72T631S12BCGI [IDT]

Dual-Port SRAM, 256KX18, 12ns, CMOS, PBGA256, 17 X 17 MM, 1.40 HEIGHT, 1 MM PITCH, GREEN, BGA-256;
72T631S12BCGI
型号: 72T631S12BCGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 256KX18, 12ns, CMOS, PBGA256, 17 X 17 MM, 1.40 HEIGHT, 1 MM PITCH, GREEN, BGA-256

静态存储器 内存集成电路
文件: 总27页 (文件大小:232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IDT70T633/1S  
HIGH-SPEED 2.5V  
512/256K x 18  
ASYNCHRONOUS DUAL-PORT  
STATIC RAM  
Š
WITH 3.3V 0R 2.5V INTERFACE  
Features  
Full hardware support of semaphore signaling between  
ports on-chip  
Fully asynchronous operation from either port  
Separate byte controls for multiplexed bus and bus  
matching compatibility  
Sleep Mode Inputs on both ports  
Supports JTAG features compliant to IEEE 1149.1 in  
BGA-208 and BGA-256 packages  
Single 2.5V (±100mV) power supply for core  
LVTTL-compatible, selectable 3.3V (±150mV)/2.5V (±100mV)  
power supply for I/Os and control signals on each port  
Available in a 256-ball Ball Grid Array and 208-ball fine pitch  
BallGridArray  
True Dual-Port memory cells which allow simultaneous  
access of the same memory location  
High-speed access  
– Commercial:8/10/12/15ns(max.)  
Industrial:10/12ns (max.)  
RapidWrite Mode simplifies high-speed consecutive write  
cycles  
Dual chip enables allow for depth expansion without  
external logic  
IDT70T633/1 easily expands data bus width to 36 bits or  
more using the Master/Slave select when cascading more  
than one device  
M/S = VIH for BUSY output flag on Master,  
M/S = VIL for BUSY input on Slave  
Busy and Interrupt Flags  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
Green parts available, see ordering information  
On-chip port arbitration logic  
Functional Block Diagram  
U B  
L
L
U B  
R
L B  
LB  
R
R/W L  
R/W R  
B
E
0
L
B
E
1
L
B
E
1
R
B
E
0
C E 0L  
C E 0R  
R
CE1L  
CE1R  
OEL  
OER  
Dout0-8_L  
Dout9-17_L  
Dout0-8_R  
Dout9-17_R  
512/256K x 18  
MEMORY  
ARRAY  
Din_L  
I/O0L- I/O17L  
Din_R  
I/O0R - I/O17R  
(1)  
A
A
18R  
0R  
(1)  
Address  
Decoder  
Address  
Decoder  
A
18L  
ADDR_L  
ADDR_R  
A
0L  
TDI  
TCK  
TMS  
JTAG  
OE  
L
OER  
ARBITRATION  
TDO  
T
R
ST  
INTERRUPT  
SEMAPHORE  
LOGIC  
C E 0R  
CE1R  
C E 0L  
CE1L  
R/WL  
R/W  
R
(2,3)  
L
(2,3)  
R
B U S Y  
S EM  
INT  
B U S Y  
S E M  
M/S  
L
R
(3)  
(3)  
R
L
IN T  
ZZ  
CONTROL  
LOGIC  
(4)  
(4)  
ZZR  
ZZ  
L
NOTES:  
1. Address A18x is a NC for IDT70T631.  
5670 drw 01  
2. BUSY is an input as a Slave (M/S=VIL) and an output when it is a Master (M/S=VIH).  
BUSY and INT are non-tri-state totem-pole outputs (push-pull).  
3
4. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when asserted. OPTx, INTx, M/S and the  
sleep mode pins themselves (ZZx) are not affected during sleep mode.  
OCTOBER 2011  
1
DSC-5670/8  
©2011IntegratedDeviceTechnology,Inc.  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
The IDT70T633/1 is a high-speed 512/256K x 18 Asynchronous feature controlled by the chip enables (either CE0 or CE1) permit the  
Dual-Port Static RAM. The IDT70T633/1 is designed to be used as a on-chip circuitry of each port to enter a very low standby power mode.  
stand-alone9216/4608K-bitDual-PortRAMorasacombinationMAS-  
TheIDT70T633/1hasaRapidWriteModewhichallowsthedesigner  
TER/SLAVEDual-PortRAMfor36-bit-or-morewordsystem.Usingthe toperformback-to-backwriteoperationswithoutpulsingtheR/Winput  
IDT MASTER/SLAVE Dual-Port RAM approach in 36-bit or wider eachcycle.Thisisespeciallysignificantatthe8and10nscycletimesof  
memorysystemapplications results infull-speed, error-free operation the IDT70T633/1, easing design considerations at these high perfor-  
withouttheneedforadditionaldiscretelogic.  
mancelevels.  
The70T633/1cansupportanoperatingvoltageofeither3.3Vor2.5V  
This device provides two independent ports with separate control,  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor on one or both ports, controlled by the OPT pins. The power supply for  
reads or writes to any location in memory. An automatic power down the core ofthe device (VDD)remains at2.5V.  
2
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinConfiguration(1,2,3)  
70T633/1BC  
BC-256(5,6)  
256-Pin BGA  
Top View  
03/13/03  
A4  
A1  
A2  
A3  
A6  
A7  
A8  
A9  
A11  
A12  
A13  
A14  
A5  
A10  
A15  
A16  
A
17L  
NC  
TDI  
NC  
A
11L  
A
8L  
9L  
7L  
NC CE1L  
INT  
L
A
5L  
A
2L  
A
0L  
A
14L  
OE  
L
NC  
NC  
B1  
B2  
B3  
B6  
B7  
B9  
CE0L  
B11  
B12  
B13  
B4  
B5  
B8  
B10  
B14  
B15  
B16  
(4)  
NC  
NC TDO  
A
12L  
A
NC  
A4L  
A
1L  
A
18L  
A
15L  
13L  
UB  
L
R/W  
L
NC  
NC  
NC  
C1  
C5  
C6  
C2  
C3  
C4  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C16  
C14  
C15  
NC  
A
A
10L  
I/O9L  
V
SS  
A
16L  
A
NC  
LBL  
SEM  
L
B U S Y  
L
A6L  
A
3L  
I/O8L  
OPT  
L
NC  
D1  
D2  
D6  
D9  
DDQL  
D11  
D3  
D5  
D7  
D8  
DDQR  
D10  
D12  
D13  
D14  
D15  
D16  
D4  
NC I/O9R  
V
DDQL  
VDDQR  
V
NC  
VDDQL  
V
DDQR  
V
V
DDQL  
V
DDQR  
V
DD  
NC  
NC I/O8R  
V
DD  
E5  
E6  
E7  
E8  
E9  
E10  
E11  
E12  
E13  
E1  
E2  
E3  
E4  
DDQL  
E14  
E16  
E15  
V
DD  
V
DD  
V
SS  
V
SS  
V
SS  
SS  
SS  
VSS  
V
DD  
VDD  
V
DDQR  
I/O10R I/O10L NC  
V
NC  
I/O7R  
I/O7L  
F7  
F5  
F6  
F9  
F10  
F1  
F2  
F3  
F11  
F13  
F14  
F15  
F16  
F8  
F12  
F4  
V
SS  
I/O11L NC I/O11R  
V
DD  
NC  
V
VSS  
I/O6R NC I/O6L  
DDQR  
V
SS  
V
VDDQL  
V
SS  
VDD  
G1  
G2  
G3  
G5  
H5  
G4  
G6  
G8  
G9  
G14  
G15  
G16  
G7  
G10  
G12  
G13  
G11  
NC  
V
SS  
NC  
V
DDQR  
V
SS  
V
SS  
V
I/O12L  
V
SS  
VSS  
VSS  
VDDQL I/O5L NC  
NC  
V
SS  
H11  
H12  
H16  
H13  
H7  
H8  
H9  
H10  
H14  
H15  
H3  
H4  
H6  
H1  
H2  
V
SS  
V
SS  
I/O5R  
V
DDQL  
V
SS  
V
SS  
V
SS  
V
SS  
SS  
NC  
NC  
NC  
V
DDQR  
V
SS  
VSS  
NC I/O12R  
J1  
J5  
J2  
J3  
J4  
J6  
J7  
J8  
J9  
J13  
J10  
J11  
J12  
J14  
J15  
J16  
I/O13L  
ZZ  
R
I/O14R I/O13R  
V
DDQL  
VSS  
VSS  
V
SS  
V
SS  
V
DDQR  
I/O4R  
V
V
SS  
ZZL  
I/O3R I/O4L  
K6  
K8  
K10  
K12  
K13  
K2  
K4  
K5  
K7  
K9  
K11  
K15  
K16  
K1  
K3  
K14  
V
SS  
V
SS  
V
SS  
V
SS  
V
DDQR  
V
SS  
V
SS  
V
SS  
V
SS  
SS  
NC  
V
DDQL  
NC I/O3L  
NC  
I/O14L  
NC  
L7  
L8  
L11  
L12  
L13  
L5  
L6  
L9  
L10  
L3  
L4  
L15  
L16  
L1  
L2  
L14  
VSS  
VSS  
V
VDD  
V
DDQL  
I/O2L  
I/O15R  
VDDQR  
VDD  
NC  
V
SS  
V
SS  
NC I/O2R  
I/O15L NC  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M1  
M2  
M3  
M4  
M16  
M14  
M15  
VDD  
V
DD  
VSS  
VSS  
V
SS  
VSS  
V
DD  
VDD  
V
DDQL  
I/O16R I/O16L NC  
V
DDQR  
NC  
I/O1R I/O1L  
N8  
N12  
N16  
N13  
N4  
N5  
N6  
DDQR  
N7  
N9  
N10  
N11  
N15  
N1  
N2  
N3  
N14  
V
DDQL  
V
DDQL  
NC  
V
DD  
V
DD  
V
VDDQL  
V
DDQR  
V
DDQR  
VDDQL  
I/O0R  
VDDQR  
NC I/O17R NC  
NC  
P1  
P2  
P3  
P4  
P5  
P7  
P8  
P9  
P10  
P11  
P12  
P14  
P15  
P16  
P6  
P13  
NC I/O17L TMS  
A
16R  
A
13R  
15R  
A
7R  
NC  
LB  
R
SEM  
R
B U S Y  
R
A
6R  
NC  
NC  
I/O0L  
A
10R  
A
3R  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R16  
R1  
R2  
R3  
R4  
R12  
R13  
R14  
R15  
,
(4)  
A
A
12R  
A9R  
UBR  
CE0R R/W  
R
M/S  
NC  
NC  
NC TRST A18R  
A4R  
A1R OPTR  
NC  
T2  
T3  
T1  
T4  
T5  
T8  
T9  
T15  
T16  
T6  
T7  
T10  
T11  
T12  
T13  
T14  
TCK  
NC  
NC  
A17R  
A
14R  
NC CE1R  
NC  
NC  
A11R  
A8R  
OER  
INT  
R
A
5R  
A
2R  
A
0R  
5670 drw 02c  
NOTES:  
1. All VDD pins must be connected to 2.5V power supply.  
,
2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V), and 2.5V if OPT pin for that port is  
set to VSS (0V).  
3. All VSS pins must be connected to ground supply.  
4. A18X is a NC for IDT70T631.  
5. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch.  
6. This package code is used to reference the package diagram.  
3
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinConfigurations(1,2,3)(con't.)  
