
SCLK  
SCLK  
SCLK  
6716 drw50  
Serial Clock  
Figure 42. Serial Port Connection for Serial Programming  
AUGUST4,2005  
57  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
AUGUST4,2005  
58  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
AUGUST4,2005  
59  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
AUGUST4,2005  
60  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WCLK  
tENH  
tENS  
WEN  
tDS  
tDH  
tDS  
tDH  
tDS  
tDH  
W3  
W1  
W2  
Dn  
tSKEW1  
1
2
RCLK  
REN  
t
A
t
tA  
Last Word Read Out of Queue  
W1 Qy  
W2 Qy  
W3 Qy  
Qout  
REF  
tREF  
OR  
6716 drw54  
NOTES:  
1. Qy has previously been selected on both the write and read ports.  
2. OE is LOW.  
3. The First Word Latency = tSKEW1 + RCLK + tA. If tSKEW1 is violated an additional RCLK cycle must be added.  
Figure 46. Write Operations in First Word Fall Through mode  
AUGUST4,2005  
61  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
AUGUST4,2005  
62  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
AUGUST4,2005  
63  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
AUGUST4,2005  
64  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
AUGUST4,2005  
65  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
*J*  
*K*  
RCLK  
REN  
tENS  
tAS  
tAH  
tAS  
tAH  
RDADD  
RADEN  
Q30  
Q15  
tQS  
tQH  
tQH  
tQS  
Qout  
Q30 WD Last Word  
PQ  
PQ  
PQ  
PQ  
Q15  
Q15  
tREF  
OR  
WCLK  
WEN  
tENH  
tENS  
tAS  
tAH  
WRADD  
Q15  
tQS  
tQH  
WADEN  
Din  
tDS  
tDH  
Q15  
6716 drw59  
Cycle:  
*A* Queue 30 is selected for read operations. It requires 4 clock cycles to switch queues.  
*B* Reads are now enabled. A word from the previously selected queue will be read out.  
*C* Another word from Present Queue (PQ) is read.  
*D* Another word from PQ is read.  
*E* Wd is read from Q30 of D1. This happens to be the last word of Q30, therefore OR goes HIGH to indicate that the data on the Qout is not valid (Q30 was read to empty).  
Word, Wd remains on the output bus. Queue 15 is selected for read operations.  
*F* The last word of Q30 remains on the Qout bus, OR is HIGH, indicating that this word has been previously read.  
*G* The last word of queue 30 remains on the Qout bus.  
*H* The last word of queue 30 remains on the Qout bus.  
*I* The next word, available from the newly selected queue, Q15 is now read out. This will occur regardless of REN, due to FWFT mode.  
*J* A word, is read from Q15.  
*K* The OR flag stays LOW to indicate that Q15 has additional words available for reading.  
Figure 51. Output Ready Flag Timing (In FWFT Mode)  
AUGUST4,2005  
66  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
AUGUST4,2005  
67  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
EO  
AUGUST4,2005  
68  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
AUGUST4,2005  
69  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
AUGUST4,2005  
70  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
AUGUST4,2005  
71  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
AUGUST4,2005  
72  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
*J*  
WCLK  
WEN  
2
1
tENH  
tENS  
tAS  
tAH  
tAS  
tAH  
WRADD  
D1  
Q5  
D1 Q9  
tQS  
tQH  
tQH  
tQS  
WADEN  
Din  
tDS  
tDH  
WD-m  
D1 Q5  
tWAF  
tWAF  
tAFLZ  
HIGH-Z  
PAF  
(Device 1)  
tFFHZ  
PAF  
(Device 2)  
6716 drw66  
Cycle:  
*A* Queue 5 of Device 1 is selected on the write port. A queue within Device 2 had previously been selected. The PAF output of device 1 is High-Impedance.  
*B* No write occurs, WEN is HIGH.  
*C* No write occurs, WEN is HIGH.  
*D* No write occurs, WEN is HIGH.  
*E* Word, Wd-m is written into Q5 causing the PAF flag to go from LOW to HIGH. The flag latency is 3 WCLK cycles + tWAF.  
*F* Queue 9 in device 1 is now selected for write operations. This queue is not almost full, therefore the PAF flag will update after a 3 WCLK + tWAF latency.  
