72V51343L6BB9 [IDT]

PBGA-256, Tray;
72V51343L6BB9
型号: 72V51343L6BB9
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PBGA-256, Tray

LTE
文件: 总49页 (文件大小:458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.3VMULTI-QUEUEFLOW-CONTROLDEVICES  
(8QUEUES)18BITWIDECONFIGURATION  
IDT72V51333  
IDT72V51343  
IDT72V51353  
589,824bits  
1,179,648bits  
2,359,296bits  
Individual, Active queue flags (OV, FF, PAE, PAF)  
8 bit parallel flag status on both read and write ports  
Provides continuous PAE and PAF status of up to 8 Queues  
Global Bus Matching - (All Queues have same Input Bus Width  
and Output Bus Width)  
User Selectable Bus Matching Options:  
- x18in to x18out  
- x9in to x18out  
FEATURES:  
Choose from among the following memory density options:  
IDT72V51333  
IDT72V51343  
IDT72V51353  
Total Available Memory = 589,824 bits  
Total Available Memory = 1,179,648 bits  
Total Available Memory = 2,359,296 bits  
Configurable from 1 to 8 Queues  
Queues may be configured at master reset from the pool of  
Total Available Memory in blocks of 512 x 18 or 1,024 x 9  
Independent Read and Write access per queue  
User programmable via serial port  
Default multi-queue device configurations  
-IDT72V51333: 4,096 x 18 x 8Q or 8,192 x 9 x 8Q  
-IDT72V51343: 8,192 x 18 x 8Q or 16,384 x 9 x 8Q  
-IDT72V51353: 16,384 x 18 x 8Q or 32,768 x 9 x 8Q  
100% Bus Utilization, Read and Write on every clock cycle  
166 MHz High speed operation (6ns cycle time)  
3.7ns access time  
- x18in to x9out  
- x9in to x9out  
FWFT mode of operation on read port  
Partial Reset, clears data in single Queue  
Expansion of up to 8 multi-queue devices in parallel is available  
JTAG Functionality (Boundary Scan)  
Available in a 256-pin PBGA, 1mm pitch, 17mm x 17mm  
HIGH Performance submicron CMOS technology  
Industrial temperature range (-40°C to +85°C) is available  
FUNCTIONALBLOCKDIAGRAM  
MULTI-QUEUE FLOW-CONTROL DEVICE  
WADEN  
FSTR  
RADEN  
ESTR  
RDADD  
REN  
Q0  
WRADD  
WEN  
7
6
RCLK  
WCLK  
OE  
Q
out  
D
in  
x9, x18  
x9, x18  
DATA IN  
DATA OUT  
OV  
FF  
Q7  
PAF  
PAE  
PAFn  
8
PAEn  
8
5940 drw01  
IDTandtheIDTlogoareregisteredtrademarksofIntegratedDeviceTechnology,Inc.  
JUNE 2003  
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES  
1
2003 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
DSC-5940/9  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
Bus Matchingis available onthis device, eitherportcanbe 9bits or18bits  
wide.WhenBusMatchingisusedthedeviceensuresthelogicaltransferofdata  
throughputinaLittleEndianmanner.  
DESCRIPTION:  
The IDT72V51333/72V51343/72V51353 multi-queue flow-control de-  
vicesaresinglechipwithinwhichanywherebetween1and8discreteFIFO  
queuescanbesetup.Allqueueswithinthedevicehaveacommondatainput  
bus,(writeport)andacommondataoutputbus,(readport).Datawritteninto  
the write portis directedtoa respective queue via aninternalde-multiplex  
operation,addressedbytheuser.Datareadfromthereadportisaccessed  
froma respective queue via aninternalmultiplexoperation,addressedby  
the user. Data writes and reads can be performed at high speeds up to  
166MHz,withaccesstimesof3.7ns.Datawriteandreadoperationsaretotally  
independent of each other, a queue maybe selected on the write port and  
adifferentqueueonthereadportorbothportsmayselectthesamequeue  
simultaneously.  
The device provides FullflagandOutputValidflagstatus forthe queue  
selectedforwriteandreadoperations respectively.AlsoaProgrammable  
AlmostFullandProgrammableAlmostEmptyflagforeachqueueisprovided.  
Two 8 bit programmable flag busses are available, providing status of all  
queues,includingqueuesnotselectedforwriteorreadoperations,theseflag  
busses provide an individual flag per queue.  
Theuserhasfullflexibilityconfiguringqueueswithinthedevice,beingable  
toprogramthetotalnumberofqueues between1and8,theindividualqueue  
depthsbeingindependentofeachother.Theprogrammableflagpositionsare  
alsouserprogrammable.Allprogrammingisdoneviaadedicatedserialport.  
Iftheuserdoesnotwishtoprogramthemulti-queuedevice,adefaultoptionis  
availablethatconfiguresthedeviceinapredeterminedmanner.  
BothMasterResetandPartialResetpinsareprovidedonthisdevice.AMaster  
Reset latches in all configuration setup pins and must be performed before  
programmingofthedevicecantakeplace.APartialResetwillresetthereadand  
writepointersofanindividualqueue,providedthatthequeueisselectedonboth  
thewriteportandreadportatthetimeofpartialreset.  
AJTAGtestportisprovided,herethemulti-queueflow-controldevicehasa  
fullyfunctionalBoundaryScanfeature,compliantwithIEEE1149.1Standard  
TestAccessPortandBoundaryScanArchitecture.  
SeeFigure1,Multi-QueueFlow-ControlDeviceBlockDiagramforanoutline  
ofthefunctionalblockswithinthedevice.  
2
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
D
in  
x9, x18  
- D  
D
0
17  
WCLK  
WEN  
INPUT  
DEMUX  
TMS  
TDI  
6
WRADD  
WADEN  
Write Control  
Logic  
JTAG  
Logic  
TDO  
TCK  
TRST  
Write Pointers  
PAF  
General Flag  
Monitor  
FSTR  
PAFn  
8
FSYNC  
Upto 8  
FIFO  
Queues  
FXO  
FXI  
OV  
Active Q  
Flags  
PAE  
0.5 Mbit  
1.1 Mbit  
2.3 Mbit  
Dual Port  
Memory  
Active Q  
Flags  
FF  
PAF  
PAE  
General Flag  
Monitor  
8
SI  
SO  
SCLK  
PAEn  
ESTR  
ESYNC  
EXI  
Serial  
Multi-Queue  
Programming  
SENI  
SENO  
EXO  
Read Pointers  
FM  
IW  
Reset  
Logic  
7
RDADD  
RADEN  
Read Control  
Logic  
OW  
MAST  
REN  
RCLK  
ID0  
ID1  
ID2  
DF  
Device ID  
3 Bit  
OUTPUT  
MUX  
PAE/ PAF  
Offset  
DFM  
OUTPUT  
REGISTER  
PRS  
MRS  
5940 drw02  
OE  
Q
- Q  
17  
0
Q
x9, x18  
out  
Figure 1. Multi-Queue Flow-Control Device Block Diagram  
3
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
PINCONFIGURATION  
A1 BALL PAD CORNER  
A
D14  
D15  
D13  
D16  
D12  
D11  
D10  
D9  
D7  
D6  
D4  
D3  
D1  
D0  
TCK  
TMS  
TDO  
TDI  
ID1  
ID0  
Q3  
Q2  
Q6  
Q9  
Q8  
Q12  
Q11  
Q14  
Q13  
Q15  
B
C
D
E
F
Q5  
DNC  
TRST  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
D17  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
SI  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
DFM  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
DF  
D8  
D5  
VCC  
VCC  
VCC  
VCC  
GND  
GND  
VCC  
VCC  
D2  
GND  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
ID2  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Q0  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
Q1  
Q4  
VCC  
VCC  
VCC  
VCC  
GND  
GND  
VCC  
VCC  
Q7  
Q10  
Q16  
Q17  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
MAST  
IW  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
FM  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
DNC  
DNC  
DNC  
DNC  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
G
H
J
K
L
OW  
M
N
P
R
T
SENO  
SENI  
OE  
SO  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
GND  
VCC  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
RDADD0 RDADD1  
WRADD1 WRADD0  
SCLK  
VCC RDADD2 RDADD3 GND  
FF  
OV  
PAE  
GND  
GND  
WRADD2 WADEN  
PAF3  
PAF6  
PAF7  
PAE7  
PAE6  
PAE3 RDADD4 RDADD5 RDADD6  
PAF  
PRS  
WRADD4 WRADD3 FSYNC  
FSTR  
PAF2  
PAF1  
PAF5  
PAF4  
DNC  
DNC  
DNC  
PAE5  
PAE4  
PAE2  
PAE1  
RADEN ESTR  
ESYNC  
EXI  
WEN  
MRS  
REN  
WRADD5 FXI  
FXO  
PAF0  
WCLK  
RCLK  
PAE0  
EXO  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
5940 drw03  
NOTE:  
1. DNC - Do Not Connect.  
PBGA (BB256-1, order code: BB)  
TOP VIEW  
4
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
provides a user programmable almost full flag for all 8 queues and when a  
respectivequeueisselectedonthewriteport,thealmostfullflagprovidesstatus  
for that queue. Conversely, the read port has an output valid flag, providing  
statusofthedatabeingreadfromthequeueselectedonthereadport.Aswell  
astheoutputvalidflagthedeviceprovidesadedicatedalmostemptyflag.This  
almostemptyflagissimilartothealmostemptyflagofaconventionalIDTFIFO.  
Thedeviceprovidesauserprogrammablealmostemptyflagforall8queues  
andwhenarespectivequeueisselectedonthereadport,thealmostemptyflag  
providesstatusforthatqueue.  
DETAILEDDESCRIPTION  
MULTI-QUEUE STRUCTURE  
The IDT multi-queue flow-control device has a single data input port and  
singledataoutputportwithupto8FIFOqueuesinparallelbufferingbetween  
thetwoports.Theusercansetupbetween1and8Queueswithinthedevice.  
Thesequeuescanbeconfiguredtoutilizethetotalavailablememory,providing  
theuserwithfullflexibilityandabilitytoconfigurethequeuestobevariousdepths,  
independentofoneanother.  
MEMORYORGANIZATION/ALLOCATION  
PROGRAMMABLE FLAG BUSSES  
Thememoryisorganizedintowhatisknownasblocks,eachblockbeing  
512x18or1,024x9bits.Whentheuserisconfiguringthenumberofqueues  
andindividualqueue sizes the usermustallocate the memorytorespective  
queues,inunitsofblocks,thatis,asinglequeuecanbemadeupfrom0tom  
blocks,wheremisthetotalnumberofblocksavailablewithinadevice.Alsothe  
totalsize of anygiven queue mustbe in increments of 512 x 18or1,024 x 9.  
FortheIDT72V51333,IDT72V51343andIDT72V51353theTotalAvailable  
Memoryis64,128and256blocksrespectively(ablockbeing512x18or1,024  
x9).Ifanyportisconfiguredforx18buswidth,ablocksizeis512x18.Ifboth  
thewriteandreadportsareconfiguredforx9buswidth,ablocksizeis1,024  
x9.Queuescanbebuiltfromtheseblockstomakeanysizequeuedesiredand  
any number of queues desired.  
Inadditiontothesededicatedflags,full&almostfullonthewriteportandoutput  
valid&almostemptyonthereadport,therearetwoflagstatusbusses.Analmost  
fullflagstatusbusisprovided,thisbusis8bitswide.Also,analmostemptyflag  
statusbusisprovided,againthisbusis8bitswide.Thepurposeoftheseflag  
bussesistoprovidetheuserwithameansbywhichtomonitorthedatalevels  
withinqueuesthatmaynotbeselectedonthewriteorreadport.Asmentioned,  
thedeviceprovidesalmostfullandalmostemptyregisters(programmableby  
the user) for each of the 8 queues in the device.  
The4bitPAEnand4bitPAFnbussesprovideadiscretestatusoftheAlmost  
EmptyandAlmostFullconditionsofall8queue's.Ifthedeviceisprogrammed  
for less than 8 queue's, then there will be a corresponding number of active  
outputs onthePAEnandPAFnbusses.  
Theflagbussescanprovideacontinuousstatusofallqueues.Ifdevicesare  
connectedinexpansionmodetheindividualflagbussescanbeleftinadiscrete  
form,providingconstantstatusofallqueues,orthebussesofindividualdevices  
canbe connectedtogethertoproduce a single bus of8bits. The device can  
then operate in a "Polled" or "Direct" mode.  
Whenoperatinginpolledmodetheflagbusprovidesstatusofeachdevice  
sequentially,thatis,oneachrisingedgeofaclocktheflagbusisupdatedtoshow  
thestatusofeachdeviceinorder.Therisingedgeofthewriteclockwillupdate  
theAlmostFullbusandarisingedgeonthereadclockwillupdatetheAlmost  
Emptybus.  
Whenoperatingindirectmodethedevicedrivingtheflagbusisselectedby  
theuser.Theuseraddresses thedevicethatwilltakecontrolofarespective  
flagbus, these PAFnand PAEnflagbusses operatingindependentlyofone  
another.AddressingoftheAlmostFullflagbus is doneviathewriteportand  
addressingoftheAlmostEmptyflagbus is doneviathereadport.  
BUS WIDTHS  
Theinputportiscommontoallqueueswithinthedevice,asistheoutputport.  
ThedeviceprovidestheuserwithBusMatchingoptionssuchthattheinputport  
andoutputportcanbeeitherx9orx18bitswide,thereadandwriteportwidths  
beingsetindependentlyofoneanother.Becausetheportsarecommontoall  
queuesthewidthofthequeuesisnotindividuallyset,sothattheinputwidthof  
all queues are equal and the output width of all queues are equal.  
WRITING TO & READING FROM THE MULTI-QUEUE  
Databeingwrittenintothedeviceviatheinputportisdirectedtoadiscrete  
queueviathewritequeueselectaddressinputs.Conversely,databeingread  
fromthedevicereadportisreadfromaqueueselectedviathereadqueueselect  
addressinputs.Datacanbesimultaneouslywrittenintoandreadfromthesame  
queueordifferentqueues.Onceaqueueisselectedfordatawritesorreads,  
the writing and reading operation is performed in the same manner as  
conventionalIDTsynchronous FIFO,utilizingclocks andenables,thereis a  
singleclockandenableperport.Whenaspecificqueueisaddressedonthe  
writeport,dataplacedonthedatainputsiswrittentothatqueuesequentially  
basedontherisingedgeofawriteclockprovidedsetupandholdtimesaremet.  
Conversely,dataisreadontotheoutputportafteranaccesstimefromarising  
edge on a read clock.  
Theoperationofthewriteportiscomparabletothefunctionofaconventional  
FIFOoperatinginstandardIDTmode.Writeoperationscanbeperformedon  
thewriteportprovidedthatthequeuecurrentlyselectedisnotfull,afullflagoutput  
provides status of the selected queue. The operation of the read port is  
comparabletothefunctionofaconventionalFIFOoperatinginFWFTmode.  
Whenaqueueis selectedontheoutputport,thenextwordinthatqueuewill  
automaticallyfallthroughtotheoutputregister.Allsubsequentwordsfromthat  
queue require an enabled read cycle. Data cannot be read from a selected  
queueifthatqueueisempty,thereadportprovidesanOutputValidflagindicating  
whendata readoutis valid. Ifthe userswitches toa queue thatis empty, the  
lastwordfromtheprevious queuewillremainontheoutputregister.  
Asmentioned,thewriteporthasafullflag,providingfullstatusoftheselected  
queue.Alongwiththefullflagadedicatedalmostfullflagisprovided,thisalmost  
fullflagissimilartothealmostfullflagofaconventionalIDTFIFO.Thedevice  
EXPANSION  
Expansionofmulti-queuedevicesisalsopossible,upto8devicescanbe  
connectedinaparallelfashionprovidingthepossibilityofbothdepthexpansion  
or queue expansion. Depth Expansion means expanding the depths of  
individual queues. Queue expansion means increasing the total number of  
queuesavailable.Depthexpansionispossiblebyvirtueofthefactthatmore  
memoryblocks withinamulti-queuedevicecanbeallocatedtoincreasethe  
depth of a queue. For example, depth expansion of 8 devices provides the  
possibilityof8queuesof32Kx18deepwithintheIDT72V51333,64Kx18deep  
withintheIDT72V51343and128Kx18deepwithintheIDT72V51353,each  
queuebeingsetupwithinasingledeviceutilizingallmemoryblocksavailable  
toproduceasinglequeue. This is thedeepestqueuethatcansetupwithina  
device.  
For queue expansion of the 8 queue device, a maximum number of 64 (8  
x8)queuesmaybesetup,eachqueuebeing16Kx18or32Kx9deep,ifless  
queuesaresetup,thenmorememoryblockswillbeavailabletoincreasequeue  
depthsifdesired.Whenconnectingmulti-queuedevicesinexpansionmodeall  
respectiveinputpins(data&control)andoutputpins(data& flags),shouldbe  
connected”togetherbetweenindividualdevices.  
5
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
PINDESCRIPTIONS  
Symbol  
Name  
I/OTYPE  
Description  
D[17:0]  
Din  
DataInputBus  
LVTTL These are the 18data inputpins. Data is writtenintothe device via these inputpins onthe rising edge  
INPUT ofWCLKprovidedthatWENisLOW.Duetobusmatchingnotallinputsmaybeused,anyunusedinputs  
shouldbetiedLOW.  
DF(1)  
DefaultFlag  
DefaultMode  
LVTTL Iftheuserrequiresdefaultprogrammingofthemulti-queuedevice,thispinmustbesetupbeforeMaster  
INPUT Resetandmustnottoggleduringanydeviceoperation.Thestateofthisinputatmasterresetdetermines  
the value of the PAE/PAF flag offsets. If DF is LOW the value is 8, if DF is HIGH the value is 128.  
(1)  
DFM  
LVTTL The multi-queue device requires programmingaftermasterreset. The usercandothis seriallyvia the  
INPUT serialport,ortheusercanusethedefaultmethod.IfDFMisLOWatmasterresetthenserialmodewillbe  
selected,ifHIGHthendefaultmodeisselected.  
