72V51256L6BBI [IDT]

FIFO;
72V51256L6BBI
型号: 72V51256L6BBI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FIFO

先进先出芯片
文件: 总52页 (文件大小:413K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.3V MULTI-QUEUE FIFO (4 QUEUES)  
36 BIT WIDE CONFIGURATION  
589,824 bits, 1,179,648 bits and  
2,359,296 bits  
PRELIMINARY  
IDT72V51236  
IDT72V51246  
IDT72V51256  
4 bit parallel flag status on both read and write ports  
FEATURES:  
Provides continuous PAE and PAF status of up to 4 Queues  
Global Bus Matching - (All Queues have same Input Bus Width  
and Output Bus Width)  
User Selectable Bus Matching Options:  
- x36in to x36out  
- x18in to x36out  
- x9in to x36out  
- x36in to x18out  
- x36in to x9out  
Choose from among the following memory density options:  
IDT72V51236  
IDT72V51246  
IDT72V51256  
Total Available Memory = 589,824 bits  
Total Available Memory = 1,179,648 bits  
Total Available Memory = 2,359,296 bits  
Configurable from 1 to 4 Queues  
Queues may be configured at master reset from the pool of  
Total Available Memory in blocks of 256 x 36  
Independent Read and Write access per queue  
User programmable via serial port  
Default Multi-Queue device configurations  
-IDT72V51236: 4,096 x 36 x 4Q  
FWFT mode of operation on read port  
Packet Ready mode of operation  
Partial Reset, clears data in single Queue  
Expansion of up to 8 Multi-Queue devices in parallel is available  
JTAG Functionality (Boundary Scan)  
Available in a 256-pin PBGA, 1mm pitch, 17mm x 17mm  
HIGH Performance submicron CMOS technology  
Industrial temperature range (-40°C to +85°C) is available  
-IDT72V51246: 8,192 x 36 x 4Q  
-IDT72V51256: 16,384 x 36 x 4Q  
100% Bus Utilization, Read and Write on every clock cycle  
166 MHz High speed operation (6ns cycle time)  
3.7ns access time  
Individual, Active queue flags (OV, FF, PAE, PAF, PR)  
DATA PATH FLOW DIAGRAM  
MULTI-QUEUE FIFO  
WADEN  
FSTR  
RADEN  
ESTR  
Q
0
RDADD  
6
WRADD  
5
REN  
WEN  
RCLK  
WCLK  
OE  
Q
D
in  
out  
x9, x18, x36  
DATA OUT  
x9, x18, x36  
DATA IN  
OV  
FF  
Q
3
PR  
PAF  
PAE  
PAFn  
4
PAEn/PRn  
4
5937 drw01  
IDTandtheIDTlogoareregisteredtrademarksofIntegratedDeviceTechnology,Inc  
JANUARY 2002  
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES  
1
2002 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
DSC-5937/4  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
A packet ready mode of operation is also provided when the device is  
configuredfor36bitinputand36bitoutputportsizes.ThePacketReadymode  
providestheuserwithaflagoutputindicatingwhenatleastone(ormore)packets  
ofdatawithinaqueueisavailableforreading.ThePacketReadyprovidesthe  
userwithameans bywhichtomarkthestartandendofpackets ofdatabeing  
passedthroughtheFIFOqueues.TheMulti-Queuedevicethenprovides the  
userwithaninternallygeneratedpacketreadystatus perqueue.  
Theuserhasfullflexibilityconfiguringqueueswithinthedevice,beingable  
toprogramthetotalnumberofqueues between1and4,theindividualqueue  
depthsbeingindependentofeachother.Theprogrammableflagpositionsare  
alsouserprogrammable.Allprogrammingisdoneviaadedicatedserialport.  
IftheuserdoesnotwishtoprogramtheMulti-Queuedevice,adefaultoptionis  
availablethatconfiguresthedeviceinapredeterminedmanner.  
DESCRIPTION:  
TheIDT72V51236/72V51246/72V51256Multi-QueueFIFOdeviceisa  
single chipwithinwhichanywhere between1and4discrete FIFOqueues  
canbe setup.Allqueues withinthe device have a commondata inputbus,  
(writeport)andacommondataoutputbus,(readport).Datawrittenintothe  
write port is directed to a respective queue via an internal de-multiplex  
operation,addressedbytheuser.Datareadfromthereadportisaccessed  
froma respective queue via aninternalmultiplexoperation,addressedby  
the user. Data writes and reads can be performed at high speeds up to  
166MHz,withaccesstimesof3.7ns.Datawriteandreadoperationsaretotally  
independent of each other, a queue maybe selected on the write port and  
adifferentqueueonthereadportorbothportsmayselectthesamequeue  
simultaneously.  
BothMasterResetandPartialResetpinsareprovidedonthisdevice.AMaster  
Reset latches in all configuration setup pins and must be performed before  
programmingofthedevicecantakeplace.APartialResetwillresetthereadand  
writepointersofanindividualFIFOqueue,providedthatthequeueisselected  
onboththe write portandreadportatthe time ofpartialreset.  
AJTAGtestportisprovided,heretheMulti-QueueFIFOhasafullyfunctional  
BoundaryScanfeature,compliantwithIEEE1449.1StandardTestAccessPort  
andBoundaryScanArchitecture.  
The device provides FullflagandOutputValidflagstatus forthe queue  
selectedforwriteandreadoperations respectively.AlsoaProgrammable  
AlmostFullandProgrammableAlmostEmptyflagforeachqueueisprovided.  
Two 4 bit programmable flag busses are available, providing status of all  
queues,includingqueuesnotselectedforwriteorreadoperations,theseflag  
busses provide an individual flag per queue.  
BusMatchingisavailableonthisdevice,eitherportcanbe9bits,18bits  
or 36 bits wide provided that at least one port is 36 bits wide. When Bus  
Matchingisusedthedeviceensuresthelogicaltransferofdatathroughput  
inaLittleEndianmanner.  
SeeFigure1,Multi-QueueFIFOBlockDiagramforanoutlineofthefunctional  
blockswithinthedevice.  
2
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
D
D
= TEOP  
= TSOP  
D
35  
34  
in  
x9, x18, x36  
D - D  
2
0
35  
WCLK  
WEN  
TMS  
TDI  
INPUT  
DEMUX  
JTAG  
TDO  
TCK  
Logic  
5
WRADD  
WADEN  
Write Control  
Logic  
TRST  
Write Pointers  
PR  
Packet Mode  
Logic  
4
PAF  
General Flag  
Monitor  
PRn/PAEn  
FSTR  
PAFn  
4
FSYNC  
Upto 4  
FIFO  
Queues  
FXO  
FXI  
OV  
Active Q  
Flags  
PAE  
0.5 Mbit  
1.1 Mbit  
2.3 Mbit  
Dual Port  
Memory  
Active Q  
Flags  
FF  
PAF  
PAE  
General Flag  
Monitor  
SI  
SO  
SCLK  
Serial  
Multi-Queue  
Programming  
ESTR  
ESYNC  
EXI  
SENI  
SENO  
EXO  
Read Pointers  
FM  
IW  
OW  
BM  
Reset  
Logic  
6
RDADD  
RADEN  
Read Control  
Logic  
MAST  
PKT  
REN  
RCLK  
ID0  
ID1  
ID2  
DF  
Device ID  
3 Bit  
OUTPUT  
MUX  
PAE/ PAF  
2
Offset  
Q
Q
= REOP  
= RSOP  
DFM  
35  
34  
OUTPUT  
REGISTER  
PRS  
MRS  
5937 drw02  
OE  
Q - Q  
35  
0
Q
x9, x18, x36  
out  
Figure 1. Multi-Queue Block Diagram  
3
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINCONFIGURATION  
A1 BALL PAD CORNER  
A
D14  
D15  
D13  
D16  
D12  
D11  
D10  
D9  
D7  
D6  
D4  
D3  
D1  
D0  
TCK  
TMS  
TDO  
TDI  
ID1  
ID0  
Q3  
Q2  
Q6  
Q9  
Q8  
Q7  
Q12  
Q11  
Q14  
Q13  
Q15  
Q19  
B
C
D
E
F
Q5  
TRST  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
D17  
D18  
D19  
D8  
D5  
D2  
GND  
VCC  
ID2  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Q0  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
Q1  
Q4  
Q10  
Q16  
Q24  
Q27  
Q30  
Q33  
PKT  
GND  
BM  
Q17  
Q21  
Q23  
Q26  
Q29  
Q32  
Q35  
MAST  
IW  
Q18  
Q20  
Q22  
Q25  
Q28  
Q31  
Q34  
FM  
VCC  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
D20  
D23  
D26  
D21  
D24  
D27  
D22  
D25  
D28  
VCC  
VCC  
VCC  
VCC  
VCC  
GND  
VCC  
VCC  
GND  
GND  
VCC  
VCC  
G
H
J
D29  
D32  
GND  
GND  
SI  
D30  
D31  
D34  
D35  
GND  
DF  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
GND  
GND  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
GND  
GND  
VCC  
VCC  
VCC  
D33  
VCC  
VCC  
GND  
GND  
DFM  
K
VCC  
VCC  
L
OW  
M
N
P
R
T
SENO  
SENI  
OE  
SO  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
GND  
VCC  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
RDADD0 RDADD1  
WRADD1 WRADD0  
SCLK  
RDADD2 GND  
GND  
FF  
OV  
PAE  
GND  
GND  
GND  
WADEN  
PAF3  
DNC  
DNC  
DNC  
DNC  
PAE3 RDADD3 RDADD4 RDADD5  
PAF  
PRS  
PR  
WRADD3 WRADD2 FSYNC  
FSTR  
PAF2  
PAF1  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
PAE2  
PAE1  
RADEN ESTR  
ESYNC  
EXI  
WEN  
MRS  
REN  
WRADD4  
FXI  
FXO  
PAF0  
WCLK  
RCLK  
PAE0  
EXO  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
5937 drw03  
PBGA (BB256-1, order code: BB)  
TOP VIEW  
NOTE:  
1. DNC - Do Not Connect.  
4
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
providesauserprogrammablealmostfullflagforall4FIFOqueuesandwhen  
arespectivequeueisselectedonthewriteport,thealmostfullflagprovidesstatus  
for that queue. Conversely, the read port has an output valid flag, providing  
statusofthedatabeingreadfromthequeueselectedonthereadport.Aswell  
astheoutputvalidflagthedeviceprovidesadedicatedalmostemptyflag.This  
almostemptyflagissimilartothealmostemptyflagofaconventionalIDTFIFO.  
The device provides a user programmable almost empty flag for all 4 FIFO  
queuesandwhenarespectivequeueisselectedonthereadport,thealmost  
emptyflagprovidesstatusforthatqueue.  
DETAILEDDESCRIPTION  
MULTI-QUEUE STRUCTURE  
TheIDTMulti-QueueFIFOhasasingledatainputportandsingledataoutput  
portwithupto4FIFOqueuesinparallelbufferingbetweenthetwoports.The  
usercansetupbetween1and4FIFOQueueswithinthedevice.Thesequeues  
canbeconfiguredtoutilizethetotalavailablememory,providingtheuserwith  
fullflexibilityandabilitytoconfigurethequeuestobevariousdepths,indepen-  
dentofoneanother.  
PROGRAMMABLE FLAG BUSSES  
MEMORYORGANIZATION/ALLOCATION  
Inadditiontothesededicatedflags,full&almostfullonthewriteportandoutput  
valid&almostemptyonthereadport,therearetwoflagstatusbusses.Analmost  
fullflagstatusbusisprovided,thisbusis4bitswide.Also,analmostemptyflag  
statusbusisprovided,againthisbusis4bitswide.Thepurposeoftheseflag  
bussesistoprovidetheuserwithameansbywhichtomonitorthedatalevels  
within FIFO queues that may not be selected on the write or read port. As  
mentioned,thedeviceprovidesalmostfullandalmostemptyregisters(program-  
mable by the user) for each of the 4 FIFO queues in the device.  
The4bitPAEnand4bitPAFnbussesprovideadiscretestatusoftheAlmost  
EmptyandAlmostFullconditionsofall4queue's.Ifthedeviceisprogrammed  
for less than 4 queue's, then there will be a corresponding number of active  
outputs onthePAEnandPAFnbusses.  
Theflagbussescanprovideacontinuousstatusofallqueues.Ifdevicesare  
connectedinexpansionmodetheindividualflagbussescanbeleftinadiscrete  
form,providingconstantstatusofallqueues,orthebussesofindividualdevices  
canbe connectedtogethertoproduce a single bus of4bits. The device can  
then operate in a "Polled" or "Direct" mode.  
Whenoperatinginpolledmodetheflagbusprovidesstatusofeachdevice  
sequentially,thatis,oneachrisingedgeofaclocktheflagbusisupdatedtoshow  
thestatusofeachdeviceinorder.Therisingedgeofthewriteclockwillupdate  
theAlmostFullbusandarisingedgeonthereadclockwillupdatetheAlmost  
Emptybus.  
Whenoperatingindirectmodethedevicedrivingtheflagbusisselectedby  
theuser.Theuseraddresses thedevicethatwilltakecontrolofarespective  
flagbus, these PAFnandPAEnflagbusses operatingindependentlyofone  
another.AddressingoftheAlmostFullflagbus is doneviathewriteportand  
addressingoftheAlmostEmptyflagbus is doneviathereadport.  
Thememoryisorganizedintowhatisknownasblocks,eachblockbeing  
256x36bits.Whentheuserisconfiguringthenumberofqueuesandindividual  
queuesizestheusermustallocatethememorytorespectivequeues,inunits  
ofblocks,thatis,asinglequeuecanbemadeupfrom0tomblocks,wherem  
isthetotalnumberofblocksavailablewithinadevice.Alsothetotalsizeofany  
given queue must be in increments of 256 x36. For the IDT72V51236/  
72V51246andIDT72V51256theTotalAvailableMemoryis64,128and256  
blocks respectively(a blockbeing256x36). Queues canbe builtfromthese  
blocks to make any size queue desired and any number of queues desired.  
BUS WIDTHS  
TheinputportiscommontoallFIFOqueueswithinthedevice,asistheoutput  
port.ThedeviceprovidestheuserwithBusMatchingoptionssuchthattheinput  
portandoutputportcanbeeitherx9,x18orx36bitswideprovidedthatatleast  
one of the ports is x36 bits wide, the read and write port widths being set  
independentlyofoneanother.Becausetheportsarecommontoallqueuesthe  
widthofthequeuesisnotindividuallyset,sothattheinputwidthofallqueues  
are equal and the output width of all queues are equal.  
WRITING TO & READING FROM THE MULTI-QUEUE  
Databeingwrittenintothedeviceviatheinputportisdirectedtoadiscrete  
FIFOqueueviathewritequeueselectaddressinputs.Conversely,databeing  
readfromthedevicereadportisreadfromaqueueselectedviathereadqueue  
selectaddressinputs.Datacanbesimultaneouslywrittenintoandreadfromthe  
sameFIFOqueueordifferentFIFOqueues.Onceaqueueisselectedfordata  
writes or reads, the writing and reading operation is performed in the same  
mannerasconventionalIDTsynchronousFIFO’s,utilizingclocksandenables,  
thereisasingleclockandenableperport.Whenaspecificqueueisaddressed  
on the write port, data placed on the data inputs is written to that queue  
sequentiallybasedontherisingedgeofawriteclockprovidedsetupandhold  
timesaremet.Conversely,dataisreadontotheoutputportafteranaccesstime  
from a rising edge on a read clock.  
Theoperationofthewriteportiscomparabletothefunctionofaconventional  
FIFOoperatinginstandardIDTmode.Writeoperationscanbeperformedon  
thewriteportprovidedthatthequeuecurrentlyselectedisnotfull,afullflagoutput  
provides status of the selected queue. The operation of the read port is  
comparabletothefunctionofaconventionalFIFOoperatinginFWFTmode.  
WhenaFIFOqueueisselectedontheoutputport,thenextwordinthatqueue  
willautomaticallyfallthroughtotheoutputregister.Allsubsequentwordsfrom  
thatqueuerequireanenabledreadcycle.Datacannotbereadfromaselected  
queueifthatqueueisempty,thereadportprovidesanOutputValidflagindicating  
whendata readoutis valid. Ifthe userswitches toa queue thatis empty, the  
lastwordfromtheprevious queuewillremainontheoutputregister.  
Asmentioned,thewriteporthasafullflag,providingfullstatusoftheselected  
queue.Alongwiththefullflagadedicatedalmostfullflagisprovided,thisalmost  
fullflagissimilartothealmostfullflagofaconventionalIDTFIFO.Thedevice  
PACKETREADY  
The36bitMulti-QueueFIFOalsooffersaPacketReady”modeofoperation,  
thisisuserselectableandrequiresthatthedevicebeconfiguredwithbothwrite  
and read ports as 36 bits wide. The packet mode of operation provides  
monitoringofusermarked”locations,whentheuseriswritingdataintoaFIFO  
queueawordbeingwrittenincanbemarkedasaStartofPacket”orEndof  
Packet. Internally as words are being written into the device with markers  
attached,thedevicemonitorsthesemarkersandprovidesapacketreadystatus  
flag,whichindicateswhenatleastonefullpacketisavailableinaqueue.The  
readportthereforeincludesanadditionalstatusflag,PacketReady,thisflag  
providingpacketreadystatusforthequeuecurrentlyselectedonthereadport  
forreadoperations,indicatingwhenatleastone(ormore)packetsofdataare  
availabletoberead.Wheninpacketreadymodethealmostemptyflagstatus  
busnolongerprovidesalmostemptystatusforindividualquadrants,butinstead  
providespacketreadyflagstatusforindividualquadrants.(Apacketisregarded  
as anynumberofwords writtenbetweena startofpacketandendofpacket  
marker,packetsizesareuserdefinedandsizesarenotcontrolledorlimitedby  
thedevice).  
5
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
EXPANSION  
deviceutilizingallmemoryblocksavailabletoproduceasinglequeue.Thisis  
ExpansionofMulti-Queuedevicesisalsopossible,upto8devicescanbe thedeepestFIFOqueuethatcansetupwithinadevice.  
connectedinaparallelfashionprovidingthepossibilityofbothdepthexpansion  
For queue expansion of the 4 queue device, a maximum number of 32 (8  
or queue expansion. Depth Expansion means expanding the depths of x4)queuesmaybesetup,eachqueuebeing2Kx36deep,iflessqueuesare  
individual queues. Queue expansion means increasing the total number of setup,thenmorememoryblockswillbeavailabletoincreasequeuedepthsif  
queuesavailable.Depthexpansionispossiblebyvirtueofthefactthatmore desired.WhenconnectingMulti-Queuedevicesinexpansionmodeallrespec-  
memoryblockswithinaMulti-Queuedevicecanbeallocatedtoincreasethe tive input pins (data & control) and output pins (data & flags), should be  
depth of a queue. For example, depth expansion of 8 devices provides the connected”togetherbetweenindividualdevices.  
possibilityof8queuesof64Kx36deep,eachqueuebeingsetupwithinasingle  
6
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS  
Symbol  
Name  
I/OTYPE  
Description  
BM  
BusMatching  
LVTTL ThispinissetupbeforeMasterResetandmustnottoggleduringanydeviceoperation.Thispinisused  
INPUT alongwithIWandOWtosetupthe FIFObus width. Please refertoTable 3fordetails.  
D[35:0]  
Din  
DataInputBus  
LVTTL These are the 36data inputpins. Data is writtenintothe device via these inputpins onthe risingedge  
INPUT ofWCLKprovidedthatWENisLOW.Note,thatinPacketReadymodeD32-D35maybeusedaspacket  
markers,pleaseseepacketreadyfunctionaldiscussionformoredetail.Duetobusmatchingnotallinputs  
maybe used, anyunusedinputs shouldbe tiedLOW.  
DF(1)  
DefaultFlag  
DefaultMode  
LVTTL IftheuserrequiresdefaultprogrammingoftheMulti-Queuedevice,thispinmustbesetupbeforeMaster  
INPUT Resetandmustnottoggleduringanydeviceoperation.Thestateofthisinputatmasterresetdetermines  
the value of the PAE/PAF flag offsets. If DF is LOW the value is 8, if DF is HIGH the value is 128.  
(1)  
DFM  
LVTTL TheMulti-Queuedevicerequiresprogrammingaftermasterreset.Theusercandothisseriallyviathe  
INPUT serialport,ortheusercanusethedefaultmethod.IfDFMisLOWatmasterresetthenserialmodewillbe  
selected,ifHIGHthendefaultmodeisselected.  
ESTR  
PAEn Flag Bus  
Strobe  
LVTTL IfdirectoperationofthePAEnbushasbeenselected,theESTRinputisusedinconjunctionwithRCLK  