*G* The PAF flag goes LOW based on the write 2 cycles earlier.  
*H* No write occurs, WEN is HIGH.  
*I* The PAF flag goes HIGH due to the queue switch to Q9.  
Figure 58. Almost Full Flag Timing and Queue Switch  
tCLKL  
tCLKL  
WCLK  
WEN  
PAF  
tENS  
tENH  
tWAF  
tWAF  
D - (m+1) words in Queue(2)  
D-(m+1) words  
in Queue  
D - m words in Queue  
tSKEW2  
RCLK  
tENS  
tENH  
6716 drw67  
REN  
NOTE:  
1. The waveform shows the PAF flag operation when no queue switch occurs and a queue is selected on both the write and read ports is being written to then read  
from at the almost full boundary.  
2. Flag Latencies:  
Assertion: 2*WCLK + tWAF  
De-assertion: tSKEW2 + WCLK + tWAF  
3. If tSKEW2 is violated there will be one extra WCLK cycle.  
Figure 59. Almost Full Flag Timing  
AUGUST4,2005  
73  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
RCLK  
REN  
tAS  
tAH  
tAS  
tAH  
RDADD  
D1  
Q30  
D1 Q15  
tQS  
tQH  
tQH  
tQS  
RADEN  
Qout  
t
A
tA  
t
A
tA  
tOLZ  
HIGH-Z  
HIGH-Z  
D1  
Q30  
Wn  
D
1
Q30  
Wn+1  
D1  
Q15  
W0  
D1 Q15 W1  
tRAE  
t
RAE  
tAELZ  
PAE  
(Device 1)  
tAEHZ  
PAE  
(Device 2)  
HIGH-Z  
6716 drw68  
Cycle:  
*A* Queue 30 of Device 1 is selected on the read port. A queue within Device 2 had previously been selected. The PAE flag output and the data outputs of device 1 are High-Impedance.  
*B* No read occurs, REN is HIGH.  
*C* No read occurs, REN is HIGH.  
*D* No read occurs, REN is HIGH  
*E* The PAE flag output now switches to device 1. Word, Wn is read from Q30 due to the FWFT operation. This read operation from Q30 is at the almost empty boundary, therefore  
PAE will go LOW 2 RCLK cycles later.  
*F* Q15 of device 1 is selected.  
*G* The PAE flag goes LOW due to the read from Q30 2 RCLK cycles earlier. Word Wn+1 is read out due to the FWFT operation.  
*H* Word, W0 is read from Q15 due to the FWFT operation.  
*I* The PAE flag goes HIGH to show that Q15 is not almost empty.  
Figure 60. Almost Empty Flag Timing and Queue Switch (FWFT mode)  
tCLKL  
tCLKH  
WCLK  
tENH  
tENS  
WEN  
PAE  
n+1 words in Queue  
SKEW2  
n+2 words in Queue  
n+1 words in Queue  
tRAE  
t
tRAE  
RCLK  
1
2
tENS  
tENH  
6716 drw69  
REN  
NOTE:  
1. The waveform here shows the PAE flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read  
from at the almost empty boundary.  
Flag Latencies:  
2. Assertion: 2*RCLK + tRAE  
De-assertion: tSKEW2 + RCLK + tRAE  
3. If tSKEW2 is violated there will be one extra RCLK cycle.  
Figure 61. Almost Empty Flag Timing  
AUGUST4,2005  
74  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
RCLK  
tQS  
tQH  
t
QS  
tQS  
Status Word 0  
t
QH  
tQH  
Device 1  
Device 1  
Device 1  
Status Word 2  
Status Word 3  
001xxx10  
001xxx11  
001xxx00  
RDADD  
ESTR  
tSTS  
tSTH  
tSTS  
tSTH  
tPAE  
tPAE  
tPAE  
PAEn/  
PRn  
Device 1 Status Word 2  
ENH  
Device 1 Status Word 3 Device 1 Status Word  
0
tENS  
tENH  
tENS  
t
RADEN  
6716 drw70  
NOTES:  
1. Status words can be selected on consecutive cycles.  
2. On an RCLK cycle that the ESTR is HIGH, the RADEN input must be LOW.  
3. There is a latency of 2 RCLK for the PAEn bus to switch.  
Figure 62. PAEn/PRn - Direct Mode - Status Word Selection  
WCLK  
tQS  
tQH  
t
QS  
tQS  
Status Word 2  
t
QH  
tQH  
Device 1  
Device 1  
Device 1  
Status Word 1  
Status Word 3  
001xxx01  
001xxx11  
001xxx10  
WRADD  
FSTR  
tSTS  
tSTH  
tSTS  
tSTH  
tPAF  
tPAF  
tPAF  
PAFn  
Device 1 Status Word 1  
ENH  
Device 1 Status Word 3  
Device 1 Status Word  
2
tENS  
tENH  
tENS  
t
WADEN  
6716 drw71  
NOTES:  
1. Status words can be selected on consecutive cycles.  
2. On a WCLK cycle that the FSTR is HIGH, the WADEN input must be LOW.  
3. There is a latency of 2 WCLK for the PAFn bus to switch.  
Figure 63. PAFn - Direct Mode - Status Word Selection  
AUGUST4,2005  
75  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
1
*C*  
2
*D*  
3
*E*  
*F*  
*G*  
*H*  
WCLK  