ESTR  
PAEn Flag Bus  
Strobe  
LVTTL IfdirectoperationofthePAEnbushasbeenselected,theESTRinputisusedinconjunctionwithRCLK  
INPUT andtheRDADDbustoselectadeviceforitsqueuestobeplacedontothePAEnbusoutputs.Adevice  
addressed via the RDADD bus is selected on the rising edge of RCLK provided that ESTR is HIGH. If  
Polledoperationshasbeenselected,ESTRshouldbetiedinactive,LOW.Note,thataPAEnflagbus  
selectioncannotbemade,(ESTRmustNOTgoactive)untilprogrammingoftheparthasbeencompleted  
andSENO has gone LOW.  
ESYNC  
EXI  
PAEn Bus Sync  
LVTTL ESYNCisanoutputfromthemulti-queuedevicethatprovidesasynchronizingpulseforthePAEnbus  
OUTPUT duringPolledoperationofthePAEnbus.DuringPolledoperationeachdevicesqueuestatusflagsare  
loadedontothePAEnbusoutputssequentiallybasedonRCLK.ThefirstRCLKrisingedgeloadsdevice1  
ontoPAEn,thesecondRCLKrisingedgeloadsdevice2andsoon.DuringtheRCLKcyclethataselected  
device is placed on to the PAEn bus, the ESYNC output will be HIGH.  
PAEnBus  
ExpansionIn  
LVTTL The EXIinputis usedwhenmulti-queue devices are connectedinexpansionmode andPolledPAEn  
INPUT bus operationhas beenselected. EXIofdevice ‘Nconnects directlytoEXOofdevice N-1’. The EXI  
receives a tokenfromthe previous device ina chain. Insingle device mode the EXIinputmustbe tied  
LOWifthe PAEnbus is operatedindirectmode. Ifthe PAEnbus is operatedinpolledmode the EXI  
inputmustbeconnectedtotheEXOoutputofthesamedevice.InexpansionmodetheEXIofthefirst  
deviceshouldbetiedLOW,whendirectmodeisselected.  
EXO  
PAEnBus  
ExpansionOut  
LVTTL EXOisanoutputthatisusedwhenmulti-queuedevicesareconnectedinexpansionmodeandPolledPAEn  
OUTPUT busoperationhasbeenselected.EXOofdeviceN’connectsdirectlytoEXIofdeviceN+1’.Thispinpulses  
HIGHwhendevice Nplaces its PAE status ontothe PAEnbus withrespecttoRCLK. This pulse  
(token)isthenpassedontothenextdeviceinthechainN+1’andonthenextRCLKrisingedgethefirst  
quadrantofdevice N+1willbe loadedontothe PAEnbus. This continues throughthe chainandEXO  
ofthelastdeviceisthenloopedbacktoEXIofthefirstdevice.TheESYNCoutputofeachdeviceinthe  
chainprovidessynchronizationtotheuserofthisloopingevent.  
FF  
Full Flag  
LVTTL Thispinprovidesthefullflagoutputfortheactivequeue,thatis,thequeueselectedontheinputportfor  
OUTPUT write operations, (selectedvia WCLK, WRADDbus andWADEN). Onthe WCLKcycle aftera queue  
selection,thisflagwillshowthestatusofthenewlyselectedqueue.Datacanbewrittentothisqueueon  
thenextcycleprovidedFF is HIGH.This flaghas High-Impedancecapability,this is importantduring  
expansionofdevices,whentheFFflagoutputofupto8devicesmaybeconnectedtogetheronacommon  
line.ThedevicewithaqueueselectedtakescontroloftheFFbus,allotherdevicesplacetheirFFoutput  
intoHigh-Impedance.Whenaqueueselectionismadeonthewriteportthisoutputwillswitchfrom  
High-ImpedancecontrolonthenextWCLKcycle.ThisflagissynchronizedtoWCLK.  
(1)  
FM  
Flag Mode  
LVTTL Thispinissetupbeforeamasterresetandmustnottoggleduringanydeviceoperation.Thestateofthe  
INPUT FMpinduringMasterResetwilldeterminewhetherthePAFnandPAEnflagbussesoperateineitherPolled  
orDirectmode.Ifthis pinis HIGHthemodeis Polled,ifLOWthenitwillbeDirect.  
FSTR  
PAFn Flag Bus  
Strobe  
LVTTL IfdirectoperationofthePAFnbushasbeenselected,theFSTRinputisusedinconjunctionwithWCLK  
INPUT andtheWRADDbustoselectadeviceforitsqueuestobeplacedontothePAFnbusoutputs.Adevice  
addressedviatheWRADDbus is selectedontherisingedgeofWCLKprovidedthatFSTRis HIGH.If  
Polledoperations has beenselected,FSTRshouldbetiedinactive,LOW.Note,thataPAFnflagbus  
selectioncannotbemade,(FSTRmustNOTgoactive)untilprogrammingoftheparthasbeencompleted  
andSENO has gone LOW.  
FSYNC  
PAFn Bus Sync  
LVTTL FSYNCisanoutputfromthemulti-queuedevicethatprovidesasynchronizingpulseforthePAFnbus  
OUTPUT duringPolledoperationofthePAFnbus.DuringPolledoperationeachquadrantofqueuestatusflagsis  
6
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
PINDESCRIPTIONS(CONTINUED)  
Symbol  
Name  
I/OTYPE  
Description  
FSYNC  
(Continued)  
PAFn Bus Sync  
LVTTL loadedontothe PAFnbus outputs sequentiallybasedonWCLK.ThefirstWCLKrisingedgeloads  
OUTPUT device1ontothePAFnbusoutputs,thesecondWCLKrisingedgeloadsdevice2andsoon.Duringthe  
WCLKcycle thata selecteddevice is placedontothe PAFnbus, the FSYNCoutputwillbe HIGH.  
FXI  
PAFnBus  
ExpansionIn  
LVTTL The FXI input is used when multi-queue devices are connected in expansion mode and Polled PAFn  
INPUT bus operation has been selected. FXI of device N’ connects directly to FXO of device N-1’. The FXI  
receives a tokenfromthe previous device ina chain. Insingle device mode the FXIinputmustbe tied  
LOWifthePAFnbusisoperatedindirectmode.IfthePAFnbusisoperatedinpolledmodetheFXIinput  
mustbeconnectedtotheFXOoutputofthesamedevice.InexpansionmodetheFXIofthefirstdevice  
shouldbetiedLOW,whendirectmodeisselected.  
FXO  
PAFnBus  
ExpansionOut  
LVTTL FXOisanoutputthatisusedwhenmulti-queuedevicesareconnectedinexpansionmodeandPolled  
OUTPUT PAFnbusoperationhasbeenselected.FXOofdeviceNconnectsdirectlytoFXIofdeviceN+1’.This  
pinpulsesHIGHwhendeviceNplacesitsPAFstatusontothePAFnbuswithrespecttoWCLK.Thispulse  
(token)isthenpassedontothenextdeviceinthechainN+1’andonthenextWCLKrisingedgethefirst  
quadrantofdevice N+1willbe loadedontothe PAFnbus. This continues throughthe chainandFXO  
ofthelastdeviceisthenloopedbacktoFXIofthefirstdevice.TheFSYNCoutputofeachdeviceinthe  
chainprovidessynchronizationtotheuserofthisloopingevent.  
(1)  
ID[2:0]  
Device ID Pins  
LVTTL Forthe8Qmulti-queuedevicetheWRADDaddressbusis6bitsandRDADDaddressbusis7bitswide.  
INPUT Whenaqueueselectiontakesplacethe3MSbsofthisaddressbusareusedtoaddressthespecificdevice  
(theLSbsareusedtoaddressthequeuewithinthatdevice).Duringwrite/readoperationsthe3MSbs  
oftheaddressarecomparedtothedeviceIDpins.Thefirstdeviceinachainofmulti-queues(connected  
inexpansionmode),maybesetupas000,thesecondas001’andsoonthroughtodevice8whichis  
111,howevertheIDdoesnothavetomatchthedeviceorder.Insingledevicemodethesepinsshould  
besetupas000’andthe3MSbsoftheWRADDandRDADDaddressbussesshouldbetiedLOW.The  
ID[2:0]inputssetuparespectivedevicesIDduringmasterreset.TheseIDpinsmustnottoggleduring  
any device operation. Note, the device selected as the Master’ does not have to have the ID of 000.  
(1)  
IW  
InputWidth  
LVTTL IWselectsthebuswidthforthedatainputbus.IfIWisLOWduringaMasterResetthenthebuswidth  
INPUT is x18, if HIGH then it is x9.  
(1)  
MAST  
MasterDevice  
LVTTL ThestateofthisinputatMasterResetdetermineswhetheragivendevice(withinachainofdevices),isthe  
INPUT MasterdeviceoraSlave.IfthispinisHIGH,thedeviceisthemaster,ifitisLOWthenitisaSlave.Themaster  
deviceisthefirsttotakecontrolofalloutputsafteramasterreset,allslavedevicesgotoHigh-Impedance,  
preventingbuscontention.Ifamulti-queuedeviceisbeingusedinsingledevicemode,thispinmust  
be setHIGH.  
MRS  
OE  
MasterReset  
OutputEnable  
LVTTL AmasterresetisperformedbytakingMRSfromHIGHtoLOW,toHIGH.Deviceprogrammingisrequired  
INPUT aftermasterreset.  
LVTTL TheOutputenablesignalisanAsynchronoussignalusedtoprovidethree-statecontrolofthemulti-queue  
INPUT dataoutputbus,Qout.IfadevicehasbeenconfiguredasaMaster”device,theQoutdataoutputswill  
beinaLowImpedanceconditioniftheOEinputisLOW.IfOEisHIGHthentheQoutdataoutputswillbe  
inHighImpedance.IfadeviceisconfiguredaSlave”device,thentheQoutdataoutputswillalwaysbe  
inHighImpedanceuntilthatdevicehasbeenselectedontheReadPort,atwhichpointOEprovidesthree-  
stateofthatrespectivedevice.  
OV  
OutputValidFlag  
LVTTL Thisoutputflagprovidesoutputvalidstatusforthedatawordpresentonthemulti-queueflow-controldevice  
OUTPUT dataoutputport,Qout.Thisflagistherefore,2-stagedelayedtomatchthedataoutputpathdelay.That  
is,thereisa2RCLKcycledelayfromthetimeagivenqueueisselectedforreads,tothetimetheOVflag  
representsthedatainthatrespectivequeue.Whenaselectedqueueonthereadportisreadtoempty,  
the OVflagwillgoHIGH, indicatingthatdata onthe outputbus is notvalid. TheOV flagalsohas High-  
Impedancecapability, requiredwhenmultipledevicesareusedandtheOVflagsaretiedtogether.  
(1)  
OW  
OutputWidth  
LVTTL OWselectsthebuswidthforthedataoutputbus.IfOWisLOWduringaMasterResetthenthebuswidth  
INPUT is x18, if HIGH then it is x9.  
PAE  
Programmable  
Almost-EmptyFlag  
LVTTL ThispinprovidestheAlmost-Emptyflagstatusforthequeuethathasbeenselectedontheoutputport  
OUTPUT for read operations, (selected via RCLK, RDADD and RADEN). This pin is LOW when the selected  
queueisalmost-empty.ThisflagoutputmaybeduplicatedononeofthePAEnbuslines.Thisflagis  
synchronizedtoRCLK.  
7
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
PINDESCRIPTIONS(CONTINUED)  
Symbol  
Name  
I/OTYPE  
Description  
PAEn  
Programmable  
LVTTL Onthe8QdevicethePAEnbusis8bitswide.ThisoutputbusprovidesPAEstatusofall8queues,withina  
Almost-EmptyFlagBus OUTPUT selecteddevice.Duringqueueread/writeoperationstheseoutputsprovideprogrammableemptyflag  
statusineitherdirectorpolledmode.Themodeofflagoperationisdeterminedduringmasterresetvia  
thestateoftheFMinput.ThisflagbusiscapableofHigh-Impedancestate,thisisimportantduringexpansion  
ofmulti-queuedevices.DuringdirectoperationthePAEnbusisupdatedtoshowthePAEstatusofqueues  
within a selected device. Selection is made using RCLK, ESTR and Flag Bus RDADD. During Polled  
operationthePAEnbusisloadedwiththePAEstatusofmulti-queueflow-controldevicessequentiallybased  
on the rising edge of RCLK.  
PAF  
Programmable  
Almost-FullFlag  
LVTTL ThispinprovidestheAlmost-Fullflagstatusforthequeuethathasbeenselectedontheinputportfor  
OUTPUT writeoperations,(selectedviaWCLK,WRADDandWADEN).ThispinisLOWwhentheselectedFIFO  
queueis almost-full.This flagoutputmaybeduplicatedononeofthePAFnbuslines.Thisflagis  
synchronizedtoWCLK.  
PAFn  
Programmable  
LVTTL Onthe8QdevicethePAFnbusis8bitswide.ThisoutputbusprovidesPAFstatusofall8queues,withina  
Almost-FullFlagBus OUTPUT selecteddevice.Duringqueueread/writeoperationstheseoutputsprovideprogrammablefullflagstatus,  
ineitherdirectorpolledmode.Themodeofflagoperationisdeterminedduringmasterresetviathestate  
oftheFMinput.ThisflagbusiscapableofHigh-Impedancestate,thisisimportantduringexpansionof  
multi-queuedevices.DuringdirectoperationthePAFnbusisupdatedtoshowthePAFstatusofaqueues  
withinaselecteddevice.SelectionismadeusingWCLK,FSTR,WRADDandWADEN.DuringPolled  
operationthePAFnbusisloadedwiththePAFstatusofmulti-queueflow-controldevicessequentially  
basedonthe risingedge ofWCLK.  
PRS  
PartialReset  
LVTTL APartialResetcanbeperformedonasinglequeueselectedwithinthemulti-queuedevice.BeforeaPartial  
INPUT Resetcanbe performedona queue, thatqueue mustbe selectedonboththe write portandreadport  
2clockcycles beforetheresetis performed.APartialResetis thenperformedbytakingPRS LOWfor  
one WCLK cycle and one RCLK cycle. The Partial Reset will only reset the read and write pointers to  
thefirstmemorylocation,noneofthedevicesconfigurationwillbechanged.  
Q[17:0]  
Qout  
DataOutputBus  
LVTTL Thesearethe18dataoutputpins.Dataisreadoutofthedeviceviatheseoutputpinsontherisingedge  
OUTPUT ofRCLKprovidedthat REN is LOW, OEis LOWandthe queue is selected. Due tobus matchingnot  
alloutputs maybeused,anyunusedoutputs shouldnotbeconnected.  
RADEN  
ReadAddress Enable LVTTL The RADENinputis usedinconjunctionwithRCLKandthe RDADDaddress bus toselecta queue to  
INPUT bereadfrom.AqueueaddressedviatheRDADDbusisselectedontherisingedgeofRCLKprovided  
thatRADENisHIGH.RADENshouldbeasserted(HIGH)onlyduringaqueuechangecycle(s).RADEN  
shouldnotbepermanentlytiedHIGH.RADENcannotbeHIGHforthesameRCLKcycleasESTR.Note,  
thatareadqueueselectioncannotbemade,(RADENmustNOTgoactive)untilprogrammingofthepart  
has beencompletedandSENO has goneLOW.  
RCLK  
ReadClock  
LVTTL Whenenabledby REN, the risingedge ofRCLKreads data fromthe selectedqueue via the output  
INPUT bus Qout. The queue to be read is selected via the RDADD address bus and a rising edge of RCLK  
whileRADENisHIGH.ArisingedgeofRCLKinconjunctionwithESTRandRDADDwillalsoselectthe  
devicetobeplacedonthePAEnbusduringdirectflagoperation.DuringpolledflagoperationthePAEn  
bus is cycledwithrespecttoRCLKandtheESYNCsignalis synchronizedtoRCLK.ThePAE andOV  
outputsareallsynchronizedtoRCLK.DuringdeviceexpansiontheEXOandEXIsignalsarebasedon  
RCLK.RCLKmustbecontinuous andfree-running.  
RDADD  
[6:0]  
Read Address Bus  
LVTTL For the 8Q device the RDADD bus is 7 bits. The RDADD bus is a dual purpose address bus. The first  
INPUT functionofRDADDistoselectaqueuetobereadfrom.Theleastsignificant3bitsofthebus,RDADD[2:0]  
areusedtoaddress1of8possiblequeueswithinamulti-queuedevice.Addresspin,RDADD[3]provides  
the user with a Null-Q address. If the user does not wish to address one of the 8 queues, a Null-Q can  
beaddressedusingthispin.TheNull-Qoperationisdiscussedinmoredetaillater.Themostsignificant  
3bits,RDADD[6:4]areusedtoselect1of8possiblemulti-queuedevices thatmaybeconnectedin  
expansionmode.These3MSBswilladdressadevicewiththematchingIDcode.Theaddresspresent  
ontheRDADDbuswillbeselectedonarisingedgeofRCLKprovidedthatRADENisHIGH,(note,that  
data can be placed on to the Qout bus, read from the previously selected queue on this RCLK edge).  
On the next rising RCLK edge after a read queue select, a data word from the previous queue will be  
placedontotheoutputs,Qout,regardlessoftheRENinput.TwoRCLKrisingedgesafterreadqueueselect,  
8
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
PINDESCRIPTIONS(CONTINUED)  
Symbol  
Name  
I/OTYPE  
Description  
RDADD  
[6:0]  
ReadAddress Bus  
LVTTL datawillbeplacedontotheQoutoutputsfromthenewlyselectedqueue,regardlessofRENduetothe  
INPUT firstwordfallthrougheffect.  
(Continued)  
ThesecondfunctionoftheRDADDbusistoselectthedeviceofqueuestobeloadedontothePAEnbus  
duringstrobedflagmode.Themostsignificant3bits,RDADD[6:4]areagainusedtoselect1of8possible  
multi-queuedevicesthatmaybeconnectedinexpansionmode.AddressbitsRDADD[3:0]aredont care  
duringdevice selection. The device address presentonthe RDADDbus willbe selectedonthe rising  
edgeofRCLKprovidedthatESTRisHIGH,(note,thatdatacanbeplacedontotheQoutbus,readfrom  
the previouslyselectedqueue onthis RCLKedge). Please refertoTable 2fordetails onRDADDbus.  