03/12/03  
1
2
3
4
5
6
7
8
9
11 12 13 14  
10  
16 17  
15  
V
V
V
DD  
SS  
SS  
I/O9L  
A
12L  
A
B
C
D
E
F
NC  
V
SS  
A
16L  
13L  
A
8L  
NC  
A
0L  
VSS  
NC  
I/O8L  
NC  
A
4L  
OPTL  
TDO  
NC  
SEM  
L
INTL  
A
B
C
D
E
F
NC  
VSS  
A
9L  
NC  
A5L  
TDI  
A
17L  
A
NC  
A
1L  
VDDQR  
NC  
V
V
SS  
DD  
CE0L  
BUSY  
L
L
(4)  
A10L  
V
SS  
I/O7R  
NC  
I/O9R  
V
DD  
A
18L  
A
14L  
CE1L  
A6  
L
A2L  
I/O8R  
V
DDQL  
V
DDQR  
UB  
L
R/W  
NC  
VSS  
I/O10L  
A
15L  
A
11L  
A7L  
V
DD  
VDDQL  
I/O7L  
NC  
NC  
VDD  
NC  
LB  
L
A
3L  
OE  
L
V
DDQR I/O10R  
I/O11L  
NC  
NC  
I/O6L  
VSS  
V
DDQL  
VSS  
I/O6R  
V
DDQR  
I/O11R  
V
SS  
NC  
NC  
NC  
V
SS  
I/O12L  
NC  
V
DDQL  
I/O5L  
NC  
NC  
G
H
J
G
H
J
70T633/1BF  
BF-208(5,6)  
VDD  
NC  
VDDQR  
V
DD  
I/O12R  
NC  
V
SS  
I/O5R  
V
DD  
V
DDQL  
ZZ  
L
V
SS  
VDDQR  
VDD  
VSS  
ZZR  
208-Ball BGA  
Top View(7)  
V
DDQL  
I/O3R  
NC  
V
SS  
I/O4R  
I/O14R  
NC  
VSS  
I/O13R  
K
L
V
SS  
K
L
I/O14L  
V
DDQR  
I/O15R  
NC  
I/O13L  
I/O3L  
NC  
V
SS  
I/O4L  
V
DDQL  
V
SS  
NC  
V
SS  
I/O2R  
NC  
V
DDQR  
M
N
P
R
T
M
N
P
R
T
NC  
V
SS  
I/O15L  
NC  
I/O1R  
NC  
V
DDQL  
I/O2L  
NC  
I/O1L  
I/O16R I/O16L  
V
DDQR  
V
DD  
I N T  
R
A
4R  
VSS  
A
16R  
A
12R  
A8R  
TR S T  
NC  
SEM  
R
V
SS  
SS  
V
DDQL  
I/O0R  
V
DDQR  
V
V
SS  
SS  
A5R  
A
1R  
2R  
A
13R  
14R  
A
9R  
NC  
A
17R  
TCK  
CE0R  
VSS  
NC  
I/O17R  
BUSY  
R
V
V
SS  
A
NC  
(4)  
NC  
A6R  
A
A10R  
CE1R  
NC  
I/O17L  
VDDQL TMS  
A18R  
UB  
R
R/WR  
VDD  
OPT  
R
NC  
I/O0L  
V
DD  
A
3R  
A
0R  
A
11R  
A7R  
VSS  
V
DD  
M/S  
NC  
NC  
A
15R  
LBR  
OER  
U
U
5670 drw 02b  
NOTES:  
1. All VDD pins must be connected to 2.5V power supply.  
2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V), and 2.5V if OPT pin for that port is  
set to VSS (0V).  
3. All VSS pins must be connected to ground.  
4. A18X is a NC for IDT70T631.  
5. Package body is approximately 15mm x 15mm x 1.4mm with 0.8mm ball pitch.  
6. This package code is used to reference the package diagram.  
7. This text does not indicate orientation of the actual part-marking.  
4
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
CE1R  
Names  
Chip Enables (Input)  
CE0L  
R/W  
OE  
,
CE1L  
CE0R  
R/W  
OE  
,
L
R
Read/Write Enable (Input)  
Output Enable (Input)  
L
R
(1)  
(1)  
A
0L - A18L  
A
0R - A18R  
Address (Input)  
I/O0L - I/O17L  
I/O0R - I/O17R  
Data Input/Output  
Semaphore Enable (Input)  
Interrupt Flag (Output)  
SEM  
INT  
BUSY  
UB  
LB  
L
SEM  
INT  
BUSY  
UB  
LB  
R
L
R
Busy Flag (Output)  
L
R
Upper Byte Select (Input)  
Lower Byte Select (Input)  
Power (I/O Bus) (3.3V or 2.5V)(2) (Input)  
Option for selecting VDDQX(2,3) (Input)  
Sleep Mode Pin(4) (Input)  
Master or Slave Select (Input)(5)  
Power (2.5V)(2) (Input)  
L
R
L
R
V
DDQL  
VDDQR  
OPT  
L
OPTR  
ZZ  
L
ZZR  
M/S  
NOTES:  
V
DD  
1. Address A18x is a NC for IDT70T631.  
2. VDD, OPTX, and VDDQX must be set to appropriate operating levels prior to  
applying inputs on I/OX.  
3. OPTX selects the operating voltage levels for the I/Os and controls on that port.  
If OPTX is set to VDD (2.5V), then that port's I/Os and controls will operate at 3.3V  
levels and VDDQX must be supplied at 3.3V. If OPTX is set to VSS (0V), then that  
port's I/Os and controls will operate at 2.5V levels and VDDQX must be supplied  
at 2.5V. The OPT pins are independent of one anotherboth ports can operate  
at 3.3V levels, both can operate at 2.5V levels, or either can operate at 3.3V  
with the other at 2.5V.  
V
SS  
Ground (0V) (Input)  
TDI  
TDO  
TCK  
TMS  
TRST  
Test Data Input  
Test Data Output  
Test Logic Clock (10MHz) (Input)  
Test Mode Select (Input)  
Reset (Initialize TAP Controller) (Input)  
4. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when  
asserted. OPTx, INTx, M/S and the sleep mode pins themselves (ZZx) are  
not affected during sleep mode. It is recommended that boundry scan not be  
operated during sleep mode.  
5670 tbl 01  
5. BUSY is an input as a Slave (M/S=VIL) and an output when it is a Master  
(M/S=VIH).  
5
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I—Read/Write and Enable Control(1)  
Upper Byte Lower Byte  
CE  
1
R/W  
X
X
X
L
ZZ  
L
L
L
L
L
L
L
L
L
L
H
I/O9-17  
High-Z  
High-Z  
High-Z  
High-Z  
I/O0-8  
High-Z  
High-Z  
High-Z  
MODE  
Deselected–Power Down  
OE  
X
X
X
X
X
X
L
SEM  
H
CE  
0
UB  
X
X
H
H
L
LB  
X
X
H
L
H
X
L
L
L
L
L
L
L
L
X
X
L
H
Deselected–Power Down  
Both Bytes Deselected  
Write to Lower Byte  
Write to Upper Byte  
Write to Both Bytes  
Read Lower Byte  
H
H
H
H
H
H
H
H
H
X
H
DIN  
H
H
L
L
DIN  
High-Z  
H
L
L
DIN  
DIN  
H
H
L
L
H
H
H
X
X
High-Z  
DOUT  
L
H
H
L
DOUT  
High-Z  
Read Upper Byte  
L
H
L
DOUT  
DOUT  
Read Both Bytes  
H
X
H
L
L
High-Z  
High-Z  
High-Z  
High-Z  
Outputs Disabled  
X
X
X
High-Z Sleep Mode  
5670 tbl 02  
NOTE:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
Truth Table II – Semaphore Read/Write Control(1)  
Inputs(1)  
Outputs  
CE(2)  
H
OE  
L
UB  
LB  
L
SEM  
L
R/W  
H
I/O1-17  
I/O  
0
Mode  
L
X
X
DATAOUT  
DATAOUT Read Data in Semaphore Flag(3)  
H
X
L
L
X
DATAIN  
Write I/O  
0 into Semaphore Flag  
______  
______  
L
X
X
X
L
Not Allowed  
5670 tbl 03  
NOTES:  
1. There are eight semaphore flags written to I/O0 and read from all the I/Os (I/O0-I/O17). These eight semaphore flags are addressed by A0-A2.  
2. CE = L occurs when CE0 = VIL and CE1 = VIH. CE = H when CE0 = VIH and/or CE1 = VIL.  
3. Each byte is controlled by the respective UB and LB. To read data UB and/or LB = VIL.  
6
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
RecommendedDCOperating  
RecommendedOperating  
TemperatureandSupplyVoltage(1)  
Conditions with VDDQ at 2.5V  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
2.4  
0
Typ.  
2.5  
2.5  
0
Max.  
2.6  
2.6  
0
Unit  
V
Ambient  
Grade  
Commercial  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
VDD  
V
DD  
DDQ  
SS  
V
V
2.5V  
2.5V  
+
+
100mV  
100mV  
V
V
Industrial  
0V  
Input High Volltage  
(Address, Control &  
Data I/O Inputs)(3)  
5670 tbl 04  
(2)  
____  
V
DDQ + 100mV  
1.7  
1.7  
V
V
V
IH  
NOTE:  
1. This is the parameter TA. This is the "instant on" case temperature.  
Input High Voltage _  
JTAG  
(2)  
____  
VIH  
VDD + 100mV  
Input High Voltage -  
ZZ, OPT, M/S  
(2)  
____  
____  
____  
V
IH  
V
DD - 0.2V  
V
DD + 100mV  
V
V
AbsoluteMaximumRatings(1)  
VIL  
Input Low Voltage  
-0.3(1)  
0.7  
0.2  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
V
Input Low Voltage -  
ZZ, OPT, M/S  
VIL  
-0.3(1)  
V
5670 tbl 05  
V
TERM  
VDD Terminal Voltage  
-0.5 to 3.6  
NOTES:  
(VDD  
)
with Respect to GND  
1. VIL (min.) = -1.0V for pulse width less than tRC/2 or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tRC/2 or 5ns, whichever is  
less.  
3. To select operation at 2.5V levels on the I/Os and controls of a given port, the  
OPT pin for that port must be set to VSS (0V), and VDDQX for that port must be  
supplied as indicated above.  
(2)  
TERM  
V
V
DDQ Terminal Voltage  
-0.3 to VDDQ + 0.3  
-0.3 to VDDQ + 0.3  
-55 to +125  
V
(VDDQ  
)
with Respect to GND  
(2)  
TERM  
V
Input and I/O Terminal  
Voltage with Respect to GND  
V
(INPUTS and I/O's)  
(3)  
TBIAS  
Temperature  
Under Bias  
oC  
oC  
TSTG  
Storage  
-65 to +150  
Temperature  
RecommendedDCOperating  
Conditions with VDDQ at 3.3V  
T
JN  
Junction Temperature  
+150  
50  
oC  
IOUT(For VDDQ = 3.3V) DC Output Current  
mA  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
3.15  
0
Typ.  
2.5  
3.3  
0
Max.  
2.6  
3.45  
0
Unit  
V
IOUT(For VDDQ = 2.5V) DC Output Current  
40  
mA  
V
DD  
DDQ  
SS  
5670 tbl 07  
V
V
NOTES:  
V
V
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated  
in the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect reliability.  