INPUT andtheRDADDbustoselectadeviceforitsqueuestobeplacedontothePAEnbusoutputs.Adevice  
addressed via the RDADD bus is selected on the rising edge of RCLK provided that ESTR is HIGH. If  
Polledoperationshasbeenselected,ESTRshouldbetiedinactive,LOW.  
ESYNC  
PAEnBus Sync  
LVTTL ESYNCisanoutputfromtheMulti-QueuedevicethatprovidesasynchronizingpulseforthePAEnbus  
OUTPUT duringPolledoperationofthePAEnbus.DuringPolledoperationeachdevicesqueuestatusflagsare  
loadedontothePAEnbusoutputssequentiallybasedonRCLK.ThefirstRCLKrisingedgeloadsdevice1  
ontoPAEn,thesecondRCLKrisingedgeloadsdevice2andsoon.DuringtheRCLKcyclethataselected  
device is placed on to the PAEn bus, the ESYNC output will be HIGH.  
EXI  
PAEn/PRnBus  
ExpansionIn  
LVTTL TheEXIinputis usedwhenMulti-Queuedevices areconnectedinexpansionmodeandPolledPAEn/  
INPUT PRnbus operationhas beenselected. EXIofdevice ‘Nconnects directlytoEXOofdevice N-1’. The  
EXIreceivesatokenfromthepreviousdeviceinachain.InsingledevicemodetheEXIinputshouldbe  
tiedLOWifthePAEn/PRnbusisoperatedindirectmode.IfthePAEn/PRnbusisoperatedinpolledmode  
theEXIinputshouldbeconnectedtotheEXOoutputofthesamedevice.InexpansionmodetheEXIof  
thefirstdeviceshouldbetiedLOW,whendirectmodeisselected.  
EXO  
PAEn/PRnBus  
ExpansionOut  
LVTTL EXOisanoutputthatisusedwhenMulti-QueuedevicesareconnectedinexpansionmodeandPolled  
OUTPUT PAEn/PRnbusoperationhasbeenselected.EXOofdeviceNconnectsdirectlytoEXIofdeviceN+1’.  
ThispinpulsesHIGHwhendeviceNplacesitsPAEstatusontothePAEn/PRnbuswithrespecttoRCLK.  
This pulse (token) is then passed on to the next device in the chain N+1’ and on the next RCLK rising  
edgethefirstquadrantofdeviceN+1willbeloadedontothePAEn/PRnbus.Thiscontinuesthroughthe  
chainandEXOofthelastdeviceisthenloopedbacktoEXIofthefirstdevice.TheESYNCoutputofeach  
deviceinthechainprovides synchronizationtotheuserofthis loopingevent.  
FF  
Full Flag  
LVTTL This pinprovides thefullflagoutputfortheactiveFIFOqueue,thatis,thequeueselectedontheinput  
OUTPUT portforwrite operations, (selectedvia WCLK, WRADDbus andWADEN). Onthe WCLKcycle aftera  
queueselection,thisflagwillshowthestatusofthenewlyselectedqueue.Datacanbewrittentothisqueue  
onthenextcycleprovidedFFisHIGH.ThisflaghasHigh-Impedancecapability,thisisimportantduring  
expansionofdevices,whentheFFflagoutputofupto8devicesmaybeconnectedtogetheronacommon  
line.ThedevicewithaqueueselectedtakescontroloftheFFbus,allotherdevicesplacetheirFFoutput  
intoHigh-Impedance.Whenaqueueselectionismadeonthewriteportthisoutputwillswitchfrom  
High-ImpedancecontrolonthenextWCLKcycle.ThisflagissynchronizedtoWCLK.  
(1)  
FM  
Flag Mode  
LVTTL Thispinissetupbeforeamasterresetandmustnottoggleduringanydeviceoperation.Thestateofthe  
INPUT FMpinduringMasterResetwilldeterminewhetherthePAFnandPAEnflagbussesoperateineitherPolled  
orDirectmode.Ifthis pinis HIGHthemodeis Polled,ifLOWthenitwillbeDirect.  
FSTR  
PAFn Flag Bus  
Strobe  
LVTTL IfdirectoperationofthePAFnbushasbeenselected,theFSTRinputisusedinconjunctionwithWCLK  
INPUT andtheWRADDbustoselectadeviceforitsqueuestobeplacedontothe PAFnbusoutputs.Adevice  
addressedviatheWRADDbus is selectedontherisingedgeofWCLKprovidedthatFSTRis HIGH.If  
Polledoperationshasbeenselected,FSTRshouldbetiedinactive,LOW.  
FSYNC  
PAFn Bus Sync  
LVTTL FSYNCisanoutputfromtheMulti-QueuedevicethatprovidesasynchronizingpulseforthePAFnbus  
OUTPUT duringPolledoperationofthePAFnbus.DuringPolledoperationeachquadrantofqueuestatusflagsis  
loadedontothePAFnbusoutputssequentiallybasedonWCLK.ThefirstWCLKrisingedgeloadsdevice1  
7
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol  
Name  
I/OTYPE  
Description  
FSYNC  
(Continued)  
PAFn Bus Sync  
LVTTL ontothePAFnbusoutputs,thesecondWCLKrisingedgeloadsdevice2andsoon.DuringtheWCLK  
OUTPUT cycle thata selecteddevice is placedontothePAFnbus, the FSYNCoutputwillbe HIGH.  
FXI  
PAFnBus  
ExpansionIn  
LVTTL The FXIinputis usedwhenMulti-Queue devices are connectedinexpansionmode andPolled PAFn  
INPUT bus operation has been selected. FXI of device N’ connects directly to FXO of device N-1’. The FXI  
receivesatokenfromthepreviousdeviceinachain.InsingledevicemodetheFXIinputshouldbetied  
LOWifthePAEnbusisoperatedindirectmode.IfthePAEnbusisoperatedinpolledmodetheFXIinput  
shouldbeconnectedtotheFXOoutputofthesamedevice.InexpansionmodetheFXIofthefirstdevice  
shouldbetiedLOW,whendirectmodeisselected.  
FXO  
PAFnBus  
ExpansionOut  
LVTTL FXOisanoutputthatisusedwhenMulti-QueuedevicesareconnectedinexpansionmodeandPolled  
OUTPUT PAFnbusoperationhasbeenselected.FXOofdeviceNconnectsdirectlytoFXIofdeviceN+1’.This  
pinpulsesHIGHwhendeviceNplacesitsPAFstatusontothePAFnbuswithrespecttoWCLK.Thispulse  
(token)isthenpassedontothenextdeviceinthechainN+1’andonthenextWCLKrisingedgethefirst  
quadrantofdevice N+1willbe loadedontothe PAFnbus. This continues throughthe chainandFXO  
ofthelastdeviceisthenloopedbacktoFXIofthefirstdevice.TheFSYNCoutputofeachdeviceinthe  
chainprovidessynchronizationtotheuserofthisloopingevent.  
(1)  
ID[2:0]  
Device ID Pins  
LVTTL Forthe4QMulti-QueuedevicetheWRADDaddressbusis5bitsandRDADDaddressbusis6bitswide.  
INPUT Whenaqueueselectiontakesplacethe3MSBsofthisaddressbusareusedtoaddressthespecificdevice  
(theLSBsareusedtoaddressthequeuewithinthatdevice).Duringwrite/readoperationsthe3MSB’s  
oftheaddressarecomparedtothedeviceIDpins.ThefirstdeviceinachainofMulti-Queues(connected  
inexpansionmode),maybesetupas000,thesecondas001’andsoonthroughtodevice8whichis  
111,howevertheIDdoesnothavetomatchthedeviceorder.Insingledevicemodethesepinsshould  
besetupas000’andthe3MSBsoftheWRADDandRDADDaddressbussesshouldbetiedLOW.The  
ID[2:0]inputssetuparespectivedevicesIDduringmasterreset.TheseIDpinsmustnottoggleduring  
any device operation. Note, the device selected as the Master’ does not have to have the ID of 000.  
(1)  
IW  
InputWidth  
LVTTL ThispinisusedinconjunctionwithOWandBMtosetuptheinputandoutputbuswidthstobeacombination  
INPUT of x9, x18 or x36, (providing that one port is x36).  
(1)  
MAST  
MasterDevice  
LVTTL ThestateofthisinputatMasterResetdetermineswhetheragivendevice(withinachainofdevices),isthe  
INPUT MasterdeviceoraSlave.IfthispinisHIGH,thedeviceisthemaster,ifitisLOWthenitisaSlave.Themaster  
deviceisthefirsttotakecontrolofalloutputsafteramasterreset,allslavedevicesgotoHigh-Impedance,  
preventingbuscontention.IfaMulti-Queuedeviceisbeingusedinsingledevicemode,thispinmust  
be setHIGH.  
MRS  
OE  
MasterReset  
OutputEnable  
LVTTL AmasterresetisperformedbytakingMRSfromHIGHtoLOW,toHIGH.Deviceprogrammingisrequired  
INPUT aftermasterreset.  
LVTTL TheOutputenablesignalisanAsynchronoussignalusedtoprovidethree-statecontroloftheMulti-Queue  
INPUT dataoutputbus,Qout.IfadevicehasbeenconfiguredasaMaster”device,theQoutdataoutputswill  
beinaLowImpedanceconditioniftheOEinputisLOW.IfOEisHIGHthentheQoutdataoutputswillbe  
inHighImpedance.IfadeviceisconfiguredaSlave”device,thentheQoutdataoutputswillalwaysbe  
inHighImpedanceuntilthatdevicehasbeenselectedontheReadPort,atwhichpointOEprovidesthree-  
stateofthatrespectivedevice.  
OV  
OutputValidFlag  
OutputWidth  
LVTTL ThisoutputflagprovidesoutputvalidstatusforthedatawordpresentontheMulti-QueueFIFOdataoutput  
OUTPUT port,Qout.Thisflagistherefore,2-stagedelayedtomatchthedataoutputpathdelay.Thatis,thereis  
a2RCLKcycledelayfromthetimeagivenqueueisselectedforreads,tothetimetheOVflagrepresents  
thedatainthatrespectivequeue.Whenaselectedqueueonthereadportisreadtoempty,theOVflag  
willgoHIGH,indicatingthatdataontheoutputbus is notvalid.The OVflagalsohas High-Impedance  
capability,requiredwhenmultipledevices areusedandtheOVflags aretiedtogether.  
(1)  
OW  
LVTTL ThispinissetupduringMasterResetandmustnottoggleduringanydeviceoperation.Thispinisused  
INPUT inconjunctionwithIWandBMtosetupthedatainputandoutputbuswidthstobeacombinationofx9,  
x18 or x36, (providing that one port is x36).  
PAE  
Programmable  
Almost-EmptyFlag  
LVTTL ThispinprovidestheAlmost-EmptyflagstatusfortheFIFOqueuethathasbeenselectedontheoutput  
OUTPUT portforreadoperations,(selectedviaRCLK,RDADDandRADEN).ThispinisLOWwhentheselected  
FIFOqueuealmost-empty.This flagoutputmaybeduplicatedononeofthe PAEnbus lines.This flag  
is synchronizedtoRCLK.  
8
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol  
Name  
I/OTYPE  
Description  
PAEn/PRn Programmable  
Almost-EmptyFlag  
Bus/PacketReady  
FlagBus  
LVTTL On the 4Q device the PAEn/ PRn bus is 4 bits wide. During a Master Reset this bus is setup for either  
OUTPUT AlmostEmptymodeorPacketReadymode.Thisoutputbusprovides PAE/PRnstatusofall4queues,  
withinaselecteddevice.DuringFIFOread/writeoperationstheseoutputsprovideprogrammableempty  
flagstatusorpacketreadystatus,ineitherdirectorpolledmode.Themodeofflagoperationisdetermined  
duringmasterresetviathestateoftheFMinput.ThisflagbusiscapableofHigh-Impedancestate,this  
is importantduringexpansionofMulti-Queuedevices.Duringdirectoperationthe PAEn/PRnbusis  
updatedtoshowthePAE/PRstatusofqueueswithinaselecteddevice.SelectionismadeusingRCLK,  
ESTR and RDADD. During Polled operation the PAEn/PRn bus is loaded with the PAE/ PRn status  
of Multi-Queue FIFO devices sequentially based on the rising edge of RCLK. PAE or PR operation is  
determinedbythestateofPKTduringmasterreset.  
PAF  
Programmable  
Almost-FullFlag  
LVTTL ThispinprovidestheAlmost-FullflagstatusfortheFIFOqueuethathasbeenselectedontheinput  
OUTPUT portforwriteoperations,(selectedviaWCLK,WRADDandWADEN).ThispinisLOWwhentheselected  
FIFOqueueisalmost-full.Thisflagoutputmaybeduplicatedononeofthe PAFnbuslines.Thisflagis  
synchronizedtoWCLK.  
PAFn  
Programmable  
LVTTL Onthe4QdevicethePAFnbusis4bitswide.ThisoutputbusprovidesPAFstatusofall4queues,within  
Almost-FullFlagBus OUTPUT aselecteddevice.DuringFIFOread/writeoperationstheseoutputsprovideprogrammablefullflagstatus,  
ineitherdirectorpolledmode.Themodeofflagoperationisdeterminedduringmasterresetviathestate  
oftheFMinput.ThisflagbusiscapableofHigh-Impedancestate,thisisimportantduringexpansionof  
Multi-Queuedevices.DuringdirectoperationthePAFnbusisupdatedtoshowthePAFstatusofaqueues  
withinaselecteddevice.SelectionismadeusingWCLK,FSTR,WRADDandWADEN.DuringPolled  
operationthePAFnbusisloadedwiththe PAFstatusofMulti-QueueFIFOdevicessequentiallybased  
onthe risingedge ofWCLK.  
(1)  
PKT  
PacketMode  
LVTTL ThestateofthispinduringaMasterResetwilldeterminewhetherthepartisoperatinginPacketReady  
INPUT modeprovidingbothaPacketReady(PR)outputandaProgrammableAlmostEmpty(PAE)discrete  
output,orstandardmode,providinga(PAE)outputonly.IfthispinisHIGHduringMasterResetthepart  
willoperateinpacketreadymode,ifitisLOWthenalmostemptymode.Ifpacketmodehasbeenselected  
the readportflagbus becomes packetreadyflagbus, PRnandthe discrete packetreadyflag, PR is  
functional.Ifalmostemptyoperationhasbeenselectedthentheflagbusprovidesalmostemptystatus,PAEn  
andthediscretealmostemptyflag,PAEisfunctional,thePRflagisinactiveandshouldnotbeconnected.  
PacketReadyutilizesusermarkedlocationstoidentifystartandendofpacketsbeingwrittenintothedevice.  
PacketModecanonlybeselectedifboththeinputportwidthandoutputportwidthare36bits.  
PR  
PacketReadyFlag  
LVTTL IfpacketreadymodehasbeenselectedthisflagoutputprovidesPacketReadystatusoftheFIFOqueue  
OUTPUT selectedforreadoperations.DuringamasterresetthestateofthePKTinputdetermineswhetherPacket  
modeofoperationwillbeused.IfPacketmodeisselected,thenthePRflagbecomesavalidoutput,from  
whichtheusercandetermineifaselectedFIFOqueuehasacomplete”packetofdataavailableforreading.  
Theusermustmarkthestartofapacketandtheendofapacketwhenwritingdataintoaqueue.Using  
theseStartOfPacket(SOP)andEndOfPacket(EOP)markers,theMulti-Queuedevicesets PRLOW  
ifone ormore complete”packets are available inthe queue.  
PRS  
PartialReset  
LVTTL APartialResetcanbeperformedonasinglequeueselectedwithintheMulti-Queuedevice.BeforeaPartial  
INPUT Resetcanbe performedona queue, thatqueue mustbe selectedonboththe write portandreadport  
2clockcycles beforetheresetis performed.APartialResetis thenperformedbytakingPRS LOWfor  
one WCLK cycle and one RCLK cycle. The Partial Reset will only reset the read and write pointers to  
thefirstmemorylocation,noneofthedevicesconfigurationwillbechanged.  
Q[35:0]  
Qout  
DataOutputBus  
LVTTL Thesearethe36dataoutputpins.Dataisreadoutofthedeviceviatheseoutputpinsontherisingedge  
OUTPUT ofRCLKprovidedthatRENisLOW,OEisLOWandtheFIFOqueueisselected.Note,thatinPacketReady  
modeQ32-Q35maybeusedaspacketmarkers,pleaseseepacketreadyfunctionaldiscussionformore  
detail.Duetobusmatchingnotalloutputsmaybeused,anyunusedoutputsshouldnotbeconnected.  
RADEN  
RCLK  
ReadAddress Enable LVTTL The RADENinputis usedinconjunctionwithRCLKandthe RDADDaddress bus toselecta queue to  
INPUT be read from. A FIFO queue addressed via the RDADD bus is selected on the rising edge of RCLK  
provided that RADEN is HIGH. RADEN cannot be HIGH for the same RCLK cycle as ESTR.  
ReadClock  
LVTTL WhenenabledbyREN,therisingedgeofRCLKreadsdatafromtheselectedFIFOqueueviatheoutput  
INPUT busQout.TheFIFOqueuetobereadisselectedviatheRDADDaddressbusandarisingedgeofRCLK  
whileRADENisHIGH.ArisingedgeofRCLKinconjunctionwithESTRandRDADDwillalsoselectthe  
9
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol  
Name  
I/OTYPE  
Description  
RCLK  
(Continued)  
ReadClock  
LVTTL devicetobeplacedonthePAEn/PRnbusduringdirectflagoperation.Duringpolledflagoperationthe  
INPUT PAEn/PRnbusiscycledwithrespecttoRCLKandtheESYNCsignalissynchronizedtoRCLK.ThePAE,  
PR andOV outputs are allsynchronizedtoRCLK. Duringdevice expansionthe EXOandEXIsignals  
are based on RCLK. RCLK must be continuous and free-running.  
RDADD  
[5:0]  
Read Address Bus  
LVTTL For the 4Q device the RDADD bus is 6 bits. The RDADD bus is a dual purpose address bus. The first  
INPUT functionofRDADDis toselectaFIFOqueuetobereadfrom.Theleastsignificant2bits ofthebus,  
RDADD[1:0] are used to address 1 of 4 possible queues within a Multi-Queue device. Address pin,  
RDADD[2]providestheuserwithaNull-Qaddress.Iftheuserdoesnotwishtoaddressoneofthe4queues,  
aNull-Qcanbeaddressedusingthispin.TheNull-Qoperationisdiscussedinmoredetaillater.Themost  
significant3bits,RDADD[5:3]areusedtoselect1of8possibleMulti-Queuedevicesthatmaybeconnected  
inexpansionmode.These3MSBswilladdressadevicewiththematchingIDcode.Theaddresspresent  
ontheRDADDbuswillbeselectedonarisingedgeofRCLKprovidedthatRADENisHIGH,(note,that  
datacanbeplacedontotheQoutbus,readfromthepreviouslyselectedFIFOqueueonthisRCLKedge).  
On the next rising RCLK edge after a read queue select, a data word from the previous queue will be  
placedontotheoutputs,Qout,regardlessoftheRENinput.TwoRCLKrisingedgesafterreadqueueselect,  
datawillbeplacedontotheQoutoutputsfromthenewlyselectedqueue,regardlessofRENduetothe  
firstwordfallthrougheffect.  
The second function of the RDADDbus is toselect the device of FIFOqueues tobe loadedon to the  
PAEn/PRnbusduringstrobedflagmode.Themostsignificant3bits,RDADD[5:3]areagainusedtoselect1  
of8possibleMulti-Queuedevicesthatmaybeconnectedinexpansionmode.AddressbitsRDADD[2:0]  
aredont careduringdeviceselection.ThedeviceaddresspresentontheRDADDbuswillbeselected  
onthe risingedge ofRCLKprovidedthatESTRis HIGH, (note, thatdata canbe placedontothe Qout  
bus, readfromthe previouslyselectedFIFOQonthis RCLKedge). Please refertoTable 2fordetails  
on RDADD bus.  
REN  
ReadEnable  
LVTTL The RENinputenables readoperations fromaselectedFIFOqueuebasedonarisingedgeofRCLK.  
INPUT Aqueue tobe readfromcanbe selectedvia RCLK, RADENandthe RDADDaddress bus regardless  
ofthestateofREN.DatafromanewlyselectedqueuewillbeavailableontheQoutoutputbusonthesecond  
RCLKcycle afterqueue selectionregardless ofREN due tothe FWFToperation. Areadenable is not  
required to cycle the PAEn/PRn bus (in polled mode) or to select the device , (in direct mode).  
SCLK  
SerialClock  
LVTTL IfserialprogrammingoftheMulti-Queuedevicehasbeenselectedduringmasterreset,theSCLKinput  
INPUT clockstheserialdatathroughtheMulti-Queuedevice.DatasetupontheSIinputisloadedintothedevice  
ontherisingedgeofSCLKprovidedthatSENIisenabled,LOW.Whenexpansionofdevicesisperformed  
theSCLKofalldevices shouldbeconnectedtothesamesource.  
SENI  
SerialInputEnable  
LVTTL DuringserialprogrammingofaMulti-Queuedevice,dataloadedontotheSIinputwillbeclockedintothe  
INPUT part(via a risingedge ofSCLK), providedthe SENI inputofthatdevice is LOW. Ifmultiple devices are  
cascaded,theSENIinputshouldbeconnectedtotheSENOoutputofthepreviousdevice.Sowhenserial  
loadingofagivendeviceiscomplete,its SENOoutputgoesLOW,allowingthenextdeviceinthechain  
tobeprogrammed(SENOwillfollowSENIofagivendeviceoncethatdeviceisprogrammed).TheSENI  
inputofthe masterdevice (orsingle device), shouldbe controlledbythe user.  
SENO  
SerialOutputEnable LVTTL ThisoutputisusedtoindicatethatserialprogrammingordefaultprogrammingoftheMulti-Queuedevice  
OUTPUT hasbeencompleted.SENOfollowsSENIonceprogrammingofadeviceiscomplete.Therefore,SENO  
willgoLOWafterprogrammingprovidedSENIisLOW,onceSENIistakenHIGHagain,SENOwillalso  
goHIGH.WhentheSENOoutputgoesLOW,thedeviceisreadytobeginnormalread/writeoperations.  
Ifmultipledevicesarecascadedandserialprogrammingofthedeviceswillbeused,theSENO output  
shouldbeconnectedtotheSENIinputofthenextdeviceinthechain.Whenserialprogrammingofthe  