REN  
ReadEnable  
LVTTL The REN input enables read operations from a selected queue based on a rising edge of RCLK. A  
INPUT queue to be read from can be selected via RCLK, RADEN and the RDADD address bus regardless  
ofthestateofREN.DatafromanewlyselectedqueuewillbeavailableontheQoutoutputbusonthesecond  
RCLKcycle afterqueue selectionregardless ofREN due tothe FWFToperation. Areadenable is not  
required to cycle the PAEn bus (in polled mode) or to select the device , (in direct mode).  
SCLK  
SerialClock  
LVTTL Ifserialprogrammingofthemulti-queuedevicehasbeenselectedduringmasterreset,theSCLKinput  
INPUT clockstheserialdatathroughthemulti-queuedevice.DatasetupontheSIinputisloadedintothedevice  
ontherisingedgeofSCLKprovidedthatSENIisenabled,LOW.Whenexpansionofdevicesisperformed  
theSCLKofalldevices shouldbeconnectedtothesamesource.  
SENI  
SerialInputEnable  
LVTTL Duringserialprogrammingofamulti-queuedevice,dataloadedontotheSIinputwillbeclockedintothe  
INPUT part(via a risingedge ofSCLK), providedthe SENI inputofthatdevice is LOW. Ifmultiple devices are  
cascaded,theSENIinputshouldbeconnectedtotheSENOoutputofthepreviousdevice.Sowhenserial  
loadingofagivendeviceiscomplete,itsSENOoutputgoesLOW,allowingthenextdeviceinthechain  
tobeprogrammed(SENOwillfollowSENIofagivendeviceoncethatdeviceisprogrammed).TheSENI  
inputofthe masterdevice (orsingle device), shouldbe controlledbythe user.  
SENO  
SerialOutputEnable LVTTL Thisoutputisusedtoindicatethatserialprogrammingordefaultprogrammingofthemulti-queuedevice  
OUTPUT hasbeencompleted.SENOfollowsSENIonceprogrammingofadeviceiscomplete.Therefore,SENO  
willgoLOWafterprogrammingprovidedSENIisLOW,onceSENIistakenHIGHagain,SENOwillalso  
goHIGH.WhentheSENOoutputgoesLOW,thedeviceisreadytobeginnormalread/writeoperations.  
Ifmultipledevicesarecascadedandserialprogrammingofthedeviceswillbeused,theSENOoutput  
shouldbeconnectedtotheSENIinputofthenextdeviceinthechain.Whenserialprogrammingofthe  
firstdeviceiscomplete,SENO willgoLOW,therebytakingtheSENIinputofthenextdeviceLOWand  
soonthroughoutthe chain. Whena givendevice inthe chainis fullyprogrammedtheSENO output  
essentiallyfollowstheSENIinput.TheusershouldmonitortheSENOoutputofthefinaldeviceinthechain.  
WhenthisoutputgoesLOW,serialloadingofalldeviceshasbeencompleted.  
SI  
SerialIn  
LVTTL Duringserialprogrammingthispinisloadedwiththeserialdatathatwillconfigurethemulti-queuedevices.  
INPUT Data present on SI will be loaded on a rising edge of SCLK provided that SENI is LOW. In expansion  
modetheserialdatainputisloadedintothefirstdeviceinachain.WhenthatdeviceisloadedanditsSENO  
hasgoneLOW,thedatapresentonSIwillbedirectlyoutputtotheSOoutput.TheSOpinofthefirstdevice  
connectstotheSIpinofthesecondandsoon.Themulti-queuedevicesetupregistersareshiftregisters.  
SO  
SerialOut  
LVTTL Thisoutputisusedinexpansionmodeandallowsserialdatatobepassedthroughdevicesinthechain  
OUTPUT tocompleteprogrammingofalldevices.TheSIofadeviceconnectstoSOofthepreviousdeviceinthe  
chain. The SOofthe finaldevice ina chainshouldnotbe connected.  
(2)  
TCK  
JTAGClock  
LVTTL ClockinputforJTAGfunction.Oneoffourterminals requiredbyIEEEStandard1149.1-1990.Test  
INPUT operationsofthedevicearesynchronoustoTCK.DatafromTMSandTDIaresampledontherisingedge  
ofTCKandoutputschangeonthefallingedgeofTCK.IftheJTAGfunctionisnotusedthissignalneeds  
tobe tiedtoGND.  
(2)  
TDI  
JTAGTestData  
Input  
LVTTL One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan  
INPUT operation,testdataseriallyloadedviatheTDIontherisingedgeofTCKtoeithertheInstructionRegister,  
IDRegisterandBypass Register.Aninternalpull-upresistorforces TDIHIGHifleftunconnected.  
(2)  
TDO  
JTAGTestData  
Output  
LVTTL One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan  
OUTPUT operation,testdataseriallyloadedoutputviatheTDOonthefallingedgeofTCKfromeithertheInstruction  
Register,IDRegisterandBypassRegister.Thisoutputishighimpedanceexceptwhenshifting,whilein  
SHIFT-DR and SHIFT-IR controller states.  
9
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
PINDESCRIPTIONS(CONTINUED)  
Symbol  
Name  
I/OTYPE  
Description  
TMS(2)  
JTAGModeSelect  
LVTTL TMSisaserialinputpin.OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.TMSdirectsthe  
INPUT devicethroughitsTAPcontrollerstates.Aninternalpull-upresistorforcesTMSHIGHifleftunconnected.  
(2)  
TRST  
JTAGReset  
LVTTL TRSTisanasynchronousresetpinfortheJTAGcontroller.TheJTAGTAPcontrollerdoesnotautomatically  
INPUT resetuponpower-up,thusitmustberesetbyeitherthissignalorbysettingTMS=HIGHforfiveTCKcycles.  
IftheTAPcontrollerisnotproperlyresetthentheoutputswillalwaysbeinhigh-impedance.IftheJTAG  
function is used but the user does not want to use TRST, then TRST can be tied with MRS to ensure  
properqueue operation. Ifthe JTAGfunctionis notusedthenthis signalneeds tobe tiedtoGND. An  
internalpull-upresistorforcesTRSTHIGHifleftunconnected.  
WADEN  
WCLK  
WriteAddressEnable LVTTL TheWADENinputisusedinconjunctionwithWCLKandtheWRADDaddressbustoselectaqueueto  
INPUT bewritteninto.AqueueaddressedviatheWRADDbusisselectedontherisingedgeofWCLKprovided  
thatWADENisHIGH.WADENshouldbeasserted(HIGH)onlyduringaqueuechangecycle(s).WADEN  
shouldnotbepermanentlytiedHIGH.WADENcannotbeHIGHforthesameWCLKcycleasFSTR.Note,  
thatawritequeueselectioncannotbemade,(WADENmustNOTgoactive)untilprogrammingofthepart  
has beencompletedandSENO has goneLOW.  
WriteClock  
LVTTL WhenenabledbyWEN,therisingedgeofWCLKwritesdataintotheselectedqueueviatheinputbus,  
INPUT Din.ThequeuetobewrittentoisselectedviatheWRADDaddressbusandarisingedgeofWCLKwhile  
WADENisHIGH.ArisingedgeofWCLKinconjunctionwithFSTRandWRADDwillalsoselectthedevice  
tobeplacedonthePAFnbusduringdirectflagoperation.Duringpolledflagoperationthe PAFnbusis  
cycledwithrespecttoWCLKandtheFSYNCsignalissynchronizedtoWCLK.ThePAFn,PAFandFF  
outputsareallsynchronizedtoWCLK.DuringdeviceexpansiontheFXOandFXIsignalsarebasedon  
WCLK.TheWCLKmustbecontinuousandfree-running.  
WEN  
WriteEnable  
LVTTL TheWENinputenableswriteoperationstoaselectedqueuebasedonarisingedgeofWCLK.Aqueue  
INPUT tobe writtentocanbe selectedvia WCLK, WADENandthe WRADDaddress bus regardless ofthe  
stateofWEN.DatapresentonDincanbewrittentoanewlyselectedqueueonthesecondWCLKcycle  
afterqueueselectionprovidedthatWENisLOW.AwriteenableisnotrequiredtocyclethePAFnbus(in  
polledmode)ortoselectthe device , (indirectmode).  
WRADD  
[5:0]  
WriteAddressBus  
LVTTL Forthe 8Qdevice the WRADDbus is 6bits. The WRADDbus is a dualpurpose address bus. The first  
INPUT functionofWRADDistoselectaqueuetobewrittento.Theleastsignificant3bitsofthebus,WRADD[2:0]  
areusedtoaddress1of8possiblequeueswithinamulti-queuedevice.Themostsignificant3bits,  
WRADD[5:3]areusedtoselect1of8possiblemulti-queuedevicesthatmaybeconnectedinexpansion  
mode.These3MSBswilladdressadevicewiththematchingIDcode.TheaddresspresentontheWRADD  
buswillbeselectedonarisingedgeofWCLKprovidedthatWADENisHIGH,(note,thatdatapresenton  
theDinbuscanbewrittenintothepreviouslyselectedqueueonthisWCLKedgeandonthenextrising  
WCLKalso,providingthatWENisLOW).TwoWCLKrisingedgesafterwritequeueselect,datacanbe  
writtenintothenewlyselectedqueue.  
ThesecondfunctionoftheWRADDbusistoselectthedeviceofqueuestobeloadedontothePAFnbus  
duringstrobedflagmode.Themostsignificant3bits,WRADD[6:3]areagainusedtoselect1of8possible  
multi-queuedevicesthatmaybeconnectedinexpansionmode.AddressbitsWRADD[2:0]aredontcare  
duringdevice selection. The device address presentonthe WRADDbus willbe selectedonthe rising  
edgeofWCLKprovidedthatFSTRisHIGH,(note,thatdatacanbewrittenintothepreviouslyselected  
queue on this WCLK edge). Please refer to Table 1 for details on the WRADD bus.  
VCC  
+3.3VSupply  
GroundPin  
Power These are VCC power supply pins and must all be connected to a +3.3V supply rail.  
Ground These are Ground pins and must all be connected to the GND supply rail.  
GND  
NOTES:  
1. Inputs should not change after Master Reset.  
2. These pins are for the JTAG port. Please refer to pages 44-48 and Figures 27-29.  
10  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
ABSOLUTEMAXIMUMRATINGS  
RECOMMENDED DC OPERATING  
CONDITIONS  
Symbol  
Rating  
Com'l & Ind'l  
Unit  
Symbol  
Parameter  
SupplyVoltage(Com'l/Ind'l)  
Min. Typ.  
Max.  
3.45  
0
Unit  
V
VTERM  
TerminalVoltage  
with respect to GND  
–0.5to+4.5  
V
(1)  
VCC  
3.15  
0
3.3  
0
TSTG  
IOUT  
StorageTemperature  
DCOutputCurrent  
–55 to +125  
–50 to +50  
°C  
mA  
GND SupplyVoltage(Com'l/Ind'l)  
V
VIH  
VIL  
TA  
InputHighVoltage(Com'l/Ind'l)  
InputLowVoltage(Com'l/Ind'l)  
OperatingTemperatureCommercial  
OperatingTemperatureIndustrial  
2.0  
0
VCC+0.3  
0.8  
V
NOTE:  
V
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
+70  
°C  
°C  
TA  
-40  
+85  
NOTE:  
1. VCC = 3.3V ± 0.15V, JEDEC JESD8-A compliant.  
DCELECTRICALCHARACTERISTICS  
(Commercial: VCC = 3.3V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 3.3V ± 0.15V, TA = 40°C to +85°C; JEDEC JESD8-A compliant)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
(1)  
ILI  
InputLeakageCurrent  
OutputLeakageCurrent  
–10  
–10  
2.4  
10  
10  
µA  
µA  
V
ILO(2)  
VOH  
Output Logic 1Voltage, IOH = –8 mA  
Output Logic 0Voltage, IOL = 8 mA  
Active Power Supply Current  
StandbyCurrent  
0.4  
100  
25  
VOL  
V
ICC1(3,4,5)  
ICC2(3,6)  
mA  
mA  
NOTES:  
1. Measurements with 0.4 VIN VCC.  
2. OE VIH, 0.4 VOUT VCC.  
3. Tested with outputs open (IOUT = 0).  
4. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz.  
5. Typical ICC1 = 16 + 3.14*fS + 0.02*CL*fS (in mA) with VCC = 3.3V, tA = 25°C, fS = WCLK frequency = RCLK frequency (in MHz, using TTL levels), data switching at fS/2,  
CL = capacitive load (in pF).  
6. RCLK and WCLK, toggle at 20 MHz.  
The following inputs should be pulled to GND: WRADD, RDADD, WADEN, RADEN, FSTR, ESTR, SCLK, SI, EXI, FXI and all Data Inputs.  
The following inputs should be pulled to VCC: WEN, REN, SENI, PRS, MRS, TDI, TMS and TRST.  
All other inputs are don't care, and should be pulled HIGH or LOW.  
CAPACITANCE(TA = +25°C, f = 1.0MHz)  
Symbol  
Parameter(1)  
Conditions  
Max.  
Unit  
(2)  
CIN  
Input  
VIN = 0V  
10  
pF  
Capacitance  
(1,2)  
COUT  
Output  
VOUT = 0V  
10  
pF  
Capacitance  
NOTES:  
1. With output deselected, (OE VIH).  
2. Characterized values, not currently tested.  
11  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
AC TEST LOADS  
6
5
V
CC/2  
4
3
2
1
50  
Z0 = 50Ω  
I/O  
20 30 50 80 100  
Capacitance (pF)  
200  
5940 drw04  
5940 drw04a  
Figure 2a. AC Test Load  
Figure 2b. Lumped Capacitive Load, Typical Derating  
ACTESTCONDITIONS  
InputPulseLevels  
GND to 3.0V  
1.5ns  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
OutputLoad  
1.5V  
1.5V  
See Figure 2a & 2b  
OUTPUT ENABLE & DISABLE TIMING  
Output  
Enable  
Output  
Disable  
V
IH  
IL  
OE  
V
tOE &  
tOLZ  
tOHZ  
Output  
Normally  
LOW  
V
CC/2  
V
CC/2  
100mV  
100mV  
100mV  
VOL  
V
OH  
Output  
Normally  
HIGH  
100mV  
VCC/2  
VCC/2  
5940 drw04b  
12  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
ACELECTRICALCHARACTERISTICS  
(Commercial: VCC = 3.3V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 3.3V ± 0.15V, TA = 40°C to +85°C; JEDEC JESD8-A compliant)  
Commercial  
Com'l & Ind'l(1)  
IDT72V51333L6  
IDT72V51343L6  
IDT72V51553L6  
IDT72V51333L7-5  
IDT72V51343L7-5  
IDT72V51553L7-5  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
fS  
Clock Cycle Frequency (WCLK & RCLK)  
DataAccessTime  
0.6  
6
166  
3.7  
3.7  
3.7  
3.7  
10  
0.6  
7.5  
3.5  
3.5  
2.0  
0.5  
2.0  
0.5  
10  
133  
4
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tA  
tCLK  
tCLKH  
tCLKL  
tDS  
Clock Cycle Time  
4
Clock High Time  
2.7  
2.7  
2
Clock Low Time  
DataSetupTime  
tDH  
DataHoldTime  
0.5  
2
tENS  
tENH  
tRS  
EnableSetupTime  
EnableHoldTime  
0.5  
10  
ResetPulseWidth  
tRSS  
tRSR  
tPRSS  
tPRSH  
ResetSetupTime  
15  
15  
ResetRecoveryTime  
10  
10  
PartialResetSetup  
2.0  
0.5  
0.6  
0.6  
0.6  
100  
45  
2.5  
0.5  
0.6  
0.6  
0.6  
100  
45  
PartialResetHold  
(2)  
tOLZ(OE-Qn)  
OutputEnabletoOutputinLow-Impedance  
OutputEnabletoOutputinHigh-Impedance  
OutputEnabletoDataOutputValid  
Clock Cycle Frequency (SCLK)  
Serial Clock Cycle  
(2)  
tOHZ  
4
tOE  
4
fC  
10  
20  
20  
4
tSCLK  
tSCKH  
tSCKL  
tSDS  
20  
Serial Clock High  
Serial Clock Low  
45  
45  
SerialDataInSetup  
20  
20  
tSDH  
tSENS  
tSENH  
tSDO  
tSENO  
tSDOP  
tSENOP  
tPCWQ  
tPCRQ  
tAS  
Serial Data In Hold  
1.2  
20  
1.2  
20  
SerialEnableSetup  
SerialEnableHold  
1.2  
1.5  
1.5  
20  
1.2  
1.5  
1.5  
20  
SCLK to Serial Data Out  
SCLK to Serial Enable Out  
SerialDataOutPropagationDelay  
SerialEnablePropagationDelay  
ProgrammingCompletetoWriteQueueSelection  
ProgrammingCompletetoReadQueueSelection  
AddressSetup  
20  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
4
5
20  
20  
2.5  
1
3.0  
1
tAH  
Address Hold  
tWFF  
tROV  
tSTS  
Write Clock to Full Flag  
ReadClocktoOutputValid  
StrobeSetup  
2
2
5
4
tSTH  
tQS  
StrobeHold  
0.5  
2
0.5  
2.5  
0.5  
0.6  
0.6  
0.6  
0.6  
QueueSetup  
tQH  
QueueHold  
0.5  
0.6  
0.6  
0.6  
0.6  
tWAF  
tRAE  
tPAF  
tPAE  
WCLK to PAF flag  
RCLK to PAE flag  
Write ClocktoSynchronous Almost-FullFlagBus  
Read Clock to Synchronous Almost-Empty Flag Bus  
4
4
4
NOTES:  
1. Industrial temperature range product for the 7-5ns is available as a standard device. All other speed grades are available by special order.  
2. Values guaranteed by design, not currently tested.  
13  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
ACELECTRICALCHARACTERISTICS(CONTINUED)  
(Commercial: VCC = 3.3V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 3.3V ± 0.15V, TA = 40°C to +85°C; JEDEC JESD8-A compliant)  
Commercial  
Com'l & Ind'l(1)  
IDT72V51333L6  
IDT72V51343L6  
IDT72V51553L6  
IDT72V51333L7-5  
IDT72V51343L7-5  
IDT72V51553L7-5  
Symbol  
Parameter  
Min.  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
4.5  
6
Max.  