WADEN  
FSTR  
tQS  
tQH  
tQS  
tQH  
tSTS  
tSTH  
tENS  
tENH  
WEN  
tAS  
tAH  
tAH  
tAS  
tAS  
tAH  
D4 SW 2  
D3Q8  
011 01000  
WRADD  
Dn  
D5Q24  
101 11000  
tDH  
100 00100  
t
DH  
tDH  
t
DS  
t
DS  
tDS  
Wp+3  
Wp  
Wp+1  
Wp+2  
Wn  
D5Q24  
Writes to Previous Q  
tSKEW3  
RCLK  
RADEN  
ESTR  
tQS  
tQH  
tSTS  
t
STH  
t
ENS  
tENH  
REN  
tAH  
tAS  
tAS  
tAH  
RDADD  
D5 SW 3  
D5Q24  
101 11000  
101 00011  
tA  
t
A
tA  
t
A
tA  
Wy+1  
D5 Q24  
Wy  
D5 Q24  
Wy+2  
D5 Q24  
Wy+3  
D5 Q24  
Device 5 -Qn  
Wa  
D5 Q17  
Wa+1  
D5 Q17  
Previous value loaded on to PAE bus  
Prev PAEn  
tPAEHZ  
tPAE  
tPAEZL  
xxxx xxx0  
D5 SW 3  
xxxx xxx1  
D5 SW 3  
Device 5 PAEn  
xxxx xxx0  
D5 SW 3  
xxxx xxx1  
D5 SW 3  
Previous value loaded on to PAE bus  
D5 Q17 Status  
Bus PAEn  
t
RAE  
tRAE  
tRAE  
D5 Q24  
status  
Device 5 PAE  
6716 drw72  
*FF*  
*AA*  
*BB*  
*CC*  
*DD*  
*GG*  
*EE*  
Cycle:  
*A* Queue 24 of Device 5 is selected for write operations.  
Word, Wp is written into the previously selected queue.  
*AA* Queue 24 of Device 5 is selected for read operations.  
A status word from another device has control of the PAEn bus.  
The discrete PAE output of device 5 is currently in High-Impedance and the PAE active flag is controlled by the previously selected device.  
*B* Word Wp+1 is written into the previously selected queue.  
*BB* Current Word is kept on the output bus since REN is HIGH.  
*C* Word Wp+2 is written into the previously selected queue.  
*CC* Word Wa+1 of D5 Q17 is read due to FWFT.  
*D* Word, Wn is written into the newly selected queue, Q24 of D5. This write will cause the PAE flag on the read port to go from LOW to HIGH (not almost empty) after time,  
tSKEW3 + RCLK + tRAE (if tSKEW3 is violated one extra RCLK cycle will be added).  
*DD* Word, Wy from the newly selected queue, Q24 will be read out due to FWFT operation.  
Status word 4 of Device 5 is selected on the PAEn bus. Q24 of device 5 will therefore have is PAE status output on PAE[0]. There is a single RCLK cycle latency before  
the PAEn bus changes to the new selection.  
*E* Queue 8 of Device 3 is selected for write operations.  
Word Wn+1 is written into Q24 of D5.  
*EE* Word, Wy+1 is read from Q24 of D5.  
*F* No writes occur.  
*FF* Word, Wy+2 is read from Q24 of D5.  
The PAEn bus changes control to D5, the PAEn outputs of D5 go to Low-Impedance and status word 4 is placed onto the outputs. The device of the previously selected  
status word now places its PAEn outputs into High-Impedance to prevent bus contention.  
The discrete PAE flag will go HIGH to show that Q24 of D5 is not almost empty. Q24 of device 5 will have its PAE status output on PAE[0].  
*G* Status word 3 of device 4 is selected on the write port for the PAFn bus.  
*GG* The PAEn bus updates to show that Q24 of D5 is almost empty based on the reading out of word, Wy+1.  
The discrete PAE flag goes LOW to show that Q24 of D5 is almost empty based on the reading of Wy+1.  
Figure 64. PAEn - Direct Mode, Flag Operation  
AUGUST4,2005  
76  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
RCLK  
tQH  
tQS  
tQS  
tQH  
RADEN  
tSTH  
tSTS  
ESTR  
REN  
tAS  
tAH  
tAH  
tAH  
tAS  
tAS  
D7 SW 0  
RDADD  
D6Q2  
D0Q31  
110 00010  
111 00000  
000 11111  
OE  
t
A
tA  
tA  
tA  
tOLZ  
Qout  
WX  
WX +1  
WD - M + 2  
W0  
WD-M+1  
D0 Q31  
D0 Q31  
D6 Q2  
tSKEW3  
WCLK  
FSTR  
1
2
3
tSTS  
tSTH  
tAS  
tAH  
tAS  
tAH  
WRADD  
D0 quad3  
000 00011  
D0 Q31  
tENS  
tENH  
WEN  
tQS  
tQH  
WADEN  
Din  
t
DS  
t
DH  
tDS  
t
DH  
tDS  
tDH  
W
y+1  
Wy+2  
Word W  
y
D0 Q31  
D0 Q31  
D0 Q31  
tPAFLZ  
tPAF  
tPAF  
Device 0 PAFn  
0xxx xxxx  
0xxx xxxx  
1xxx xxxx  
1xxx xxxx  
0xxx xxxx  
0xxx xxxx  
D0SW3  
D0SW3  
D0SW3  
D0SW3  
D0SW3  
HIGH-Z  
DXSW y  
D0SW3  
Bus PAFn  
tPAFHZ  
HIGH-Z  
DXSW y  
Prev.  
PAFn  
tPAFLZ  
tWAF  
Device 0  
HIGH - Z  
6716 drw73  
PAF  