2. This is a steady-state DC parameter that applies after the power supply has  
reached its nominal operating value. Power sequencing is not necessary;  
however, the voltage on any Input or I/O pin cannot exceed VDDQ during power  
supply ramp up.  
Input High Voltage  
(Address, Control  
&Data I/O Inputs)(3)  
(2)  
____  
2.0  
1.7  
V
DDQ + 150mV  
V
V
V
IH  
_
Input High Voltage  
JTAG  
(2)  
____  
VIH  
VDD + 100mV  
Input High Voltage -  
ZZ, OPT, M/S  
(2)  
____  
____  
____  
V
IH  
V
DD - 0.2V  
V
DD + 100mV  
V
V
3. Ambient Temperature under DC Bias. No AC Conditions. Chip Deselected.  
(1)  
VIL  
Input Low Voltage  
-0.3  
0.8  
0.2  
Input Low Voltage -  
ZZ, OPT, M/S  
(1)  
VIL  
-0.3  
V
Capacitance(1)  
5670 tbl 06  
NOTES:  
(TA = +25°C, F = 1.0MHZ) TQFP ONLY  
1. VIL (min.) = -1.0V for pulse width less than tRC/2 or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tRC/2 or 5ns, whichever is  
less.  
3. To select operation at 3.3V levels on the I/Os and controls of a given port, the  
OPT pin for that port must be set to VDD (2.5V), and VDDQX for that port must be  
supplied as indicated above.  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2)  
IN = 3dV  
OUT = 3dV  
Max. Unit  
CIN  
V
8
pF  
(3)  
OUT  
C
V
10.5  
pF  
5670 tbl 08  
NOTES:  
1. These parameters are determined by device characterization, but are not  
production tested.  
2. 3dV references the interpolated capacitance when the input and output switch  
from 0V to 3V or from 3V to 0V.  
3. COUT also references CI/O.  
7
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 2.5V ± 100mV)  
70T633/1S  
Symbol  
|ILI  
Parameter  
Test Conditions  
DDQ = Max., VIN = 0V to VDDQ  
DD = Max. IN = 0V to VDD  
CE = VIH or CE = VIL, VOUT = 0V to VDDQ  
OL = +4mA, VDDQ = Min.  
OH = -4mA, VDDQ = Min.  
OL = +2mA, VDDQ = Min.  
OH = -2mA, VDDQ = Min.  
Min.  
Max.  
10  
Unit  
µA  
µA  
µA  
V
(1)  
___  
___  
___  
___  
|
Input Leakage Current  
V
(1,2)  
|ILI|  
JTAG & ZZ Input Leakage Current  
V
,
V
+30  
10  
(1,3)  
|ILO  
|
Output Leakage Current  
0
1
V
OL (3.3V) Output Low Voltage(1)  
OH (3.3V) Output High Voltage(1)  
OL (2.5V) Output Low Voltage(1)  
OH (2.5V) Output High Voltage(1)  
NOTES:  
I
0.4  
___  
V
I
2.4  
V
___  
V
I
0.4  
V
___  
V
I
2.0  
V
5670 tbl 09  
1. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to page 6 for details.  
2. Applicable only for TMS, TDI and TRST inputs.  
3. Outputs tested in tri-state mode.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(VDD = 2.5V ± 100mV)  
70T633/1S8  
Com'l Only  
70T633/1S10  
Com'l  
70T633/1S12  
Com'l  
& Ind  
70T633/1S15  
Com'l Only  
& Ind(6)  
Symbol  
Parameter  
Test Condition  
= VIL  
Outputs Disabled  
f = fMAX  
Version  
COM'L  
Typ.(4)  
Max.  
Typ.(4)  
300  
300  
90  
Max.  
405  
445  
120  
145  
265  
290  
Typ.(4)  
Max.  
355  
395  
105  
130  
230  
255  
Typ.(4)  
Max. Unit  
IDD  
Dynamic Operating  
Current (Both  
Ports Active)  
mA  
305  
CE  
L
and CE  
R
,
S
S
S
S
S
S
350  
475  
300  
300  
75  
225  
____  
____  
____  
____  
(1)  
IND  
(6)  
ISB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
mA  
mA  
mA  
CE  
L
= CE  
R
= VIH  
COM'L  
IND  
115  
140  
60  
85  
(1)  
f = fMAX  
____  
____  
____  
____  
90  
75  
(6)  
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
COM'L  
IND  
240  
315  
200  
200  
180  
180  
150  
200  
____  
____  
____  
____  
(1)  
f = fMAX  
ISB3  
Full Standby Current Both Ports CE  
> VDDQ - 0.2V,  
IN > VDDQ - 0.2V or VIN < 0.2V,  
L and  
COM'L  
IND  
S
S
2
10  
2
2
10  
20  
2
2
10  
20  
2
10  
(Both Ports - CMOS CE  
R
Level Inputs)  
V
f = 0  
____  
____  
____  
____  
(2)  
(6)  
ISB4  
Full Standby Current  
(One Port - CMOS  
Level Inputs)  
mA  
CE"A" < 0.2V and  
COM'L  
IND  
S
S
240  
315  
200  
200  
265  
290  
180  
180  
230  
255  
150  
200  
(5)  
CE"B" > VDDQ - 0.2V ,  
IN > VDDQ - 0.2V or VIN < 0.2V,  
Active Port, Outputs Disabled,  
V
____  
____  
____  
____  
(1)  
f = fMAX  
IZZ  
Sleep Mode Current ZZL = ZZR =  
VIH  
mA  
COM'L  
IND  
S
S
2
10  
2
2
10  
20  
2
2
10  
20  
2
10  
(1)  
(Both Ports - TTL  
Level Inputs)  
f = fMAX  
____  
____  
____  
____  
5670 tbl 10  
NOTES:  
1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, using "AC TEST CONDITIONS".  
2. f = 0 means no address or control lines change. Applies only to input at CMOS level standby.  
3. VDD = 2.5V, TA = 25°C for Typ. values, and are not production tested. IDD DC(f=0) = 100mA (Typ).  
4. CEX = VIL means CE0X = VIL and CE1X = VIH  
CEX = VIH means CE0X = VIH or CE1X = VIL  
CEX < 0.2V means CE0X < 0.2V and CE1X > VDDQX - 0.2V  
CEX > VDDQX - 0.2V means CE0X > VDDQX - 0.2V or CE1X - 0.2V  
"X" represents "L" for left port or "R" for right port.  
5. ISB1, ISB2 and ISB4 will all reach full standby levels (ISB3) on the appropriate port(s) if ZZL and /or ZZR = VIH.  
8
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Test Conditions (VDDQ = 3.3V/2.5V)  
Input Pulse Levels  
GND to 3.0V / GND to 2.5V  
2ns Max.  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V/1.25V  
1.5V/1.25V  
Figure 1  
5670 tbl 11  
50Ω  
50Ω  
,
DATAOUT  
1.5V/1.25  
10pF  
(Tester)  
5670 drw 03  
Figure 1. AC Output Test load.  
4
3.5  
3
2.5  
Δ
tAA/tACE  
(Typical, ns)  
2
1.5  
1
0.5  
0
0
160  
20  
40  
60  
120  
140  
80  
100  
Δ
Capacitance (pF) from AC Test Load  
5670 drw 04  
Figure 3. Typical Output Derating (Lumped Capacitive Load).  
9
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
70T633/1S8  
Com'l Only  
70T633/1S10  
Com'l  
70T633/1S12  
Com'l  
& Ind  
70T633/1S15  
Com'l Only  
& Ind(5)  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
LZOB  
HZ  
PU  
PD  
SOP  
SAA  
SOE  
Read Cycle Time  
8
10  
12  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
____  
t
Address Access Time  
8
8
4
10  
10  
5
12  
12  
6
15  
15  
7
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
t
4
5
6
7
____  
____  
____  
____  
t
Output Hold from Address Change  
3
3
0
0
3
3
0
0
3
3
0
0
3
3
0
0
t
Output Low-Z Time Chip Enable and Semaphore(1,2)  
Output Low-Z Time Output Enable and Byte Enable(1,2)  
Output High-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
3.5  
4
6
8
t
Chip Enable to Power Up Time(2)  
0
0
0
0
____  
____  
____  
____  
Chip Disable to Power Down Time(2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
7
4
8
5
8
4
8
6
12  
8
____  
____  
____  
____  
t
____  
____  
____  
____  
t
t
2
2
10  
5
2
12  
6
2
15  
7
____  
____  
____  
____  
t
Semaphore Output Enable Access Time  
ns  
5670 tbl 12  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(4)  
70T633/1S8  
Com'l Only  
70T633/1S10  
Com'l  
70T633/1S12  
Com'l  
& Ind  
70T633/1S15  
Com'l Only  
& Ind(5)  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
8
6
6
0
6
0
4
10  
7
12  
9
15  
12  
12  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
7
9
t
0
0
t
7
9
12  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Data Hold Time  
0
0
t
5
7
10  
t
0
0
0
0
(1,2)  
____  
____  
____  
____  
t
Write Enable to Output in High-Z  
3.5  
4
6
8
t
Output Active from End-of-Write(1,2)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
3
4
4
3
5
5
3
5
5
3
5
5
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
ns  
5670 tbl 13  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 1).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE= VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time. CE = VIL when  
CE0 = VIL and CE1 = VIH. CE = VIH when CE0 = VIH and/or CE1 = VIL.  
4. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 6 for details.  
10  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE(6)  
(4)  
tAOE  
OE  
(4)  
tABE  
UB, LB  
R/W  
tOH  
(1)  
tLZ/tLZOB  
VALID DATA(4)  
DATAOUT  
(2)  
tHZ  
.
BUSYOUT  
(3,4)  
5670 drw 06  
tBDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE, CE, LB or UB.  