firstdeviceiscomplete, SENOwillgoLOW,therebytakingtheSENIinputofthenextdeviceLOWand  
soonthroughoutthe chain. Whena givendevice inthe chainis fullyprogrammedthe SENO output  
essentiallyfollowstheSENIinput.TheusershouldmonitortheSENOoutputofthefinaldeviceinthechain.  
WhenthisoutputgoesLOW,serialloadingofalldeviceshasbeencompleted.  
SI  
SerialIn  
LVTTL DuringserialprogrammingthispinisloadedwiththeserialdatathatwillconfiguretheMulti-Queuedevices.  
INPUT Data present on SI will be loaded on a rising edge of SCLK provided that SENI is LOW. In expansion  
modetheserialdatainputisloadedintothefirstdeviceinachain.WhenthatdeviceisloadedanditsSENO  
10  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol  
Name  
I/OTYPE  
Description  
SI  
SerialIn  
LVTTL hasgoneLOW,thedatapresentonSIwillbedirectlyoutputtotheSOoutput.TheSOpinofthefirstdevice  
INPUT connectstotheSIpinofthesecondandsoon.TheMulti-Queuedevicesetupregistersareshiftregisters.  
(Continued)  
SO  
SerialOut  
LVTTL Thisoutputisusedinexpansionmodeandallowsserialdatatobepassedthroughdevicesinthechain  
OUTPUT tocompleteprogrammingofalldevices.TheSIofadeviceconnectstoSOofthepreviousdeviceinthe  
chain. The SOofthe finaldevice ina chainshouldnotbe connected.  
TCK  
TDI  
JTAGClock  
LVTTL ClockinputforJTAGfunction. TMSandTDIare sampledonthe risingedge ofTCK. TDOis outputon  
INPUT thefallingedgeofTCK.  
TestDataInput  
TestDataOutput  
LVTTL During JTAG boundary scan operation test data is serially loaded via TDI on the rising edge of TCK.  
INPUT This is alsothedatafortheInstructionRegister,JTAGIDRegisterandBypass Register.  
TDO  
LVTTL During JTAG boundary scan operation test data is serially output via TDO on the falling edge of TCK.  
OUTPUT ThisoutputisinHigh-ImpedanceexceptwhenshiftingdatawhileinSHIFT-DRandSHIFT-IRcontroller  
states.  
TMS  
JTAGModeSelect  
JTAGReset  
LVTTL TMSis a serialinputpin. Bits are seriallyloadedonthe risingedge ofTCK, whichselects 1of5modes  
INPUT ofoperationforthe JTAGboundaryscan.  
TRST  
LVTTL TRSTistheasynchronousresetpinfortheJTAGcontroller.IftheJTAGportisnotutilized,TRSTshould  
INPUT be tiedtoGND.  
WADEN WriteAddressEnable LVTTL TheWADENinputisusedinconjunctionwithWCLKandtheWRADDaddressbustoselectaqueueto  
INPUT be written in to. A FIFO queue addressed via the WRADD bus is selected on the rising edge of WCLK  
providedthatWADENis HIGH. WADENcannotbe HIGHforthe same WCLKcycle as FSTR.  
WCLK  
WriteClock  
LVTTL WhenenabledbyWEN,therisingedgeofWCLKwritesdataintotheselectedFIFOqueueviatheinput  
INPUT bus, Din. The FIFO queue to be written to is selected via the WRADD address bus and a rising edge  
ofWCLKwhileWADENisHIGH.ArisingedgeofWCLKinconjunctionwithFSTRandWRADDwillalso  
selectthedevicetobeplacedonthePAFnbusduringdirectflagoperation.Duringpolledflagoperation  
thePAFnbusiscycledwithrespecttoWCLKandtheFSYNCsignalissynchronizedtoWCLK.ThePAFn,  
PAFandFF outputs areallsynchronizedtoWCLK.DuringdeviceexpansiontheFXOandFXIsignals  
are basedonWCLK. The WCLKmustbe continuous andfree-running.  
WEN  
WriteEnable  
LVTTL The WEN input enables write operations to a selected FIFO queue based on a rising edge of WCLK.  
INPUT AqueuetobewrittentocanbeselectedviaWCLK,WADENandtheWRADDaddress bus regardless  
ofthestateofWEN.DatapresentonDincanbewrittentoanewlyselectedqueueonthesecondWCLK  
cycleafterqueueselectionprovidedthatWENisLOW.AwriteenableisnotrequiredtocyclethePAFn  
bus (in polled mode) or to select the device , (in direct mode).  
WRADD WriteAddressBus  
[4:0]  
LVTTL Forthe 4Qdevice the WRADDbus is 5bits. The WRADDbus is a dualpurpose address bus. The first  
INPUT functionofWRADDistoselectaFIFOqueuetobewrittento.Theleastsignificant2bitsofthebus,  
WRADD[1:0]areusedtoaddress1of4possiblequeueswithinaMulti-Queuedevice.Themostsignificant  
3bits,WRADD[4:2]areusedtoselect1of8possibleMulti-Queuedevices thatmaybeconnectedin  
expansionmode.These3MSBswilladdressadevicewiththematchingIDcode.Theaddresspresent  
ontheWRADDbuswillbeselectedonarisingedgeofWCLKprovidedthatWADENisHIGH,(note,that  
datapresentontheDinbuscanbewrittenintothepreviouslyselectedFIFOqueueonthisWCLKedge  
andonthenextrisingWCLKalso,providingthatWENisLOW).TwoWCLKrisingedgesafterwritequeue  
select,datacanbewrittenintothenewlyselectedqueue.  
The secondfunctionofthe WRADDbus is toselectthe device ofFIFOqueues tobe loadedontothe  
PAFnbusduringstrobedflagmode.Themostsignificant3bits,WRADD[4:2]areagainusedtoselect  
1of8possibleMulti-Queuedevicesthatmaybeconnectedinexpansionmode.AddressbitsWRADD[1:0]  
aredontcareduringdeviceselection.ThedeviceaddresspresentontheWRADDbuswillbeselected  
ontherisingedgeofWCLKprovidedthatFSTRisHIGH,(note,thatdatacanbewrittenintothepreviously  
selectedFIFO queue on this WCLKedge). Please refertoTable 1 for details onthe WRADD bus.  
VCC  
GND  
NOTE:  
+3.3VSupply  
GroundPin  
Power These are VCC power supply pins and must all be connected to a +3.3V supply rail.  
Power These are Ground pins and must all be connected to the GND supply rail.  
1. Inputs should not change after Master Reset.  
11  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ABSOLUTEMAXIMUMRATINGS  
RECOMMENDED DC OPERATING  
CONDITIONS  
Symbol  
Rating  
Com'l & Ind'l  
Unit  
Symbol  
Parameter  
Min. Typ.  
Max.  
3.45  
0
Unit  
V
VTERM  
TerminalVoltage  
with respect to GND  
–0.5to+4.5  
V
(1)  
VCC  
SupplyVoltage(Com'l/Ind'l)  
3.15  
0
3.3  
0
TSTG  
IOUT  
StorageTemperature  
DCOutputCurrent  
–55 to +125  
–50 to +50  
°C  
GND SupplyVoltage(Com'l/Ind'l)  
V
mA  
VIH  
VIL  
TA  
InputHighVoltage(Com'l/Ind'l)  
InputLowVoltage(Com'l/Ind'l)  
OperatingTemperatureCommercial  
OperatingTemperatureIndustrial  
2.0  
0
VCC+0.3  
0.8  
V
NOTE:  
V
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
+70  
°C  
°C  
TA  
-40  
+85  
NOTE:  
1. VCC = 3.3V ± 0.15V, JEDEC JESD8-A compliant.  
DCELECTRICALCHARACTERISTICS  
(Commercial: VCC = 3.3V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 3.3V ± 0.15V, TA = 40°C to +85°C; JEDEC JESD8-A compliant)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
(1)  
ILI  
InputLeakageCurrent  
OutputLeakageCurrent  
–10  
–10  
2.4  
10  
10  
µA  
µA  
V
(2)  
ILO  
VOH  
Output Logic 1Voltage, IOH = –8 mA  
Output Logic 0Voltage, IOL = 8 mA  
Active Power Supply Current  
StandbyCurrent  
0.4  
100  
25  
VOL  
V
ICC1(3,4,5)  
ICC2(3,6)  
mA  
mA  
NOTES:  
1. Measurements with 0.4 VIN VCC.  
2. OE VIH, 0.4 VOUT VCC.  
3. Tested with outputs open (IOUT = 0).  
4. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz.  
5. Typical ICC1 = 16 + 3.14*fS + 0.02*CL*fS (in mA) with VCC = 3.3V, tA = 25°C, fS = WCLK frequency = RCLK frequency (in MHz, using TTL levels), data switching at fS/2,  
CL = capacitive load (in pF).  
6. RCLK and WCLK, toggle at 20 MHz.  
The following inputs should be pulled to GND: WRADD, RDADD, WADEN, RADEN, FSTR, ESTR, SCLK, SI, EXI, FXI and all Data Inputs.  
The following inputs should be pulled to VCC: WEN, REN, SENI, PRS, MRS, TDI, TMS and TRST.  
All other inputs are don't care, and should be pulled HIGH or LOW.  
CAPACITANCE(TA = +25°C, f = 1.0MHz)  
Symbol  
Parameter(1)  
Conditions  
Max.  
Unit  
(2)  
CIN  
Input  
VIN = 0V  
10  
pF  
Capacitance  
(1,2)  
COUT  
Output  
VOUT = 0V  
10  
pF  
Capacitance  
NOTES:  
1. With output deselected, (OE VIH).  
2. Characterized values, not currently tested.  
12  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
AC TEST LOADS  
ACTESTCONDITIONS  
InputPulseLevels  
GND to 3.0V  
1.5ns  
V
CC/2  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
OutputLoad  
1.5V  
50Ω  
Z0 = 50Ω  
1.5V  
See Figure 2a & 2b  
I/O  
5937 drw04  
Figure 2a. AC Test Load  
6
5
4
3
2
1
20 30 50 80 100  
Capacitance (pF)  
200  
5937 drw04a  
Figure 2b. Lumped Capacitive Load, Typical Derating  
13  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ACELECTRICALCHARACTERISTICS  
(Commercial: VCC = 3.3V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 3.3V ± 0.15V, TA = 40°C to +85°C; JEDEC JESD8-A compliant)  
(1)  
Commercial  
Com'l & Ind'l  
IDT72V51236L6  
IDT72V51246L6  
IDT72V51256L6  
IDT72V51236L7-5  
IDT72V51246L7-5  
IDT72V51256L7-5  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
fC  
Clock Cycle Frequency (WCLK & RCLK)  
DataAccessTime  
0.6  
6
166  
3.7  
3.7  
3.7  
3.7  
10  
0.6  
7.5  
3.5  
3.5  
2.0  
0.5  
2.0  
0.5  
10  
133  
4
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tA  
tCLK  
tCLKH  
tCLKL  
tDS  
Clock Cycle Time  
4
Clock High Time  
2.7  
2.7  
2
Clock Low Time  
DataSetupTime  
tDH  
DataHoldTime  
0.5  
2
tENS  
EnableSetupTime  
tENH  
tRS  
EnableHoldTime  
0.5  
10  
ResetPulseWidth  
tRSS  
ResetSetupTime  
15  
15  
tRSR  
tPRSS  
tPRSH  
tOLZ(OE-Qn)(2)  
ResetRecoveryTime  
10  
10  
PartialResetSetup  
2.0  
0.5  
0.6  
0.6  
0.6  
100  
45  
2.5  
0.5  
0.6  
0.6  
0.6  
100  
45  
PartialResetHold  
OutputEnabletoOutputinLow-Impedance  
OutputEnabletoOutputinHigh-Impedance  
OutputEnabletoDataOutputValid  
Clock Cycle Frequency (SCLK)  
Serial Clock Cycle  
(2)  
tOHZ  
4
tOE  
4
fS  
10  
20  
20  
4
tSCLK  
tSCKH  
tSCKL  
tSDS  
tSDH  
tSENS  
tSENH  
tSDO  
tSENO  
tSDOP  
tSENOP  
tPCWQ  
tPCRQ  
tAS  
20  
Serial Clock High  
Serial Clock Low  
45  
45  
SerialDataInSetup  
20  
20  
Serial Data In Hold  
1.2  
20  
1.2  
20  
SerialEnableSetup  
SerialEnableHold  
1.2  
1.5  
1.5  
20  
1.2  
1.5  
1.5  
20  
SCLK to Serial Data Out  
SCLK to Serial Enable Out  
SerialDataOutPropagationDelay  
SerialEnablePropagationDelay  
ProgrammingCompletetoWriteQueueSelection  
ProgrammingCompletetoReadQueueSelection  
AddressSetup  
20  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
4
20  
20  
2.5  
1
3.0  
1
5
tAH  
Address Hold  
tWFF  
tROV  
tSTS  
tSTH  
tQS  
Write ClocktoFullFlag  
ReadClocktoOutputValid  
StrobeSetup  
2
2
5
4
StrobeHold  
0.5  
2
0.5  
2.5  
0.5  
0.6  
0.6  
0.6  
0.6  
QueueSetup  
tQH  
QueueHold  
0.5  
0.6  
0.6  
0.6  
0.6  
tWAF  
tRAE  
tPAF  
tPAE  
WCLK to PAF flag  
RCLK to PAE flag  
4
Write ClocktoSynchronous Almost-FullFlagBus  
4
Read Clock to Synchronous Almost-Empty Flag Bus  
4
NOTE:  
1. Industrial temperature range product for the 7-5ns is available as a standard device. All other speed grades are available by special order.  
2. Values guaranteed by design, not currently tested.  
14  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ACELECTRICALCHARACTERISTICS(CONTINUED)  
(Commercial: VCC = 3.3V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 3.3V ± 0.15V, TA = 40°C to +85°C; JEDEC JESD8-A compliant)  
(1)  
Commercial  
Com'l & Ind'l  
IDT72V51236L6  
IDT72V51246L6  
IDT72V51256L6  
IDT72V51236L7-5  
IDT72V51246L7-5  
IDT72V51256L7-5  
Symbol  
Parameter  
Min.  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
4.5  
6
Max.  
Min.  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
5.75  
7.5  
7.5  
7.5  
12  
Max.  
4
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
tPAELZ  
RCLK to PAE Flag Bus to Low-Impedance  
RCLK to PAE Flag Bus to High-Impedance  
WCLK to PAF Flag Bus to Low-Impedance  
WCLK to PAF Flag Bus to High-Impedance  
WCLKtoFullFlagtoHigh-Impedance  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
(2)  
tPAEHZ  
4
(2)  
tPAFLZ  
4
(2)  
tPAFHZ  
4
(2)  
tFFHZ  
4
(2)  
tFFLZ  
WCLKtoFullFlagtoLow-Impedance  
4
(2)  
tOVLZ  
RCLKtoOutputValidFlagtoLow-Impedance  
RCLKtoOutputValidFlagtoHigh-Impedance  
WCLK to PAF Bus Sync to Output  
WCLK to PAF Bus Expansion to Output  
RCLK to PAE Bus Sync to Output  
4
(2)  
tOVHZ  
4
tFSYNC  
tFXO  
4
4
tESYNC  
tEXO  
4
RCLK to PAE Bus Expansion to Output  
RCLK to Packet Ready Flag  
4
tPR  
4
tSKEW1  
tSKEW2  
tSKEW3  
tSKEW4  
tSKEW5  
SKEW time between RCLK and WCLK for FF and OV  
SKEW time between RCLK and WCLK for PAF and PAE  
SKEW time between RCLK and WCLK for PAF[0:7] and PAE[0:7]  
SKEW time between RCLK and WCLK for PR and OV  
6
6
SKEW time between RCLK and WCLK for OV when in Packet  
10  
Ready Mode  
tXIS  
tXIH  
ExpansionInputSetup  
ExpansionInputHold  
1.0  
0.5  
1.3  
0.5  
ns  
ns  
NOTE:  
1. Industrial temperature range product for the 7-5ns is available as a standard device. All other speed grades are available by special order.  
2. Values guaranteed by design, not currently tested.  
15  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Once the master reset is complete and MRS is HIGH, the device can be  
seriallyloaded.DatapresentontheSI(serialin),inputisloadedintotheserial  
port on a rising edge of SCLK (serial clock), provided that SENI (serial in  
enable),isLOW.Onceserialprogrammingofthedevicehasbeensuccessfully  
completedthedevicewillindicatethisviatheSENO(serialoutputenable)going  
active,LOW.Upondetectionofcompletionofprogramming,theusershould  
ceaseallprogrammingandtakeSENIinactive,HIGH.Note,SENOfollowsSENI  
onceprogrammingofadeviceiscomplete.Therefore,SENOwillgoLOWafter  
programmingprovidedSENIisLOW,onceSENIistakenHIGHagain,SENO  
willalsogoHIGH.TheoperationoftheSOoutputissimilar,whenprogramming  
ofagivendeviceiscomplete,theSOoutputwillfollowtheSIinput.  
FUNCTIONALDESCRIPTION  
MASTERRESET  
AMasterResetisperformedbytogglingtheMRSinputfromHIGHtoLOW  
toHIGH.DuringamasterresetallinternalMulti-Queuedevicesetupandcontrol  
registersareinitializedandrequireprogrammingeitherseriallybytheuservia  
theserialport,orusingthedefaultsettings.Duringamasterresetthestateof  
thefollowinginputsdeterminethefunctionalityofthepart,thesepinsshouldbe  
held HIGH or LOW.  
PKT–PacketMode  
FM – Flag bus Mode  
Ifdevicesarebeingusedinexpansionmodetheserialportsofdevicesshould  
becascaded.Theusercanloadalldevicesviatheserialinputportcontrolpins,  
SI & SENI, of the first device in the chain. Again, the user may utilize the C’  
programtogeneratetheserialbitstream,theprogrampromptingtheuserfor  
the numberofdevices tobe programmed. The SENO andSO(serialout)of  
thefirstdeviceshouldbeconnectedtothe SENI andSIinputs ofthesecond  
devicerespectivelyandsoon,withtheSENO&SOoutputsconnectingtothe  
SENI&SIinputsofalldevicesthroughthechain.Alldevicesinthechainshould  
beconnectedtoacommonSCLK.Theserialoutputportofthefinaldeviceshould  
be monitored by the user. When SENO of the final device goes LOW, this  
indicates thatserialprogrammingofalldevices has beensuccessfullycom-  
pleted.Upondetectionofcompletionofprogramming,theusershouldceaseall  
programmingandtakeSENIofthefirstdeviceinthechaininactive,HIGH.  
Asmentioned,thefirstdeviceinthechainhasitsserialinputportcontrolled  
bytheuser,thisisthefirstdevicetohaveitsinternalregistersseriallyloaded  
bytheserialbitstream.Whenprogrammingofthisdeviceiscompleteitwilltake  
its SENOoutputLOWandbypasstheserialdataloadedontheSIinputtoits  
SOoutput.Theserialinputoftheseconddeviceinthechainisnowloadedwith  
thedatafromtheSOofthefirstdevice,whiletheseconddevicehasits SENI  
input LOW. This process continues through the chain until all devices are  
programmedandtheSENOofthefinaldevicegoesLOW.  
IW,OW,BMBusMatchingoptions  
MAST – Master Device  
ID0, 1, 2 – Device ID  
DFMProgrammingmode,serialordefault  
DF – Offset value for PAE andPAF  
Onceamasterresethastakenplace,thedevicemustbeprogrammedeither  
seriallyorviathedefaultmethodbeforeanyFIFOread/writeoperations can  
begin.  
See Figure 4, Master Reset for relevant timing.  
PARTIALRESET  
APartialResetisameansbywhichtheusercanresetboththereadandwrite  
pointers ofa single queue thathas beensetupwithina Multi-Queue device.  
Beforeapartialresetcantakeplaceonaqueue,therespectivequeuemustbe  
selectedonboththereadportandwriteportaminimumof2RCLKand2WCLK  
cyclesbeforethePRSgoesLOW.Thepartialresetisthenperformedbytoggling  
thePRSinputfromHIGHtoLOWtoHIGH,maintainingtheLOWstateforatleast  
oneWCLKandoneRCLKcycle.Onceapartialresethastakenplaceaminimum  
of3WCLKand3RCLKcyclesmustoccurbeforeenabledwritesorreadscan  
occur.  
APartialResetonlyresets thereadandwritepointers ofagivenqueue,a  
partialresetwillnoteffecttheoverallconfigurationandsetupoftheMulti-Queue  
deviceandits queues.  
Once all serial programming has been successfully completed, normal  
operations,(queueselectionsonthereadandwriteports)maybegin.When  
connectedinexpansionmode,theIDT72V51236/72V51246/72V51256de-  
vicesrequireatotalnumberofseriallyloadedbitsperdevicetocompleteserial  
programming,(SCLKcycleswithSENIenabled),calculatedby:n[19+(Qx72)]  
whereQis thenumberofqueues theuserwishes tosetupwithinthedevice,  
where n is the number of devices in the chain.  
See Figure 5, PartialReset for relevanttiming.  
SERIAL PROGRAMMING  
TheMulti-QueueFIFOdeviceisafullyprogrammabledevice,providingthe  
userwithflexibilityinhowFIFOqueuesareconfiguredintermsofthenumber  
of queues, depth of each queue and position of the PAF/PAE flags within  
respectivequeues.Alluserprogrammingisdoneviatheserialportafteramaster  
resethastakenplace.InternallytheMulti-Queuedevicehassetupregisters  
whichmustbeseriallyloaded,theseregisterscontainvaluesforeveryqueue  
within the device, such as the depth and PAE/PAF offset values. The  
IDT72V51236/72V51246/72V51256devices are capable ofupto4queues  
andthereforecontain4setsofregistersforthesetupofeachqueue.  
DuringaMasterResetiftheDFM(DefaultMode)inputisLOW,thenthedevice  
willrequire serialprogrammingbythe user. Itis recommendedthatthe user  
utilizeaC’programprovidedbyIDT,thisprogramwillprompttheuserforall  
informationregardingtheMulti-Queuesetup.Theprogramwillthengenerate  