*AA*  
*BB*  
*CC*  
*DD*  
*EE*  
*FF*  
*GG*  
Cycle:  
*A* Queue 31 of device 0 is selected for read operations.  
The last word in the output register is available on Qout. OE was previously taken LOW so the output bus is in Low-Impedance.  
*AA* Status word 4 of device 0 is selected for the PAFn bus. The bus is currently providing status of a previously selected status word, Quad Y of device X.  
*B* No read operation.  
*BB* Queue 31 of device 0 is selected on the write port.  
*C* Word, Wx+1 is read out from the previous queue due to the FWFT effect.  
*CC* PAFn continues to show status of Quad4 D0.  
The PAFn bus is updated with the status word selected on the previous cycle, D0 Quad 4. PAF[7] is LOW showing the status of queue 31.  
The PAFn outputs of the device previously selected on the PAFn bus go to High-Impedance.  
*D* A new status word, Quad 0 of Device 7 is selected for the PAFn bus.  
Word, Wd-m+1 is read from Q31 D0 due to the FWFT operation. This read is at the PAFn boundary of queue D0 Q31. This read will cause the PAF[7] output to go from  
LOW to HIGH (almost full to not almost full), after a delay tSKEW3 + WCLK + tPAF. If tSKEW3 is violated add an extra WCLK cycle.  
*DD* No write operation.  
*E* No read operations occur, REN is HIGH.  
*EE* PAF[7] goes HIGH to show that D0 Q31 is not almost empty due to the read on cycle *C*.  
The active queue PAF flag of device 0 goes from High-Impedance to Low-Impedance.  
Word, Wy is written into D0 Q31.  
*F* Queue 2 of Device 6 is selected for read operations.  
*FF* Word, Wy+1 is written into D0 Q31.  
*G* Word, Wd-m+2 is read out due to FWFT operation.  
*GG* PAF[7] and the discrete PAF flag go LOW to show the write on cycle *DD* causes Q31 of D0 to again go almost full.  
Word, Wy+2 is written into D0 Q31.  
*H* No read operation.  
*I* Word, W0 is read from Q0 of D6, selected on cycle *F*, due to FWFT.  
Figure 65. PAFn - Direct Mode, Flag Operation  
AUGUST4,2005  
77  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
APF  
AUGUST4,2005  
78  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Serial Programming Data Input  
Serial Enable  
SENI  
SI FXI EXI  
Output Data Bus  
Read Clock  
Data Bus  
Q
-Q  
35  
D
-D  
35  
0
0
Write Clock  
Write Enable  
RCLK  
REN  
RCS  
WCLK  
WEN  
WCS  
Read Enable  
Read Queue Select  
Read Address  
Write Queue Select  
Write Address  
RDADD  
RADEN  
WRADD  
WADEN  
DEVICE  
1
Empty Strobe  
Full Strobe  
ESTR  
FSTR  
PAFn  
Programmable Almost Full  
Programmable Almost Empty  
PAEn  
Empty Sync 1  
Empty/Output Ready Flag  
Almost Empty Flag  
Full Sync1  
ESYNC  
FSYNC  
Full Flag  
EF  
FF  
Almost Full Flag  
Serial Clock  
PAF  
PAE  
PR  
Packet Reads  
SCLK  
SENO SO FXO EXO  
SENI SI FXI EXI  
Q
-Q  
35  
D
-D  
35  
0
0
RCLK  
REN  
RCS  
WCLK  
WEN  
WCS  
WRADD  
WADEN  
RDADD  
RADEN  
DEVICE  
2
FSTR  
PAFn  
ESTR  
PAEn  
Empty Sync 2  
Full Sync2  
FSYNC  
ESYNC  
FF  
EF  
PAF  
PAE  
SCLK  
PR  
SO FXO EXO  
SENO  
SENI SI FXI EXI  
Q
-Q  
35  
D
-D  
35  
0
0
WCLK  
WEN  
WCS  
RCLK  
REN  
RCS  
WRADD  
WADEN  
RDADD  
RADEN  
DEVICE  
n
(Master, ID = ‘000')  
FSTR  
PAFn  
ESTR  
PAEn  
Full Sync n  
Empty Sync n  
FSYNC  
ESYNC  
FF  
EF  
PAF  
PAE  
PR  
SCLK  
SENO  
FXO EXO  
DONE  
6716 drw75  
NOTES:  
1. If devices are configured for Direct operation of the PAFn/PAEn flag busses the FXI/EXI of the MASTER device should be tied LOW. All other devices tied HIGH. The FXO/EXO  
outputs are DNC (Do Not Connect).  
2. Q outputs must not be mixed between devices, i.e. Q0 of device 1 must connect to Q0 of device 2, etc.  
Figure 67. Expansion using ID codes  
AUGUST4,2005  
79  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Serial Programming Data Input  
Serial Enable  
SENI  
SI FXI EXI  
Output Data Bus  
Data Bus  
Q -Q  
D -D  
0
35  
0
35  
Write Clock  
Read Clock  
WCLK  
RCLK  
REN  
RCS  
Write Enable  
Read Enable  
WEN  