2. Timing depends on which signal is de-asserted first CE, OE, LB or UB.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last: tAOE, tACE, tAA, tABE, or tBDD.  
5. SEM = VIH.  
6. CE = L occurs when CE0 = VIL and CE1 = VIH. CE = H when CE0 = VIH and/or CE1 = VIL.  
Timing of Power-Up Power-Down  
CE  
t
PU  
tPD  
ICC  
50%  
50%  
.
5670 drw 07  
ISB  
11  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
t
HZ  
OE  
tAW  
CE or SEM(9)  
UB, LB(9)  
R/W  
(3)  
(2)  
(6)  
t
WR  
tAS  
tWP  
(7)  
OW  
(7)  
t
t
WZ  
(4)  
(4)  
DATAOUT  
DATAIN  
tDW  
tDH  
5670 drw 10  
.
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5,8)  
t
WC  
ADDRESS  
t
AW  
CE or SEM(9)  
UB, LB(9)  
(6)  
AS  
(3)  
WR  
(2)  
t
t
EW  
t
R/W  
t
DW  
tDH  
DATAIN  
.
.
5670 drw 11  
NOTES:  
1. R/W or CE or UB or LB = VIH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a CE = VIL and a R/W = VIL for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load  
(Figure 1).  
8. If OE = VIL during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the  
specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition. CE = VIL when CE0 = VIL  
and CE1 = VIH. CE = VIH when CE0 = VIH and/or CE1 = VIL.  
12  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
CaremustbetakentostillmeettheWriteCycletime(tWC),thetimein  
whichtheAddressinputsmustbestable. Inputdatasetupandholdtimes  
(tDW andtDH)willnowbereferencedtotheendingaddresstransition. In  
thisRapidWriteMode theI/OwillremainintheInputmodefortheduration  
of the operations due toR/W beingheldlow. AllstandardWrite Cycle  
specifications must be adhered to. However, tAS and tWR are only  
applicable when switching between read and write operations. Also,  
therearetwoadditionalconditionsontheAddressInputsthatmustalso  
bemettoensurecorrectaddresscontrolled writes. Thesespecifications,  
theAllowableAddressSkew(tAAS)andtheAddressRise/Falltime(tARF),  
mustbemettousetheRapidWriteMode. Iftheseconditionsarenotmet  
thereisthepotentialforinadvertentwriteoperationsatrandomintermediate  
locationsasthedevicetransitionsbetweenthedesiredwriteaddresses.  
RapidWrite Mode Write Cycle  
Unlike othervendors'Asynchronous RandomAccess Memories,  
theIDT70T633/1iscapableofperformingmultipleback-to-backwrite  
operations without having to pulse the R/W, CE, or BEn signals high  
duringaddresstransitions. ThisRapidWriteModefunctionalityallowsthe  
systemdesignertoachieveoptimumback-to-backwritecycleperformance  
withoutthedifficulttaskofgeneratingnarrowresetpulseseverycycle,  
simplifyingsystemdesignandreducingtimetomarket.  
DuringthisnewRapidWriteMode,theendofthewritecycleisnow  
definedbytheendingaddresstransition,insteadoftheR/WorCEorBEn  
transition to the inactive state. R/W, CE, and BEn can be held active  
throughouttheaddresstransitionbetweenwritecycles.  
Timing Waveform of Write Cycle No. 3, RapidWrite Mode Write Cycle(1,3)  
(4)  
WC  
t
WC  
t
t
WC  
ADDRESS  
(2)  
EW  
t
CE or SEM(6)  
BEn  
R/W  
t
WR  
t
WP  
(5)  
OW  
(5)  
WZ  
t
t
DATAOUT  
t
DH  
tDH  
t
DH  
tDW  
t
DW  
tDW  
DATAIN  
5670 drw 08  
NOTES:  
1. OE = VIL for this timing waveform as shown. OE may equal VIH with same write functionality; I/O would then always be in High-Z state.  
2. A write occurs during the overlap (tEW or tWP) of a CE = VIL, BEn = VIL, and a R/W = VIL for memory array writing cycle. The last transition LOW of CE, BEn, and  
R/W initiates the write sequence. The first transition HIGH of CE, BEn, and R/W terminates the write sequence.  
3. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
4. The timing represented in this cycle can be repeated multiple times to execute sequential RapidWrite Mode writes.  
5. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load  
(Figure 1).  
6. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition. CE = VIL when CE0 = VIL  
and CE1 = VIH. CE = VIH when CE0 = VIH and/or CE1 = VIL.  
13  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics over the Operating Temperature Range  
and Supply Voltage Range for RapidWrite Mode Write Cycle(1)  
Symbol  
Parameter  
Min  
Max  
Unit  
____  
t
AAS  
Allowable Address Skew for RapidWrite Mode  
Address Rise/Fall Time for RapidWrite Mode  
1
ns  
____  
tARF  
1.5  
V/ns  
5670 tbl 14  
NOTE:  
1. Timing applies to all speed grades when utilizing the RapidWrite Mode Write Cycle.  
Timing Waveform of Address Inputs for RapidWrite Mode Write Cycle  
A
0
t
ARF  
t
AAS  
(1)  
A
18  
t
ARF  
5670 drw 09  
NOTE:  
1. A17 for IDT70T631.  
14  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
t
SAA  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
t
AW  
tWR  
t
ACE  
t
EW  
SEM(1)  
t
OH  
t
SOP  
t
DW  
OUT  
DATA  
DATA INVALID  
VALID(2)  
I/O  
t
AS  
t
WP  
tDH  
R/W  
t
SWRD  
tSOE  
OE  
t
SOP  
Write Cycle  
Read Cycle  
.
5670 drw 12  
NOTES:  
1. CE0 = VIH and CE1 = VIL are required for the duration of both the write cycle and the read cycle waveforms shown above. Refer to Truth Table II for details and for  
appropriate UB/LB controls.  
2. "DATAOUT VALID" represents all I/O's (I/O0 - I/O17) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2) "A"  
R/W"A"  
SEM"A"  
t
SPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
.
5670 drw 13  
NOTES:  
1. DOR = DOL = VIL, CE0L = CE0R = VIH; CE1L = CE1R = VIL. Refer also to Truth Table II for appropriate UB/LB controls.  
2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A".  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied,the semaphore will fall positively to one side or the other, but there is no guarantee which side will be granted the semaphore flag.  
15  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70T633/1S8  
Com'l Only  
70T633/1S10  
Com'l  
70T633/1S12  
Com'l  
70T633/1S15  
Com'l Only  
& Ind(6)  
& Ind  
Symbol  
Parameter  
Unit  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
BUSY TIMING (M/S=VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
8
8
8
10  
10  
10  
12  
12  
12  
15  
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Disable Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
t
8
10  
12  
15  
____  
____  
____  
____  
t
2.5  
2.5  
2.5  
2.5  
____  
____  
____  
____  
BUSY Disable to Valid Data(3)  
Write Hold After BUSY(5)  
t
8
10  
12  
15  
____  
____  
____  
____  
t
6
7
9
12  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
6
0
7
0
9
0
ns  
ns  
tWH  
12  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
12  
12  
14  
14  
16  
16  
20  
20  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
5670 tbl 15  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of the Max. spec, tWDD – tWP (actual), or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1,2,3)  
70T633/1S8  
Com'l Only  
70T633/1S10  
Com'l  
70T6331S12  
Com'l  
70T633/1S15  
Com'l Only  
& Ind  
& Ind  
Symbol  
SLEEP MODE TIMING (ZZx=VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
ZZS  
ZZR  
ZZPD  
ZZPU  
Sleep Mode Set Time  
8
8
10  
10  
12  
12  
15  
15  
t
Sleep Mode Reset Time  
t
Sleep Mode Power Down Time(4)  
Sleep Mode Power Up Time(4)  
8
10  
12  
15  
____  
____  
____  
____  
t
0
0
0
0
5670 tbl 15a  
NOTES:  
1. Timing is the same for both ports.  
2. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when asserted. OPTx, INTx, M/S and the sleep mode pins themselves (ZZx) are not affected  
during sleep mode. It is recommended that boundary scan not be operated during sleep mode.  
3. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 6 for details.  
4. This parameter is guaranteed by device characterization, but is not production tested.  
16  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadandBUSY (M/S =VIH)(2,4,5)  
tWC  
MATCH  
ADDR"A"  
t
WP  
R/W"A"  
t
DH  
t
DW  
VALID  
DATAIN "A"  
(1)  
APS  
t
MATCH  
ADDR"B"  
t
BDA  
t
BAA  
tBDD  
BUSY"B"  
t
WDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