Min.  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
5.75  
7.5  
7.5  
7.5  
1.3  
0.5  
Max.  
4
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
tPAELZ  
RCLK to PAE Flag Bus to Low-Impedance  
RCLK to PAE Flag Bus to High-Impedance  
WCLK to PAF Flag Bus to Low-Impedance  
WCLK to PAF Flag Bus to High-Impedance  
WCLKtoFullFlagtoHigh-Impedance  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
(2)  
tPAEHZ  
4
(2)  
tPAFLZ  
4
(2)  
tPAFHZ  
4
(2)  
tFFHZ  
4
(2)  
tFFLZ  
WCLKtoFullFlagtoLow-Impedance  
4
(2)  
tOVLZ  
RCLKtoOutputValidFlagtoLow-Impedance  
RCLKtoOutputValidFlagtoHigh-Impedance  
WCLK to PAF Bus Sync to Output  
WCLK to PAF Bus Expansion to Output  
RCLK to PAE Bus Sync to Output  
RCLK to PAE Bus Expansion to Output  
SKEW time between RCLK and WCLK for FF and OV  
SKEW time between RCLK and WCLK for PAF and PAE  
SKEW time between RCLK and WCLK for PAF[0:7] and PAE[0:7]  
SKEW time between RCLK and WCLK for OV  
ExpansionInputSetup  
4
(2)  
tOVHZ  
4
tFSYNC  
tFXO  
4
4
tESYNC  
tEXO  
4
4
tSKEW1  
tSKEW2  
tSKEW3  
tSKEW4  
tXIS  
6
6
1.0  
0.5  
tXIH  
ExpansionInputHold  
NOTES:  
1. Industrial temperature range product for the 7-5ns is available as a standard device. All other speed grades are available by special order.  
2. Values guaranteed by design, not currently tested.  
14  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
enable),isLOW.Onceserialprogrammingofthedevicehasbeensuccessfully  
completedthedevicewillindicatethisviatheSENO(serialoutputenable)going  
active,LOW.Upondetectionofcompletionofprogramming,theusershould  
cease all programming and take SENI inactive, HIGH. Note, SENO follows  
SENIonceprogrammingofadeviceiscomplete.Therefore,SENOwillgoLOW  
afterprogrammingprovidedSENI is LOW,onceSENI is takenHIGHagain,  
SENO will also go HIGH. The operation of the SO output is similar, when  
programmingofagivendeviceiscomplete,theSOoutputwillfollowtheSIinput.  
If devices are being used in expansion mode the serial ports of devices  
should be cascaded. The user can load all devices via the serial input port  
controlpins,SI&SENI,ofthefirstdeviceinthechain.Again,theusermayutilize  
theC’programtogeneratetheserialbitstream,theprogrampromptingtheuser  
forthenumberofdevicestobeprogrammed.TheSENOandSO(serialout)  
ofthefirstdeviceshouldbeconnectedtotheSENIandSIinputsofthesecond  
devicerespectivelyandsoon,withtheSENO&SOoutputsconnectingtothe  
SENI&SIinputsofalldevicesthroughthechain.Alldevicesinthechainshould  
beconnectedtoacommonSCLK.Theserialoutputportofthefinaldeviceshould  
be monitored by the user. When SENO of the final device goes LOW, this  
indicatesthatserialprogrammingofalldeviceshasbeensuccessfullycom-  
pleted.Upondetectionofcompletionofprogramming,theusershouldcease  
allprogrammingandtakeSENIofthefirstdeviceinthechaininactive,HIGH.  
Asmentioned,thefirstdeviceinthechainhasitsserialinputportcontrolled  
bytheuser,thisisthefirstdevicetohaveitsinternalregistersseriallyloaded  
bytheserialbitstream.Whenprogrammingofthisdeviceiscompleteitwilltake  
itsSENOoutputLOWandbypasstheserialdataloadedontheSIinputtoits  
SOoutput.Theserialinputoftheseconddeviceinthechainisnowloadedwith  
thedatafromtheSOofthefirstdevice,whiletheseconddevicehasitsSENI  
input LOW. This process continues through the chain until all devices are  
programmedandtheSENO ofthefinaldevicegoesLOW.  
FUNCTIONALDESCRIPTION  
MASTERRESET  
AMasterResetisperformedbytogglingtheMRSinputfromHIGHtoLOW  
toHIGH.Duringamasterresetallinternalmulti-queuedevicesetupandcontrol  
registersareinitializedandrequireprogrammingeitherseriallybytheuservia  
theserialport,orusingthedefaultsettings.Duringamasterresetthestateof  
thefollowinginputsdeterminethefunctionalityofthepart,thesepinsshouldbe  
held HIGH or LOW.  
FM – Flag bus Mode  
IW,OWBusMatchingoptions  
MAST – Master Device  
ID0, 1, 2 – Device ID  
DFMProgrammingmode,serialordefault  
DF – Offset value for PAE and PAF  
Onceamasterresethastakenplace,thedevicemustbeprogrammedeither  
seriallyorviathedefaultmethodbeforeanyread/writeoperationscanbegin.  
See Figure 4, Master Reset for relevant timing.  
PARTIALRESET  
APartialResetisameansbywhichtheusercanresetboththereadandwrite  
pointers of a single queue that has been setup within a multi-queue device.  
Beforeapartialresetcantakeplaceonaqueue,therespectivequeuemustbe  
selectedonboththereadportandwriteportaminimumof2RCLKand2WCLK  
cyclesbeforethePRSgoesLOW.Thepartialresetisthenperformedbytoggling  
thePRSinputfromHIGHtoLOWtoHIGH,maintainingtheLOWstateforatleast  
oneWCLKandoneRCLKcycle.Onceapartialresethastakenplaceaminimum  
of3WCLKand3RCLKcyclesmustoccurbeforeenabledwritesorreadscan  
occur.  
Once all serial programming has been successfully completed, normal  
operations,(queueselectionsonthereadandwriteports)maybegin.When  
connectedinexpansionmode,theIDT72V51333/72V51343/72V51353de-  
vicesrequireatotalnumberofseriallyloadedbitsperdevicetocompleteserial  
programming,(SCLKcycleswithSENIenabled),calculatedby:n[19+(Qx72)]  
whereQisthenumberofqueuestheuserwishestosetupwithinthedevice,  
where n is the number of devices in the chain.  
APartialResetonlyresets thereadandwritepointers ofagivenqueue,a  
partialresetwillnoteffecttheoverallconfigurationandsetupofthemulti-queue  
deviceandits queues.  
See Figure 5, PartialReset for relevant timing.  
SERIAL PROGRAMMING  
Themulti-queueflow-controldeviceisafullyprogrammabledevice,provid-  
ingtheuserwithflexibilityinhowqueuesareconfiguredintermsofthenumber  
of queues, depth of each queue and position of the PAF/PAE flags within  
respectivequeues.Alluserprogrammingisdoneviatheserialportafteramaster  
resethas takenplace. Internallythe multi-queue device has setupregisters  
whichmustbeseriallyloaded,theseregisterscontainvaluesforeveryqueue  
within the device, such as the depth and PAE/PAF offset values. The  
IDT72V51333/72V51343/72V51353devices are capable ofupto8queues  
andthereforecontain4setsofregistersforthesetupofeachqueue.  
DuringaMasterResetiftheDFM(DefaultMode)inputisLOW,thenthedevice  
willrequire serialprogrammingbythe user. Itis recommendedthatthe user  
utilizeaC’programprovidedbyIDT,thisprogramwillprompttheuserforall  
informationregardingthemulti-queuesetup.Theprogramwillthengenerate  
aserialbitstreamwhichshouldbeseriallyloadedintothedeviceviatheserial  
port.FortheIDT72V51333/72V51343/72V51353devicestheserialprogram-  
mingrequiresatotalnumberofseriallyloadedbitsperdevice,(SCLKcycles  
withSENIenabled),calculatedby:19+(Qx72)whereQisthenumberofqueues  
the user wishes to setup within the device. Please refer to the separate  
ApplicationNote,AN-303forrecommendedcontroloftheserialprogramming  
port.  
See Figure 6, Serial Port Connection and Figure 7, Serial Programming  
forconnectionandtiminginformation.  
DEFAULTPROGRAMMING  
DuringaMasterResetiftheDFM(DefaultMode)inputis HIGHthemulti-  
queuedevicewillbeconfiguredfordefaultprogramming,(serialprogramming  
is not permitted). Default programming provides the user with a simpler,  
howeverlimitedmeansbywhichtosetupthemulti-queueflow-controldevice,  
rather than using the serial programming method. The default mode will  
configure a multi-queue device such that the maximum number of queues  
possiblearesetup,withallofthepartsavailablememoryblocksbeingallocated  
equallybetweenthequeues.ThevaluesofthePAE/PAFoffsetsisdetermined  
bythe state ofthe DF(default)pinduringa masterreset.  
FortheIDT72V51333/72V51343/72V51353devicesthedefaultmodewill  
setup8queues,eachqueueconfiguredasfollows:FortheIDT72V51333with  
x9inputandx9outputports,8,192x9.Ifoneorbothportsisx18,4,096x18.  
FortheIDT72V51343withx9inputandx9outputports,16,384x9.Ifoneor  
bothportsisx18,8,192x18.FortheIDT72V51353withx9inputandx9output  
ports, 32,768 x 9. If one or both ports is x18, 16,384 x 18. For both devices  
thevalueofthePAE/PAFoffsetsisdeterminedatmasterresetbythestateof  
theDFinput.IfDFisLOWthenboththePAE&PAFoffsetwillbe8,ifHIGHthen  
the value is 128.  
Once the master reset is complete and MRS is HIGH, the device can be  
seriallyloaded.DatapresentontheSI(serialin),inputisloadedintotheserial  
port on a rising edge of SCLK (serial clock), provided that SENI (serial in  
15  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
WhenconfiguringtheIDT72V51333/72V51343/72V51353devicesinde- theWRADDbusduringarisingedgeofWCLKprovidedthatWADENisHIGH.  
faultmodetheusersimplyhastoapplyWCLKcyclesafteramasterreset,until AqueuetobewrittentoneedonlybeselectedonasinglerisingedgeofWCLK.  
SENOgoesLOW,thissignalsthatdefaultprogrammingiscomplete.Theseclock Allsubsequentwriteswillbewrittentothatqueueuntilanewqueueisselected.  
cycles arerequiredforthedevicetoloadits internalsetupregisters.Whena Aminimumof2WCLKcyclesmustoccurbetweenqueueselectionsonthewrite  
singlemulti-queueisused,thecompletionofdeviceprogrammingissignaled port.OnthenextWCLKrisingedgethewriteportdiscretefullflagwillupdate  
bytheSENOoutputofadevicegoingfromHIGHtoLOW.Note,thatSENImust toshowthefullstatusofthenewlyselectedqueue.Onthesecondrisingedge  
beheldLOWwhenadeviceis setupfordefaultprogrammingmode.  
ofWCLK,datapresentonthedatainputbus,Dincanbewrittenintothenewly  
Whenmulti-queuedevicesareconnectedinexpansionmode,theSENIof selectedqueueprovidedthatWENisLOWandthenewqueueisnotfull.The  
thefirstdeviceinachaincanbeheldLOW.TheSENOofadeviceshouldconnect cycleofthequeueselectionandthenextcyclewillcontinuetowritedatapresent  
totheSENIofthenextdeviceinthechain.TheSENOofthefinaldeviceisused onthedatainputbus,DinintothepreviousqueueprovidedthatWENisactive  
toindicatethatdefaultprogrammingofalldevicesiscomplete.Whenthefinal LOW.  
SENO goes LOW normal operations may begin. Again, all devices will be  
IfWENisHIGH,inactiveforthese2clockcycles,thendatawillnotbewritten  
programmedwiththeirmaximumnumberofqueuesandthememorydivided in to the previous queue.  
equally between them. Please refer to Figure 8, DefaultProgramming.  
Ifthenewlyselectedqueueisfullatthepointofitsselection,thenwritestothat  
queue willbe prevented, a fullqueue cannotbe writteninto.  
WRITE QUEUE SELECTION & WRITE OPERATION  
Inthe4queuemulti-queuedevicetheWRADDaddressbusis5bitswide.  
TheIDT72V51333/72V51343/72V51353multi-queueflow-controldevices Theleastsignificant2bitsareusedtoaddressoneofthe4availablequeues  
haveupto8queuesthatdatacanbewrittenintoviaacommonwriteportusing withinasinglemulti-queuedevice.Themostsignificant3bitsareusedwhen  
the data inputs, Din, write clock, WCLK and write enable, WEN. The queue adeviceis connectedinexpansionmode,upto8devices canbeconnected  
address present on the write address bus, WRADD during a rising edge on inexpansion,eachdevicehavingits own3bitaddress.Theselecteddevice  
WCLKwhilewriteaddressenable,WADENisHIGH,isthequeueselectedfor istheoneforwhichtheaddressmatchesa3bitIDcode,whichisstaticallysetup  
writeoperations.ThestateofWENisdontcareduringthewritequeueselection on the ID pins, ID0, ID1, and ID2 of each individual device.  
cycle.ThequeueselectiononlyhastobemadeonasingleWCLKcycle,this  
Note,theWRADDbusisalsousedinconjunctionwithFSTR(almostfullflag  
will remain the selected queue until another queue is selected, the selected busstrobe),toaddressthealmostfullflagbusofarespectivedeviceduringdirect  
queueisalwaysthelastqueueselected.  
modeofoperation.  
Thewriteportisdesignedsuchthat100%busutilizationcanbeobtained.  
RefertoTable1,forWriteAddressbusarrangement.Also,refertoFigure  
ThismeansthatdatacanbewrittenintothedeviceoneveryWCLKrisingedge 9, Write Queue Select, Write Operation and Full flag Operation and Figure  
includingthecyclethatanewqueueisbeingaddressed.Whenanewqueue 11,FullFlagTimingExpansionMode fortimingdiagrams.  
isselectedforwriteoperationstheaddressforthatqueuemustbepresenton  
TABLE 1 — WRITE ADDRESS BUS, WRADD[5:0]  
Operation WCLK WADEN FSTR  
WRADD[5:0]  
5 4 3  
Device Select  
(Compared to  
ID0,1,2)  
2 1 0  
Write Queue Address  
(3 bits = 8 Queues)  
Write Queue  
1
0
Select  
5 4 3  
2 1 0  
PAFn Flag Bus  
Device Select  
0
1
Device Select  
(Compared to  
ID0,1,2)  
X
X
X
5940 drw05  
16  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
READ QUEUE SELECTION & READ OPERATION  
providedthatthequeueisnotempty.Atthepointofqueueselection,the2-stage  
Themulti-queueflow-controldevicehasupto8queuesthatdataisreadfrom internaldatapipelineisloadedwiththelastwordfromthepreviousqueueand  
viaacommonreadportusingthedataoutputs,Qout,readclock,RCLKand thenextwordfromthenewqueue,boththesewordswillfallthroughtotheoutput  
readenable,REN.Anoutputenable,OEcontrolpinisalsoprovidedtoallow registerconsecutivelyuponselectionofthenewqueue.Thispipeliningeffect  
High-ImpedanceselectionoftheQoutdataoutputs.Themulti-queuedevice providestheuserwith100%busutilization,butbringsaboutthepossibilitythat  
readportoperatesinamodesimilartoFirstWordFallThrough”onatraditional a NULL” queue may be required within a multi-queue device. Null queue  
IDT FIFO, but with the added feature of data output pipelining. This data operationisdiscussedinthenextsectionon.  
pipeliningontheoutputportallows theusertoachieve100%bus utilization,  
which is the ability to read out a data word on every rising edge of RCLK onthesameRCLKedgeandthefollowingRCLKedge,2finalreadswillbemade  
regardless of whether a new queue is being selected for read operations. fromthepreviousqueue,providedthatRENisactive,LOW.OnthenextRCLK  
IfanemptyqueueisselectedforreadoperationsontherisingedgeofRCLK,  
Thequeueaddresspresentonthereadaddressbus,RDADDduringarising rising edge a read from the new queue will not occur, because the queue is  
edge on RCLK while read address enable, RADEN is HIGH, is the queue empty.Thelastwordinthedataoutputregister(fromthepreviousqueue),will  
selectedforreadoperations.Aqueuetobereadfromneedonlybeselected remainthere,buttheoutputvalidflag,OVwillgoHIGH,toindicatethatthedata  
on a single rising edge of RCLK. All subsequent reads will be read from that present is no longer valid.  
queueuntilanewqueueisselected.Aminimumof2RCLKcyclesmustoccur  
TheRDADDbusisalsousedinconjunctionwithESTR(almostemptyflag  
betweenqueueselectionsonthereadport.Datafromthenewlyselectedqueue busstrobe),toaddressthealmostemptyflagbusofarespectivedeviceduring  
willbepresentontheQoutoutputsafter2RCLKcyclesplusanaccesstime, direct mode of operation. In the 8 queue multi-queue device the RDADD  
providedthatOEisactive,LOW.OnthesameRCLKrisingedgethatthenew addressbusis7bitswide.Theleastsignificant3bitsareusedtoaddressone  
queueis selected,datacanstillbereadfromthepreviouslyselectedqueue, of the 8 available queues within a single multi-queue device. The 4th least  
providedthatRENisLOW,activeandthepreviousqueueisnotemptyonthe significantbitisusedtoselecta"Null"Queue.DuringaNull-Qselectionthe2  
followingrisingedgeofRCLKawordwillbereadfromthepreviouslyselected LSB'saredon'tcare.TheNull-Qisseenasanemptyqueueonthereadport.  
queueregardlessofRENduetothefallthroughoperation,(providedthequeue Null-Qoperationis discussedinmore detailina separate section. The most  
isnotempty). RememberthatOEallowstheusertoplacetheQout,dataoutput significant3bitsareusedwhenadeviceisconnectedinexpansionmode,up  
bus into High-Impedance and the data can be read onto the output register to8devicescanbeconnectedinexpansion,eachdevicehavingitsown3bit  
regardlessofOE.  
address.Theselecteddeviceistheoneforwhichtheaddressmatchesa3bit  
Whenaqueueis selectedonthereadport, thenextwordavailableinthat ID code, which is statically setup on the ID pins, ID0, ID1, and ID2 of each  
queue (provided that the queue is not empty), will fall through to the output individualdevice.  
registerafter2RCLKcycles.Asmentioned,intheprevious2RCLKcyclesto  
RefertoTable2,forReadAddressbusarrangement.Also,refertoFigures  
thenewdatabeingavailable,datacanstillbereadfromthepreviousqueue, 12,14&15forreadqueueselectionandreadportoperationtimingdiagrams.  