aserialbitstreamwhichshouldbeseriallyloadedintothedeviceviatheserial  
port.FortheIDT72V51236/72V51246/72V51256devicestheserialprogram-  
mingrequiresatotalnumberofseriallyloadedbitsperdevice,(SCLKcycles  
withSENIenabled),calculatedby:19+(Qx72)whereQisthenumberofqueues  
the user wishes to setup within the device. Please refer to the separate  
ApplicationNote,AN-303forrecommendedcontroloftheserialprogramming  
port.  
SeeFigure6,SerialPortConnectionandFigure7,SerialProgrammingfor  
connectionandtiminginformation.  
DEFAULTPROGRAMMING  
Duringa MasterResetifthe DFM(DefaultMode)inputis HIGHthe Multi-  
Queuedevicewillbeconfiguredfordefaultprogramming,(serialprogramming  
is not permitted). Default programming provides the user with a simpler,  
howeverlimitedmeansbywhichtosetuptheMulti-QueueFIFOdevice,rather  
thanusingtheserialprogrammingmethod.Thedefaultmodewillconfigurea  
Multi-Queue device suchthatthe maximumnumberofqueues possible are  
setup, with all of the parts available memory blocks being allocated equally  
betweenthequeues.ThevaluesofthePAE/PAFoffsetsisdeterminedbythe  
stateoftheDF(default)pinduringamasterreset.  
FortheIDT72V51236/72V51246/72V51256devicesthedefaultmodewill  
setup 4 queues, each queue being 4,096 x 36, 8,192 x 36 and 16,384 x 36  
deep respectively. For both devices the value of the PAE/PAF offsets is  
determinedatmasterresetbythestateoftheDFinput.IfDFisLOWthenboth  
the PAE & PAF offset will be 8, if HIGH then the value is 128.  
16  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WhenconfiguringtheIDT72V51236/72V51246/72V51256devicesinde- theWRADDbusduringarisingedgeofWCLKprovidedthatWADENisHIGH.  
faultmodetheusersimplyhastoapplyWCLKcyclesafteramasterreset,until AqueuetobewrittentoneedonlybeselectedonasinglerisingedgeofWCLK.  
SENOgoesLOW,thissignalsthatdefaultprogrammingiscomplete.Theseclock Allsubsequentwriteswillbewrittentothatqueueuntilanewqueueisselected.  
cyclesarerequiredforthedevicetoloaditsinternalsetupregisters. Whena Aminimumof2WCLKcyclesmustoccurbetweenqueueselectionsonthewrite  
singleMulti-Queueisused,thecompletionofdeviceprogrammingissignaled port.OnthenextWCLKrisingedgethewriteportdiscretefullflagwillupdate  
bytheSENOoutputofadevicegoingfromHIGHtoLOW.Note,thatSENImust toshowthefullstatusofthenewlyselectedqueue.Onthesecondrisingedge  
beheldLOWwhenadeviceis setupfordefaultprogrammingmode.  
ofWCLK,datapresentonthedatainputbus,Dincanbewrittenintothenewly  
WhenMulti-Queuedevicesareconnectedinexpansionmode,theSENIof selectedFIFOqueueprovidedthatWENisLOWandthenewqueueisnotfull.  
thefirstdeviceinachaincanbeheldLOW.TheSENOofadeviceshouldconnect Thecycleofthequeueselectionandthenextcyclewillcontinuetowritedata  
totheSENIofthenextdeviceinthechain.TheSENOofthefinaldeviceisused presentonthedatainputbus,DinintothepreviousqueueprovidedthatWEN  
toindicatethatdefaultprogrammingofalldevicesiscomplete.Whenthefinal isactiveLOW.  
SENO goes LOW normal operations may begin. Again, all devices will be  
IfWENisHIGH,inactiveforthese2clockcycles,thendatawillnotbewritten  
programmedwiththeirmaximumnumberofqueuesandthememorydivided in to the previous queue.  
equally between them. Please refer to Figure 8, DefaultProgramming.  
Ifthenewlyselectedqueueisfullatthepointofitsselection,thenwritestothat  
queue willbe prevented, a fullqueue cannotbe writteninto.  
WRITE QUEUE SELECTION & WRITE OPERATION  
Inthe4queueMulti-QueuedevicetheWRADDaddressbusis5bitswide.  
TheIDT72V51236/72V51246/72V51256Multi-QueueFIFOdeviceshave Theleastsignificant2bitsareusedtoaddressoneofthe4availablequeues  
upto4FIFOqueuesthatdatacanbewrittenintoviaacommonwriteportusing withinasingleMulti-Queuedevice.Themostsignificant3bitsareusedwhen  
the data inputs, Din, write clock, WCLK and write enable, WEN. The queue adeviceis connectedinexpansionmode,upto8devices canbeconnected  
address present on the write address bus, WRADD during a rising edge on inexpansion,eachdevicehavingits own3bitaddress.Theselecteddevice  
WCLKwhilewriteaddressenable,WADENisHIGH,isthequeueselectedfor istheoneforwhichtheaddressmatchesa3bitIDcode,whichisstaticallysetup  
writeoperations.ThestateofWENisdontcareduringthewritequeueselection on the ID pins, ID0, ID1, and ID2 of each individual device.  
cycle.ThequeueselectiononlyhastobemadeonasingleWCLKcycle,this  
Note,theWRADDbusisalsousedinconjunctionwithFSTR(almostfullflag  
will remain the selected queue until another queue is selected, the selected busstrobe),toaddressthealmostfullflagbusofarespectivedeviceduringdirect  
queueisalwaysthelastqueueselected.  
modeofoperation.  
Thewriteportisdesignedsuchthat100%busutilizationcanbeobtained.  
RefertoTable1,forWriteAddressbusarrangement.Also,refertoFigure  
ThismeansthatdatacanbewrittenintothedeviceoneveryWCLKrisingedge 9, Write Queue Select, Write Operation and Full flag Operation and Figure  
includingthecyclethatanewqueueisbeingaddressed.Whenanewqueue 11,FullFlagTimingExpansionMode fortimingdiagrams.  
isselectedforwriteoperationstheaddressforthatqueuemustbepresenton  
TABLE 1 — WRITE ADDRESS BUS, WRADD[4:0]  
Operation WCLK WADEN FSTR  
WRADD[4:0]  
4 3 2  
Device Select  
(Compared to  
ID0,1,2)  
1 0  
Write Queue Address  
(2 bits = 4 Queues)  
Write Queue  
1
0
Select  
4 3 2  
1 0  
PAFn Flag Bus  
Device Select  
0
1
Device Select  
(Compared to  
ID0,1,2)  
X
X
5937 drw05  
17  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
READ QUEUE SELECTION & READ OPERATION  
thenextwordfromthenewqueue,boththesewordswillfallthroughtotheoutput  
TheMulti-QueueFIFOdevicehasupto4FIFOqueuesthatdataisreadfrom registerconsecutivelyuponselectionofthenewqueue.Thispipeliningeffect  
viaacommonreadportusingthedataoutputs,Qout,readclock,RCLKand providestheuserwith100%busutilization,butbringsaboutthepossibilitythat  
readenable,REN.Anoutputenable,OEcontrolpinisalsoprovidedtoallow a NULL” queue may be required within a Multi-Queue device. Null queue  
High-ImpedanceselectionoftheQoutdataoutputs.TheMulti-Queuedevice operationisdiscussedinthenextsectionon.  
readportoperatesinamodesimilartoFirstWordFallThrough”onatraditional  
IfanemptyqueueisselectedforreadoperationsontherisingedgeofRCLK,  
IDT FIFO, but with the added feature of data output pipelining. This data onthesameRCLKedgeandthefollowingRCLKedge,2finalreadswillbemade  
pipeliningontheoutputportallows theusertoachieve100%bus utilization, fromthepreviousqueue,providedthatRENisactive,LOW.OnthenextRCLK  
which is the ability to read out a data word on every rising edge of RCLK rising edge a read from the new queue will not occur, because the queue is  
regardless of whether a new queue is being selected for read operations.  
empty.Thelastwordinthedataoutputregister(fromthepreviousqueue),will  
Thequeueaddresspresentonthereadaddressbus,RDADDduringarising remainthere,buttheoutputvalidflag,OVwillgoHIGH,toindicatethatthedata  
edge on RCLK while read address enable, RADEN is HIGH, is the queue present is no longer valid.  
selectedforreadoperations.Aqueuetobereadfromneedonlybeselected  
TheRDADDbusisalsousedinconjunctionwithESTR(almostemptyflag  
on a single rising edge of RCLK. All subsequent reads will be read from that busstrobe),toaddressthealmostemptyflagbusofarespectivedeviceduring  
queueuntilanewqueueisselected.Aminimumof2RCLKcyclesmustoccur direct mode of operation. In the 4 queue Multi-Queue device the RDADD  
betweenqueueselectionsonthereadport.Datafromthenewlyselectedqueue addressbusis6bitswide.Theleastsignificant2bitsareusedtoaddressone  
willbepresentontheQoutoutputsafter2RCLKcyclesplusanaccesstime, of the 4 available queues within a single Multi-Queue device. The 3rd least  
providedthatOEisactive,LOW.OnthesameRCLKrisingedgethatthenew significantbitisusedtoselecta"Null"Queue.DuringaNull-Qselectionthe2  
queueis selected,datacanstillbereadfromthepreviouslyselectedqueue, LSB'saredon'tcare.TheNull-Qisseenasanemptyqueueonthereadport.  
providedthatRENisLOW,activeandthepreviousqueueisnotemptyonthe Null-Qoperationis discussedinmore detailina separate section. The most  
followingrisingedgeofRCLKawordwillbereadfromthepreviouslyselected significant3bitsareusedwhenadeviceisconnectedinexpansionmode,up  
queueregardlessofRENduetothefallthroughoperation,(providedthequeue to8devicescanbeconnectedinexpansion,eachdevicehavingitsown3bit  
isnotempty). RememberthatOEallowstheusertoplacetheQout,dataoutput address.Theselecteddeviceistheoneforwhichtheaddressmatchesa3bit  
bus into High-Impedance and the data can be read onto the output register ID code, which is statically setup on the ID pins, ID0, ID1, and ID2 of each  
regardlessofOE.  
individualdevice.  
Whena queue is selectedonthe readport, the nextwordavailable inthat  
RefertoTable2,forReadAddressbusarrangement.Also,refertoFigures  
queue (provided that the queue is not empty), will fall through to the output 12,14&15forreadqueueselectionandreadportoperationtimingdiagrams.  
registerafter2RCLKcycles.Asmentioned,intheprevious2RCLKcyclesto Note,thealmostemptyflagbusbecomesthePacketReady”flagbuswhen  
thenewdatabeingavailable,datacanstillbereadfromthepreviousqueue, thedeviceisconfiguredforpacketreadymode,thisisdiscussedinaseparate  
providedthatthequeueisnotempty.Atthepointofqueueselection,the2-stage sectionofthedatasheet.  
internaldatapipelineisloadedwiththelastwordfromthepreviousqueueand  
TABLE 2 — READ ADDRESS BUS, RDADD[5:0]  
Operation RCLK RADEN ESTR  
RDADD[5:0]  
5 4 3  
2
1 0  
Read Queue  
1
0
Device Select  
(Compared to  
ID0,1,2)  
Null-Q  
Read Queue Address  
Select  
Select Pin (2 bits = 4 Queues)  
5 4 3  
2
1 0  
Flag Bus Device  
Selection  
0
1
Device Select  
(Compared to  
ID0,1,2)  
X
X
X
5937 drw06  
18  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
NULL QUEUE OPERATION (OF THE READ PORT)  
BUS MATCHING OPERATION  
Pipeliningofdatatotheoutputportenablesthedevicetoprovide100%bus  
BusMatchingoperationbetweentheinputportandoutputportisavailable.  
utilization,datacanbereadoutoftheMulti-QueueFIFOoneveryRCLKcycle DuringamasterresetoftheMulti-Queuethestateofthethreesetuppins,BM  
regardlessofqueueswitchesorotheroperations.Thedevicearchitectureis (BusMatching),IW(InputWidth)andOW(OutputWidth)determinetheinputand  
suchthatthepipelineisconstantlyfilledwiththenextwordsinaselectedqueue outputportbuswidthsaspertheselectionsshowninTable3,BusMatching  
tobereadout,againproviding100%busutilizationandhighspeedoperation. Set-up.9bitbytes,18bitwordsand36bitlongwordscanbewrittenintoand  
This type of architecture does assume that the user is constantly switching readformtheFIFOqueuesprovidedthatatleastoneoftheportsissetupfor  
queuessuchthatduringaqueueswitch,thelastdatawordsrequiredfromthe x36operation.WhenwritingtoorreadingfromtheMulti-Queueinabusmatching  
previous queueareforcedthroughthepipelinetotheoutput.  
mode, the device orders data in a Little Endian” format. See Figure 3, Bus  
Toputitanotherway, ifa useris readingfroma queue andwishes tostop MatchingByteArrangementfordetails.  
readingfromthatqueueanddonothing,thepipewillhavethenextwordinthat  
TheFullflagandAlmostFullflagoperationis always basedonwrites and  
queueavailableinthepipeline.Iftheusernowswitchestoanotherqueuethe readsofdatawidthsdeterminedbythewriteportwidth.Forexample,iftheinput  
firstdataoutofthepipewillbethewordfromthepreviousqueue.Iftheuserhas portisx36andtheoutputportisx9,thenfourdatareadsfromafullqueuewill  
nonewqueue toswitchto, the nextdata wordfromthe currentqueue willbe berequiredtocausethefullflagtogoHIGH(queuenotfull).Conversely,the  
sittinginthepipeline,thiswordmayneedtobeforcedoutthroughthepipe.Note, OutputValidflagandAlmostEmptyflagoperationsarealwaysbasedonwrites  
that if reads cease at the empty boundary of a queue, then the last word will andreadsofdatawidthsdeterminedbythereadport.Forexample,iftheinput  
automaticallybeforcedthroughthepipelinetotheoutputs.  
portis x18andthe outputportis x36, twowrite operations willbe requiredto  
Iftheuserdoesnotwanttobringwordsfromaqueueintothepipelineafter causetheoutputvalidflagofanemptyqueuetogoLOW,outputvalid(queue  
areadoperationwithinaspecificqueuehasended,thentoforcethelastrequired isnotempty).  
wordoutofthepipe,auserhas2optionsopentothem,thatis, ameansbywhich  
toforcedataoutofthepipeattheendofreadoperationswithoutfillingthepipeline port,thereforetheinputbuswidthtoallqueuesisequal(determinedbytheinput  
withnewdata. portsize)andtheoutputbuswidthfromallqueuesisequal(determinedbythe  
Note,thattheinputportservesallqueueswithinadevice,asdoestheoutput  
Thefirstofthese2optionsistodoublepump”datawhenwritingthedatainto outputportsize).  
thegivenFIFOqueue.Thisessentiallymeansperforming2writesofthelast  
TABLE 3 BUS-MATCHING SET-UP  
wordofagivensectionofdatatobereadout.Thisprovidesameansbywhich  
whenthereadportstopsreadingthepipelineisfilledwiththesamewordtwice  
andsothelastwordisreadout.Ifaqueueswitchoccurs,thefirstwordoutwill  
be the double written word from the previous queue and should be ignored.  
Thisoptionassumesthattheuserisbothwritingandreadingdatawithknown  
sizesofpackets(apacketismadeupofdatawords).Sothatthelastword(write)  
within a packet can be written twice (double pumped). This option however  
meansthattheusergivesupthe100%busutilizationfeatureoftheMulti-Queue  
device, the double pump takes up the bus for a single RCLK cycle.  
Thereforeasecondoptionisavailabletotheuser,thisistheNullQ”select,  
thisoptionallowstheusertoforcethelastrequireddatawordsfromaqueue  
throughthepipeline,whilstmaintaining100%busutilization.Thisprovidesa  
meansbywhichtheusercanforcedataoutofthepipelinewhenreadoperations  
from a queue have ceased and there are no new queues that need to be  
switchedovertoandreadfrom.TheNull-Qisselectedviareadportaddress  
space RDADD[2]. The RDADD[5:0] bus should be addressed with xxx1xx,  
thisaddressistheNull-Q.  
Thenullqueuecannowbe"switched"tobytheuserwhennofurtherreads  
are requiredfroma previouslyselectedqueue. The queue switchtothe null  
queuewillforcethedatainthepipelinetobeforcedthroughtotheoutputs.The  
devicecannowremainwiththenullqueueselecteduntilafurtherqueuechange  
is madetoaqueuecontainingdataavailableforreadoperations.  
Note,Iftheuserswitchesthereadporttothenullqueue,thisqueueisseen  
asandtreatedasanemptyqueue,thereforeafterswitchingtothenullqueue  
thelastwordfromthepreviousqueuewillremainontheoutputregisterandthe  
OV flagwillgoHIGH, data notvalid.  
x36 DEVICE  
BM  
IW  
OW Write Port Read Port  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
x36  
x36  
x36  
x18  
x9  
x36  
x18  
x9  
x36  
x36  
FULL FLAG OPERATION  
The Multi-Queue FIFOdevice provides a single FullFlagoutput, FF. The  
FFflagoutputprovidesafullstatusoftheFIFOqueuecurrentlyselectedonthe  
writeportforwriteoperations.InternallytheMulti-QueueFIFOmonitorsand  
maintainsastatusofthefullconditionofallqueueswithinit,howeveronlythe  
queuethatisselectedforwriteoperationshasitsfullstatusoutputtotheFFflag.  
Thisdedicatedflagisoftenreferredtoastheactivequeuefullflag.  
Whenqueueswitchesarebeingmadeonthewriteport,theFFflagoutput  
willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
onthecycleafteranewqueueselectionismade.Theuserthenhasafullstatus  
forthenewqueueonecycleaheadoftheWCLKrisingedgethatdatacanbe  
writtenintothenewqueue.Thatis,anewqueuecanbeselectedonthewrite  
portviatheWRADDbus,WADENenableandarisingedgeofWCLK.Onthe  
nextrisingedgeofWCLK,theFFflagoutputwillshowthefullstatusofthenewly  
selected queue. On the second rising edge of WCLK following the queue  
selection,datacanbewrittenintothenewlyselectedqueueprovidedthatdata  
andenablesetup&holdtimesaremet.  
Thenullqueueoperationisonlyapossiblerequirementonthereadportof  
theMulti-Queue,ameansbywhichtoforcedatathroughtheoutputpipeline.  
NullQselectionandoperationhasnomeaningoradvantageonthewriteport  
of the device. A Null Q address should never be selected on the write port.  
See Figure 16, ReadOperationandNullQueue SelectionandFigure 17,  
NullQueueFlowDiagramforadetailedtimingdiagramsthatshowshownull  
queueselectioncanbeimplemented.  
Note,theFF flagwillprovidestatus ofanewlyselectedqueueoneWCLK  
cycleafterqueueselection,whichisonecyclebeforedatacanbewrittentothat  
queue. This prevents the user from writing data to a FIFO queue that is full,  
(assumingthataqueueswitchhasbeenmadetoaqueuethatisactuallyfull).  
19  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TheFFflagissynchronoustotheWCLKandalltransitionsoftheFFflagoccur  
TheOVflagissynchronoustotheRCLKandalltransitionsoftheOVflagoccur  
basedonarisingedgeofWCLK.InternallytheMulti-Queuedevicemonitors basedonarisingedgeofRCLK.InternallytheMulti-Queuedevicemonitors  
andkeepsarecordofthefullstatusforallqueues.Itispossiblethatthestatus andkeepsarecordoftheoutputvalid(empty)statusforallqueues.Itispossible  
ofa FF flagmaybechanginginternallyeventhoughthatflagis nottheactive that the status of an OV flag may be changing internally even though that  
queueflag(selectedonthewriteport).Aqueueselectedonthereadportmay respectiveflagisnottheactivequeueflag(selectedonthereadport).Aqueue  
experienceachangeofitsinternalfullflagstatusbasedonreadoperations. selectedonthewriteportmayexperienceachangeofitsinternalOVflagstatus  
SeeFigure9,WriteQueueSelect,WriteOperationandFullFlagOperation basedonwriteoperations,thatis,datamaybewrittenintothatqueuecausing  
andFigure 11,FullFlagTiminginExpansionModefortiminginformation.  
ittobecomenotempty.  
SeeFigure12,ReadQueueSelect,ReadOperationandFigure13,Output  