.
5670 drw 14  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CE0L = CE0R = VIL; CE1L = CE1R = VIH.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave), BUSY is an input. Then for this example BUSY"A" = VIH and BUSY"B" input is shown above.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY (M/S = VIL)  
t
WP  
R/W"A"  
(3)  
WB  
t
BUSY"B"  
(1)  
t
WH  
(2)  
R/W"B"  
.
NOTES:  
5670 drw 15  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB only applies to the slave mode.  
17  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(M/S = VIH)(1)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
(3)  
CE"A"  
(2)  
tAPS  
(3)  
CE"B"  
tBAC  
tBDC  
BUSY"B"  
.
5670 drw 16  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(M/S = VIH)(1,3,4)  
ADDR"A"  
ADDRESS "N"  
(2)  
t
APS  
ADDR"B"  
MATCHING ADDRESS "N"  
t
BAA  
t
BDA  
BUSY"B"  
5670 drw 17  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from port A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
3. CEX = VIL when CE0X = VIL and CE1X = VIH. CEX = VIH when CE0X = VIH and/or CE1X = VIL.  
4. CE0X = OEX = LBX = UBX = VIL. CE1X = VIH.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1,2)  
70T633/1S8  
Com'l Only  
70T633/1S10  
Com'l  
70T633/1S12  
Com'l  
70T633/1S15  
Com'l Only  
& Ind  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
0
ns  
ns  
ns  
t
0
0
0
0
____  
____  
____  
____  
t
8
8
10  
10  
12  
12  
15  
15  
____  
____  
____  
____  
t
Interrupt Reset Time  
ns  
5670 tbl 16  
NOTES:  
1. Timing is the same for both ports.  
2. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 5 for details.  
18  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
t
WC  
(2)  
ADDR"A"  
INTERRUPT SET ADDRESS  
(5)  
(4)  
tWR  
t
AS  
(3)  
CE"A"  
R/W"A"  
INT"B"  
(4)  
t
INS  
.
5670 drw 18  
tRC  
INTERRUPT CLEAR ADDRESS(2)  
ADDR"B"  
(4)  
tAS  
(3)  
CE"B"  
OE"B"  
(4)  
tINR  
.
5670 drw 19  
INT"B"  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from port A”.  
2. Refer to Interrupt Truth Table.  
3. CEX = VIL means CE0X = VIL and CE1X = VIH. CEX = VIH means CE0X = VIH and/or CE1X = VIL.  
4. Timing depends on which enable signal (CE or R/W) is asserted last.  
5. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
Truth Table III — Interrupt Flag(1,4)  
Left Port  
Right Port  
(5)  
(5)  
R/W  
L
L
A
18L-A0L  
R/W  
X
R
A
18R-A0R  
Function  
CE  
L
OE  
L
INT  
L
CE  
R
OE  
R
INTR  
(2)  
L
X
X
L
X
X
X
L
7FFFF  
X
X
X
L
L
X
X
L
X
L
Set Right INT  
Reset Right INT  
Set Left INT Flag  
Reset Left INT Flag  
R
Flag  
(3)  
X
X
X
7FFFF  
7FFFE  
X
H
R
Flag  
(3)  
X
X
L
L
X
X
X
L
(2)  
X
7FFFE  
H
X
X
L
5670 tbl 17  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH. CEX = L means CE0X = VIL and CE1X = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTL and INTR must be initialized at power-up.  
5. A18x is a NC for IDT70T631. Therefore, Interrupt Addresses are 3FFFF and 3FFFE.  
19  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table IV —  
AddressBUSY Arbitration  
Inputs  
Outputs  
(4)  
A
0L-A18L  
(5)  
(5)  
(1)  
(1)  
A
0R-A18R  
Function  
Normal  
Normal  
Normal  
CE  
L
CE  
R
BUSY  
H
L
BUSYR  
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
MATCH  
H
H
MATCH  
(2)  
(2)  
(3)  
Write Inhibit  
5670 tbl 18  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the  
IDT70T633/1 are push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
4. A18 is a NC for IDT70T631. Address comparison will be for A0 - A17.  
5. CEX = L means CE0X = VIL and CE1X = VIH. CEX = H means CE0X = VIH and/or CE1X = VIL.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D17 Left  
D0  
- D17 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
5670 tbl 19  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70T633/1.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O17). These eight semaphores are addressed by A0 - A2.  
3. CE0 = VIH, CE1 = SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
flag (INTL) is asserted when the right port writes to memory location  
7FFFE (HEX), where a write is defined as CER = R/WR = VIL per the  
Truth Table. The left port clears the interrupt through access of  
address location 7FFFE when CEL = OEL = VIL, R/W is a "don't care".  
Likewise, the right port interrupt flag (INTR) is asserted when the left  
port writes to memory location 7FFFF (HEX) and to clear the interrupt  
flag (INTR), the right port must read the memory location 7FFFF. The  
message(18bits)at7FFFEor7FFFF(3FFFFor3FFFEforIDT70T631)  
isuser-definedsinceitisanaddressableSRAMlocation.Iftheinterrupt  
functionisnotused, addresslocations7FFFEand7FFFFarenotused  
asmailboxes,but aspartoftherandomaccessmemory.RefertoTruth  
Table III forthe interruptoperation.  
TheIDT70T633/1providestwoportswithseparatecontrol,address  
and I/O pins that permit independent access for reads or writes to any  
location in memory. The IDT70T633/1 has an automatic power down  
feature controlled by CE. The CE0 and CE1 control the on-chip power  
downcircuitrythatpermitstherespectiveporttogointoastandbymode  
whennotselected(CE =HIGH). Whena portis enabled, access tothe  
entirememoryarrayispermitted.  
Interrupts  
If the user chooses the interrupt function, a memory location (mail  
boxormessagecenter)isassignedtoeachport. Theleftportinterrupt  
20  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
address signals only. It ignores whether an access is a read or write.  
In a master/slave array, both address and chip enable must be valid  
long enough for a BUSY flag to be output from the master before the  
actual write pulse can be initiated with the R/W signal. Failure to  
observe this timing can result in a glitched internal write inhibit signal  
andcorrupteddata inthe slave.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisBusy.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
Semaphores  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
The IDT70T633/1 is an extremely fast Dual-Port 512/256K x 18  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether CMOS Static RAM with an additional 8 address locations dedicated to  
anduse anyBUSY indicationas aninterruptsource toflagthe eventof binarysemaphoreflags.Theseflagsalloweitherprocessorontheleftor  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis right sideoftheDual-PortRAMtoclaimaprivilegeovertheotherprocessor  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave forfunctionsdefinedbythesystemdesignerssoftware.Asanexample,  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely the semaphore can be used by one processor to inhibit the  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying otherfromaccessingaportionoftheDual-PortRAMoranyothershared  
the BUSY pins HIGH. If desired, unintended write operations can be resource.  
prevented to a port by tying the BUSY pin for that port LOW.  
The Dual-Port RAM features a fast access time, with both ports  
The BUSY outputs on the IDT70T633/1 RAM in master mode, are being completely independent of each other. This means that the  
push-pull type outputs and do not require pull up resistors to operate. activityontheleftportinnowayslows theaccess timeoftherightport.  
Ifthese RAMs are beingexpandedindepth, thenthe BUSY indication Both ports are identical in function to standard CMOS Static RAM and  
for the resulting array requires the use of an external AND gate.  
can be read from or written to at the same time with the only possible  
conflict arising from the simultaneous writing of, or a simultaneous  
READ/WRITE of, a non-semaphore location. Semaphores are pro-  
tected against such ambiguous situations and may be used by the  
system program to avoid any conflicts in the non-semaphore portion  
of the Dual-Port RAM. These devices have an automatic power-down  
featurecontrolledbyCE0andCE1,theDual-PortRAMchipenables,and  