WCS  
RCS1  
WCS1  
SLAVE  
DEVICE  
1
Read Queue Select  
Read Address  
Write Queue Select  
Write Address  
RDADD  
RADEN  
WRADD  
WADEN  
Empty Strobe  
Full Strobe  
ESTR  
FSTR  
PAFn  
Programmable Almost Full  
Programmable Almost Empty  
PAEn  
Empty Sync 1  
Empty/Output Ready Flag  
Almost Empty Flag  
Full Sync1  
ESYNC  
FSYNC  
Full Flag  
EF  
FF  
ID = 001  
Almost Full Flag  
Serial Clock  
PAF  
PAE  
PR  
Packet Reads  
SCLK  
SENO SO FXO EXO  
SENI SI FXI EXI  
Q -Q  
D -D  
0
35  
0
35  
WCLK  
RCLK  
REN  
RCS  
SLAVE  
DEVICE  
2
WEN  
WCS2  
RCS2  
WCS  
WRADD  
RDADD  
RADEN  
WADEN  
FSTR  
PAFn  
ESTR  
PAEn  
ESYNC  
Empty Sync 2  
Full Sync2  
FSYNC  
ID = 010  
FF  
EF  
PAF  
PAE  
SCLK  
PR  
SO FXO EXO  
SENO  
SENI SI FXI EXI  
Q -Q  
D -D  
0
35  
0
35  
WCLK  
RCLK  
MASTER  
DEVICE  
0
REN  
RCS  
RDADD  
WEN  
WCS  
WRADD  
WADEN  
WCS0  
RCS0  
RADEN  
FSTR  
PAFn  
FSYNC  
ESTR  
PAEn  
Full Sync n  
Empty Sync n  
ESYNC  
ID = 000  
FF  
EF  
PAF  
PAE  
PR  
SCLK  
SENO  
FXO EXO  
DONE  
6716 drw75a  
NOTES:  
1. If devices are configured for Direct operation of the PAFn/PAEn flag busses the FXI/EXI of the MASTER device should be tied LOW. All other devices tied HIGH. The FXO/EXO  
outputs are DNC (Do Not Connect).  
2. Q outputs must not be mixed between devices, i.e. Q0 of device 1 must connect to Q0 of device 2, etc.  
Figure 68. Expansion using WCS/RCS  
AUGUST4,2005  
80  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
A
B
C
D
E
F
G
H
I
J
RCLK  
tENH  
tENS  
tENH  
tENS  
REN  
tENS  
tENH  
tENS  
RCS1  
Q1_A  
Q1_B  
Q1_C  
Q1_D  
Q1_E  
Qout1  
RCS2  
Qout2  
tENS  
t
ENH  
tENS  
t
ENH  
Q2_A  
Q2_B  
t
t
ENS  
ENS  
tENH  
tENH  
RCS3  
Qout3  
Q3_C  
Q1_A  
Q1_B  
Q1_C  
Q2_A  
Q1_D  
Q2_B  
Q3_C  
Q1_E  
Q_Bus  
6716 drwA  
NOTE:  
1. RCS signals are mutually exclusive, (i.e.. only one RCS signal can be asserted (low) at a time).  
Figure 69. Expansion Connection Read Chip Select (RCS)  
A
B
C
D
E
F
G
H
I
J
WCLK  
tENS  
WEN  
tENS  
tENS  
tENH  
tENH  
tENH  
tENS  
WCS1  
t
ENS ENH  
t
tENS  
tENH  
WCS2  
WCS3  
tENS  
tENH  
tENS  
tENH  
tDS  
tDH  
Din  
Device 1  
Device 2  
Device 1  
No write  
Device 1 No write Device 2 Device 3  
Device 1  
6716 drwB  
Figure 70. Expansion Connection Write Chip Select (WCS)  
AUGUST4,2005  
81  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TheStandardJTAGinterfaceconsistsoffourbasicelements:  
JTAGINTERFACE  
Test Access Port (TAP)  
TAPcontroller  
Instruction Register (IR)  
Data Register Port (DR)  
Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to  
support the JTAG boundary scan interface. The IDT72P51339/72P51349/  
72P51359/72P51369incorporatesthenecessarytapcontrollerandmodified  
padcellstoimplementtheJTAGfacility.  
Thefollowingsections provideabriefdescriptionofeachelement.Fora  
completedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
NotethatIDTprovidesappropriateBoundaryScanDescriptionLanguage  
programfilesforthesedevices.  
The Figure belowshows the standardBoundary-ScanArchitecture  
Mux  
DeviceID Reg.  
Boundary Scan Reg.  
Bypass Reg.  
TDO  
TDI  
T
A
clkDR, ShiftDR  
UpdateDR  
P
TMS  
TAP  
TCLK  
Cont-  
roller  
TRST  
Instruction Decode  
clklR, ShiftlR  
UpdatelR  
Instruction Register  
Control Signals  
6716 drw76  
Figure 71. Boundary Scan Architecture  
THETAPCONTROLLER  
TEST ACCESS PORT (TAP)  
TheTapcontrollerisasynchronousfinitestatemachinethatrespondsto  
TMSandTCLKsignalstogenerateclockandcontrolsignalstotheInstruction  
andDataRegisters forcaptureandupdateofdata.  
The Tap interface is a general-purpose port that provides access to the  
internaloftheprocessor.Itconsistsoffourinputports(TCLK,TMS,TDI,TRST)  
and one output port (TDO).  
AUGUST4,2005  
82  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
1
Test-Logic  
Reset  
0
1
0
1
1
Run-Test/  
Idle  
Select-  
DR-Scan  
Select-  
IR-Scan  
0
0
1
1
Capture-DR  