TABLE 2 — READ ADDRESS BUS, RDADD[6:0]  
Operation RCLK RADEN ESTR  
RDADD[6:0]  
6 5 4  
3
2 1 0  
Read Queue  
1
0
Device Select  
(Compared to  
ID0,1,2)  
Null-Q  
Read Queue Address  
Select  
Select Pin (3 bits = 8 Queues)  
6 5 4  
3
2 1 0  
Flag Bus Device  
Selection  
0
1
Device Select  
(Compared to  
ID0,1,2)  
X
X X X  
5940 drw06  
17  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
NULL QUEUE OPERATION (OF THE READ PORT)  
FULL FLAG OPERATION  
Pipeliningofdatatotheoutputportenablesthedevicetoprovide100%bus  
Themulti-queueflow-controldeviceprovidesasingleFullFlagoutput,FF.  
utilizationinstandardmode.Datacanbereadoutofthemulti-queueflow-control TheFFflagoutputprovidesafullstatusofthequeuecurrentlyselectedonthe  
device on every RCLK cycle regardless of queue switches or other opera- writeportforwriteoperations.Internallythemulti-queueflow-controldevice  
tions.Thedevicearchitectureissuchthatthepipelineisconstantlyfilledwith monitorsandmaintainsastatusofthefullconditionofallqueueswithinit,however  
thenextwordsinaselectedqueuetobereadout,againproviding100%bus onlythequeuethatisselectedforwriteoperationshasitsfullstatusoutputtothe  
utilization.Thistypeofarchitecturedoesassumethattheuserisconstantly FF flag.This dedicatedflagis oftenreferredtoas theactivequeuefullflag.  
switchingqueuessuchthatduringaqueueswitch,thelastdatawordrequired  
fromthepreviousqueuewillfallthroughthepipelinetotheoutput.  
Whenqueueswitchesarebeingmadeonthewriteport,theFFflagoutput  
willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
Note,thatifreadsceaseattheemptyboundaryofaqueue,thenthelastword onthecycleafteranewqueueselectionismade.Theuserthenhasafullstatus  
willautomaticallyflowthroughthepipelinetotheoutput. forthenewqueueonecycleaheadoftheWCLKrisingedgethatdatacanbe  
The Null-Q is selected via read port address space RDADD[3]. The writtenintothenewqueue.Thatis,anewqueuecanbeselectedonthewrite  
RDADD[6:0]busshouldbeaddressedwithxxx1xxx,thisaddressistheNull-Q. portviatheWRADDbus,WADENenableandarisingedgeofWCLK.Onthe  
A null queue can be selected when no further reads are required from a nextrisingedgeofWCLK,theFFflagoutputwillshowthefullstatusofthenewly  
previouslyselectedqueue.Changingtoanullqueuewillcontinuetopropagate selected queue. On the second rising edge of WCLK following the queue  
data in the pipeline to the previous queues output. The Null-Q can remain selection,datacanbewrittenintothenewlyselectedqueueprovidedthatdata  
selecteduntiladatabecomesavailableinanotherqueueforreading.TheNull-Q andenablesetup&holdtimesaremet.  
canbeutilizedineitherstandardorpacketmode.  
Note,theFF flagwillprovidestatus ofanewlyselectedqueueoneWCLK  
Note:Iftheuserswitchesthereadporttothenullqueue,thisqueueisseen cycleafterqueueselection,whichisonecyclebeforedatacanbewrittentothat  
asandtreatedasanemptyqueue,thereforeafterswitchingtothenullqueue queue.Thispreventstheuserfromwritingdatatoaqueuethatisfull,(assuming  
thelastwordfromthepreviousqueuewillremainintheoutputregisterandthe thataqueueswitchhas beenmadetoaqueuethatis actuallyfull).  
OV flagwillgoHIGH,indicatingdata is notvalid.  
TheFFflagissynchronoustotheWCLKandalltransitionsoftheFFflagoccur  
TheNullqueueoperationonlyhassignificancetothereadportofthemulti- basedonarisingedgeofWCLK.Internallythemulti-queuedevicemonitorsand  
queue, it is a means to force data through the pipeline to the output. Null-Q keepsarecordofthefullstatusforallqueues.Itispossiblethatthestatusofa  
selectionandoperationhasnomeaningonthewriteportofthedevice.Also, FFflagmaybechanginginternallyeventhoughthatflagisnottheactivequeue  
refer to Figure 16, Read Operation and Null Queue Select for diagram.  
flag (selected on the write port). A queue selected on the read port may  
experienceachangeofitsinternalfullflagstatusbasedonreadoperations.  
SeeFigure9,WriteQueueSelect,WriteOperationandFullFlagOperation  
BUS MATCHING OPERATION  
BusMatchingoperationbetweentheinputportandoutputportisavailable. andFigure11, FullFlagTiminginExpansionModefortiminginformation.  
Duringamasterresetofthemulti-queuethestateofthetwosetuppins,IW(Input  
Width)andOW(OutputWidth)determinetheinputandoutputportbuswidths EXPANSION MODE - FULL FLAG OPERATION  
as pertheselections showninTable3,Bus MatchingSet-up.9bitbytes or  
Whenmulti-queuedevicesareconnectedinExpansionmodetheFFflags  
18bitwordscanbewrittenintoandreadfromthequeues.Whenwritingtoor of all devices should be connected together, such that a system controller  
readingfromthemulti-queueinabusmatchingmode,thedeviceordersdata monitoring and managing the multi-queue devices write port only looks at a  
inaLittleEndian”format.SeeFigure3,BusMatchingByteArrangementfor singleFFflag(asopposedtoadiscreteFFflagforeachdevice).ThisFFflag  
details.  
isonlypertinenttothequeuebeingselectedforwriteoperationsatthattime.  
TheFullflagandAlmostFullflagoperationis always basedonwrites and Remember,thatwheninexpansionmodeonlyonemulti-queuedevicecanbe  
readsofdatawidthsdeterminedbythewriteportwidth.Forexample,iftheinput writtentoatanymomentintime,thustheFFflagprovidesstatusoftheactive  
portisx18andtheoutputportisx9,thentwodatareadsfromafullqueuewill queue on the write port.  
berequiredtocausethefullflagtogoHIGH(queuenotfull).Conversely,the  
ThisconnectionofflagoutputstocreateasingleflagrequiresthattheFFflag  
OutputValidflagandAlmostEmptyflagoperationsarealwaysbasedonwrites outputhaveaHigh-Impedancecapability,suchthatwhenaqueueselectionis  
andreadsofdatawidthsdeterminedbythereadport.Forexample,iftheinput madeonlyasingledevicedrivestheFFflagbusandallotherFF flagoutputs  
portisx9andtheoutputportisx18,twowriteoperationswillberequiredtocause connectedtotheFFflagbusareplacedintoHigh-Impedance.Theuserdoes  
theoutputvalidflagofanemptyqueuetogoLOW,outputvalid(queueisnot nothavetoselectthisHigh-Impedancestate,agivenmulti-queueflow-control  
empty).  
devicewillautomaticallyplaceitsFFflagoutputintoHigh-Impedancewhennone  
Note,thattheinputportservesallqueueswithinadevice,asdoestheoutput ofitsqueuesareselectedforwriteoperations.  
port,thereforetheinputbuswidthtoallqueuesisequal(determinedbytheinput  
portsize)andtheoutputbuswidthfromallqueuesisequal(determinedbythe flagoutputofthatdevicewillmaintaincontroloftheFFflagbus.ItsFFflagwill  
outputportsize).  
Whenqueueswithinasingledeviceareselectedforwriteoperations,theFF  
simplyupdatebetweenqueueswitchestoshowtherespectivequeuefullstatus.  
Themulti-queuedeviceplacesitsFFflagoutputintoHigh-Impedancebased  
onthe3bitIDcodefoundinthe3mostsignificantbitsofthewritequeueaddress  
bus,WRADD.Ifthe3mostsignificantbitsofWRADDmatchthe3bitIDcodesetup  
onthestaticinputs,ID0,ID1andID2thentheFFflagoutputoftherespective  
devicewillbeinaLow-Impedancestate.Iftheydonotmatch,thentheFFflag  
outputoftherespectivedevicewillbeinaHigh-Impedancestate.SeeFigure  
11,FullFlagTiminginExpansionModefordetailsofflagoperation,including  
when more than one device is connected in expansion.  
TABLE 3 BUS-MATCHING SET-UP  
IW  
OW  
Write Port  
Read Port  
0
0
1
1
0
1
0
1
x18  
x18  
x9  
x18  
x9  
x18  
x9  
x9  
18  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
OUTPUTVALIDFLAGOPERATION  
13,OutputValidFlagTimingfordetailsofflagoperation,includingwhenmore  
The multi-queue flow-control device provides a single Output Valid flag thanone device is connectedinexpansion.  
output,OV.TheOVprovidesanemptystatusordataoutputvalidstatusforthe  
datawordcurrentlyavailableontheoutputregisterofthereadport.Therising ALMOST FULL FLAG  
edgeofanRCLKcyclethatplacesnewdataontotheoutputregisteroftheread  
As previously mentioned the multi-queue flow-control device provides a  
port, also updates the OV flag to show whether or not that new data word is singleProgrammableAlmostFullflagoutput,PAF.ThePAFflagoutputprovides  
actually valid. Internally the multi-queue flow-control device monitors and astatusofthealmostfullconditionfortheactivequeuecurrentlyselectedonthe  
maintainsastatusoftheemptyconditionofallqueueswithinit,howeveronly writeportforwriteoperations.Internallythemulti-queueflow-controldevice  
thequeuethatisselectedforreadoperationshasitsoutputvalid(empty)status monitorsandmaintainsastatusofthealmostfullconditionofallqueueswithin  
outputtotheOVflag,givingavalidstatusforthewordbeingreadatthattime. it,howeveronlythequeuethatisselectedforwriteoperationshasitsfullstatus  
Thenatureofthefirstwordfallthroughoperationmeansthatwhenthelast outputtothePAFflag.Thisdedicatedflagisoftenreferredtoastheactivequeue  
datawordisreadfromaselectedqueue,theOVflagwillgoHIGHonthenext almostfullflag.ThepositionofthePAFflagboundarywithinaqueuecanbe  
enabled read, that is, on the next rising edge of RCLK while REN is LOW.  
atanypointwithinthatqueuesdepth.Thislocationcanbeuserprogrammed  
Whenqueueswitchesarebeingmadeonthereadport,theOVflagwillswitch viatheserialportoroneofthedefaultvalues(8or128)canbeselectedifthe  
toshowstatusofthenewqueueinlinewiththedataoutputfromthenewqueue. userhasperformeddefaultprogramming.  
Whenaqueueselectionismadethefirstdatafromthatqueuewillappearon  
Asmentioned,everyqueuewithinamulti-queuedevicehasitsownalmost  
theQoutdataoutputs2RCLKcycleslater,theOVwillchangestatetoindicate fullstatus,whenaqueueisselectedonthewriteport,thisstatusisoutputviathe  
validityofthedatafromthenewlyselectedqueueonthis2nd RCLKcyclealso. PAFflag.ThePAFflagvalueforeachqueueisprogrammedduringmulti-queue  
Thepreviouscycleswillcontinuetooutputdatafromthepreviousqueueand device programming (along with the number of queues, queue depths and  
theOVflagwillindicatethestatusofthoseoutputs.Again,theOVflagalways almostemptyvalues).ThePAFoffsetvalue,m,forarespectivequeuecanbe  
indicatesstatusforthedatacurrentlypresentontheoutputregister.  
programmedtobeanywherebetween0’andD’,whereDisthetotalmemory  
TheOVflagissynchronoustotheRCLKandalltransitionsoftheOVflagoccur depthforthatqueue.ThePAFvalueofdifferentqueueswithinthesamedevice  
basedonarisingedgeofRCLK.Internallythemulti-queuedevicemonitorsand canbedifferentvalues.  
keepsarecordoftheoutputvalid(empty)statusforallqueues.Itispossiblethat  
Whenqueueswitchesarebeingmadeonthewriteport,thePAFflagoutput  
thestatusofanOVflagmaybechanginginternallyeventhoughthatrespective willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
flagisnottheactivequeueflag(selectedonthereadport).Aqueueselected onthesecondcycleafteranewqueueselectionismade,onthesameWCLK  
onthewriteportmayexperienceachangeofitsinternalOVflagstatusbased cyclethatdatacanactuallybewrittentothenewqueue.Thatis,anewqueue  
on write operations, that is, data may be written into that queue causing it to canbeselectedonthewriteportviatheWRADDbus,WADENenableanda  
becomenotempty.  
risingedgeofWCLK.OnthesecondrisingedgeofWCLKfollowingaqueue  
SeeFigure12,ReadQueueSelect,ReadOperationandFigure13,Output selection,thePAFflagoutputwillshowthefullstatusofthenewlyselectedqueue.  
ValidFlagTimingfordetailsofthetiming.  
The PAF is flagoutputis doubleregisterbuffered,sowhenawriteoperation  
occursatthealmostfullboundarycausingtheselectedqueuestatustogoalmost  
fullthePAFwillgoLOW2WCLKcyclesafterthewrite.Thesameistruewhen  
EXPANSION MODE – OUTPUT VALID FLAG OPERATION  
Whenmulti-queuedevicesareconnectedinExpansionmode,theOVflags a read occurs, there will be a 2 WCLK cycle delay after the read operation.  
of all devices should be connected together, such that a system controller  
monitoring and managing the multi-queue devices read port only looks at a  
singleOVflag(asopposedtoadiscreteOVflagforeachdevice).ThisOVflag  
is onlypertinenttothequeuebeingselectedforreadoperations atthattime.  
Remember,thatwheninexpansionmodeonlyonemulti-queuedevicecanbe  
So the PAF flag delays are:  
froma write operationtoPAF flagLOWis 2WCLK+tWAF  
ThedelayfromareadoperationtoPAFflagHIGHistSKEW2+WCLK+tWAF  
Note, if tSKEW is violated there will be one added WCLK cycle delay.  
ThePAFflagissynchronoustotheWCLKandalltransitionsofthePAFflag  
readfromatanymomentintime,thustheOVflagprovidesstatusoftheactive occur based on a rising edge of WCLK. Internally the multi-queue device  
queue on the read port. monitorsandkeepsarecordofthealmostfullstatusforallqueues.Itispossible  
ThisconnectionofflagoutputstocreateasingleflagrequiresthattheOVflag thatthestatusofaPAFflagmaybechanginginternallyeventhoughthatflagis  
outputhaveaHigh-Impedancecapability,suchthatwhenaqueueselectionis nottheactivequeueflag(selectedonthewriteport).Aqueueselectedonthe  
madeonlyasingledevicedrivestheOVflagbusandallotherOVflagoutputs readportmayexperienceachangeofitsinternalalmostfullflagstatusbased  
connectedtotheOVflagbusareplacedintoHigh-Impedance.Theuserdoes on read operations. The multi-queue flow-control device also provides a  
nothavetoselectthisHigh-Impedancestate,agivenmulti-queueflow-control duplicateofthePAFflagonthePAF[3:0]flagbus,thiswillbediscussedindetail  
devicewillautomaticallyplaceitsOVflagoutputintoHigh-Impedancewhennone inalatersectionofthedatasheet.  
ofitsqueuesareselectedforreadoperations.  
SeeFigures 18and19forAlmostFullflagtimingandqueueswitching.  
Whenqueueswithinasingledeviceareselectedforreadoperations,theOV  
flagoutputofthatdevicewillmaintaincontroloftheOVflagbus.ItsOVflagwill ALMOSTEMPTYFLAG  
simplyupdatebetweenqueueswitchestoshowtherespectivequeueoutput  
validstatus.  
As previously mentioned the multi-queue flow-control device provides a  
single Programmable Almost Empty flag output, PAE. The PAE flag output  
Themulti-queuedeviceplacesitsOVflagoutputintoHigh-Impedancebased providesastatusofthealmostemptyconditionfortheactivequeuecurrently  
onthe3bitIDcodefoundinthe3mostsignificantbitsofthereadqueueaddress selectedonthereadportforreadoperations.Internallythemulti-queueflow-  
bus,RDADD.Ifthe3mostsignificantbitsofRDADDmatchthe3bitIDcodesetup controldevicemonitorsandmaintainsastatusofthealmostemptyconditionof  
onthestaticinputs,ID0,ID1andID2thentheOVflagoutputoftherespective allqueueswithinit,howeveronlythequeuethatisselectedforreadoperations  
devicewillbeinaLow-Impedancestate.Iftheydonotmatch,thentheOVflag hasitsemptystatusoutputtothePAEflag.Thisdedicatedflagisoftenreferred  
outputoftherespectivedevicewillbeinaHigh-Impedancestate.SeeFigure toastheactivequeuealmostemptyflag.ThepositionofthePAEflagboundary  
19  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
withinaqueuecanbeatanypointwithinthatqueuesdepth.Thislocationcan newlyselectedqueue.ThePAEis flagoutputis doubleregisterbuffered,so  
beuserprogrammedviatheserialportoroneofthedefaultvalues(8or128) when a read operation occurs at the almost empty boundary causing the  
canbeselectediftheuserhasperformeddefaultprogramming.  
selectedqueuestatustogoalmostemptythePAEwillgoLOW2RCLKcycles  
Asmentioned,everyqueuewithinamulti-queuedevicehasitsownalmost after the read. The same is true when a write occurs, there will be a 2 RCLK  
emptystatus,whenaqueueisselectedonthereadport,thisstatusisoutputvia cycledelayafterthewriteoperation.  
thePAEflag.ThePAEflagvalueforeachqueueisprogrammedduringmulti-  
queuedeviceprogramming(alongwiththenumberofqueues,queuedepths  
andalmostfullvalues).ThePAEoffsetvalue,n,forarespectivequeuecanbe  
programmedtobeanywherebetween0’andD’,whereDisthetotalmemory  
depthforthatqueue.ThePAEvalueofdifferentqueueswithinthesamedevice  
canbedifferentvalues.  