SEM,thesemaphoreenable.The CE0, CE1, andSEM pins controlon-  
chippowerdowncircuitrythatpermitstherespectiveporttogointostandby  
modewhennotselected.  
Systems which can best use the IDT70T633/1 contain multiple  
processors or controllers and are typically very high-speed systems  
which are software controlled or software intensive. These systems  
can benefit from a performance increase offered by the hardware  
semaphores of the IDT70T633/1, which provide a lockout mechanism  
withoutrequiringcomplexprogramming.  
A
19  
CE0  
CE  
0
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY  
R
BUSY  
R
BUSY  
L
BUSYL  
CE1  
CE  
1
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY  
L
BUSY  
L
BUSY  
R
BUSY  
R
.
5670 drw 20  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT70T633/1 Dual-Port RAMs.  
Softwarehandshakingbetweenprocessors offers themaximumin  
system flexibility by permitting shared resources to be allocated in  
varying configurations. The IDT70T633/1 does not use its semaphore  
flags to control any resources through hardware, thus allowing the  
systemdesignertotalflexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methods of hardware arbitration is that wait states are never incurred  
in either processor. This can prove to be a major advantage in very  
high-speedsystems.  
Width Expansion with Busy Logic  
Master/SlaveArrays  
When expanding an IDT70T633/1 RAM array in width while using  
BUSY logic, one master part is used to decide which side of the RAMs  
array will receive a BUSY indication, and to output that indication. Any  
number of slaves to be addressed in the same address range as the  
master use the BUSY signal as a write inhibit signal. Thus on the  
IDT70T633/1 RAM the BUSY pin is an output if the part is used as a  
master (M/S pin = VIH), and the BUSY pin is an input if the part used  
as a slave (M/S pin = VIL) as shown in Figure 3.  
How the Semaphore Flags Work  
The semaphore logic is a set of eight latches which are indepen-  
dent of the Dual-Port RAM. These latches can be used to pass a flag,  
or token, from one port to the other to indicate that a shared resource  
is in use. The semaphores provide a hardware assist for a use  
assignmentmethodcalledTokenPassingAllocation.”Inthis method,  
the state of a semaphore latch is used as a token indicating that a  
shared resource is in use. If the left processor wants to use this  
resource,itrequeststhetokenbysettingthelatch.Thisprocessorthen  
If two or more master parts were used when expanding in width, a  
splitdecisioncouldresultwithonemasterindicatingBUSYononeside  
of the array and another master indicating BUSY on one other side of  
the array. This would inhibit the write operations from one port for part  
of a word and inhibit the write operations from the other port for the  
other part of the word.  
The BUSY arbitration on a master is based on the chip enable and  
21  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
usedinstead,systemcontentionproblemscouldhaveoccurredduring  
the gap between the read and write cycles.  
verifiesitssuccessinsettingthelatchbyreadingit. Ifitwassuccessful,it  
proceeds to assume control over the shared resource. If it was not  
successfulinsettingthelatch,itdeterminesthattherightsideprocessor  
has set the latch first, has the token and is using the shared resource.  
The left processor can then either repeatedly request that  
semaphores status or remove its request for that semaphore to  
perform another task and occasionally attempt again to gain control of  
the token via the set and test sequence. Once the right side has  
relinquishedthetoken,theleftsideshouldsucceedingainingcontrol.  
The semaphore flags are active LOW. A token is requested by  
writing a zero into a semaphore latch and is released when the same  
sidewritesaonetothatlatch.  
The eight semaphore flags reside within the IDT70T633/1 in a  
separate memory space from the Dual-Port RAM array. This address  
spaceisaccessedbyplacingalowinputontheSEM pin(whichactsas  
a chip select for the semaphore flags) and using the other control pins  
(Address,CE0,CE1,R/WandLB/UB)astheywouldbeusedinaccessing  
astandardStaticRAM.Eachoftheflagshasauniqueaddresswhichcan  
beaccessedbyeithersidethroughaddresspinsA0A2.Whenaccessing  
thesemaphores,noneoftheotheraddresspinshasanyeffect.  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel  
is written into an unused semaphore location, that flag will be set to  
a zero on that side and a one on the other side (see Truth Table V).  
Thatsemaphorecannowonlybemodifiedbythesideshowingthezero.  
When a one is written into the same location from the same side, the  
flag will be set to a one for both sides (unless a semaphore request  
It is important to note that a failed semaphore request must be  
followed by either repeated reads or by writing a one into the same  
location. The reason for this is easily understood by looking at the  
simple logic diagram of the semaphore flag in Figure 4. Two sema-  
phore request latches feed into a semaphore flag. Whichever latch is  
first to present a zero to the semaphore flag will force its side of the  
semaphore flag LOW and the opposite side HIGH. This condition will  
continue until a one is written to the same semaphore request latch.  
If the opposite side semaphore request latch has been written to  
zero in the meantime, the semaphore flag will flip over to the other  
side as soon as a one is written into the first request latch. The  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
5670 drw 21  
Figure 4. IDT70T633/1 Semaphore Logic  
fromtheothersideispending)andthencanbewrittentobybothsides. opposite side flag will now stay LOW until its semaphore request latch  
The fact that the side which is able to write a zero into a semaphore is written to a one. From this it is easy to understand that, if a  
subsequently locks out writes from the other side is what makes semaphore is requested and the processor which requested it no  
semaphore flags useful in interprocessor communications. (A thor- longer needs the resource, the entire system can hang up until a one  
ough discussion on the use of this feature follows shortly.) A zero iswrittenintothatsemaphorerequestlatch.  
written into the same location from the other side will be stored in the  
semaphore request latch for that side until the semaphore is freed by a single tokenbyattemptingtowrite a zerointoitatthe same time. The  
thefirstside. semaphore logic is specially designed to resolve this problem. If  
The critical case of semaphore timing is when both sides request  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso simultaneous requests are made, the logic guarantees that only one  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining side receives the token. If one side is earlier than the other in making  
a zeroreads as allzeros fora semaphore read, theSEM, BEn, andOE the request, the first side to make the request will receive the token. If  
signals needtobeactive.(PleaserefertoTruthTableII).Furthermore, bothrequests arriveatthesametime,theassignmentwillbearbitrarily  
thereadvalueislatchedintoonesidesoutputregisterwhenthatside's made to one port or the other.  
semaphoreselect(SEM,BEn)andoutputenable(OE)signalsgoactive.  
Thisservestodisallowthesemaphorefromchangingstateinthemiddle semaphores alone do not guarantee that access to a resource is  
of a read cycle due to a write cycle from the other side. secure. As with any powerful programming technique, if semaphores  
A sequence WRITE/READ must be used by the semaphore in are misusedormisinterpreted, a software errorcaneasilyhappen.  
order to guarantee that no system level contention will occur. A Initialization of the semaphores is not automatic and must be  
One caution that should be noted when using semaphores is that  