Capture-IR  
0
0
0
0
Shift-IR  
Shift-DR  
1
1
1
1
Input = TMS  
Exit1-IR  
Exit1-DR  
0
0
0
0
Pause-IR  
Pause-DR  
1
1
Exit2-IR  
Exit2-DR  
0
0
1
1
Update-IR  
Update-DR  
1
0
1
0
6716 drw77  
NOTES:  
1. Five consecutive TCK cycles with TMS = 1 will reset the TAP.  
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).  
3. TAP controller must be reset before normal Queue operations can begin.  
Figure 72. TAP Controller State Diagram  
Capture-IRInthiscontrollerstate,theshiftregisterbankintheInstruction  
RegisterparallelloadsapatternoffixedvaluesontherisingedgeofTCK.The  
lasttwosignificantbits arealways requiredtobe01.  
Shift-IR In this controller state, the instruction register gets connected  
betweenTDIandTDO,andthecapturedpatterngetsshiftedoneachrisingedge  
ofTCK.TheinstructionavailableontheTDIpinisalsoshiftedintotheinstruction  
register.  
Refer to the IEEE Standard Test Access Port Specification (IEEE Std.  
1149.1)forthefullstatediagram.  
AllstatetransitionswithintheTAPcontrolleroccurattherisingedgeofthe  
TCLKpulse. TheTMSsignallevel(0or1)determinesthestateprogression  
thatoccursoneachTCLKrisingedge. TheTAPcontrollertakesprecedence  
overthe Queue andmustbe resetafterpowerupofthe device. See TRST  
descriptionformoredetailsonTAPcontrollerreset.  
Exit1-IRThisisacontrollerstatewhereadecisiontoentereitherthePause-  
IRstateorUpdate-IRstateismade.  
Pause-IR This state is providedinordertoallowthe shiftingofinstruction  
registertobetemporarilyhalted.  
Exit2-DRThisisacontrollerstatewhereadecisiontoentereithertheShift-  
IRstateorUpdate-IRstateismade.  
Update-IRInthiscontrollerstate,theinstructionintheinstructionregisteris  
latchedintothelatchbankoftheInstructionRegisteroneveryfallingedgeof  
TCK.Thisinstructionalsobecomesthecurrentinstructiononceitislatched.  
Capture-DRInthiscontrollerstate,thedataisparallelloadedintothedata  
registersselectedbythecurrentinstructionontherisingedgeofTCK.  
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These  
controllerstates are similartothe Shift-IR, Exit1-IR, Pause-IR, Exit2-IRand  
Update-IRstatesintheInstructionpath.  
Test-Logic-ResetAlltestlogicisdisabledinthiscontrollerstateenabling  
thenormaloperationoftheIC.TheTAPcontrollerstatemachineisdesigned  
insuchawaythat,nomatterwhattheinitialstateofthecontrolleris,theTest-  
Logic-ResetstatecanbeenteredbyholdingTMSathighandpulsingTCKfive  
times. This is the reasonwhythe TestReset(TRST)pinis optional.  
Run-Test-IdleInthiscontrollerstate,thetestlogicintheICisactiveonlyif  
certaininstructionsarepresent.Forexample,ifaninstructionactivatestheself  
test,thenitwillbeexecutedwhenthecontrollerentersthisstate.Thetestlogic  
intheICis idles otherwise.  
Select-DR-Scan This is a controllerstate where the decisiontoenterthe  
DataPathortheSelect-IR-Scanstateismade.  
Select-IR-Scan This is a controller state where the decision to enter the  
InstructionPathismade.TheControllercanreturntotheTest-Logic-Resetstate  
otherwise.  
AUGUST4,2005  
83  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
JTAG INSTRUCTION REGISTER  
THE INSTRUCTION REGISTER  
TheInstructionregisterallowsinstructiontobeseriallyinputintothedevice  
whentheTAPcontrollerisintheShift-IRstate.Theinstructionisdecodedto  
performthefollowing:  
TheInstructionregisterallowsaninstructiontobeshiftedinseriallyintothe  
processor at the rising edge of TCLK.  
TheInstructionis usedtoselectthetesttobeperformed,orthetestdata  
registertobeaccessed,orboth.Theinstructionshiftedintotheregisterislatched  
atthecompletionoftheshiftingprocesswhentheTAPcontrollerisatUpdate-  
IRstate.  
Selecttestdataregistersthatmayoperatewhiletheinstructionis  
current.Theothertestdataregistersshouldnotinterferewithchip  
operationandtheselecteddataregister.  
Definetheserialtestdataregisterpaththatisusedtoshiftdatabetween  
Theinstructionregistermustcontain4bitinstructionregister-basedcells  