So the PAE flag delays are:  
from a read operation toPAE flag LOW is 2 RCLK + tRAE  
ThedelayfromawriteoperationtoPAEflagHIGHistSKEW2+RCLK+tRAE  
Note, if tSKEW is violated there will be one added RCLK cycle delay.  
ThePAEflagissynchronoustotheRCLKandalltransitionsofthePAEflag  
occur based on a rising edge of RCLK. Internally the multi-queue device  
Whenqueueswitchesarebeingmadeonthereadport,thePAEflagoutput monitorsandkeepsarecordofthealmostemptystatusforallqueues.Itispossible  
willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus, thatthestatusofaPAEflagmaybechanginginternallyeventhoughthatflagis  
onthesecondcycleafteranewqueueselectionismade,onthesameRCLK nottheactivequeueflag(selectedonthereadport).Aqueueselectedonthe  
cyclethatdataactuallyfallsthroughtotheoutputregisterfromthenewqueue. writeportmayexperienceachangeofitsinternalalmostemptyflagstatusbased  
That is, a new queue can be selected on the read port via the RDADD bus, on write operations. The multi-queue flow-control device also provides a  
RADENenableandarisingedgeofRCLK.OnthesecondrisingedgeofRCLK duplicateofthePAEflagonthePAE[3:0]flagbus,thiswillbediscussedindetail  
followingaqueueselection,thedatawordfromthenewqueuewillbeavailable inalatersectionofthedatasheet.  
attheoutputregisterandthePAEflagoutputwillshowtheemptystatusofthe  
SeeFigures20and21forAlmostEmptyflagtimingandqueueswitching.  
20  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
TABLE 4 — FLAG OPERATION BOUNDARIES & TIMING  
Output Valid, OV Flag Boundary  
Full Flag, FF Boundary  
I/O Set-Up  
OV Boundary Condition  
I/O Set-Up  
FF Boundary Condition  
In18 to out18 or In9 to out9  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenotebelowfortiming)  
In18 to out18 or In9 to out9  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after D+1 Writes  
(seenotebelowfortiming)  
In18 to out9)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenotebelowfortiming)  
In18 to out18 or In9 to out9  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In9 to out18  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 2nd Write  
(seenotebelowfortiming)  
In18 to out9  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In18 to out9  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after D Writes  
NOTE:  
1. OV Timing  
Assertion:  
(seenotebelowfortiming)  
Write to OV LOW: tSKEW1 + RCLK + tROV  
If tSKEW1 is violated there may be 1 added clock: tSKEW1 + 2 RCLK + tROV  
De-assertion:  
In9 to out18  
FF Goes LOW after ([D+1] x 2) Writes  
(seenotebelowfortiming)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
Read Operation to OV HIGH: tROV  
In9 to out18  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after (D x 2) Writes  
(seenotebelowfortiming)  
NOTE:  
D = Queue Depth  
FF Timing  
Assertion:  
Write Operation to FF LOW: tWFF  
De-assertion:  
Read to FF HIGH: tSKEW1 + tWFF  
If tSKEW1 is violated there may be 1 added clock: tSKEW1+WCLK +tWFF  
21  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
TABLE 4 — FLAG OPERATION BOUNDARIES & TIMING (CONTINUED)  
Programmable Almost Empty Flag Bus, PAEn Boundary  
Programmable Almost Empty Flag, PAE Boundary  
I/O Set-Up  
PAEn Boundary Condition  
PAEn Goes HIGH after  
I/O Set-Up  
PAE Assertion  
PAE Goes HIGH after n+2  
In18 to out18 or In9 to out9  
(Bothportsselectedforsamequeuewhenthe1st n+2Writes  
Wordiswritteninuntiltheboundaryisreached)  
In18 to out18 or In9 to out9  
(Bothportsselectedforsamequeuewhenthe1st Writes  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
(seenotebelowfortiming)  
In18 to out18 or In9 to out9  
(Writeportonlyselectedforsamequeuewhenthe n+1Writes  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
PAEn Goes HIGH after  
In18 to out9  
PAE Goes HIGH after n+1  
(Bothportsselectedforsamequeuewhenthe1st Writes  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
In18 to out9  
PAEn Goes HIGH after n+1  
Writes (seebelowfortiming)  
In9 to out18  
PAE Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 2) Writes  
Wordiswritteninuntiltheboundaryisreached)  
In9 to out18  
PAEn Goes HIGH after  
(seenotebelowfortiming)  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 2) Writes  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
NOTE:  
n = Almost Empty Offset value.  
Default values: if DF is LOW at Master Reset then n = 8  
if DF is HIGH at Master Reset then n = 128  
In9 to out18  
PAEn Goes HIGH after  
(Writeportonlyselectedforsamequeuewhenthe ([n+1] x 2) Writes  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
PAE Timing  
Assertion:  
Read Operation to PAE LOW: 2 RCLK + tRAE  
NOTE:  
De-assertion: Write to PAE HIGH: tSKEW2 + RCLK + tRAE  
If tSKEW2 is violated there may be 1 added clock: tSKEW2 + 2 RCLK + tRAE  
n = Almost Empty Offset value.  
Default values: if DF is LOW at Master Reset then n = 8  
if DF is HIGH at Master Reset then n = 128  
PAEn Timing  
Assertion:  
Read Operation to PAEn LOW: 2 RCLK* + tPAE  
De-assertion: Write to PAEn HIGH: tSKEW3 + RCLK* + tPAE  
If tSKEW3 is violated there may be 1 added clock: tSKEW3 + 2 RCLK* + tPAE  
* If a queue switch is occurring on the read port at the point of flag assertion or de-assertion  
there may be one additional RCLK clock cycle delay.  
Programmable Almost Full Flag, PAF & PAFn Bus Boundary  
I/O Set-Up  
PAF & PAFn Boundary  
In18 to out18 or In9 to out9  
PAF/PAFn Goes LOW after  
(Bothportsselectedforsamequeuewhenthe1st D+1-mWrites  
Wordiswritteninuntiltheboundaryisreached) (seenotebelowfortiming)  
In18 to out18 or In9 to out9  
(Writeportonlyselectedforsamequeuewhenthe D-mWrites  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
PAF/PAFn Goes LOW after  
In18 to out9  
In9 to out18  
PAF/PAFn Goes LOW after  
D-mWrites(seebelowfortiming)  
PAF/PAFn Goes LOW after  
([D+1-m] x 2) Writes  
(seenotebelowfortiming)  
NOTE:  
D = Queue Depth  
m = Almost Full Offset value.  
Default values: if DF is LOW at Master Reset then m = 8  
if DF is HIGH at Master Reset then m= 128  
PAF Timing  
Assertion:  
Write Operation to PAF LOW: 2 WCLK + tWAF  
De-assertion: Read to PAF HIGH: tSKEW2 + WCLK + tWAF  
If tSKEW2 is violated there may be 1 added clock: tSKEW2 + 2 WCLK + tWAF  
PAFn Timing  
Assertion:  
Write Operation to PAFn LOW: 2 WCLK* + tPAF  
De-assertion: Read to PAFn HIGH: tSKEW3 + WCLK* + tPAF  
If tSKEW3 is violated there may be 1 added clock: tSKEW3 + 2 WCLK* + tPAF  
* If a queue switch is occurring on the write port at the point of flag assertion or de-assertion  
there may be one additional WCLK clock cycle delay.  
22  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
passing is done via the FXO outputs and FXI inputs of the devices (PAFn  
ExpansionOut”andPAFnExpansionIn).TheFXOoutputofthefirstdevice  
connectingtothe FXIinputofthe seconddevice inthe chain, the FXOofthe  
seconddeviceconnects totheFXIofthethirddeviceandsoon.TheFXOof  
thefinaldeviceinachainconnectstotheFXIofthefirstdevice,sothatoncethe  
PAFn bus has cycled through all devices control is again passed to the first  
device.TheFXOoutputofadevicewillbeHIGHfortheWCLKcycleithascontrol  
ofthebus.  
PAFn FLAG BUS OPERATION  
TheIDT72V51333/72V51343/72V51353multi-queueflow-controldevices  
can be configured for up to 8 queues, each queue having its own almost full  
status.Anactivequeuehasitsflagstatusoutputtothediscreteflags,FFandPAF,  
onthewriteport.Queuesthatarenotselectedforawriteoperationcanhave  
theirPAFstatusmonitoredviathePAFnbus.ThePAFnflagbusis8bitswide,  
so that all 4 queues can have their status output to the bus. When a single  
multi-queuedeviceisusedanywherefrom1to4queuesmaybeset-upwithin  
thepart,eachqueuehavingitsowndedicatedPAFflagoutputonthePAFnbus.  
Queues 1 through 8 have their PAF status to PAF[0] through PAF[7]  
respectively. If less than 8 queues are used then only the associated PAFn  
outputswillberequired,unusedPAFnoutputswillbedontcareoutputs.When  
devices are connected in expansion mode the PAFn flag bus can also be  
expandedbeyond8bits toproduce a widerPAFnbus thatencompasses all  
queues.  
Alternatively,the8bitPAFnflagbusofeachdevicecanbeconnectedtogether  
toformasingle8bitbus,i.e.PAF[0]ofdevice1willconnecttoPAF[0]ofdevice  
2etc. Whenconnectingdevices inthis mannerthe PAFncanonlybe driven  
byasingledeviceatanytime,(thePAFnoutputsofallotherdevicesmustbe  
inhighimpedancestate).Therearetwomethodsbywhichtheusercanselect  
whichdevicehas controlofthebus,theseareDirect”(Addressed)modeor  
Polled”(Looped)mode,determinedbythestateoftheFM(flagMode)input  
duringaMasterReset.  
PleaserefertoFigure24,PAFnBusPolledModefortiminginformation.  
PAEn FLAG BUS OPERATION  
TheIDT72V51333/72V51343/72V51353multi-queueflow-controldevices  
canbeconfiguredforupto8queues,eachqueuehavingitsownalmostempty  
status.Anactivequeuehasitsflagstatusoutputtothediscreteflags,OVandPAE,  
onthereadport.Queues thatarenotselectedforareadoperationcanhave  
theirPAEstatusmonitoredviathePAEnbus.ThePAEnflagbusis8bitswide,  
sothatall8queues canhavetheirstatus outputtothebus.  
Whenasinglemulti-queuedeviceisusedanywherefrom1to8queuesmay  
beset-upwithinthepart,eachqueuehavingitsowndedicatedPAEnflagoutput  
onthePAEnbus.Queues1through8havetheirPAEstatustoPAE[0]through  
PAE[7]respectively.Iflessthan8queuesareusedthenonlytheassociated  
PAEnoutputswillberequired,unusedPAEnoutputswillbedontcareoutputs.  
WhendevicesareconnectedinexpansionmodethePAEnflagbuscanalso  
beexpandedbeyond8bits toproduceawiderPAEnbus thatencompasses  
allqueues.  
PAFn BUS EXPANSION - DIRECT MODE  
Alternatively,the8bitPAEnflagbusofeachdevicecanbeconnectedtogether  
toformasingle8bitbus,i.e.PAE[0]ofdevice1willconnecttoPAE[0]ofdevice  
2etc.WhenconnectingdevicesinthismannerthePAEnbuscanonlybedriven  
byasingledeviceatanytime,(thePAEnoutputsofallotherdevicesmustbe  
inhighimpedancestate).Therearetwomethodsbywhichtheusercanselect  
whichdevicehas controlofthebus,theseareDirect”(Addressed)modeor  
Polled”(Looped)mode,determinedbythestateoftheFM(flagMode)input  
duringaMasterReset.  
If FM is LOW at Master Reset then the PAFn bus operates in Direct  
(addressed)mode.Indirectmodetheusercanaddressthedevicetheyrequire  
tocontrolthePAFnbus.Theaddresspresentonthe3mostsignificantbitsof  
the WRADD[5:0] address bus with FSTR (PAF flag strobe), HIGH will be  
selectedasthedeviceonarisingedgeofWCLK.Sotoaddressthefirstdevice  
inabankofdevicestheWRADD[5:0]addressshouldbe000xxx”thesecond  
device 001xxx” and so on. The 3 most significant bits of the WRADD[5:0]  
address bus correspond to the device ID inputs ID[2:0]. The PAFn bus will  
change status to show the new device selected 1 WCLK cycle after device  
selection.Note,thatifareadorwriteoperationisoccurringtoaspecificqueue,  
sayqueuex’onthesamecycleasaPAFnbusswitchtothedevicecontaining  
queue x’, thenthere maybe anextra WCLKcycle delaybefore thatqueues  
statusiscorrectlyshownontherespectiveoutputofthePAFnbus.However,  
theactive”PAFflagwillshowcorrectstatusatalltimes.  
Devices can be selected on consecutive WCLK cycles, that is the device  
controllingthe PAFnbus canchangeeveryWCLKcycle. Also, datapresent  
ontheinputbus,Din,canbewrittenintoaqueueonthesameWLCKrisingedge  
thatadeviceisbeingselectedonthePAFnbus,theonlyrestrictionbeingthat  
awritequeueselectionandPAFnbusselectioncannotbemadeonthesame  
cycle.  
PAEn BUS EXPANSION- DIRECT MODE  
If FM is LOW at Master Reset then the PAEn bus operates in Direct  
(addressed)mode.Indirectmodetheusercanaddressthedevicetheyrequire  
tocontrolthePAEnbus.Theaddresspresentonthe3mostsignificantbitsof  
the RDADD[6:0] address bus with ESTR (PAE flag strobe), HIGH will be  
selectedasthedeviceonarisingedgeofRCLK.Sotoaddressthefirstdevice  
inabankofdevicestheRDADD[6:0]addressshouldbe000xxx”thesecond  
device 001xxx” and so on. The 3 most significant bits of the RDADD[6:0]  
address bus correspond to the device ID inputs ID[2:0]. The PAEn bus will  
change status to show the new device selected 1 RCLK cycle after device  
selection.Note,thatifareadorwriteoperationisoccurringtoaspecificqueue,  
sayqueuex’onthesamecycleasaPAEnbusswitchtothedevicecontaining  
queue x’, then there may be an extra RCLK cycle delay before that queues  
statusiscorrectlyshownontherespectiveoutputofthePAEnbus.However,  
theactive”PAE flagwillshowcorrectstatusatalltimes.  
PAFn BUS EXPANSION– POLLED MODE  
IfFMisHIGHatMasterResetthenthePAFnbusoperatesinPolled(Looped)  
mode.InpolledmodethePAFnbusautomaticallycyclesthroughthedevices  
connected in expansion. In expansion mode one device will be set as the  
Master,MASTinputtiedHIGH,allotherdeviceswillhaveMASTtiedLOW.The  
masterdeviceisthefirstdevicetotakecontrolofthePAFnbusandplacethe  
PAFstatusofitsqueuesontothebusonthefirstrisingedgeofWCLKafterthe  
MRSinputgoesHIGHonceaMasterResetiscomplete.TheFSYNC(PAFsync  
pulse)outputofthefirstdevice(masterdevice),willbeHIGHforonecycleof  
WCLKindicatingthatitishascontrolofthePAFnbusforthatcycle.  
Thedevicealsopassesatoken”ontothenextdeviceinthechain,thenext  
deviceassumingcontrolofthePAFnbusonthenextWCLKcycle.Thistoken  
Devices can be selected on consecutive RCLK cycles, that is the device  
controllingthePAEnbuscanchangeeveryRCLKcycle.Also,datacanberead  
outofaFIFOqueueonthesameRCLKrisingedgethatadeviceisbeingselected  
onthePAEnbus,theonlyrestrictionbeingthatareadqueueselectionandPAEn  
busselectioncannotbemadeonthesamecycle.  
PAEn BUS EXPANSION- POLLED MODE  
If FM is HIGH at Master Reset then the PAEn bus operates in Polled  
(Looped)mode.InpolledmodethePAEnbusautomaticallycyclesthroughthe  
23  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
devices connectedinexpansion. Inexpansionmode one device willbe set passing is done via the EXO outputs and EXI inputs of the devices (PAEn  
as theMaster,MASTinputtiedHIGH,allotherdevices willhaveMASTtied ExpansionOut”andPAEnExpansionIn).TheEXOoutputofthefirstdevice  
LOW.ThemasterdeviceisthefirstdevicetotakecontrolofthePAEnbusand connectingtotheEXIinputoftheseconddeviceinthechain,theEXOofthe  
placethePAEstatusofitsqueuesontothebusonthefirstrisingedgeofRCLK seconddeviceconnects totheEXIofthethirddeviceandsoon.TheEXOof  
after the MRS input goes HIGH once a Master Reset is complete. The thefinaldeviceinachainconnectstotheEXIofthefirstdevice,sothatoncethe  
ESYNC (PAE sync pulse) output of the first device (master device), will be PAEn bus has cycled through all devices control is again passed to the first  
HIGHforonecycleofRCLKindicatingthatitishascontrolofthePAEnbusfor device.TheEXOoutputofadevicewillbeHIGHfortheRCLKcycleithascontrol  
thatcycle.  
Thedevicealsopassesatoken”ontothenextdeviceinthechain,thenext  
deviceassumingcontrolofthePAEnbusonthenextRCLKcycle.Thistoken  
ofthebus.  
PleaserefertoFigure25,PAEnBusPolledModefortiminginformation.  