ValidFlagTimingfordetailsofthetiming.  
EXPANSION MODE - FULL FLAG OPERATION  
WhenMulti-QueuedevicesareconnectedinExpansionmodetheFFflags  
of all devices should be connected together, such that a system controller EXPANSION MODE – OUTPUT VALID FLAG OPERATION  
monitoringandmanagingthe Multi-Queue devices write portonlylooks ata  
WhenMulti-QueuedevicesareconnectedinExpansionmode,theOVflags  
singleFFflag(asopposedtoadiscreteFFflagforeachdevice).This FFflag of all devices should be connected together, such that a system controller  
isonlypertinenttotheFIFOqueuebeingselectedforwriteoperationsatthat monitoringandmanagingthe Multi-Queue devices readportonlylooks ata  
time.Remember,thatwheninexpansionmodeonlyoneMulti-Queuedevice singleOVflag(asopposedtoadiscreteOVflagforeachdevice).ThisOVflag  
canbewrittentoatanymomentintime,thustheFFflagprovidesstatusofthe isonlypertinenttotheFIFOqueuebeingselectedforreadoperationsatthat  
active queue onthe write port.  
time.Remember,thatwheninexpansionmodeonlyoneMulti-Queuedevice  
ThisconnectionofflagoutputstocreateasingleflagrequiresthattheFFflag canbereadfromatanymomentintime,thustheOVflagprovidesstatusofthe  
outputhaveaHigh-Impedancecapability,suchthatwhenaqueueselectionis active queue on the read port.  
madeonlyasingledevicedrivestheFFflagbusandallotherFF flagoutputs  
ThisconnectionofflagoutputstocreateasingleflagrequiresthattheOVflag  
connectedtotheFFflagbusareplacedintoHigh-Impedance.Theuserdoes outputhaveaHigh-Impedancecapability,suchthatwhenaqueueselectionis  
nothavetoselectthisHigh-Impedancestate,agivenMulti-QueueFIFOdevice madeonlyasingledevicedrivestheOVflagbusandallotherOVflagoutputs  
willautomaticallyplaceitsFFflagoutputintoHigh-Impedancewhennoneofits connectedtotheOVflagbusareplacedintoHigh-Impedance.Theuserdoes  
queuesareselectedforwriteoperations.  
nothavetoselectthisHigh-Impedancestate,agivenMulti-QueueFIFOdevice  
Whenqueueswithinasingledeviceareselectedforwriteoperations,theFF willautomaticallyplaceitsOVflagoutputintoHigh-Impedancewhennoneofits  
flagoutputofthatdevicewillmaintaincontroloftheFFflagbus.ItsFFflagwill queues areselectedforreadoperations.  
simplyupdatebetweenqueueswitchestoshowtherespectivequeuefullstatus.  
Whenqueueswithinasingledeviceareselectedforreadoperations,theOV  
TheMulti-QueuedeviceplacesitsFFflagoutputintoHigh-Impedancebased flagoutputofthatdevicewillmaintaincontroloftheOVflagbus.ItsOVflagwill  
onthe3bitIDcodefoundinthe3mostsignificantbitsofthewritequeueaddress simplyupdatebetweenqueueswitchestoshowtherespectivequeueoutput  
bus,WRADD.Ifthe3mostsignificantbitsofWRADDmatchthe3bitIDcodesetup validstatus.  
onthestaticinputs,ID0,ID1andID2thentheFFflagoutputoftherespective  
TheMulti-QueuedeviceplacesitsOVflagoutputintoHigh-Impedancebased  
devicewillbeinaLow-Impedancestate.Iftheydonotmatch,thentheFFflag onthe3bitIDcodefoundinthe3mostsignificantbitsofthereadqueueaddress  
outputoftherespectivedevicewillbeinaHigh-Impedancestate.SeeFigure bus,RDADD.Ifthe3mostsignificantbitsofRDADDmatchthe3bitIDcodesetup  
11,FullFlagTiminginExpansionModefordetailsofflagoperation,including onthestaticinputs,ID0,ID1andID2thentheOVflagoutputoftherespective  
when more than one device is connected in expansion.  
devicewillbeinaLow-Impedancestate.Iftheydonotmatch,thentheOVflag  
outputoftherespectivedevicewillbeinaHigh-Impedancestate.SeeFigure  
13,OutputValidFlagTimingfordetailsofflagoperation,includingwhenmore  
OUTPUTVALIDFLAGOPERATION  
TheMulti-QueueFIFOdeviceprovidesasingleOutputValidflagoutput,OV. thanone device is connectedinexpansion.  
TheOVprovidesanemptystatusordataoutputvalidstatusforthedataword  
currentlyavailableontheoutputregisterofthereadport.Therisingedgeofan ALMOST FULL FLAG  
RCLKcyclethatplacesnewdataontotheoutputregisterofthereadport,also  
As previously mentioned the Multi-Queue FIFO device provides a single  
updatestheOVflagtoshowwhetherornotthatnewdatawordisactuallyvalid. ProgrammableAlmostFullflagoutput,PAF.ThePAFflagoutputprovidesa  
InternallytheMulti-QueueFIFOmonitorsandmaintainsastatusoftheempty statusofthealmostfullconditionfortheactivequeuecurrentlyselectedonthe  
conditionofallqueueswithinit,howeveronlythequeuethatisselectedforread writeportforwriteoperations.InternallytheMulti-QueueFIFOmonitorsand  
operationshasitsoutputvalid(empty)statusoutputtotheOVflag,givingavalid maintainsastatusofthealmostfullconditionofallqueueswithinit,howeveronly  
statusforthewordbeingreadatthattime.  
Thenatureofthefirstwordfallthroughoperationmeansthatwhenthelast flag.Thisdedicatedflagisoftenreferredtoastheactivequeuealmostfullflag.  
thequeuethatisselectedforwriteoperationshasitsfullstatusoutputtothePAF  
datawordisreadfromaselectedqueue,theOVflagwillgoHIGHonthenext ThepositionofthePAFflagboundarywithinaFIFOqueuecanbeatanypoint  
enabled read, that is, on the next rising edge of RCLK while REN is LOW.  
withinthatqueuesdepth.Thislocationcanbeuserprogrammedviatheserial  
Whenqueueswitchesarebeingmadeonthereadport,theOVflagwillswitch port or one of the default values (8 or 128) can be selected if the user has  
toshowstatusofthenewqueueinlinewiththedataoutputfromthenewqueue. performeddefaultprogramming.  
Whenaqueueselectionismadethefirstdatafromthatqueuewillappearon  
Asmentioned,everyqueuewithinaMulti-Queuedevicehasitsownalmost  
theQoutdataoutputs2RCLKcycleslater,theOVwillchangestatetoindicate fullstatus,whenaqueueisselectedonthewriteport,thisstatusisoutputviathe  
validityofthedatafromthenewlyselectedqueueonthis2nd RCLKcyclealso. PAF flag. The PAF flag value for each queue is programmed during Multi-  
Thepreviouscycleswillcontinuetooutputdatafromthepreviousqueueand Queuedeviceprogramming(alongwiththenumberofqueues,queuedepths  
theOVflagwillindicatethestatusofthoseoutputs.Again,theOVflagalways andalmostemptyvalues).ThePAFoffsetvalue,m,forarespectivequeuecan  
indicatesstatusforthedatacurrentlypresentontheoutputregister.  
be programmed to be anywhere between 0’ and D’, where D’ is the total  
20  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
memorydepthforthatqueue.ThePAFvalueofdifferentqueueswithinthesame viatheserialportoroneofthedefaultvalues(8or128)canbeselectedifthe  
devicecanbedifferentvalues.  
userhasperformeddefaultprogramming.  
Whenqueueswitchesarebeingmadeonthewriteport,thePAFflagoutput  
Asmentioned,everyqueuewithinaMulti-Queuedevicehasitsownalmost  
willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus, emptystatus,whenaqueueisselectedonthereadport,thisstatusisoutputvia  
onthesecondcycleafteranewqueueselectionismade,onthesameWCLK thePAEflag.ThePAEflagvalueforeachqueueisprogrammedduringMulti-  
cyclethatdatacanactuallybewrittentothenewqueue.Thatis,anewqueue Queuedeviceprogramming(alongwiththenumberofqueues,queuedepths  
canbeselectedonthewriteportviatheWRADDbus,WADENenableanda andalmostfullvalues).ThePAEoffsetvalue,n,forarespectivequeuecanbe  
risingedgeofWCLK.OnthesecondrisingedgeofWCLKfollowingaqueue programmedtobeanywherebetween0’andD’,whereDisthetotalmemory  
selection,thePAFflagoutputwillshowthefullstatusofthenewlyselectedqueue. depthforthatqueue.ThePAEvalueofdifferentqueueswithinthesamedevice  
The PAFis flagoutputis doubleregisterbuffered,sowhenawriteoperation canbedifferentvalues.  
occursatthealmostfullboundarycausingtheselectedqueuestatustogoalmost  
fullthePAFwillgoLOW2WCLKcyclesafterthewrite.Thesameistruewhen willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
a read occurs, there will be a 2 WCLK cycle delay after the read operation. onthesecondcycleafteranewqueueselectionismade,onthesameRCLK  
Whenqueueswitchesarebeingmadeonthereadport,thePAEflagoutput  
So the PAF flag delays are:  
cyclethatdataactuallyfallsthroughtotheoutputregisterfromthenewqueue.  
That is, a new queue can be selected on the read port via the RDADD bus,  
froma write operationto PAF flagLOWis 2WCLK+tWAF  
ThedelayfromareadoperationtoPAFflagHIGHistSKEW2+WCLK+tWAF RADENenableandarisingedgeofRCLK.OnthesecondrisingedgeofRCLK  
Note, if tSKEW is violated there will be one added WCLK cycle delay.  
followingaqueueselection,thedatawordfromthenewqueuewillbeavailable  
ThePAFflagissynchronoustotheWCLKandalltransitionsofthePAFflag attheoutputregisterandthePAEflagoutputwillshowtheemptystatusofthe  
occur based on a rising edge of WCLK. Internally the Multi-Queue device newlyselectedqueue.ThePAEis flagoutputis doubleregisterbuffered,so  
monitorsandkeepsarecordofthealmostfullstatusforallqueues.Itispossible when a read operation occurs at the almost empty boundary causing the  
thatthestatusofaPAFflagmaybechanginginternallyeventhoughthatflagis selectedqueuestatustogoalmostemptythePAEwillgoLOW2RCLKcycles  
nottheactivequeueflag(selectedonthewriteport).Aqueueselectedonthe after the read. The same is true when a write occurs, there will be a 2 RCLK  
readportmayexperienceachangeofitsinternalalmostfullflagstatusbased cycledelayafterthewriteoperation.  
onreadoperations.TheMulti-QueueFIFOdevicealsoprovides aduplicate  
ofthePAFflagonthePAF[3:0]flagbus,thiswillbediscussedindetailinalater  
sectionofthedatasheet.  
So the PAE flag delays are:  
from a read operation toPAE flag LOW is 2 RCLK + tRAE  
ThedelayfromawriteoperationtoPAEflagHIGHistSKEW2+RCLK+tRAE  
Note, if tSKEW is violated there will be one added RCLK cycle delay.  
ThePAEflagissynchronoustotheRCLKandalltransitionsofthePAEflag  
occur based on a rising edge of RCLK. Internally the Multi-Queue device  
SeeFigures 18and19forAlmostFullflagtimingandqueueswitching.  
ALMOSTEMPTYFLAG  
As previously mentioned the Multi-Queue FIFO device provides a single monitorsandkeepsarecordofthealmostemptystatusforallqueues.Itispossible  
ProgrammableAlmostEmptyflagoutput,PAE.ThePAEflagoutputprovides thatthestatusofaPAEflagmaybechanginginternallyeventhoughthatflagis  
astatusofthealmostemptyconditionfortheactivequeuecurrentlyselectedon nottheactivequeueflag(selectedonthereadport).Aqueueselectedonthe  
thereadportforreadoperations.InternallytheMulti-QueueFIFOmonitorsand writeportmayexperienceachangeofitsinternalalmostemptyflagstatusbased  
maintainsastatusofthealmostemptyconditionofallqueueswithinit,however onwriteoperations.TheMulti-QueueFIFOdevicealsoprovidesaduplicate  
onlythequeuethatisselectedforreadoperationshasitsemptystatusoutput ofthePAEflagonthePAE[3:0]flagbus,thiswillbediscussedindetailinalater  
tothePAEflag.Thisdedicatedflagisoftenreferredtoastheactivequeuealmost sectionofthedatasheet.  
emptyflag. The positionofthe PAEflagboundarywithina FIFOqueue can  
beatanypointwithinthatqueuesdepth.Thislocationcanbeuserprogrammed  
SeeFigures20and21forAlmostEmptyflagtimingandqueueswitching.  
21  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 4 — FLAG OPERATION BOUNDARIES & TIMING  
Full Flag, FF Boundary  
Output Valid, OV Flag Boundary  
I/O Set-Up  
In36 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Boundary Condition  
I/O Set-Up  
OV Boundary Condition  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
FF Goes LOW after D+1 Writes  
(seenotebelowfortiming)  
In36 to out36 (Almost Empty Mode)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
In36 to out36  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In36toout36(PacketReadyMode)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenote2belowfortiming)  
In36 to out18  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In36 to out18  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
In36 to out18  
FF Goes LOW after D Writes  
In36 to out9  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(Writeportonlyselectedforqueue  
(seenotebelowfortiming)  
(seenote1belowfortiming)  
when the 1st Word is written in)  
In36 to out9  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In18 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
In36 to out9  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In9 to out36  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
(Writeportonlyselectedforqueue  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
when the 1st Word is written in)  
In18 to out36  
FF Goes LOW after ([D+1] x 2) Writes  
(seenotebelowfortiming)  
NOTE:  
1. OV Timing  
Assertion:  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
In18 to out36  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after (D x 2) Writes  
Write to OV LOW: tSKEW1 + RCLK + tROV  
If tSKEW1 is violated there may be 1 added clock: tSKEW1 + 2 RCLK + tROV  
De-assertion:  
(seenotebelowfortiming)  
Read Operation to OV HIGH: tROV  
In9 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after ([D+1] x 4) Writes  
(seenotebelowfortiming)  
2. OV Timing when in Packet Ready Mode (36 in to 36 out only)  
Assertion:  
Write to OV LOW: tSKEW4 + RCLK + tROV  
If tSKEW4 is violated there may be 1 added clock: tSKEW4 + 2 RCLK + tROV  
De-assertion:  
In9 to out36  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after (D x 4) Writes  
(seenotebelowfortiming)  
Read Operation to OV HIGH: tROV  
NOTE:  
D = FIFO Queue Depth  
FF Timing  
Assertion:  
Write Operation to FF LOW: tWFF  
De-assertion:  
Read to FF HIGH: tSKEW1 + tWFF  
If tSKEW1 is violated there may be 1 added clock: tSKEW1+WCLK +tWFF  
Programmable Almost Full Flag, PAF & PAFn Bus Boundary  
I/O Set-Up  
PAF & PAFn Boundary  
in36 to out36  
PAF/PAFn Goes LOW after  
(Bothportsselectedforsamequeuewhenthe1st D+1-mWrites  
Wordiswritteninuntiltheboundaryisreached) (seenotebelowfortiming)  
in36 to out36  
PAF/PAFn Goes LOW after  
NOTE:  
D = FIFO Queue Depth  
m = Almost Full Offset value.  
(Writeportonlyselectedforsamequeuewhenthe D-mWrites  
1st Wordiswritteninuntiltheboundaryisreached) (seenotebelowfortiming)  
Default values: if DF is LOW at Master Reset then m = 8  
if DF is HIGH at Master Reset then m= 128  
PAF Timing  
in36 to out18  
in36 to out9  
in18 to out36  
PAF/PAFn Goes LOW after  
D-mWrites(seebelowfortiming)  
PAF/PAFn Goes LOW after  
D-mWrites(seebelowfortiming)  
Assertion:  
Write Operation to PAF LOW: 2 WCLK + tWAF  
De-assertion: Read to PAF HIGH: tSKEW2 + WCLK + tWAF  
If tSKEW2 is violated there may be 1 added clock: tSKEW2 + 2 WCLK + tWAF  
PAFn Timing  
PAF/PAFn Goes LOW after  
([D+1-m] x 2) Writes  
(seenotebelowfortiming)  
Assertion:  
Write Operation to PAFn LOW: 2 WCLK* + tPAF  
De-assertion: Read to PAFn HIGH: tSKEW3 + WCLK* + tPAF  
If tSKEW3 is violated there may be 1 added clock: tSKEW3 + 2 WCLK* + tPAF  
* If a queue switch is occurring on the write port at the point of flag assertion there may  
be one additional WCLK clock cycle delay.  
in9 to out36  
PAF/PAFn Goes LOW after  
([D+1-m] x 4) Writes  
(seenotebelowfortiming)  
22  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 4 — FLAG OPERATION BOUNDARIES & TIMING (CONTINUED)  
Programmable Almost Empty Flag Bus, PAEn Boundary  
I/O Set-Up PAEn Boundary Condition  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st n+2Writes  
Programmable Almost Empty Flag, PAE Boundary  
I/O Set-Up PAE Assertion  
PAE Goes HIGH after n+2  
(Bothportsselectedforsamequeuewhenthe1st Writes  
in36 to out36  
in36 to out36  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
in36 to out36  
PAEn Goes HIGH after  
in36 to out18  
PAE Goes HIGH after n+1  
(Writeportonlyselectedforsamequeuewhenthe n+1Writes  
(Bothportsselectedforsamequeuewhenthe1st Writes  
1st Wordiswritteninuntiltheboundaryisreached) (seenotebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
in36 to out18  
in36 to out9  
in18 to out36  
PAEn Goes HIGH after n+1  
in36 to out9  
PAE Goes HIGH after n+1  
Writes (seebelowfortiming)  
(Bothportsselectedforsamequeuewhenthe1st Writes  
PAEn Goes HIGH after n+1  
Writes(seebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached) (seenotebelowfortiming)  
in18 to out36  
PAE Goes HIGH after  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 2) Writes  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 2) Writes  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
PAE Goes HIGH after  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
in9 to out36  
in18 to out36  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 4) Writes  
(Writeportonlyselectedforsamequeuewhenthe ([n+1] x 2) Writes  
1st Wordiswritteninuntiltheboundaryisreached) (seenotebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
in9 to out36  
PAEn Goes HIGH after  
NOTE:  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 4) Writes  
n = Almost Empty Offset value.  
Default values: if DF is LOW at Master Reset then n = 8  
if DF is HIGH at Master Reset then n = 128  
PAE Timing  
Assertion:  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
PAEn Goes HIGH after  
in9 to out36  
(Writeportonlyselectedforsamequeuewhenthe ([n+1] x 4) Writes  
Read Operation to PAE LOW: 2 RCLK + tRAE  
1st Wordiswritteninuntiltheboundaryisreached) (seenotebelowfortiming)  
De-assertion: Write to PAE HIGH: tSKEW2 + RCLK + tRAE  
If tSKEW2 is violated there may be 1 added clock: tSKEW2 + 2 RCLK + tRAE  
NOTE:  
n = Almost Empty Offset value.  
Default values: if DF is LOW at Master Reset then n = 8  
if DF is HIGH at Master Reset then n = 128  
PAEn Timing  
Assertion:  
Read Operation to PAEn LOW: 2 RCLK* + tPAE  
De-assertion: Write to PAEn HIGH: tSKEW3 + RCLK* + tPAE  
If tSKEW3 is violated there may be 1 added clock: tSKEW3 + 2 RCLK* + tPAE  
* If a queue switch is occurring on the read port at the point of flag assertion there may  
be one additional RCLK clock cycle delay.  
PACKET READY FLAG BUS, PRn BOUNDARY  