whichcanholdinstructiondata.Thesemandatorycellsarelocatednearestthe  
serialoutputstheyaretheleastsignificantbits.  
TDI and TDO during data register scanning.  
The Instruction Register is a 4 bit field (i.e. IR3, IR2, IR1, IR0) to decode  
16differentpossibleinstructions.Instructionsaredecodedasfollows.  
TESTDATAREGISTER  
Hex  
Value  
00  
01  
02  
03  
0F  
Instruction  
Function  
TheTestDataregistercontainsthreetestdataregisters:theBypass,the  
Boundary Scan register and Device ID register.  
Theseregistersareconnectedinparallelbetweenacommonserialinput  
andacommonserialdataoutput.  
Thefollowingsections provideabriefdescriptionofeachelement.Fora  
completedescription,refertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
EXTEST  
SAMPLE/PRELOAD  
IDCODE  
HIGH-IMPEDANCE  
BYPASS  
SelectBoundaryScanRegister  
SelectBoundaryScanRegister  
SelectChipIdentificationdataregister  
JTAG  
SelectBypassRegister  
JTAG INSTRUCTION REGISTER DECODING  
TEST BYPASS REGISTER  
TheregisterisusedtoallowtestdatatoflowthroughthedevicefromTDI  
toTDO.Itcontainsasinglestageshiftregisterforaminimumlengthinserialpath.  
Whenthebypassregisterisselectedbyaninstruction,theshiftregisterstage  
is settoa logiczeroonthe risingedge ofTCLKwhenthe TAPcontrolleris in  
theCapture-DRstate.  
Thefollowingsectionsprovideabriefdescriptionofeachinstruction.For  
acompletedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
EXTEST  
The operation of the bypass register should not have any effect on the  
operationofthedeviceinresponsetotheBYPASSinstruction.  
TherequiredEXTESTinstructionplacestheICintoanexternalboundary-  
testmodeandselectstheboundary-scanregistertobeconnectedbetweenTDI  
andTDO.Duringthisinstruction,theboundary-scanregisterisaccessedto  
drivetestdataoff-chipviatheboundaryoutputsandreceivetestdataoff-chip  
viatheboundaryinputs.Assuch,theEXTESTinstructionistheworkhorseof  
IEEE.Std1149.1,providingforprobe-lesstestingofsolder-jointopens/shorts  
andoflogicclusterfunction.  
THE BOUNDARY-SCAN REGISTER  
TheBoundaryScanRegisterallowsserialdataTDIbeloadedintoorread  
outoftheprocessorinput/outputports.TheBoundaryScanRegisterisapart  
oftheIEEE1149.1-1990StandardJTAGImplementation.  
THE DEVICE IDENTIFICATION REGISTER  
IDCODE  
The Device IdentificationRegisteris a ReadOnly32-bitregisterusedto  
specify the manufacturer, part number and version of the processor to be  
determinedthroughtheTAPinresponsetotheIDCODEinstruction.  
IDTJEDECIDnumberis0xB3.Thistranslatesto0x33whentheparityis  
droppedinthe11-bitManufacturerIDfield.  
TheoptionalIDCODEinstructionallowstheICtoremaininitsfunctionalmode  
andselectstheoptionaldeviceidentificationregistertobeconnectedbetween  
TDI and TDO. The device identification register is a 32-bit shift register  
containinginformationregardingtheICmanufacturer,devicetype,andversion  
code.Accessingthedeviceidentificationregisterdoesnotinterferewiththe  
operationoftheIC.Also,accesstothedeviceidentificationregistershouldbe  
immediatelyavailable,viaaTAPdata-scanoperation,afterpower-upofthe  
ICoraftertheTAPhasbeenresetusingtheoptionalTRSTpinorbyotherwise  
movingtotheTest-Logic-Resetstate.  
FortheIDT72P51339/72P51349/72P51359/72P51369,thePartNumber  
fieldcontainsthefollowingvalues:  
Device  
Part# Field (HEX)  
0474  
IDT72P51339  
IDT72P51349  
IDT72P51359  
IDT72P51369  
0475  
0476  
0477.  
SAMPLE/PRELOAD  
TherequiredSAMPLE/PRELOADinstructionallowstheICtoremainina  
normalfunctionalmodeandselectstheboundary-scanregistertobeconnected  
betweenTDIandTDO.Duringthisinstruction,theboundary-scanregistercan  
beaccessedviaadatescanoperation,totakeasampleofthefunctionaldata  
enteringandleavingtheIC.This instructionis alsousedtopreloadtestdata  
intotheboundary-scanregisterbeforeloadinganEXTESTinstruction.  
31(MSb)  
28 27  
12 11  
1 0(LSB)  
Version (4 bits) Part Number (16-bit) Manufacturer ID (11-bit)  
0X0  
0X33  
1
JTAG DEVICE IDENTIFICATION REGISTER  
AUGUST4,2005  