processor requests access to shared resources by attempting to write handled via the initialization program at power-up. Since any sema-  
a zero into a semaphore location. If the semaphore is already in use, phore request flag which contains a zero must be reset to a one,  
the semaphore request latch will contain a zero, yet the semaphore all semaphores on both sides should have a one written into them  
flag will appear as one, a fact which the processor will verify by the at initialization from both sides to assure that they will be free  
subsequent read (see Table V). As an example, assume a processor when needed.  
writes a zero to the left port at a free semaphore location. On a  
subsequent read, the processor will verify that it has written success-  
fully to that location and will assume control over the resource in  
question. Meanwhile, if a processor on the right side attempts to write  
a zero to the same semaphore flag it will fail, as will be verified by the  
fact that a one will be read from that semaphore on the right side  
during subsequent read. Had a sequence of READ/WRITE been  
22  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
23  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
SleepMode  
The IDT70T633/1 is equipped with an optional sleep or low power  
modeonbothports.Thesleepmodepinonbothportsisactivehigh.During  
normal operation, the ZZ pin is pulled low. When ZZ is pulled high, the  
port will enter sleep mode where it will have the lowest possible power  
consumption.Thesleepmodetimingdiagramdemonstratesthemodesof  
operation:NormalOperation,NoRead/WriteAllowedandSleepMode.  
Foraperiodoftime priortosleepmodeandafterrecoveringfromsleep  
mode(tZZS andtZZR),newreadsorwritesarenotallowed.Ifawriteorread  
operation occurs during these periods, the memory array may be  
corrupted. Validity of data out from the RAM cannot be guaranteed  
immediatelyafterZZis asserted(priortobeinginsleep).  
DuringsleepmodetheRAMautomaticallydeselectsitselfanddiscon-  
nectsitsinternalbuffer.Alloutputswillremaininhigh-Zstatewhileinsleep  
mode.Allinputsareallowedtotoggle,buttheRAMwillnotbeselectedand  
will not perform any reads or writes.  
JTAGTimingSpecifications  
t
JCYC  
tJR  
tJF  
tJCL  
tJCH  
TCK  
Device Inputs(1)/  
TDI/TMS  
tJDC  
tJS  
tJH  
Device Outputs(2)/  
TDO  
t
JRSR  
tJCD  
TRST  
x
5670 drw 23  
tJRST  
NOTES:  
1. Device inputs = All device inputs except TDI, TMS, and TRST.  
2. Device outputs = All device outputs except TDO.  
JTAG AC Electrical  
Characteristics(1,2,3,4,5)  
70T633/1  
Symbol  
Parameter  
JTAG Clock Input Period  
JTAG Clock HIGH  
JTAG Clock Low  
JTAG Clock Rise Time  
JTAG Clock Fall Time  
JTAG Reset  
Min.  
100  
40  
Max.  
Units  
ns  
____  
t
JCYC  
JCH  
JCL  
JR  
JF  
JRST  
JRSR  
JCD  
JDC  
JS  
JH  
____  
____  
t
ns  
t
40  
ns  
(1)  
____  
t
3
ns  
(1)  
____  
t
3
ns  
____  
____  
t
50  
ns  
t
JTAG Reset Recovery  
JTAG Data Output  
JTAG Data Output Hold  
JTAG Setup  
50  
ns  
NOTES:  
1. Guaranteed by design.  
2. 30pF loading on external output signals.  
3. Refer to AC Electrical Test Conditions stated earlier in this document.  
4. JTAG operations occur at one speed (10MHz). The base device may run at  
any speed specified in this datasheet.  
____  
t
25  
ns  
____  
t
0
ns  
____  
____  
t
15  
15  
ns  
5. JTAG cannot be tested in sleep mode.  
t
JTAG Hold  
ns  
5670 tbl 20  
24  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Identification Register Definitions  
Instruction Field  
Value  
Description  
Revision Number (31:28)  
0x0  
Reserved for version number  
(1)  
IDT Device ID (27:12)  
Defines IDT part number 70T633  
0x33B  
0x33  
1
IDT JEDEC ID (11:1)  
Allows unique identification of device vendor as IDT  
Indicates the presence of an ID register  
ID Register Indicator Bit (Bit 0)  
5670 tbl 21  
NOTE:  
1. Device ID for IDT70T631 is 0x33C.  
ScanRegisterSizes  
Register Name  
Bit Size  
Instruction (IR)  
4
1
Bypass (BYR)  
Identification (IDR)  
32  
Boundary Scan (BSR)  
Note (3)  
5670 tbl 22  
SystemInterfaceParameters  
Instruction  
Code  
Description  
EXTEST  
0000  
Forces contents of the boundary scan cells onto the device outputs(1).  
Places the boundary scan register (BSR) between TDI and TDO.  
BYPASS  
IDCODE  
1111  
Places the bypass register (BYR) between TDI and TDO.  
0010  
Loads the ID register (IDR) with the vendor ID code and places the  
register between TDI and TDO.  
0100  
Places the bypass register (BYR) between TDI and TDO. Forces all  
device output drivers to a High-Z state.  
HIGHZ  
Uses BYR. Forces contents of the boundary scan cells onto the device  
outputs. Places the bypass register (BYR) between TDI and TDO.  
CLAMP  
0011  
0001  
SAMPLE/PRELOAD  
Places the boundary scan register (BSR) between TDI and TDO.  
SAMPLE allows data from device inputs(2) and outputs(1) to be captured  
in the boundary scan cells and shifted serially through TDO. PRELOAD  
allows data to be input serially into the boundary scan cells via the TDI.  
RESERVED  
All other codes  
Several combinations are reserved. Do not use codes other than those  
identified above.  
5670 tbl 23  
NOTES:  
1. Device outputs = All device outputs except TDO.  
2. Device inputs = All device inputs except TDI, TMS, and TRST.  
3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local  
IDT sales representative.  
25  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
OrderingInformation  
XXXXX  
A
999  
A
A
A
A
Device  
Type  
Power Speed  
Package  
Process/  
Temperature  
Range  
Blank  
8
Tube or Tray  
Tape and Reel  
Blank  
I
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
G(1)  
Green  
BC  
BF  
256-ball BGA (BC-256)  
208-ball fpBGA (BF-208)  
Commercial Only  
8
10  
12  
15  
Commercial & Industrial  
Speed in nanoseconds  
Commercial & Industrial  
Commercial Only  
S
Standard Power  
70T633 9Mbit (512K x 18) 2.5V Asynchronous Dual-Port RAM  
70T631 4Mbit (256K x 18) 2.5V Asynchronous Dual-Port RAM  
5670 drw 24  
NOTES:  
1. Green parts available. For specific speeds, packages and poweres contact your local sales office.  
26  
IDT70T633/1S  
High-Speed 2.5V 512/256K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DatasheetDocumentHistory:  
04/25/03:  
10/01/03:  
InitialDatasheet  
Page 9  
Added8ns speedDCpowernumbers toDCElectricalCharacteristics Table  
Page 9  
Page 9,11,15,  
17&25  
UpdatedDCpowernumbers for10, 12&15ns speeds inthe DCElectricalCharacteristics Table  
Addedfootnotethatindicates that8ns speedis availableinBF-208andBC-256packages only  
Page 10  
AddedCapacitanceDeratingDrawing  
Page 11,15 & 17 Added8nsACtimingnumberstotheACElectricalCharacteristicsTables  
Page 11  
AddedtSOE andtLZOB totheACReadCycleElectricalCharacteristicsTable  
AddedtLZOB tothe WaveformofReadCycles Drawing  
AddedtSOE toTimingWaveformofSemaphoreReadafterWriteTiming,EitherSideDrawing  
Added8ns speedgradeand10ns I-temptofeatures andtoorderinginformation  
Page 12  
Page 14  
Page 1& 25  
Page 1, 14 & 15 AddedRapidWriteModeWriteCycletextandwaveforms  
10/20/03:  
04/21/04:  
01/05/06:  
Page 15  
CorrectedtARF to1.5V/nsMin.  
RemovedPreliminarystatusfromentiredatasheet  
Addedgreenavailabilitytofeatures  
Addedgreenindicatortoorderinginformation  
Corrected a typo in the DC Chars table  
Removed "IDT" from orderable part number  
Removed the DD 144-pin TQFP (DD-144) Thin Quad Flatpack per PDN: F-08-01  
Corrected 70T651/9 to 70T633/1  
Page 1  
Page 27  
Page 9  
Page 27  
07/25/08:  
01/19/09:  
04/20/10:  
10/15/11:  
Page 2,13  
Page 26  
Updatedorderinginformationtoinclude tube ortrayandtape &reel.  
CORPORATE HEADQUARTERS  
for SALES:  
for Tech Support:  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
408-284-2794  
DualPortHelp@idt.com  
Š
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
27  