Assertion:  
PACKETREADYFLAG,PRBOUNDARY  
Assertion:  
Both the rising and falling edges of PRn are synchronous to RCLK.  
PRn Falling Edge occurs upon writing the first TEOP marker, on input D35,  
(assumingaTSOPmarker,oninputD34has previouslybeenwritten).i.e.a  
completepacketisavailablewithinaqueue.  
Both the rising and falling edges ofPR are synchronous to RCLK.  
PR Falling Edge occurs upon writing the first TEOP marker, on input D35,  
(assumingaTSOPmarker,oninputD34has previouslybeenwritten).i.e.a  
completepacketisavailablewithinaqueue.  
Timing:  
Timing:  
FromWCLKrisingedgewritingtheTEOPwordPRgoes LOWafter:tSKEW4  
+ 2 RCLK* + tPAE  
FromWCLKrisingedgewritingtheTEOPwordPRgoes LOWafter:tSKEW4  
+ 2 RCLK + tPR  
If tSKEW4 is violated PRn goes LOW after tSKEW4 + 3 RCLK* + tPAE  
*Ifaqueueswitchisoccurringonthereadportatthepointofflagassertionthere  
may be one additional RCLK clock cycle delay.  
De-assertion:  
IftSKEW4isviolated:  
PR goes LOW after tSKEW4 + 3 RCLK + tPR  
(Please refer to Figure 26, Data Input (Transmit) Packet Ready Mode of  
Operationfortimingdiagram).  
PRRisingEdgeoccursuponreadingthelastRSOPmarker,fromoutputQ34.  
i.e.therearenomorecompletepacketsavailablewithinthequeue.  
Timing:  
FromRCLKrisingedge Readingthe RSOPwordthePR goes HIGHafter:2  
RCLK* + tPAE  
De-assertion:  
PRRisingEdgeoccursuponreadingthelastRSOPmarker,fromoutputQ34.  
i.e.therearenomorecompletepacketsavailablewithinthequeue.  
Timing:  
From RCLK rising edge Reading the RSOP word the PR goes HIGH after:  
2 RCLK + tPR  
*Ifaqueueswitchisoccurringonthereadportatthepointofflagassertionthere  
may be one additional RCLK clock cycle delay.  
(Please refer to Figure 27, Data Output (Receive) Packet Ready Mode of  
Operationfortimingdiagram).  
23  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PACKETREADYFLAG  
TSOPmarkerfollowed(atsomelatertime),byaTEOPmarkerhasbeenwritten.  
The Multi-Queue FIFO provides the user with a Packet Ready feature. ThePRflagwillgoactiveLOWtoindicatethatacompletepacketisavailable  
DuringaMasterResetthestateofthePKTinput(packetreadymodeselect), withinthequeue.OncetheRSOPmarkerisreadout,thePRflagwillgoHIGH,  
determineswhetherthedevicewilloperateinpacketreadymode.Adiscrete indicatingthatacompletepacketisnolongerpresent,(assumingthatthereare  
flagoutputPR,providesapacketreadystatusoftheactivequeue,selectedon no more packets in the queue). The user may proceed with the reading  
thereadport.Apacketreadystatusismaintainedforallqueues,howeveronly operationuntilthecurrentpackethasbeenreadoutandnofurthercomplete  
thequeueselectedonthereadporthasitspacketreadystatusoutputtotheactive packets are available. Ifduringthattime anothercomplete packethas been  
PR flag. The PR output flag for the active queue on the read port, is LOW writtenintothequeueandthePRflaghasagaingoneactive,thenreadsfrom  
whenevertheactivequeuehasoneormorefullpacketsofdatawithinitsqueue, thenewpacketmayfollowafterthecurrentpackethasbeencompletelyread  
availableforreading.IflessthanafullpacketisavailablethenthePRflagwill out.  
beHIGH,packetnotready. InPacketmode,wordscannotbereadfromaqueue  
Thepacketcountersthereforelookforstartofpacketmarkersfollowedbyend  
untilacompletepackethasbeenwrittenintothatqueue,regardlessofREN. ofpacketmarkers andregarddatainbetweentheTSOPandTEOPas afull  
WhenpacketreadymodeisselectedtheProgrammableAlmostEmptybus, packetofdata.Thepacketmonitoringhasnolimitationastohowmanypackets  
PAEn, actually becomes the Packet Ready bus, PRn. The PRn bus now arewrittenintoaFIFOqueue,theonlyconstraintofcoursebeingthedepthof  
providing packet ready status for all queues including those not currently thequeue.Note,thatthereisaminimumallowablepacketsizeoffourwrites,that  
selected on the read port. Both Polled and Direct modes of operation are is within a TSOP marker and TEOP marker there must be two other write  
availableandselectableduringaMasterReset.  
operations.  
WhentheMulti-Queueisselectedforpacketreadymodethedevicemustalso  
The packet logic does expect a TSOP marker to be followed by a TEOP  
beconfiguredwitha36bitwriteportand36bitreadport.Thetwomostsignificant marker.  
bits ofthe36bitdatabus cannowbeusedas packetmarkers.Onthewrite  
IfasecondTSOPmarkerisreadafterafirst,thenitisignoredandthelogic  
port these are bits D34, D35 and on the read port Q34, Q35. All four bits are regardsdatabetweenthefirstTSOPandthefirstsubsequentTEOPasthefull  
monitoredbythepacketcontrollogicasdataiswrittenintoandreadoutfrom packet.ThesameistrueforTEOP,asecondconsecutiveTEOPmarkisignored.  
the FIFO queues. The packet ready status for individual queues is then Onthewritesidethe2ndconsecutiveTSOPandTEOPisignored.Ontheread  
determinedbythepacketreadylogic.  
sidetheusershouldregardapacketasbeingbetweenthefirstRSOPandthe  
OnthewriteportD34isusedtomark”thewordcurrentlybeingwritteninto firstsubsequentREOP.  
theselectedFIFOqueueasaTransmitStartofPacket,TSOP.Whentheuser  
TheusermayalsowishtoimplementtheuseofanAlmostEndofPacket”  
requiresawordbeingwrittenintobemarkedasthestartofapacket,theTSOP marker,AEOP.Forexample,theAEOPcanbesetoninputD33,andthiswill  
inputmustbeHIGHforthesameWCLKrisingedgeasthewordthatiswritten passstraightthroughtheFIFOqueue,remainingattachedasatag”tothe36  
in. This markeris effectivelya tag”onthe endofthe wordtobe markedas it bitlongworditwaswrittenwith,beingreadoutonQ33.ThepurposeofthisAEOP  
isbeingwrittenintoitsrespectivequeue.ThisTSOPmarkerwillremainstored markeristoprovidetheentityreadingdatafromtheMulti-Queuedevicethatthe  
intheFIFOqueuealongwiththedataitwaswritteninwithuntilthewordinturn endofpacketisafixed(known)numberofreadsawayfromtheendofpacket.  
isreadoutofthequeueviathereadport.ThismarkerwillbereadoutonQ34 Thisisausefulfeaturewhenduetolatencieswithinthesystem,monitoringthe  
andis nowdenotedwiththename,ReceiveStartofPacket,RSOP.  
REOPmarkeralonedoesnotpreventoverreading”ofthedatafromthequeue  
ThesecondmarkerthatisusedonthewriteportisD35andisusedtomark” selected.Forexample,anAEOPmarkerset4writesbeforetheTEOPmarker  
thewordcurrentlybeingwrittenintotheselectedFIFOqueueasaTransmit providesthedeviceconnectedtothereadportwithandalmostendofpacket”  
EndofPacket, TEOP. Whenthe userrequires a wordbeingwrittenintobe indication4cyclesbeforetheendofpacket.  
markedastheendofapacket,theTEOPinputmustbeHIGHforthesameWCLK  
risingedgeasthewordthatiswrittenin.Thismarkeriseffectivelyatag”onthe determinedbytheuserrequirementsorlatenciesinvolvedinthesystem.  
endofthewordtobemarkedasitisbeingwrittenintoitsrespectivequeue.This IdeallyaswitchshouldbeperformedonecyclebeforetheTEOPisreadout.  
The AEOP can be set any number of words before the end of packet  
TEOPmarkerwillremainstoredintheFIFOqueuealongwiththedataitwas Soonthenextcyclethelastwordofapacket(TEOP)isread,andonthefollowing  
writteninwithuntilthe wordinturnis readoutofthe queue via the readport. cyclethenextwordofthenewqueueisreadout.Onceapacketisbeingread  
ThismarkerwillbereadoutonQ35andisnowdenotedwiththename,Receive outitmustbereadtocompletion.Thatis,theusercannotswitchtoanewqueue  
EndofPacket,REOP.  
inthemiddleofapacketbeingreadout.Forexample,whentheRSOPmarker  
Thepacketreadylogicmonitorsallstartandendofpacketmarkersbothas isreadoutofaqueue,markingthestartofPacket,thatpacketmustbereadto  
theyenterrespectivequeuesviathewriteportandastheyexitqueuesviathe completion,untilitsassociatedREOP,(EndofPacketMarker)hasbeenread  
readport.Thelogicbothincrementsanddecrementsapacketcounter,which out,againthequeueswitchtakingplaceonecyclebeforethe"EndofPacket"  
isprovidedforeachqueue.Thisfunctionalityofthepacketreadylogicmeans is readout.  
that status is provided as to whether or not at least one full packet of data is  
SeeFigure26,DataInput(Transmit)PacketReadyModeofOperationand  
availablewithinarespectivequeue.Forexample,ifaTSOPhasbeenreceived Figure 27, Data Output (Receive) Packet Ready Mode of Operation.  
andsometimelateraTEOPis receivedafullpacketofdatais deemedtobe  
available,andthePRflagwillgoactiveLOW.Consequentlyifreadsbeginfrom PACKETREADYMODULOOPERATION  
thatqueueandtheRSOPisdetectedontheoutputportasdataisbeingread  
WhenutilizingtheMulti-QueueFIFOdeviceinPacketReadymode,theuser  
out,thenthereisnolongerdeemedtobeafullpacketofdataavailableandPR mayalsowanttoconsidertheimplementationofModulo”operationorvalid  
will go inactive HIGH provided, that no other full packets are available. bytemarking.Thismaybearequirementwhenthepacketsbeingtransferred  
Essentially,apartialpacketinaqueueisregardedasapacketnotbeingready through a FIFO queue are in a byte arrangement even though the data bus  
andPRwillbeHIGH.InPacketmode,wordscannotbereadfromaqueueuntil widthis36bits.Heretheusermayactuallybeconcatenatingbytestoforma36  
acompletepackethasbeenwrittenintothatqueue,regardlessofREN.InPacket bitdatabusthroughtheMulti-Queuedevice.Inthissituationonlyalimitednumber  
modetheMulti-Queuedevicewillpreventreadsfromaselectedqueueuntila ofbytes mayactuallybepartofthepacket.This willonlyoccurwhenthefirst  
24  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 5 — PACKET MODE VALID BYTE  
BYTE D  
BYTE C  
BYTE B  
BYTE A  
TMOD1 (D33)  
RMOD1 (Q33)  
TMOD2 (D32)  
RMOD2 (Q32)  
VALID BYTES  
0
0
1
1
0
1
0
1
A, B, C, D  
A
A, B  
A, B, C  
5937 drw07  
NOTE:  
Packet Mode is only available when the Input Port and Output Port are 36 bits wide.  
36bitlongwordofapacketiswritteninandthelast36bitlongwordofpacket  
Alternatively,the4bitPAFnflagbusofeachdevicecanbeconnectedtogether  
iswrittenin.Themodulooperationisameansbywhichtheusercanmarkand toformasingle4bitbus,i.e.PAF[0]ofdevice1willconnecttoPAF[0]ofdevice  
identifywhichbytes ofa 36bitlongwordare partofthe packet. 2etc. Whenconnectingdevices inthis mannerthe PAFncanonlybe driven  
Onthewriteportdatainputbits,D32(transmitmodulobit2,TMOD2)andD33 byasingledeviceatanytime,(thePAFnoutputsofallotherdevicesmustbe  
(transmitmodulobit1,TMOD1)canbeusedtocodewhichbytesofawordare inhighimpedancestate).Therearetwomethodsbywhichtheusercanselect  
partofthepacketthatisalsobeingmarkedastheStartofPacket”orEndof whichdevicehas controlofthebus,theseareDirect”(Addressed)modeor  
Packet.Converselyonthereadportwhenreadingoutthesemarkedwords, Polled”(Looped)mode,determinedbythestateoftheFM(flagMode)input  
dataoutputsQ32(receivemodulobit2,RMOD2)andQ33(receivemodulobit duringaMasterReset.  
1,RMOD1)willpassonthebytevalidityinformationforthatlongword.Refer  
toTable5foranexampleofhowthemodulobitsmaybesetupandused.See PAFn BUS EXPANSION - DIRECT MODE  
Figure26,DataInput(Transmit)PacketReadyModeofOperationandFigure  
27, Data Output (Receive) Packet Ready Mode of Operation.  
If FM is LOW at Master Reset then the PAFn bus operates in Direct  
(addressed)mode.Indirectmodetheusercanaddressthedevicetheyrequire  
The internal packet ready control logic performs no operation on these tocontrolthePAFnbus.Theaddresspresentonthe3mostsignificantbitsof  
Modulobits,theyarepurelyinformationalbitsthatarepassedthroughaqueue the WRADD[4:0] address bus with FSTR (PAF flag strobe), HIGH will be  
withtherespectivedatabytes.  
selectedasthedeviceonarisingedgeofWCLK.Sotoaddressthefirstdevice  
inabankofdevicestheWRADD[4:0]addressshouldbe000xx”thesecond  
device001xx”andsoon.The3mostsignificantbitsoftheWRADD[4:0]address  
PAFn FLAG BUS OPERATION  
TheIDT72V51236/72V51246/72V51256Multi-QueueFIFOdevicecanbe buscorrespondtothedeviceIDinputsID[2:0].ThePAFnbuswillchangestatus  
configuredforupto4FIFOqueues,eachqueuehavingitsownalmostfullstatus. toshowthenewdeviceselected1WCLKcycleafterdeviceselection.Note,that  
Anactivequeuehasitsflagstatusoutputtothediscreteflags,FFandPAF,on if a read or write operation is occurring to a specific queue, say queue x’ on  
thewriteport.Queuesthatarenotselectedforawriteoperationcanhavetheir thesamecycleasaPAFnbusswitchtothedevicecontainingqueuex’,then  
PAFstatus monitoredviathe PAFnbus.ThePAFnflagbus is 4bits wide,so theremaybeanextraWCLKcycledelaybeforethatqueuesstatusiscorrectly  
that all 4 queues can have their status output to the bus. When a single shownontherespectiveoutputofthe PAFnbus.However,theactive” PAF  
Multi-Queuedeviceisusedanywherefrom1to4queuesmaybeset-upwithin flagwillshowcorrectstatusatalltimes.  
thepart,eachqueuehavingitsowndedicatedPAFflagoutputonthePAFnbus.  
Devices can be selected on consecutive WCLK cycles, that is the device  
Queues 1 through 4 have their PAF status to PAF[0] through PAF[3] controllingthe PAFnbus canchange everyWCLKcycle. Also, data present  
respectively. If less than 4 queues are used then only the associated PAFn ontheinputbus,Din,canbewrittenintoaFIFOqueueonthesameWLCKrising  
outputswillberequired,unusedPAFnoutputswillbedontcareoutputs.When edgethatadeviceisbeingselectedonthePAFnbus,theonlyrestrictionbeing  
devices are connected in expansion mode the PAFn flag bus can also be thatawritequeueselectionandPAFnbusselectioncannotbemadeonthesame  
expandedbeyond4bits toproduce a widerPAFnbus thatencompasses all cycle.  
queues.  
25  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PAFn BUS EXPANSION– POLLED MODE  
devicesmustbeinhighimpedancestate).Therearetwomethodsbywhichthe  
IfFMisHIGHatMasterResetthenthePAFnbusoperatesinPolled(Looped) user can select which device has control of the bus, these are Direct”  
mode.InpolledmodethePAFnbusautomaticallycyclesthroughthedevices (Addressed)modeorPolled”(Looped)mode,determinedbythestateofthe  
connected in expansion. In expansion mode one device will be set as the FM (flag Mode) input during a Master Reset.  
Master,MASTinputtiedHIGH,allotherdeviceswillhaveMASTtiedLOW.The  
masterdeviceisthefirstdevicetotakecontrolofthePAFnbusandplacethe PAEn/PRn BUS EXPANSION- DIRECT MODE  
PAFstatusofitsqueuesontothebusonthefirstrisingedgeofWCLKafterthe  
If FM is LOW at Master Reset then the PAEn/PRn bus operates in Direct  
MRSinputgoesHIGHonceaMasterResetiscomplete.TheFSYNC(PAFsync (addressed)mode.Indirectmodetheusercanaddressthedevicetheyrequire  
pulse)outputofthefirstdevice(masterdevice),willbeHIGHforonecycleof tocontrolthePAEn/PRnbus.Theaddresspresentonthe3mostsignificantbits  
WCLKindicatingthatitishascontrolofthePAFnbusforthatcycle.  
ofthe RDADD[5:0]address bus withESTR(PAE/PRflagstrobe), HIGHwill  
Thedevicealsopassesatoken”ontothenextdeviceinthechain,thenext beselectedasthedeviceonarisingedgeofRCLK.Sotoaddressthefirstdevice  
deviceassumingcontrolofthePAFnbusonthenextWCLKcycle.Thistoken ina bankofdevices the RDADD[5:0]address shouldbe 000xx”the second  
passing is done via the FXO outputs and FXI inputs of the devices (PAFn device001xx”andsoon.The3mostsignificantbitsoftheRDADD[5:0]address  
ExpansionOut”andPAFnExpansionIn).TheFXOoutputofthefirstdevice buscorrespondtothedeviceIDinputsID[2:0].ThePAEn/PRnbuswillchange  
connectingtothe FXIinputofthe seconddevice inthe chain, the FXOofthe status toshowthenewdeviceselected1RCLKcycleafterdeviceselection.  
seconddeviceconnects totheFXIofthethirddeviceandsoon.TheFXOof Note,thatifareadorwriteoperationisoccurringtoaspecificqueue,sayqueue  
thefinaldeviceinachainconnectstotheFXIofthefirstdevice,sothatoncethe x’onthesamecycleasaPAEn/PRnbusswitchtothedevicecontainingqueue  
PAFn bus has cycled through all devices control is again passed to the first x’,thentheremaybeanextraRCLKcycledelaybeforethatqueuesstatusis  
device.TheFXOoutputofadevicewillbeHIGHfortheWCLKcycleithascontrol correctlyshownontherespectiveoutputofthePAEn/PRnbus.However,the  
ofthebus.  
PleaserefertoFigure24,PAFnBusPolledModefortiminginformation.  
active”PAEand/orPRflagwillshowcorrectstatusatalltimes.  
Devices can be selected on consecutive RCLK cycles, that is the device  
controllingthePAEn/PRnbuscanchangeeveryRCLKcycle.Also,datacan  
be read out of a FIFO queue on the same RCLK rising edge that a device is  
PAEn/PRn FLAG BUS OPERATION  
TheIDT72V51236/72V51246/72V51256Multi-QueueFIFOdevicecanbe beingselectedonthePAEn/PRnbus,theonlyrestrictionbeingthatareadqueue  
configuredforupto4FIFOqueues,eachqueuehavingitsownalmostempty/ selectionandPAEn/PRnbusselectioncannotbemadeonthesamecycle.  
packetreadystatus.Anactivequeuehasitsflagstatusoutputtothediscreteflags,  
OV, PAE and PR, on the read port. Queues that are not selected for a read PAEn/PRn BUS EXPANSION- POLLED MODE  
operationcanhavetheirPAE/PRstatusmonitoredviathePAEn/PRnbus.The  
IfFMis HIGHatMasterResetthenthePAEn/PRnbus operates inPolled  
PAEn/PRnflagbusis4bitswide,sothatall4queuescanhavetheirstatusoutput (Looped)mode.InpolledmodethePAEn/PRnbusautomaticallycyclesthrough  
tothebus.TheMulti-QueuedevicecanprovideeitherAlmostEmpty”status thedevicesconnectedinexpansion.Inexpansionmodeonedevicewillbeset  
orPacketReady”statusviathePAEn/PRnbusofitsqueues,dependingon astheMaster,MASTinputtiedHIGH,allotherdeviceswillhaveMASTtiedLOW.  
whichhas beenselectedviathePKT(Packet)inputduringamasterreset.If ThemasterdeviceisthefirstdevicetotakecontrolofthePAEn/PRnbusand  
PKTisHIGHthenpacketmodeisselectedandthePAEn/PRnbuswillprovide placethePAE/PRstatusofitsqueuesontothebusonthefirstrisingedgeofRCLK  
PacketReady”status.IfitisLOWthenthePAEn/PRnbuswillprovideAlmost aftertheMRSinputgoesHIGHonceaMasterResetiscomplete.TheESYNC  
Empty”status.Ineithercasetheoperationofthebusisthesamethedifference (PAE/PRsyncpulse)outputofthefirstdevice(masterdevice),willbeHIGHfor  
beingthatthebusisprovidingPacketReady”statusversusAlmostEmpty” onecycleofRCLKindicatingthatitishascontrolofthePAEn/PRnbusforthat  