84  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
HIGH-IMPEDANCE  
TheoptionalHigh-Impedanceinstructionsetsalloutputs(includingtwo-state  
BYPASS  
The required BYPASS instruction allows the IC to remain in a normal  
aswellasthree-statetypes)ofanICtoadisabled(high-impedance)stateand functional mode and selects the one-bit bypass register to be connected  
selects the one-bit bypass register to be connected between TDI and TDO. between TDI and TDO. The BYPASS instruction allows serial data to be  
Duringthisinstruction,datacanbeshiftedthroughthebypassregisterfromTDI transferredthroughtheICfromTDItoTDOwithoutaffectingtheoperationof  
toTDOwithoutaffectingtheconditionoftheICoutputs.  
theIC.  
AUGUST4,2005  
85  
IDT72P51339/72P51349/72P51359/72P51369 1.8V, MQ FLOW-CONTROL DEVICES  
(8 QUEUES) 36 BIT WIDE CONFIGURATION 589, 824, 1,179,648, 2,359,296, and 4,718,592  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
tTCK  
t4  
t1  
t2  
TCK  
t3  
TDI/  
TMS  
tDS  
tDH  
TDO  
TDO  
tDO  
t6  
TRST  
6716 drw78  
Notes to diagram:  
t1 = tTCKLOW  
t2 = tTCKHIGH  
t5  
t3 = tTCKFALL  
t4 = tTCKRISE  
t5 = tRST (reset pulse width)  
t6 = tRSR (reset recovery)  
Figure 73. Standard JTAG Timing  
JTAG  
ACELECTRICALCHARACTERISTICS  
(VDD = 2.5V ± 5%; Tcase = 0°C to +85°C)  
Parameter  
Symbol  
Test  
Conditions  
Min. Max. Units  
SYSTEMINTERFACEPARAMETERS  
JTAGClockInputPeriod tTCK  
-
-
-
-
-
-
-
100  
40  
40  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IDT72P51339  
IDT72P51349  
IDT72P51359  
IDT72P51369  
JTAGClockHIGH  
JTAGClockLow  
tTCKHIGH  
tTCKLOW  
tTCKRISE  
tTCKFALL  
tRST  
-
Parameter  
Symbol Test Conditions Min. Max. Units  
JTAGClockRiseTime  
JTAGClockFallTime  
JTAGReset  
5(1)  
5(1)  
-
(1)  
DataOutput  
tDO  
-
20  
-
ns  
ns  
ns  
-
(1)  
DataOutputHold tDOH  
0
50  
50  
DataInput  
tDS  
tDH  
trise=3ns  
tfall=3ns  
10  
10  
-
-
JTAG Reset Recovery  
tRSR  
-
NOTE:  
1. Guaranteed by design.  
NOTE:  
1. 50pf loading on external output signals.  
AUGUST4,2005  
86  
ORDERINGINFORMATION  
IDT XXXXX  
X
XX  
X
X
X
Process /  
Temperature  
Range  
Device Type Power Speed  
Package  
G
BLANK  
I(1)  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Green  
G
Plastic Ball Grid Array (PBGA, BB256-1)  
BB  
Clock Cycle Time (tCLK  
Speed in Nanoseconds  
)
5
6
Commercial Only  
Commercial and Industrial  
Low Power  
L
72P51339 589,824 bits 1.8V Multi-Queue Flow-Control Device  
72P51349 1,179,648 bits 1.8V Multi-Queue Flow-Control Device  
72P51359 2,359,296 bits 1.8V Multi-Queue Flow-Control Device  
72P51369 4,718,592 bits 1.8V Multi-Queue Flow-Control Device  
6716 drw79  
NOTES:  
1. Industrial temperature range product for the 6ns is available as a standard device. All other speed grades available by special order.  
2. Green parts are available. For specific speeds contact your sales office.  
DATASHEETDOCUMENTHISTORY  
02/04/2005  
08/01/2005  
pg. 11.  
pgs. 1, 3, 7, 9, 11, 13, 15, 17, 18, 20, 21, 25-28, 30-32, 45, 54-56, 58-66, 73, 74, 78, 80 and 87.  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-360-1533  
email:Flow-Controlhelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
87  

相关型号:

72P51349L5BBG

FIFO, 32KX36, 3.6ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, GREEN, PLASTIC, BGA-256
IDT

72P51349L6BBG

FIFO, 32KX36, 3.7ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, GREEN, PLASTIC, BGA-256
IDT

72P51359L5BB

PBGA-256, Tray
IDT

72P51359L6BB

PBGA-256, Tray
IDT

72P51359L6BBGI

FIFO, 64KX36, 3.7ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, GREEN, PLASTIC, BGA-256
IDT

72P51359L6BBI8

PBGA-256, Reel
IDT

72P51369L6BB

PBGA-256, Tray
IDT

72P51369L6BB8

PBGA-256, Reel
IDT

72P51369L6BBI8

PBGA-256, Reel
IDT

72P51539L5BB

PBGA-256, Tray
IDT

72P51539L5BB8

PBGA-256, Reel
IDT

72P51539L6BBG

FIFO, 16KX36, 3.7ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, GREEN, PLASTIC, BGA-256
IDT