24  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
B
Write to Queue  
A
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BE  
IW  
L
OW  
L
A
B
Read from Queue  
L
(a) x18 INPUT to x18 OUTPUT - BIG ENDIAN  
Q17-Q9  
Q8-Q0  
BE  
IW  
L
OW  
L
B
A
Read from Queue  
H
(b) x18 INPUT to x18 OUTPUT - LITTLE ENDIAN  
Q8-Q0  
Q17-Q9  
Q17-Q9  
BE  
IW  
L
OW  
H
A
1st: Read from Queue  
2nd: Read from Queue  
L
Q8-Q0  
B
(c) x18 INPUT to x9 OUTPUT - BIG ENDIAN  
Q17-Q9  
Q8-Q0  
BE  
IW  
L
OW  
H
B
1st: Read from Queue  
H
Q17-Q9  
Q8-Q0  
A
2nd: Read from Queue  
(d) x18 INPUT to x9 OUTPUT - LITTLE ENDIAN  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
A
1st: Write to Queue  
2nd: Write to Queue  
D17-Q9  
D8-Q0  
B
BYTE ORDER ON OUTPUT PORT:  
Q17-Q9  
Q8-Q0  
BE  
IW OW  
A
B
Read from Queue  
L
H
L
(a) x9 INPUT to x18 OUTPUT - BIG ENDIAN  
Q17-Q9  
Q8-Q0  
BE  
IW  
H
OW  
L
A
B
Read from Queue  
H
(a) x9 INPUT to x18 OUTPUT - LITTLE ENDIAN  
5940 drw07  
Figure 3. Bus-Matching Byte Arrangement  
25  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
tRS  
MRS  
t
RSS  
RSS  
WEN  
REN  
t
tRSR  
SENI  
tRSS  
FSTR,  
ESTR  
tRSS  
WADEN,  
RADEN  
t
RSS  
RSS  
RSS  
ID0, ID1,  
ID2  
t
OW, IW  
FM  
t
HIGH = Looped  
LOW = Strobed (Direct)  
tRSS  
HIGH = Master Device  
LOW = Slave Device  
MAST  
DFM  
t
RSS  
RSS  
HIGH = Default Programming  
LOW = Serial Programming  
t
HIGH = Offset Value is 128  
LOW = Offset value is 8  
DF  
t
t
t
t
RSF  
HIGH-Z if Slave Device  
FF  
LOGIC “0" if Master Device  
RSF  
RSF  
RSF  
LOGIC "1" if Master Device  
OV  
PAF  
PAE  
HIGH-Z if Slave Device  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
HIGH-Z if Slave Device  
LOGIC "0" if Master Device  
t
RSF  
RSF  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
PAFn  
PAEn  
t
HIGH-Z if Slave Device  
LOGIC "0" if Master Device  
tRSF  
LOGIC "1" if OE is LOW and device is Master  
Qn  
HIGH-Z if OE is HIGH or Device is Slave  
5940 drw08  
NOTES:  
1. OE can toggle during this period.  
2. PRS should be HIGH during a MRS.  
Figure 4. Master Reset  
26  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
w-2  
w-1  
w
w+1  
w+2  
w+3  
WCLK  
tQH  
tQS  
WADEN  
WEN  
tENS  
tENS  
t
AS  
tAH  
WRADD  
Qx  
t
WFF  
FF  
tWAF  
PAF  
t
PAF  
Active Bus  
PAF-Qx(5)  
tPRSS  
tPRSH  
PRS  
tPRSH  
tPRSS  
RCLK  
tENS  
tENS  
REN  
tQH  
tQS  
RADEN  
t
AS  
tAH  
RDADD  
Qx  
tROV  
OV  
tRAE  
PAE  
t
PAE  
Active Bus  
PAE-Qx(6)  
r-2  
r-1  
r
r+1  
r+2  
r+3  
5940 drw09  
NOTES:  
1. For a Partial Reset to be performed on a Queue, that Queue must be selected on both the write and read ports.  
2. The queue must be selected a minimum of 2 clock cycles before the Partial Reset takes place, on both the write and read ports.  
3. The Partial Reset must be LOW for a minimum of 1 WCLK and 1 RCLK cycle.  
4. Writing or Reading to the queue (or a queue change) cannot occur until a minimum of 3 clock cycles after the Partial Reset has gone HIGH, on both the write and read ports.  
5. The PAF flag output for Qx on the PAFn flag bus may update one cycle later than the active PAF flag.  
6. The PAE flag output for Qx on the PAEn flag bus may update one cycle later than the active PAE flag.  
Figure 5. Partial Reset  
Master Reset  
Default Mode  
DFM = 0  
MRS  
MRS  
DFM  
DFM  
MRS  
DFM  
MQ2  
MQn  
MQ1  
Serial Loading  
Complete  
SENI  
SI  
SENO  
SO  
SENI  
SI  
SENI  
SI  
SENO  
SO  
SENO  
SO  
Serial Enable  
Serial Input  
SCLK  
SCLK  
SCLK  
5940 drw10  
Serial Clock  
Figure 6. Serial Port Connection for Serial Programming  
27  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
28  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
29  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
30  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
WCLK  
tENH  
tENS  
WEN  
tDS  
tDH  
tDS  
tDH  
tDS  
tDH  
W1  
W2  
W3  
Dn  
RCLK  
REN  
t
SKEW1  
1
2
tENS  
tA  
tA  
tA  
Last Word Read Out of Queue  
W1 Qy  
FWFT  
W2 Qy  
FWFT  
W3 Qy  
Qout  
OV  
tROV  
tROV  
5940 drw12a  
NOTES:  
1. Qy has previously been selected on both the write and read ports.  
2. OE is LOW.  
3. The First Word Latency = tSKEW1 + RCLK + tA. If tSKEW1 is violated an additional RCLK cycle must be added.  
Figure 10. Write Operations & First Word Fall Through  
31  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
32  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
33  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
RCLK  
REN  
tENS  
tAS  
tAH  
tAS  
tAH  
RDADD  
RADEN  
D1  
Q3  
D1 Q2  
Addr=001011  
QH  
Addr=0010010  
QH  
tQS  
t
t
tQS  
tA  
tA  
tA  
tA  
tOLZ  
Qout  
D
1
Q
3
WD  
Last Word  
D1 Q2  
PFT We-1  
D1  
Q2  
We  
Last Word  
W0 Q2  
D1  
(Device 1)  
t
ROV  
tROV  
tROV  
tROV  
tOVLZ  
HIGH-Z  
OV  
(Device 1)  
tOVHZ  
OV  
(Device 2)  
tSKEW1  
WCLK  
tENS  
tENH  
WEN  
tAS  
tAH  
WRADD  
D1 Q2  
tQS  
tQH  
WADEN  
Din  
tDS  
t
DH  
D1 Q2  
W0  
5940 drw15  
Cycle:  
*A* Queue 3 of Device 1 is selected for read operations. The OV is currently being driven by Device 2, a queue within device 2 is selected for reads. Device 2 also has control  
of Qout bus, its Qout outputs are in Low-Impedance. This diagram only shows the Qout outputs of device 1. (Reads are disabled).  
*B* Reads are now enabled. A word from the previously selected queue of Device 2 will be read out.  
*C* The Qout of Device 1 goes to Low-Impedance and word Wd is read from Q3 of D1. This happens to be the last word of Q3. Device 2 places its Qout outputs into  
High-Impedance, device 1 has control of the Qout bus. The OV flag of Device 2 goes to High-Impedance and Device 1 takes control of OV. The OV flag of Device 1 goes LOW  
to show that Wd of Q3 is valid.  
*D* Queue 2 of device 1 is selected for read operations. The last word of Q3 was read on the previous cycle, therefore OV goes HIGH to indicate that the data on the Qout is  
not valid (Q3 was read to empty). Word, Wd remains on the output bus.  
*E* The last word of Q3 remains on the Qout bus, OV is HIGH, indicating that this word has been previously read.  
*F* The next word (We-1), available from the newly selected queue, Q2 of device 1 is now read out. This will occur regardless of REN, 2 RCLK cycles after queue selection  
due to the FWFT operation. The OV flag now goes LOW to indicate that this word is valid.  
*G* The last word, We is read from Q2, this queue is now empty.  
*H* The OV flag goes HIGH to indicate that Q2 was read to empty on the previous cycle.  
*I* Due to a write operation the OV flag goes LOW and data word W0 is read from Q2. The latency is: tSKEW1 + 1*RCLK + tROV.  
Figure 13. Output Valid Flag Timing (In Expansion Mode)  
34  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
*J*  
RCLK  
tENS  
tENH  
tENS  
tENH  
REN  
tAS  
tAH  
tAH  
tAS  
RDADD  
Qn  
QP  
tQS  
tQH  
tQS  
tQH  
RADEN  
tA  
tA  
tA  
tA  
tA  
tA  
QOUT  
QP  
WD  
QP WD+1  
Q
P
WD+2  
Qn  
WX  
Qn  
WX+1  
Q
P
WD+3  
QP WD+4  
OV  
5940 drw16  
Cycle:  
*A* Word Wd+1 is read from the previously selected queue, Qp.  
*B* Reads are disabled, word Wd+1 remains on the output bus.  
*C* A new queue, Qn is selected for read port operations.  
*D* Due to FWFT operation Word, Wd+2 of Qp is read out regardless of REN.  
*E* The next available word Wx of Qn is read out regardless of REN, 2 RCLK cycles after queue selection. This is FWFT operation.  
*F* The queue, Qp is again selected.  
*G* Word Wx+1 is read from Qn regardless of REN, this is due to FWFT.  
*H* Word Wd+3 is read from Qp, this read occurs regardless of REN due to FWFT operation.  
*I* Word Wd+4 is read from Qp.  
*J* Reads are disabled on this cycle, therefore no further reads occur.  
Figure 14. Read Queue Selection with Reads Disabled  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
RCLK  
REN  
tENS  
tENH  
tENS  
tAS  
tAH  
tAS  
tAH  
RDADD  
RADEN  
QB  
QA  
tQS  
tQH  
tQS  
tQH  
OE  
tA  
tA  
tA  
tA  
tOHZ  
tA  
tOE  
tOLZ  
Qout  
Previous Data in O/P Register  
Q
A
PFT  
W
0
QA  
W1  
QA  
W2  
QA  
W3  
QA W4  
No Read  
QB is Empty  
ROV  
tROV  
t
OV  
5940 drw17  
NOTES:  
1. The Output Valid flag, OV is HIGH therefore the previously selected queue has been read to empty. The Output Enable input is Asynchronous, therefore the Qout output bus  
will go to Low-Impedance after time tOLZ.  
The data currently on the output register will be available on the output after time tOE. This data is the previous data on the output register, this is the last word read out of the  
previous queue.  
2. In expansion mode the OE inputs of all devices should be connected together. This allows the output busses of all devices to be High-Impedance controlled.  
Cycle:  
*A* Queue A is selected for reads. No data will fall through on this cycle, the previous queue was read to empty.  
*B* No data will fall through on this cycle, the previous queue was read to empty.  
*C* Word, W0 from Qa is read out regardless of REN due to FWFT operation. The OV flag goes LOW indicating that Word W0 is valid.  
*D* Reads are disabled therefore word, W0 of Qa remains on the output bus.  
*E* Reads are again enabled so word W1 is read from Qa.  
*F* Word W2 is read from Qa.  
*G* Queue, Qb is selected on the read port. This queue is actually empty. Word, W3 is read from Qa.  
*H* Word, W4 falls through from Qa.  
*I* Output Valid flag, OV goes HIGH to indicate that Qb is empty. Data on the output port is no longer valid.  
Output Enable is taken HIGH, this is Asynchronous so the output bus goes to High-Impedance after time, tOHZ.  
Figure 15. Read Queue Select, Read Operation and OE Timing  
35  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
SELECT  
NEW QUEUE  
*D*  
NULL QUEUE  
SELECT  
*A*  
*B*  
*C*  
*E*  
*F*  
RCLK  
tAS  
tAH  
tAS  
tAH  
0001xxx  
0000011  
D0 Q3  
RDADD  
RADEN  
tQS  
tQH  
tQS  
tQH  
tENS  
tENH  
REN  
tA  
tA  
tA  
tA  
Qout  
Q1 Wn-3  
Q1 Wn-2  
Q1 Wn-1  
Q1 Wn  
Q3 W0  
FWFT  
tROV  
tROV  
OV  
5940 drw18  
NOTES:  
1. The purpose of the Null queue operation is so that the user can stop reading a block (packet) of data from a queue without filling the 2 stage output pipeline with the next words  
from that queue.  
2. Please see Figure 17, Null Queue Flow Diagram.  
Cycle:  
*A* Null Q of device 0 is selected, when word Wn-1 from previously selected Q1 is read.  
*B* REN is HIGH and Wn (Last Word of the Packet) of Q1 is pipelined onto the O/P register.  
Note: *B* and *C* are a minimum 2 RCLK cycles between Q selects.  
*C* The Null Q is seen as an empty queue on the read side, therefore Wn of Q1 remains in the O/P register and OV goes HIGH.  
*D* A new Q, Q3 is selected and the 1st word of Q3 will fall through present on the O/P register on cycle *F*.  
Figure 16. Read Operation and Null Queue Select  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
Null  
Queue  
Queue 3  
Memory  
Queue 3  
Memory  
Queue 1  
Memory  
Null  
Queue  
Null  
Queue  
Q1  
Q1  
Q1  
Q1  
Q3  
Q3  
Wn  
Wn  
Wn  
Wn  
W0  
W1  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
Qn  
Q1  
Q1  
Q1  
Q1  
Q3  
Wn-1  
Wn  
Wn  
Wn  
Wn  
W0  
5940 drw19  
Figure 17. Null Queue Flow Diagram  
36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
*A*  
*B*  
*C*  
*E*  
*F*  
*D*  
WCLK  
WEN  
1
2
tENH  
tENS  
tAS  
tAH  
tAS  
tQS  
tAH  
WRADD  
D1  
Q2  
D1 Q0  
tQS  
tQH  
tQH  
WADEN  
Din  
tDS  
tDH  
WD-m  
D1 Q2  
tWAF  
tWAF  
tAFLZ  
HIGH-Z  
PAF  
(Device 1)  
tFFHZ  
PAF  
(Device 2)  
5940 drw20  
Cycle:  
*A* Queue 2 of Device 1 is selected on the write port. A queue within Device 2 had previously been selected. The PAF output of device 1 is High-Impedance.  
*B* No write occurs.  
*C* Word, Wd-m is written into Q2 causing the PAF flag to go from HIGH to LOW. The flag latency is 2 WCLK cycles + tWAF.  
*D* Queue 0 if device 1 is now selected for write operations. This queue is not almost full, therefore the PAF flag will update after a 2 WCLK + tWAF latency.  
*E* The PAF flag goes LOW based on the write 2 cycles earlier.  
*F* The PAF flag goes HIGH due to the queue switch to Q0.  
Figure 18. Almost Full Flag Timing and Queue Switch  
tCLKL  
tCLKL  
WCLK  
WEN  
PAF  
1
2
1
tENS  
tENH  
tWAF  
tWAF  
D-(m+1) words  
in Queue  
D - (m+1) words in Queue  
D - m words in Queue  
tSKEW2  
RCLK  
tENS  
tENH  
5940 drw21  
REN  
NOTE:  
1. The waveform here shows the PAF flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read  
from at the almost full boundary.  
Flag Latencies:  
Assertion: 2*WCLK + tWAF  
De-assertion: tSKEW2 + WCLK + tWAF  
If tSKEW2 is violated there will be one extra WCLK cycle.  
Figure 19. Almost Full Flag Timing  
37  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
RCLK  
REN  
HIGH  
AS  
t
tAH  
tAS  
tAH  
RDADD  
D1  
Q3  
D1  
Q1  
tQS  
tQH  
tQH  
tQS  
RADEN  
Qout  
tA  
tA  
tA  
tA  
tOLZ  
HIGH-Z  
HIGH-Z  
D1  
Q3  
Wn  
D
1
Q3  
Wn+1  
D
1
Q1  
W0  
D1 Q1 W1  
t
RAE  
t
RAE  
tAELZ  
PAE  
(Device 1)  
tAEHZ  
PAE  
(Device 2)  
HIGH-Z  
5940 drw22  
Cycle:  
*A* Queue 3 of Device 1 is selected on the read port. A queue within Device 2 had previously been selected. The PAE flag output and the data outputs of device 1 are High-Impedance.  
*B* No read occurs.  
*C* The PAE flag output now switches to device 1. Word, Wn is read from Q3 due to the FWFT operation. This read operation from Q3 is at the almost empty boundary, therefore  
PAE will go LOW 2 RCLK cycles later.  
*D* Q1 of device 1 is selected.  
*E* The PAE flag goes LOW due to the read from Q3 2 RCLK cycles earlier. Word Wn+1 is read out due to the FWFT operation.  
*F* Word, W0 is read from Q1 due to the FWFT operation. The PAE flag goes HIGH to show that Q1 is not almost empty.  
Figure 20. Almost Empty Flag Timing and Queue Switch  
tCLKH  
tCLKL  
WCLK  
tENS  
tENH  
WEN  
PAE  
n+1 words in Queue  
SKEW2  
n+2 words in Queue  
n+1 words in Queue  
tRAE  
t
tRAE  
RCLK  
1
2
tENS  
tENH  
5940 drw23  
REN  
NOTE:  
1. The waveform here shows the PAE flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read  
from at the almost empty boundary.  
Flag Latencies:  
Assertion: 2*RCLK + tRAE  
De-assertion: tSKEW2 + RCLK + tRAE  
If tSKEW2 is violated there will be one extra RCLK cycle.  