status.  
WhenasingleMulti-Queuedeviceisusedanywherefrom1to4queuesmay  
cycle.  
Thedevicealsopassesatoken”ontothenextdeviceinthechain,thenext  
beset-upwithinthepart,eachqueuehavingitsowndedicatedPAEn/PRnflag deviceassumingcontrolofthePAEn/PRnbus onthenextRCLKcycle.This  
outputonthePAEn/PRnbus.Queues1through4havetheirPAE/PRstatus tokenpassingisdoneviatheEXOoutputsandEXIinputsofthedevices(PAEn/  
toPAE[0]throughPAE[3]respectively.Iflessthan4queuesareusedthenonly PRnExpansionOut”andPAEn/PRnExpansionIn).TheEXOoutputofthe  
theassociatedPAEn/PRnoutputswillberequired,unusedPAEn/PRn outputs firstdeviceconnectingtotheEXIinputoftheseconddeviceinthechain,theEXO  
willbedontcareoutputs.Whendevicesareconnectedinexpansionmodethe oftheseconddeviceconnectstotheEXIofthethirddeviceandsoon.TheEXO  
PAEn/PRn flagbus canalsobe expandedbeyond4bits toproduce a wider ofthefinaldeviceinachainconnectstotheEXIofthefirstdevice,sothatonce  
PAEn/PRnbusthatencompassesallqueues.  
the PAEn/PRnbus has cycledthroughalldevices controlis againpassedto  
Alternatively,the4bitPAEn/PRn flagbusofeachdevicecanbeconnected the firstdevice. The EXOoutputofa device willbe HIGHforthe RCLKcycle  
togethertoformasingle4bitbus,i.e.PAE[0]ofdevice1willconnecttoPAE[0] ithascontrolofthebus.  
ofdevice2etc.WhenconnectingdevicesinthismannerthePAEn/PRnbuscan  
Please refer to Figure 25, PAEn/PRn Bus – Polled Mode for timing  
onlybedrivenbyasingledeviceatanytime,(thePAEn/PRn outputsofallother information.  
26  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
D35-D27  
D26-D18  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
Write to FIFO Queue  
A
B
C
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BM  
L
IW OW  
A
B
C
D
Read from FIFO Queue  
L
L
(a) x36 INPUT to x36 OUTPUT  
Q35-Q27  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BM  
H
IW OW  
1st: Read from FIFO Queue  
2nd: Read from FIFO Queue  
C
D
L
L
Q26-Q18  
Q17-Q9  
Q8-Q0  
A
B
(b) x36 INPUT to x18 OUTPUT  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BM  
H
IW OW  
D
1st: Read from FIFO Queue  
2nd: Read from FIFO Queue  
L
H
Q35-Q27  
Q35-Q27  
Q26-Q18  
Q26-Q18  
Q17-Q9  
Q17-Q9  
Q8-Q0  
C
Q8-Q0  
B
3rd: Read from FIFO Queue  
4th: Read from FIFO Queue  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
A
(c) x36 INPUT to x9 OUTPUT  
D35-D27  
D35-D27  
D26-D18  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
A
1st: Write to FIFO Queue  
2nd: Write to FIFO Queue  
B
D26-D18  
D17-D9  
D8-D0  
C
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BM  
H
IW OW  
D
B
C
A
Read from FIFO Queue  
H
L
(d) x18 INPUT to x36 OUTPUT  
BYTE ORDER ON INPUT PORT:  
D35-D27  
D35-D27  
D35-D27  
D35-D27  
D26-D18  
D26-D18  
D26-D18  
D26-D18  
D17-D9  
D17-D9  
D17-D9  
D17-D9  
D8-D0  
A
1st: Write to FIFO Queue  
2nd: Write to FIFO Queue  
D8-D0  
B
D8-D0  
C
3rd: Write to FIFO Queue  
4th: Write to FIFO Queue  
D8-D0  
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BM  
H
IW OW  
D
C
B
A
Read from FIFO Queue  
H
H
(e) x9 INPUT to x36 OUTPUT  
5937 drw08  
Figure 3. Bus-Matching Byte Arrangement  
27  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
tRS  
MRS  
t
RSS  
RSS  
WEN  
REN  
t
tRSR  
SENI  
tRSS  
FSTR,  
ESTR  
tRSS  
WADEN,  
RADEN  
t
RSS  
RSS  
RSS  
ID0, ID1,  
ID2  
t
OW, IW,  
BM  
t
HIGH = Looped  
LOW = Strobed (Direct)  
FM  
MAST  
PKT  
t
RSS  
RSS  
HIGH = Master Device  
LOW = Slave Device  
t
HIGH = Packet Ready Mode  
LOW = Almost Empty  
t
RSS  
RSS  
HIGH = Default Programming  
LOW = Serial Programming  
DFM  
t
HIGH = Offset Value is 128  
LOW = Offset value is 8  
DF  
t
t
t
t
RSF  
LOGIC "1" if Master Device  
FF  
HIGH-Z if Slave Device  
RSF  
RSF  
RSF  
LOGIC "1" if Master Device  
OV  
PAF  
PAE  
HIGH-Z if Slave Device  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
HIGH-Z if Slave Device  
LOGIC "0" if Master Device  
t
t
t
t
t
RSF  
RSF  
RSF  
RSF  
RSF  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
PAFn  
PAEn  
PR  
HIGH-Z if Slave Device  
LOGIC "0" if Master Device  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
PRn  
LOGIC "1" if OE is LOW and device is Master  
Qn  
HIGH-Z if OE is HIGH or Device is Slave  
5937 drw09  
NOTES:  
1. OE can toggle during this period.  
2. PRS should be HIGH during a MRS.  
Figure 4. Master Reset  
28  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
w-2  
w-1  
w
w+1  
w+2  
w+3  
WCLK  
tQH  
tQS  
WADEN  
WEN  
tENS  
tENS  
t
AS  
tAH  
WRADD  
Qx  
t
WFF  
FF  
tWAF  
PAF  
t
PAF  
Active Bus  
PAF-Qx(5)  
tPRSS  
tPRSH  
PRS  
tPRSH  
tPRSS  
RCLK  
tENS  
tENS  
REN  
tQH  
tQS  
RADEN  
t
AS  
tAH  
RDADD  
Qx  
tROV  
OV  
tRAE  
PAE  
t
PAE  
Active Bus  
PAE-Qx(6)  
r-2  
r-1  
r
r+1  
r+2  
r+3  
5937 drw10  
NOTES:  
1. For a Partial Reset to be performed on a Queue, that Queue must be selected on both the write and read ports.  
2. The queue must be selected a minimum of 2 clock cycles before the Partial Reset takes place, on both the write and read ports.  
3. The Partial Reset must be LOW for a minimum of 1 WCLK and 1 RCLK cycle.  
4. Writing or Reading to the queue (or a queue change) cannot occur until a minimum of 3 clock cycles after the Partial Reset has gone HIGH, on both the write and read ports.  
5. The PAF flag output for Qx on the PAFn flag bus may update one cycle later than the active PAF flag.  
6. The PAE flag output for Qx on the PAEn flag bus may update one cycle later than the active PAE flag.  
Figure 5. Partial Reset  
Master Reset  
Default Mode  
DFM = 0  
MRS  
MRS  
DFM  
DFM  
MRS  
DFM  
MQ2  
MQn  
MQ1  
Serial Loading  
Complete  
SENI  
SI  
SENO  
SO  
SENI  
SI  
SENI  
SI  
SENO  
SO  
SENO  
SO  
Serial Enable  
Serial Input  
SCLK  
SCLK  
SCLK  
5937 drw11  
Serial Clock  
Figure 6. Serial Port Connection for Serial Programming  
29  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
30  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
31  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
32  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WCLK  
tENH  
tENS  
WEN  
tDS  
tDH  
tDS  
tDH  
tDS  
tDH  
W1  
W2  
W3  
Dn  
RCLK  
REN  
t
SKEW1  
1
2
tENS  
tA  
tA  
tA  
Last Word Read Out of Queue  
W1 Qy  
FWFT  
W2 Qy  
FWFT  
W3 Qy  
Qout  
OV  
tROV  
tROV  
5937 drw13a  
NOTES:  
1. Qy has previously been selected on both the write and read ports.  
2. OE is LOW.  
3. The First Word Latency = tSKEW1 + RCLK + tA. If tSKEW1 is violated an additional RCLK cycle must be added.  
Figure 10. Write Operations & First Word Fall Through  
33  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
34  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
35  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
RCLK  
REN  
tENS  
tAS  
tAH  
tAS  
tQS  
tAH  
RDADD  
RADEN  
D1  
Q3  
D1 Q2  
Addr=001011  
tQH  
Addr=001010  
tQS  
tQH  
tA  
tA  
tA  
tA  
tOLZ  
Qout  
(Device 1)  
D
1
Q
3
WD  
Last Word  
D1 Q2  
PFT We-1  
D1  
Q2  
We  
Last Word  
tROV  
W0 Q2  
D1  
tROV  
tROV  
tROV  
tOVLZ  
HIGH-Z  
OV  
(Device 1)  
tOVHZ  
OV  
(Device 2)  
tSKEW1  
WCLK  
tENS  
tENH  
WEN  
tAS  
tQS  
tAH  
tQH  
WRADD  
D1 Q2  
WADEN  
Din  
tDS  
tDH  
D1 Q2  
W0  
5937 drw16  
Cycle:  
*A* Queue 3 of Device 1 is selected for read operations. The OV is currently being driven by Device 2, a queue within device 2 is selected for reads. Device 2 also has control  
of Qout bus, its Qout outputs are in Low-Impedance. This diagram only shows the Qout outputs of device 1. (Reads are disabled).  
*B* Reads are now enabled. A word from the previously selected queue of Device 2 will be read out.  
*C* The Qout of Device 1 goes to Low-Impedance and word Wd is read from Q3 of D1. This happens to be the last word of Q3. Device 2 places its Qout outputs into  
High-Impedance, device 1 has control of the Qout bus. The OV flag of Device 2 goes to High-Impedance and Device 1 takes control of OV. The OV flag of Device 1 goes LOW  
to show that Wd of Q3 is valid.  
*D* Queue 2 of device 1 is selected for read operations. The last word of Q3 was read on the previous cycle, therefore OV goes HIGH to indicate that the data on the Qout is  
not valid (Q3 was read to empty). Word, Wd remains on the output bus.  
*E* The last word of Q3 remains on the Qout bus, OV is HIGH, indicating that this word has been previously read.  
*F* The next word (We-1), available from the newly selected queue, Q2 of device 1 is now read out. This will occur regardless of REN, 2 RCLK cycles after queue selection  
due to the FWFT operation. The OV flag now goes LOW to indicate that this word is valid.  
*G* The last word, We is read from Q2, this queue is now empty.  
*H* The OV flag goes HIGH to indicate that Q2 was read to empty on the previous cycle.  
*I* Due to a write operation the OV flag goes LOW and data word W0 is read from Q2. The latency is: tSKEW1 + 1*RCLK + tROV.  
Figure 13. Output Valid Flag Timing (In Expansion Mode)  
36  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
*J*  
RCLK  
tENS  
tENH  
tENS  
tENH  
REN  
tAS  
tAH  
tAH  
tAS  
RDADD  
Qn  
QP  
tQS  
tQH  
tQS  
tQH  
RADEN  
tA  
tA  
tA  
tA  
tA  
tA  
QOUT  
QP  
WD  
QP WD+1  
Q
P
WD+2  
Qn  
WX  
Qn  
WX+1  
Q
P
WD+3  
QP WD+4  
OV  
5937 drw17  
Cycle:  
*A* Word Wd+1 is read from the previously selected queue, Qp.  
*B* Reads are disabled, word Wd+1 remains on the output bus.  
*C* A new queue, Qn is selected for read port operations.  
*D* Due to FWFT operation Word, Wd+2 of Qp is read out regardless of REN.  
*E* The next available word Wx of Qn is read out regardless of REN, 2 RCLK cycles after queue selection. This is FWFT operation.  
*F* The queue, Qp is again selected.  
*G* Word Wx+1 is read from Qn regardless of REN, this is due to FWFT.  
*H* Word Wd+3 is read from Qp, this read occurs regardless of REN due to FWFT operation.  
*I* Word Wd+4 is read from Qp.  
*J* Reads are disabled on this cycle, therefore no further reads occur.  
Figure 14. Read Queue Selection with Reads Disabled  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
RCLK  
REN  
tENS  
tENH  
tENS  
tAS  
tAH  
tAS  
tAH  
RDADD  
RADEN  
QB  
QA  
tQS  
tQH  
tQS  
tQH  
OE  
tA  
tA  
tA  
tA  
tOHZ  
tA  
tOE  
tOLZ  
Qout  
Previous Data in O/P Register  
Q
A
W
0
QA  
W1  
QA  
W2  
QA  
W3  
QA W4  
No Read  
Q is Empty  
ROV  
PFT  
B
tROV  
t
OV  
5937 drw18  
NOTES:  
1. The Output Valid flag, OV is HIGH therefore the previously selected queue has been read to empty. The Output Enable input is Asynchronous, therefore the Qout output bus  
will go to Low-Impedance after time tOLZ.  
The data currently on the output register will be available on the output after time tOE. This data is the previous data on the output register, this is the last word read out of the  
previous queue.  
2. In expansion mode the OE inputs of all devices should be connected together. This allows the output busses of all devices to be High-Impedance controlled.  
Cycle:  
*A* Queue A is selected for reads. No data will fall through on this cycle, the previous queue was read to empty.  
*B* No data will fall through on this cycle, the previous queue was read to empty.  
*C* Word, W0 from Qa is read out regardless of REN due to FWFT operation. The OV flag goes LOW indicating that Word W0 is valid.  
*D* Reads are disabled therefore word, W0 of Qa remains on the output bus.  
*E* Reads are again enabled so word W1 is read from Qa.  
*F* Word W2 is read from Qa.  
*G* Queue, Qb is selected on the read port. This queue is actually empty. Word, W3 is read from Qa.  
*H* Word, W4 falls through from Qa.  
*I* Output Valid flag, OV goes HIGH to indicate that Qb is empty. Data on the output port is no longer valid.  
Output Enable is taken HIGH, this is Asynchronous so the output bus goes to High-Impedance after time, tOHZ.  
Figure 15. Read Queue Select, Read Operation and OE Timing  
37  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
SELECT  
NEW QUEUE  
*D*  
NULL QUEUE  
SELECT  
*B*  
*C*  
*E*  
*F*  
*A*  
0001xx  
t
RCLK  
tAS  
t
AH  
t
AS  
tAH  
000011  
D0 Q3  
RDADD  
RADEN  
tQS  
t
QH  
t
QS  
tQH  
tENS  
ENH  
REN  
tA  
tA  
tA  
tA  
Qout  
Q1 Wn-3  
Q1 Wn-2  
Q1 Wn-1  
Q1 Wn  
Q3 W0  
FWFT  
tROV  
tROV  
OV  
5937 drw19  
NOTES:  
1. The purpose of the Null queue operation is so that the user can stop reading a block (packet) of data from a queue without filling the 2 stage output pipeline with the next words  
from that queue.  
2. Please see Figure 17, Null Queue Flow Diagram.  
Cycle:  
*A* Null Q of device 0 is selected, when word Wn-1 from previously selected Q1 is read.  
*B* REN is HIGH and Wn (Last Word of the Packet) of Q1 is pipelined onto the O/P register.  
Note: *B* and *C* are a minimum 2 RCLK cycles between Q selects.  
*C* The Null Q is seen as an empty FIFO on the read side, therefore Wn of Q1 remains in the O/P register and OV goes HIGH.  
*D* A new Q, Q3 is selected and the 1st word of Q3 will fall through present on the O/P register on cycle *F*.  
Figure 16. Read Operation and Null Queue Select  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
Null  
Queue  
Queue 3  
Memory  
Queue 3  
Memory  
Queue 1  
Memory  
Null  
Queue  
Null  
Queue  
Q1  
Q1  
Q1  
Q1  
Q3  
Q3  
Wn  
Wn  
Wn  
Wn  
W0  
W1  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
Qn  
Q1  
Q1  
Q1  
Q1  
Q3  
Wn-1  
Wn  
Wn  
Wn  
Wn  
W0  
5937 drw20  
Figure 17. Null Queue Flow Diagram  
38  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*E*  
*F*  
*D*  
WCLK  
WEN  
1
2
tENH  
tENS  
tAS  
tAH  
tAS  
tQS  
tAH  
WRADD  
D1 Q2  
D1 Q0  
tQS  
tQH  
tQH  
WADEN  
Din  
tDS  
tDH  
WD-m  
D1 Q2  
tWAF  
tWAF  
tAFLZ  
HIGH-Z  
PAF  
(Device 1)  
tFFHZ  
PAF  
(Device 2)  
5937 drw21  
Cycle:  
*A* Queue 2 of Device 1 is selected on the write port. A queue within Device 2 had previously been selected. The PAF output of device 1 is High-Impedance.  
*B* No write occurs.  
*C* Word, Wd-m is written into Q2 causing the PAF flag to go from HIGH to LOW. The flag latency is 2 WCLK cycles + tWAF.  
*D* Queue 0 if device 1 is now selected for write operations. This queue is not almost full, therefore the PAF flag will update after a 2 WCLK + tWAF latency.  
*E* The PAF flag goes LOW based on the write 2 cycles earlier.  
*F* The PAF flag goes HIGH due to the queue switch to Q0.  
Figure 18. Almost Full Flag Timing and Queue Switch  
tCLKL  
tCLKL  
WCLK  
WEN  
PAF  
1
2
1
tENS  
tENH  
tWAF  
tWAF  
D - (m+1) words in FIFO(2)  
D-(m+1) words  
in FIFO  
D - m words in FIFO  
tSKEW2  
RCLK  
tENS  
tENH  
5937 drw22  
REN  
NOTE:  
1. The waveform here shows the PAF flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read  
from at the almost full boundary.  
Flag Latencies:  
Assertion: 2*WCLK + tWAF  
De-assertion: tSKEW2 + WCLK + tWAF  
If tSKEW2 is violated there will be one extra WCLK cycle.  
Figure 19. Almost Full Flag Timing  
39  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
RCLK  
REN  
HIGH  
AS  
t
tAH  
tAS  
tAH  
RDADD  
D1  
Q3  
D1  
Q1  
tQS  
tQH  
tQH  
tQS  
RADEN  
Qout  
tA  
tA  
tA  
tA  
tOLZ  
HIGH-Z  
HIGH-Z  
D1  
Q3  
Wn  
D
1
Q3  
Wn+1  
D
1
Q1  
W0  
D1 Q1 W1  
t
RAE  
t
RAE  
tAELZ  
PAE  
(Device 1)  
tAEHZ  
PAE  
(Device 2)  
HIGH-Z  
5937 drw23  
Cycle:  
*A* Queue 3 of Device 1 is selected on the read port. A queue within Device 2 had previously been selected. The PAE flag output and the data outputs of device 1 are High-Impedance.  
*B* No read occurs.  
*C* The PAE flag output now switches to device 1. Word, Wn is read from Q3 due to the FWFT operation. This read operation from Q3 is at the almost empty boundary, therefore  
PAE will go LOW 2 RCLK cycles later.  
*D* Q1 of device 1 is selected.  
*E* The PAE flag goes LOW due to the read from Q3 2 RCLK cycles earlier. Word Wn+1 is read out due to the FWFT operation.  
*F* Word, W0 is read from Q1 due to the FWFT operation. The PAE flag goes HIGH to show that Q1 is not almost empty.  
Figure 20. Almost Empty Flag Timing and Queue Switch  
tCLKH  
tCLKL  
WCLK  
tENS  
tENH  
WEN  
PAE  
n+1 words in FIFO  
n+2 words in FIFO  
n+1 words in FIFO  
tRAE  
tSKEW2  
tRAE  
1
2
RCLK  
tENS  
tENH  
5937 drw24  
REN  
NOTE:  
1. The waveform here shows the PAE flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read  
from at the almost empty boundary.  
Flag Latencies:  
Assertion: 2*RCLK + tRAE  
De-assertion: tSKEW2 + RCLK + tRAE  
If tSKEW2 is violated there will be one extra RCLK cycle.  
Figure 21. Almost Empty Flag Timing  
40  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
1
2
WCLK  
WADEN  
FSTR  
tQH  
tQS  
tQS  
tQH  
t
STS  
tSTH  
tENS  
tENS  
tENH  
tENH  
WEN  
tAH  
tAH  
tAS  
t
AS  
t
AS  
tAH  
Device 4  
D3Q2  
01110  
WRADD  
Dn  
D5Q3  
100 11  
tDH  
100 xx  
tDS  
tDH  
tDS  
Wp  
Wp+1  
Wn+1  
D5Q3  
Wn  
D5 Q3  
Wx  
D3 Q2  
Writes to Previous Q  
tSKEW3  
RCLK  
RADEN  
ESTR  
1
2
tQS  
tQH  
t
STS  
t
STH  
tENS  
tENH  
REN  
tAH  
t
AS  
t
AS  
tAH  
RDADD  
Device 5  
D5Q3  
100 011  
101 xxx  
tA  
tA  
tA  
tA  
tA  
Wy  
D5 Q3  
Wy+1  
D5 Q3  
Wy+3  
D5 Q3  
Device 5 -Qn  
Wa  
D5 Qx  
Wa+1  
D5 Qn  
Wy+2  
D5 Q3  
Previous value loaded on to PAE bus  
Prev PAEn  
t
PAEHZ  
t
PAE  
tPAEZL  
1xxx  
1xxx  
Device 5 PAEn  
Device 5  
Device 5  
1xxx  
Device 5  
1xxx  
Device 5  
Previous value loaded on to PAE bus  
D5 Qx Status  
Bus PAEn  
t
RAE  
tRAE  
tRAE  
D5 Q3  