相关型号:

72T631S12BFG

Dual-Port SRAM, 256KX18, 12ns, CMOS, PBGA208, 15 X 15 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, GREEN, FPBGA-208
IDT

72T631S12BFGI

Dual-Port SRAM, 256KX18, 12ns, CMOS, PBGA208, 15 X 15 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, GREEN, FPBGA-208
IDT

72T633S12BCG

Dual-Port SRAM, 512KX18, 12ns, CMOS, PBGA256, 17 X 17 MM, 1.40 HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT

72T633S12BCGI

Dual-Port SRAM, 512KX18, 12ns, CMOS, PBGA256, 17 X 17 MM, 1.40 HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT

72T6360L6BB

2.5V SEQUENTIAL FLOW-CONTROL DEVICE 36 BIT WIDE CONFIGURATION
IDT

72T6360L6BBGI

Microprocessor Circuit, CMOS, PBGA324, 19 X 19 MM, 1 MM PITCH, PLASTIC, BGA-324
IDT

72T6360L7-5BB

2.5V SEQUENTIAL FLOW-CONTROL DEVICE 36 BIT WIDE CONFIGURATION
IDT

72T6360L7.5BBG

Microprocessor Circuit, CMOS, PBGA324, 19 X 19 MM, 1 MM PITCH, PLASTIC, BGA-324
IDT

72T6360L7.5BBGI

Microprocessor Circuit, CMOS, PBGA324, 19 X 19 MM, 1 MM PITCH, PLASTIC, BGA-324
IDT

72T6480L10BB

PBGA-324, Tray
IDT

72T6480L10BBG

PBGA-324, Tray
IDT

72T6480L10BBGI

PBGA-324, Tray
IDT