status  
Device 5 PAE  
5937 drw25  
*AA*  
*BB*  
*CC*  
*EE*  
*FF*  
*DD*  
Cycle:  
*A* Queue 3 of Device 5 is selected for write operations.  
Word, Wp is written into the previously selected queue.  
*AA* Queue 3 of Device 5 is selected for read operations.  
Another device has control of the PAEn bus.  
The discrete PAE output of device 5 is currently in High-Impedance and the PAE active flag is controlled by the previously selected device.  
*B* Word Wp+1 is written into the previously selected queue.  
*BB* Word, Wa+1 is read from Qx of D5, due to FWFT operation.  
*C* Word, Wn is written into the newly selected queue, Q3 of D5. This write will cause the PAE flag on the read port to go from LOW to HIGH (not almost empty) after time,  
tSKEW3 + RCLK + tRAE (if tSKEW3 is violated one extra RCLK cycle will be added.  
*CC* Word, Wy from the newly selected queue, Q3 will be read out due to FWFT operation.  
Device 5 is selected on the PAEn bus. Q3 of device 5 will therefore have is PAE status output on PAE[3]. There is a single RCLK cycle latency before the PAEn bus changes  
to the new selection.  
*D* Queue 2 of Device 3 is selected for write operations.  
Word Wn+1 is written into Q3 of D5.  
*DD* The PAEn bus changes control to D5, the PAEn outputs of D5 go to Low-Impedance and are placed onto the outputs. The previously selected device now places its  
PAEn outputs into High-Impedance to prevent bus contention. Word, Wy+1 is read from Q3 of D5.  
The discrete PAE flag will go HIGH to show that Q3 of D5 is not almost empty. Q3 of device 5 will have its PAE status output on PAE[3].  
*E* No writes occur.  
*EE* Word, Wy+2 is read from Q3 of D5.  
*F* Device 4 is selected on the write port for the PAFn bus.  
Word, Wx is written into Q2 of D3.  
*FF* The PAEn bus updates to show that Q3 of D5 is almost empty based on the reading out of word, Wy+1.  
The discrete PAE flag goes LOW to show that Q3 of D5 is almost empty based on the reading of Wy+1.  
Figure 22. PAEn - Direct Mode, Flag Operation – Devices in Expansion  
41  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
RCLK  
tQH  
tQS  
tQS  
tQH  
RADEN  
t
STH  
t
STS  
ESTR  
REN  
t
AS  
tAH  
tAH  
t
AS  
RDADD  
Device 7  
111 xxx  
D6Q2  
110 010  
D0Q1  
000 001  
OE  
tA  
tA  
tA  
tA  
tOLZ  
Qout  
W
Prev. Q  
X
W
Prev. Q  
X +1  
W
D0 Q1  
D - M + 2  
W0  
D6 Q2  
W
D0 Q1  
D-M+1  
tSKEW3  
WCLK  
FSTR  
1
2
t
STS  
t
STH  
t
AS  
tAH  
tAS  
tAH  
WRADD  
Device 0  
000 xxx  
D0 Q1  
tENS  
tENH  
WEN  
tQS  
tQH  
WADEN  
Din  
t
DS  
t
DH  
tDS  
tDH  
tDS  
tDH  
Word W  
y
Wy+1  
Wy+2  
D0 Q1  
D0 Q1  
D0 Q1  
t
PAFLZ  
tPAF  
t
PAF  
Device 0 PAFn  
xx0x  
xx0x  
xx1x  
xx1x  
xx0x  
xx0x  
Device 0  
Device 0  
Device 0  
Device 0  
Device 0  
HIGH-Z  
Previous Device  
Previous Device  
Bus PAFn  
Device 0  
t
PAFHZ  
HIGH-Z  
Prev. PAFn  
t
PAFLZ  
tWAF  
Device 0 PAF  
HIGH - Z  
5937 drw26  
*AA*  
*BB*  
*CC*  
*DD*  
*EE*  
*FF*  
Cycle:  
*A* Queue 1 of device 0 is selected for read operations.  
The last word in the output register is available on Qout. OE was previously taken LOW so the output bus is in Low-Impedance.  
*AA* Device 0 is selected for the PAFn bus. The bus is currently providing status of a previously selected device X.  
*B* Word, Wx+1 is read out from the previous queue due to the FWFT effect.  
*BB* Queue 1 of device 0 is selected on the write port.  
The PAFn bus is updated with the device selected on the previous cycle, device 0 PAF[1] is LOW showing the status of queue 1.  
The PAFn outputs of the device previously selected on the PAFn bus go to High-Impedance.  
*C* Device 7 is selected for the PAFn bus.  
Word, Wd-m+1 is read from Q1 D0 due to the FWFT operation. This read is at the PAFn boundary of queue D0 Q1. This read will cause the PAF[1] output to go from  
LOW to HIGH (almost full to not almost full), after a delay tSKEW3 + WCLK + tPAF. If tSKEW3 is violated add an extra WCLK cycle.  
*CC* PAFn continues to show status of D0.  
*D* No read operations occur, REN is HIGH.  
*DD* PAF[1] goes HIGH to show that D0 Q1 is not almost empty due to the read on cycle *C*.  
The active queue PAF flag of device 0 goes from High-Impedance to Low-Impedance.  
Word, Wy is written into D0 Q1.  
*E* Queue 2 of Device 6 is selected for write operations.  
*EE* Word, Wy+1 is written into D0 Q1.  
*F* Word, Wd-m+2 is read out due to FWFT operation.  
*FF* PAF[1] and the discrete PAF flag go LOW to show the write on cycle *DD* causes Q1 of D0 to again go almost full.  
Word, Wy+2 is written into D0 Q1.  
*G* Word, W0 is read from Q0 of D6, selected on cycle *E*, due to FWFT.  
Figure 23. PAFn - Direct Mode, Flag Operation – Devices in Expansion  
42  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WCLK  
t
FSYNC  
tFSYNC  
t
FSYNC  
t
FSYNC  
FXO  
FSYNC  
0
(MASTER)  
tFXO  
t
FXO  
tFXO  
t
FXO /  
0
FXI  
1
tFSYNC  
tFSYNC  
FSYNC  
1
(SLAVE)  
tFXO  
tFXO  
FXO /  
1
FXI  
2
tFSYNC  
tFSYNC  
FSYNC  
2
(SLAVE)  
tFXO  
tFXO  
FXO /  
2
FXI  
0
t
PAF  
t
PAF  
tPAF  
t
PAF  
t
PAF  
PAF[3:0]  
Device 0  
Device 1  
Device 2  
Device 0  
5937 drw27  
Figure 24. PAFn Bus - Polled Mode  
NOTE:  
1. This diagram is based on 3 devices connected to expansion mode.  
43  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
RCLK  
t
ESYNC  
tESYNC  
t
ESYNC  
t
ESYNC  
EXO  
ESYNC  
0
tEXO  
t
EXO  
tEXO  
t
EXO /  
0
EXI  
1
tESYNC  
tESYNC  
ESYNC  
1
tEXO  
tEXO  
EXO /  
1
FXI  
2
tESYNC  
tESYNC  
ESYNC  
2
tEXO  
tEXO  
EXO /  
2
EXI  
0
t
PAE  
t
PAE  
tPAE  
t
PAE  
t
PAE  
PAE  
Device 0  
Device 1  
Device 2  
Device 0  
n
5937 drw28  
Figure 25. PAEn/PRn Bus - Polled Mode  
44  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
45  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
46  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Serial Programming Data Input  
Serial Enable  
SENI  
SI FXI EXI  
Output Data Bus  
Data Bus  
Q -Q  
35  
D -D  
35  
0
0
Read Clock  
Write Clock  
RCLK  
WCLK  
Write Enable  
Read Enable  
WEN  
REN  
RDADD  
RADEN  
Write Queue Select  
Write Address  
Read Queue Select  
Read Address  
WRADD  
DEVICE  
1
WADEN  
FSTR  
Empty Strobe  
Full Strobe  
ESTR  
PAEn  
Programmable Almost Full  
Programmable Almost Empty  
PAFn  
Empty Sync 1  
Output Valid Flag  
Almost Empty Flag  
Packet Reads  
Full Sync1  
ESYNC  
FSYNC  
Full Flag  
OV  
FF  
Almost Full Flag  
Serial Clock  
PAF  
PAE  
PR  
SCLK  
SENO SO FXO EXO  
SENI SI FXI EXI  
Q -Q  
D -D  
35  
0
35  
0
WCLK  
RCLK  
WEN  
REN  
WRADD  
WADEN  
RDADD  
RADEN  
DEVICE  
2
FSTR  
PAFn  
ESTR  
PAEn  
Empty Sync 2  
Full Sync2  
FSYNC  
ESYNC  
FF  
OV  
PAF  
PAE  
SCLK  
PR  
SENO SO FXO EXO  
SENI SI FXI EXI  
Q -Q  
D -D  
35  
0
35  
0
WCLK  
RCLK  
REN  
WEN  
WRADD  
WADEN  
RDADD  
RADEN  
DEVICE  
n
FSTR  
PAFn  
FSYNC  
ESTR  
PAEn  
Full Sync n  
Empty Sync n  
ESYNC  
FF  
OV  
PAF  
PAE  
PR  
SCLK  
SENO  
FXO EXO  
DONE  
5937 drw31  
NOTES:  
1. If devices are configured for Direct operation of the PAFn/PAEn flag busses the FXI/EXI of the MASTER device should be tied LOW. All other devices tied HIGH. The FXO/EXO  
outputs are DNC (Do Not Connect).  
2. Q outputs must not be mixed between devices, i.e. Q0 of device 1 must connect to Q0 of device 2, etc.  
Figure 28. Multi-Queue Expansion Diagram  
47  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TheStandardJTAGinterfaceconsistsoffourbasicelements:  
JTAGINTERFACE  
Test Access Port (TAP)  
TAPcontroller  
Instruction Register (IR)  
Data Register Port (DR)  
Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to  
support the JTAG boundary scan interface. The IDT72V51236/72V51246/  
72V51256incorporates thenecessarytapcontrollerandmodifiedpadcellsto  
implementtheJTAG facility.  
NotethatIDTprovidesappropriateBoundaryScanDescriptionLanguage  
programfilesforthesedevices.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
The Figure belowshows the standardBoundary-ScanArchitecture  
DeviceID Reg.  
Mux  
Boundary Scan Reg.  
Bypass Reg.  
TDO  
TDI  
T
A
clkDR, ShiftDR  
UpdateDR  
P
TMS  
TAP  
TCLK  
Cont-  
roller  
TRST  
Instruction Decode  
clklR, ShiftlR  
UpdatelR  
Instruction Register  
Control Signals  
5937 drw32  
Figure 29. Boundary Scan Architecture  
THETAPCONTROLLER  
TEST ACCESS PORT (TAP)  
TheTapcontrollerisasynchronousfinitestatemachinethatrespondsto  
TMSandTCLKsignalstogenerateclockandcontrolsignalstotheInstruction  
andDataRegisters forcaptureandupdateofdata.  
The Tap interface is a general-purpose port that provides access to the  
internaloftheprocessor. Itconsistsoffourinputports(TCLK,TMS,TDI,TRST)  
and one output port (TDO).  
48  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
1
Test-Logic  
Reset  
0
1
Select-  
IR-Scan  
0
1
1
Run-Test/  
Idle  
Select-  
DR-Scan  
0
0
1
1
Capture-DR  
Capture-IR  
0
0
0
0
Shift-DR  
Shift-IR  
1
1
1
1
Input = TMS  
Exit1-IR  
EXit1-DR  
0
0
0
0
Pause-DR  
Pause-IR  
1
1
Exit2-IR  
Exit2-DR  
0
0
1
1
Update-DR  
Update-IR  
1
0
1
0
5937 drw33  
Figure 30. TAP Controller State Diagram  
EXIT1-DR / EXIT2-DR  
Refer to the IEEE Standard Test Access Port Specification (IEEE Std.  
1149.1)forthefullstatediagram  
AllstatetransitionswithintheTAPcontrolleroccurattherisingedgeofthe  
TCLKpulse. TheTMSsignallevel(0or1)determines thestateprogression  
that occurs on each TCLK rising edge.  
Thisisatemporarycontrollerstate. IfTMSisheldhigh,arisingedgeapplied  
toTCKwhileinthisstatecausesthecontrollertoentertheUpdate-DRstate. This  
terminatesthescanningprocess. Alltestdataregistersselectedbythecurrent  
instructionretaintheirpreviousstateunchanged.  
PAUSE-DR  
CAPTURE-DR  
Thiscontrollerstateallowsshiftingofthetestdataregisterintheserialpath  
betweenTDIandTDOtobetemporarilyhalted. Alltestdataregistersselected  
bythecurrentinstructionretaintheirpreviousstateunchanged.  
Data is loaded from the parallel input pins or core outputs into the Data  
Register.  
SHIFT-DR  
Capture-IR, Shift-IR and Update-IR, Exit-IR and Pause-IR are  
similartoDataregisters.Theseinstructionsoperateontheinstructionregisters.  
Thepreviouslycaptureddataisshiftedinserially,LSBfirstattherisingedge  
ofTCLKintheTDI/TDOpathandshiftedoutserially,LSBfirstatthefallingedge  
ofTCLKtowardstheoutput.  
UPDATE-DR  
The shifting process has been completed. The data is latched into their  
paralleloutputsinthisstatetobeaccessedthroughtheinternalbus.  
49  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
THE INSTRUCTION REGISTER  
JTAG INSTRUCTION REGISTER  
TheInstructionregisterallowsinstructiontobeseriallyinputintothedevice  
whentheTAPcontrollerisintheShift-IRstate. Theinstructionisdecodedto  
performthefollowing:  
TheInstructionregisterallowsaninstructiontobeshiftedinseriallyintothe  
processor at the rising edge of TCLK.  
TheInstructionis usedtoselectthetesttobeperformed,orthetestdata  
registertobeaccessed,orboth. Theinstructionshiftedintotheregisterislatched  
atthecompletionoftheshiftingprocesswhentheTAPcontrollerisatUpdate-  
IRstate.  
Theinstructionregistermustcontain4bitinstructionregister-basedcells  
whichcanholdinstructiondata. Thesemandatorycellsarelocatednearestthe  
serialoutputstheyaretheleastsignificantbits.  
Selecttestdataregistersthatmayoperatewhiletheinstructionis  
current. Theothertestdataregistersshouldnotinterferewithchip  
operationandtheselecteddataregister.  
Definetheserialtestdataregisterpaththatisusedtoshiftdatabetween  
TDI and TDO during data register scanning.  
The Instruction Register is a 4 bit field (i.e. IR3, IR2, IR1, IR0) to decode  
16differentpossibleinstructions. Instructionsaredecodedasfollows.  
TESTDATAREGISTER  
Hex  
Value  
00  
01  
02  
Instruction  
Function  
TheTestDataregistercontainsthreetestdataregisters:theBypass,the  
Boundary Scan register and Device ID register.  
Theseregistersareconnectedinparallelbetweenacommonserialinput  
andacommonserialdataoutput.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescription,refertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
EXTEST  
SAMPLE/PRELOAD  
IDCODE  
High-Impedance  
BYPASS  
SelectBoundaryScanRegister  
SelectBoundaryScanRegister  
SelectChipIdentificationdataregister  
JTAG  
04  
0F  
SelectBypassRegister  
JTAG INSTRUCTION REGISTER DECODING  
TEST BYPASS REGISTER  
Thefollowingsectionsprovideabriefdescriptionofeachinstruction. For  
acompletedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
TheregisterisusedtoallowtestdatatoflowthroughthedevicefromTDI  
toTDO. Itcontainsasinglestageshiftregisterforaminimumlengthinserialpath.  
Whenthebypassregisterisselectedbyaninstruction,theshiftregisterstage  
is settoa logiczeroonthe risingedge ofTCLKwhenthe TAPcontrolleris in  
theCapture-DRstate.  
EXTEST  
ThemandatoryEXTESTinstructionis providedforexternalcircuityand  
boardlevelinterconnectioncheck.  
The operation of the bypass register should not have any effect on the  
operationofthedeviceinresponsetotheBYPASSinstruction.  
IDCODE  
THE BOUNDARY-SCAN REGISTER  
ThisinstructionisprovidedtoselectDeviceIdentificationRegistertoread  
outmanufacturesidentity,partnumberandversionnumber.  
TheBoundaryScanRegisterallowsserialdataTDIbeloadedintoorread  
outoftheprocessorinput/outputports. TheBoundaryScanRegisterisapart  
oftheIEEE1149.1-1990StandardJTAGImplementation.  
SAMPLE/PRELOAD  
ThemandatorySAMPLE/PRELOADinstructionallowsdatavaluestobe  
loadedontothelatchedparalleloutputsoftheboundary-scanshiftregisterprior  
toselectionoftheboundary-scantestinstruction. TheSAMPLEinstruction  
allowsasnapshotofdataflowingfromthesystempinstotheon-chiplogicor  
vice versa.  
THE DEVICE IDENTIFICATION REGISTER  
The Device IdentificationRegisteris a ReadOnly32-bitregisterusedto  
specify the manufacturer, part number and version of the processor to be  
determinedthroughtheTAPinresponsetotheIDCODEinstruction.  
IDT JEDEC ID number is 0xB3. This translates to 0x33 when the parity  
is droppedinthe11-bitManufacturerIDfield.  
HIGH-IMPEDANCE  
This instruction places all the output pins on the device into a High-  
Impedancestate.  
FortheIDT72V51236/72V51246/72V51256,thePartNumberfieldcon-  
tainsthefollowingvalues:  
Device  
Part# Field (HEX)  
0x41B  
BYPASS  
IDT72V51236  
IDT72V51246  
IDT72V51256  
TheBypassinstructioncontainsasingleshift-registerstageandissetto  
provideaminimum-lengthserialpathbetweentheTDIandtheTDOpinsofthe  
device whennotest operation ofthe device is required.  
0x41C  
0x41D  
31(MSB)  
28 27  
12 11  
1 0(LSB)  
Version (4 bits) Part Number (16-bit) Manufacturer ID (11-bit)  
0X0  
0X33  
1
JTAG DEVICE IDENTIFICATION REGISTER  
50  
IDT72V51236/72V51246/72V512563.3V, MULTI-QUEUEFIFO(4QUEUES)  
36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
tTCK  
t
4
t
3
t
1
t
2
TCK  
TDI/  
TMS  
tDS  
tDH  
TDO  
TDO  
t
6
tDO  
TRST  
5937 drw34  
Notes to diagram:  
t1 = tTCKLOW  
t2 = tTCKHIGH  
t
5
t3 = tTCKFALL  
t4 = tTCKRise  
t5 = tRST (reset pulse width)  
t6 = tRSR (reset recovery)  
Figure 31. Standard JTAG Timing  
JTAG  
ACELECTRICALCHARACTERISTICS  
(vcc = 3.3V ± 5%; Tcase = 0°C to +85°C)  
Parameter  
Symbol  
Test  
Conditions  
Min. Max. Units  
SYSTEMINTERFACEPARAMETERS  
JTAGClockInputPeriod tTCK  
-
-
-
-
-
-
-
100  
40  
40  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IDT72V51236  
IDT72V51246  
IDT72V51256  
JTAGClockHIGH  
JTAGClockLow  
tTCKHIGH  
tTCKLOW  
tTCKRise  
tTCKFall  
tRST  
-
Parameter  
DataOutput  
Symbol Test Conditions Min. Max. Units  
JTAGClockRiseTime  
JTAGClockFallTime  
JTAGReset  
5(1)  
5(1)  
-
tDO = Max  
5(1)  
5
50  
-
ns  
ns  
ns  
-
2
DataOutputHold  
DataInput  
tDOH  
50  
50  
tDS  
tDH  
trise=3ns  
tfall=3ns  
30  
30  
-
-
JTAG Reset Recovery  
tRSR  
-
NOTES:  
1. Guaranteed by design.  
2. 50pf loading on external output signals.  
NOTE:  
1. Guaranteed by design.  
51  
ORDERINGINFORMATION  
IDT  
XXXXX  
X
XX  
X
X
Process /  
Temperature  
Range  
Device Type  
Power  
Speed  
Package  
BLANK  
I(1)  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
BB  
Plastic Ball Grid Array (PBGA, BB256-1)  
Clock Cycle Time (tCLK  
Speed in Nanoseconds  
)
6
7-5  
Commercial Only  
Com’l & Ind’l  
Low Power  
L
72V51236 589,824 bits 3.3V Multi-Queue FIFO  
72V51346 1,179,648 bits 3.3V Multi-Queue FIFO  
72V51256 2,359,296 bits 3.3V Multi-Queue FIFO  
5937 drw35  
NOTE:  
1. Industrial temperature range product for the 7-5ns is available as a standard device. All other speed grades are available by special order.  
DATASHEETDOCUMENTHISTORY  
10/10/2001  
11/16/2001  
12/19/2001  
01/15/2002  
pgs. 1, 8, 11, 14, 15 and 28.  
pgs. 4, 11, 17, 22-26, 28-31, 33, 45 and 46.  
pgs. 12 and 29.  
pg. 50.  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
408-330-1753  
email:FIFOhelp@idt.com  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
52  

相关型号:

72V51256L7-5BBG

FIFO, 64KX36, 4ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256
IDT

72V51256L7-5BBG8

FIFO, 64KX36, 4ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256
IDT

72V51256L7-5BBGI

FIFO, 64KX36, 4ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256
IDT

72V51333L10BB8

PBGA-256, Reel
IDT

72V51333L10BB9

PBGA-256, Tray
IDT

72V51333L6BBG

PBGA-256, Tray
IDT

72V51333L6BBG8

PBGA-256, Reel
IDT

72V51333L7-5BBGI8

PBGA-256, Reel
IDT

72V51333L7-5BBI8

PBGA-256, Reel
IDT

72V51336L10BB8

PBGA-256, Reel
IDT

72V51336L6BB

PBGA-256, Tray
IDT

72V51336L7-5BB

PBGA-256, Tray
IDT