Figure 21. Almost Empty Flag Timing  
38  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
*A*  
*B*  
1
*C*  
2
*D*  
*E*  
*F*  
WCLK  
WADEN  
FSTR  
tQH  
tQS  
tQS  
tQH  
t
STS  
tSTH  
tENS  
tENS  
tENH  
tENH  
WEN  
tAH  
tAH  
tAS  
t
AS  
t
AS  
tAH  
Device 4  
D3Q2  
011010  
WRADD  
Dn  
D5Q3  
100 011  
tDH  
100 xxx  
tDS  
t
DH  
tDS  
Wp  
Wp+1  
Wn+1  
D5Q3  
Wn  
D5 Q3  
Wx  
D3 Q2  
Writes to Previous Q  
tSKEW3  
RCLK  
RADEN  
ESTR  
1
2
tQS  
tQH  
t
STS  
t
STH  
tENS  
tENH  
REN  
tAH  
t
AS  
t
AS  
tAH  
RDADD  
Device 5  
D5Q3  
100 0011  
101 xxxx  
tA  
tA  
tA  
tA  
tA  
Wy  
D5 Q3  
Wy+1  
D5 Q3  
Wy+3  
D5 Q3  
Device 5 -Qn  
Wa  
D5 Qx  
Wa+1  
D5 Qn  
Wy+2  
D5 Q3  
Previous value loaded on to PAE bus  
Prev PAEn  
t
PAEHZ  
t
PAE  
tPAEZL  
xxxx1xxx  
Device 5  
xxxx1xxx  
Device 5  
Device 5 PAEn  
xxxx1xxx  
Device 5  
xxxx1xxx  
Device 5  
Previous value loaded on to PAE bus  
D5 Qx Status  
Bus PAEn  
t
RAE  
tRAE  
tRAE  
D5 Q3  
status  
Device 5 PAE  
5940 drw24  
*AA*  
*BB*  
*CC*  
*EE*  
*FF*  
*DD*  
Cycle:  
*A* Queue 3 of Device 5 is selected for write operations.  
Word, Wp is written into the previously selected queue.  
*AA* Queue 3 of Device 5 is selected for read operations.  
Another device has control of the PAEn bus.  
The discrete PAE output of device 5 is currently in High-Impedance and the PAE active flag is controlled by the previously selected device.  
*B* Word Wp+1 is written into the previously selected queue.  
*BB* Word, Wa+1 is read from Qx of D5, due to FWFT operation.  
*C* Word, Wn is written into the newly selected queue, Q3 of D5. This write will cause the PAE flag on the read port to go from LOW to HIGH (not almost empty) after time,  
tSKEW3 + RCLK + tRAE (if tSKEW3 is violated one extra RCLK cycle will be added.  
*CC* Word, Wy from the newly selected queue, Q3 will be read out due to FWFT operation.  
Device 5 is selected on the PAEn bus. Q3 of device 5 will therefore have is PAE status output on PAE[3]. There is a single RCLK cycle latency before the PAEn bus changes  
to the new selection.  
*D* Queue 2 of Device 3 is selected for write operations.  
Word Wn+1 is written into Q3 of D5.  
*DD* The PAEn bus changes control to D5, the PAEn outputs of D5 go to Low-Impedance and are placed onto the outputs. The previously selected device now places its  
PAEn outputs into High-Impedance to prevent bus contention. Word, Wy+1 is read from Q3 of D5.  
The discrete PAE flag will go HIGH to show that Q3 of D5 is not almost empty. Q3 of device 5 will have its PAE status output on PAE[3].  
*E* No writes occur.  
*EE* Word, Wy+2 is read from Q3 of D5.  
*F* Device 4 is selected on the write port for the PAFn bus.  
Word, Wx is written into Q2 of D3.  
*FF* The PAEn bus updates to show that Q3 of D5 is almost empty based on the reading out of word, Wy+1.  
The discrete PAE flag goes LOW to show that Q3 of D5 is almost empty based on the reading of Wy+1.  
Figure 22. PAEn - Direct Mode, Flag Operation – Devices in Expansion  
39  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
RCLK  
tQH  
tQS  
tQS  
tQH  
RADEN  
t
STH  
t
STS  
ESTR  
REN  
t
AS  
tAH  
tAH  
t
AS  
RDADD  
Device 7  
D6Q2  
D0Q1  
110 0010  
111 xxxx  
000 0001  
OE  
tA  
tA  
tA  
tA  
tOLZ  
Qout  
W
Prev. Q  
X
W
Prev. Q  
X +1  
W
D0 Q1  
D - M + 2  
W0  
D6 Q2  
W
D0 Q1  
D-M+1  
tSKEW3  
WCLK  
FSTR  
1
2
t
STS  
t
STH  
t
AS  
tAH  
tAS  
tAH  
WRADD  
Device 0  
000 xxxx  
D0 Q1  
tENS  
tENH  
WEN  
tQS  
tQH  
WADEN  
Din  
t
DS  
t
DH  
tDS  
tDH  
tDS  
tDH  
Word W  
y
Wy+1  
Wy+2  
D0 Q1  
D0 Q1  
D0 Q1  
t
PAFLZ  
tPAF  
t
PAF  
Device 0 PAFn  
xxxxxx0x  
xxxxxx0x  
xxxxxx1x  
xxxxxx1x  
xxxxxx0x  
xxxxxx0x  
Device 0  
Device 0  
Device 0  
Device 0  
Device 0  
HIGH-Z  
Previous Device  
Previous Device  
Bus PAFn  
Device 0  
t
PAFHZ  
HIGH-Z  
Prev. PAFn  
t
PAFLZ  
tWAF  
Device 0 PAF  
HIGH - Z  
5940 drw25  
*AA*  
*BB*  
*CC*  
*DD*  
*EE*  
*FF*  
Cycle:  
*A* Queue 1 of device 0 is selected for read operations.  
The last word in the output register is available on Qout. OE was previously taken LOW so the output bus is in Low-Impedance.  
*AA* Device 0 is selected for the PAFn bus. The bus is currently providing status of a previously selected device X.  
*B* Word, Wx+1 is read out from the previous queue due to the FWFT effect.  
*BB* Queue 1 of device 0 is selected on the write port.  
The PAFn bus is updated with the device selected on the previous cycle, device 0 PAF[1] is LOW showing the status of queue 1.  
The PAFn outputs of the device previously selected on the PAFn bus go to High-Impedance.  
*C* Device 7 is selected for the PAFn bus.  
Word, Wd-m+1 is read from Q1 D0 due to the FWFT operation. This read is at the PAFn boundary of queue D0 Q1. This read will cause the PAF[1] output to go from  
LOW to HIGH (almost full to not almost full), after a delay tSKEW3 + WCLK + tPAF. If tSKEW3 is violated add an extra WCLK cycle.  
*CC* PAFn continues to show status of D0.  
*D* No read operations occur, REN is HIGH.  
*DD* PAF[1] goes HIGH to show that D0 Q1 is not almost empty due to the read on cycle *C*.  
The active queue PAF flag of device 0 goes from High-Impedance to Low-Impedance.  
Word, Wy is written into D0 Q1.  
*E* Queue 2 of Device 6 is selected for write operations.  
*EE* Word, Wy+1 is written into D0 Q1.  
*F* Word, Wd-m+2 is read out due to FWFT operation.  
*FF* PAF[1] and the discrete PAF flag go LOW to show the write on cycle *DD* causes Q1 of D0 to again go almost full.  
Word, Wy+2 is written into D0 Q1.  
*G* Word, W0 is read from Q0 of D6, selected on cycle *E*, due to FWFT.  
Figure 23. PAFn - Direct Mode, Flag Operation – Devices in Expansion  
40  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
WCLK  
t
FSYNC  
tFSYNC  
t
FSYNC  
t
FSYNC  
FXO  
FSYNC  
0
(MASTER)  
tFXO  
t
FXO  
tFXO  
t
FXO /  
0
FXI  
1
tFSYNC  
tFSYNC  
FSYNC  
1
(SLAVE)  
tFXO  
tFXO  
FXO /  
1
FXI  
2
tFSYNC  
tFSYNC  
FSYNC  
2
(SLAVE)  
tFXO  
tFXO  
FXO /  
2
FXI  
0
t
PAF  
t
PAF  
tPAF  
t
PAF  
t
PAF  
PAF[7:0]  
Device 0  
Device 1  
Device 2  
Device 0  
5940 drw26  
NOTE:  
1. This diagram is based on 3 devices connected to expansion mode.  
Figure 24. PAFn Bus - Polled Mode  
41  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
RCLK  
t
ESYNC  
tESYNC  
t
ESYNC  
t
ESYNC  
EXO  
ESYNC  
0
tEXO  
t
EXO  
tEXO  
t
EXO /  
0
EXI  
1
tESYNC  
tESYNC  
ESYNC  
1
tEXO  
tEXO  
EXO /  
1
FXI  
2
tESYNC  
tESYNC  
ESYNC  
2
tEXO  
tEXO  
EXO /  
2
EXI  
0
t
PAE  
t
PAE  
tPAE  
t
PAE  
t
PAE  
PAE  
Device 0  
Device 1  
Device 2  
Device 0  
n
5940 drw27  
Figure 25. PAEn Bus - Polled Mode  
42  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
Serial Programming Data Input  
Serial Enable  
SENI  
SI FXI EXI  
Output Data Bus  
Data Bus  
Q -Q  
17  
D -D  
17  
0
0
Read Clock  
Write Clock  
RCLK  
WCLK  
Write Enable  
Read Enable  
WEN  
REN  
RDADD  
RADEN  
Write Queue Select  
Write Address  
Read Queue Select  
Read Address  
WRADD  
DEVICE  
1
WADEN  
FSTR  
Empty Strobe  
Full Strobe  
ESTR  
PAEn  
Programmable Almost Full  
Programmable Almost Empty  
PAFn  
Empty Sync 1  
Output Valid Flag  
Almost Empty Flag  
Full Sync1  
ESYNC  
FSYNC  
Full Flag  
OV  
FF  
Almost Full Flag  
Serial Clock  
PAF  
PAE  
SCLK  
SENO SO FXO EXO  
SENI SI FXI EXI  
Q -Q  
D -D  
17  
0
17  
0
WCLK  
RCLK  
WEN  
REN  
WRADD  
WADEN  
RDADD  
RADEN  
DEVICE  
2
FSTR  
PAFn  
ESTR  
PAEn  
Empty Sync 2  
Full Sync2  
FSYNC  
ESYNC  
FF  
OV  
PAF  
PAE  
SCLK  
SENO SO FXO EXO  
SENI  
SI FXI EXI  
Q -Q  
D -D  
17  
0
17  
0
WCLK  
RCLK  
REN  
WEN  
WRADD  
WADEN  
RDADD  
RADEN  
DEVICE  
n
FSTR  
PAFn  
FSYNC  
ESTR  
PAEn  
Full Sync n  
Empty Sync n  
ESYNC  
FF  
OV  
PAF  
PAE  
SCLK  
SENO  
FXO EXO  
DONE  
5940 drw28  
NOTES:  
1. If devices are configured for Direct operation of the PAFn/PAEn flag busses the FXI/EXI of the MASTER device should be tied LOW. All other devices tied HIGH. The FXO/EXO  
outputs are DNC (Do Not Connect).  
2. Q outputs must not be mixed between devices, i.e. Q0 of device 1 must connect to Q0 of device 2, etc.  
Figure 26. Multi-Queue Expansion Diagram  
43  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
TheStandardJTAGinterfaceconsistsoffourbasicelements:  
JTAGINTERFACE  
Test Access Port (TAP)  
TAPcontroller  
Instruction Register (IR)  
Data Register Port (DR)  
Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to  
support the JTAG boundary scan interface. The IDT72V51333/72V51343/  
72V51353incorporates thenecessarytapcontrollerandmodifiedpadcellsto  
implementtheJTAG facility.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
NotethatIDTprovidesappropriateBoundaryScanDescriptionLanguage  
programfilesforthesedevices.  
The Figure belowshows the standardBoundary-ScanArchitecture  
DeviceID Reg.  
Mux  
Boundary Scan Reg.  
Bypass Reg.  
TDO  
TDI  
T
A
clkDR, ShiftDR  
UpdateDR  
P
TMS  
TAP  
TCLK  
Cont-  
roller  
TRST  
Instruction Decode  
clklR, ShiftlR  
UpdatelR  
Instruction Register  
Control Signals  
5940 drw29  
Figure 27. Boundary Scan Architecture  
THETAPCONTROLLER  
TEST ACCESS PORT (TAP)  
TheTapcontrollerisasynchronousfinitestatemachinethatrespondsto  
TMSandTCLKsignalstogenerateclockandcontrolsignalstotheInstruction  
andDataRegisters forcaptureandupdateofdata.  
The Tap interface is a general-purpose port that provides access to the  
internaloftheprocessor. Itconsistsoffourinputports(TCLK,TMS,TDI,TRST)  
and one output port (TDO).  
44  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
1
Test-Logic  
Reset  
0
1
Select-  
IR-Scan  
0
1
1
Run-Test/  
Idle  
Select-  
DR-Scan  
0
0
1
1
Capture-DR  
Capture-IR  
0
0
0
0
Shift-DR  
Shift-IR  
1
1
1
1
Input = TMS  
Exit1-IR  
EXit1-DR  
0
0
0
0
Pause-DR  
Pause-IR  
1
1
Exit2-IR  
Exit2-DR  
0
0
1
1
Update-DR  
Update-IR  
1
0
1
0
5940 drw30  
NOTES:  
1. Five consecutive TCK cycles with TMS = 1 will reset the TAP.  
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).  
3. TAP controller must be reset before normal Queue operations can begin.  
Figure 28. TAP Controller State Diagram  
Capture-IRInthiscontrollerstate,theshiftregisterbankintheInstruction  
RegisterparallelloadsapatternoffixedvaluesontherisingedgeofTCK.The  
lasttwosignificantbits arealways requiredtobe01.  
Shift-IR In this controller state, the instruction register gets connected  
betweenTDIandTDO,andthecapturedpatterngetsshiftedoneachrisingedge  
ofTCK.TheinstructionavailableontheTDIpinisalsoshiftedintotheinstruction  
register.  
Refer to the IEEE Standard Test Access Port Specification (IEEE Std.  
1149.1)forthefullstatediagram.  
AllstatetransitionswithintheTAPcontrolleroccurattherisingedgeofthe  
TCLKpulse. TheTMSsignallevel(0or1)determinesthestateprogression  
thatoccursoneachTCLKrisingedge. TheTAPcontrollertakesprecedence  
overthe Queue andmustbe resetafterpowerupofthe device. See TRST  
descriptionformoredetailsonTAPcontrollerreset.  
Exit1-IRThisisacontrollerstatewhereadecisiontoentereitherthePause-  
IRstateorUpdate-IRstateismade.  
Pause-IR This state is providedinordertoallowthe shiftingofinstruction  
registertobetemporarilyhalted.  
Exit2-DRThisisacontrollerstatewhereadecisiontoentereithertheShift-  
IRstateorUpdate-IRstateismade.  
Update-IRInthiscontrollerstate,theinstructionintheinstructionregisteris  
latchedintothelatchbankoftheInstructionRegisteroneveryfallingedgeof  
TCK.Thisinstructionalsobecomesthecurrentinstructiononceitislatched.  
Capture-DRInthiscontrollerstate,thedataisparallelloadedintothedata  
registersselectedbythecurrentinstructionontherisingedgeofTCK.  
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These  
controllerstates are similartothe Shift-IR, Exit1-IR, Pause-IR, Exit2-IRand  
Update-IRstatesintheInstructionpath.  
Test-Logic-ResetAlltestlogicisdisabledinthiscontrollerstateenabling  
thenormaloperationoftheIC.TheTAPcontrollerstatemachineisdesigned  
insuchawaythat,nomatterwhattheinitialstateofthecontrolleris,theTest-  
Logic-ResetstatecanbeenteredbyholdingTMSathighandpulsingTCKfive  
times. This is the reasonwhythe TestReset(TRST)pinis optional.  
Run-Test-IdleInthiscontrollerstate,thetestlogicintheICisactiveonlyif  
certaininstructionsarepresent.Forexample,ifaninstructionactivatestheself  
test,thenitwillbeexecutedwhenthecontrollerentersthisstate.Thetestlogic  
intheICis idles otherwise.  
Select-DR-Scan This is a controllerstate where the decisiontoenterthe  
DataPathortheSelect-IR-Scanstateismade.  
Select-IR-Scan This is a controller state where the decision to enter the  
InstructionPathismade.TheControllercanreturntotheTest-Logic-Resetstate  
otherwise.  
45  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
THE INSTRUCTION REGISTER  
JTAG INSTRUCTION REGISTER  
TheInstructionregisterallowsinstructiontobeseriallyinputintothedevice  
whentheTAPcontrollerisintheShift-IRstate. Theinstructionisdecodedto  
performthefollowing:  
TheInstructionregisterallowsaninstructiontobeshiftedinseriallyintothe  
processor at the rising edge of TCLK.  
TheInstructionis usedtoselectthetesttobeperformed,orthetestdata  
registertobeaccessed,orboth. Theinstructionshiftedintotheregisterislatched  
atthecompletionoftheshiftingprocesswhentheTAPcontrollerisatUpdate-  
IRstate.  
Theinstructionregistermustcontain4bitinstructionregister-basedcells  
whichcanholdinstructiondata. Thesemandatorycellsarelocatednearestthe  
serialoutputstheyaretheleastsignificantbits.  
Selecttestdataregistersthatmayoperatewhiletheinstructionis  
current. Theothertestdataregistersshouldnotinterferewithchip  
operationandtheselecteddataregister.  
Definetheserialtestdataregisterpaththatisusedtoshiftdatabetween  
TDI and TDO during data register scanning.  
The Instruction Register is a 4 bit field (i.e. IR3, IR2, IR1, IR0) to decode  
16differentpossibleinstructions. Instructionsaredecodedasfollows.  
TESTDATAREGISTER  
Hex  
Value  
00  
01  
02  
Instruction  
Function  
TheTestDataregistercontainsthreetestdataregisters:theBypass,the  
Boundary Scan register and Device ID register.  
Theseregistersareconnectedinparallelbetweenacommonserialinput  
andacommonserialdataoutput.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescription,refertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
EXTEST  
SAMPLE/PRELOAD  
IDCODE  
HIGH-IMPEDANCE  
BYPASS  
SelectBoundaryScanRegister  
SelectBoundaryScanRegister  
SelectChipIdentificationdataregister  
JTAG  
04  
0F  
SelectBypassRegister  
JTAG INSTRUCTION REGISTER DECODING  
TEST BYPASS REGISTER  
Thefollowingsectionsprovideabriefdescriptionofeachinstruction. For  
acompletedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
TheregisterisusedtoallowtestdatatoflowthroughthedevicefromTDI  
toTDO. Itcontainsasinglestageshiftregisterforaminimumlengthinserialpath.  
Whenthebypassregisterisselectedbyaninstruction,theshiftregisterstage  
is settoa logiczeroonthe risingedge ofTCLKwhenthe TAPcontrolleris in  
theCapture-DRstate.  
EXTEST  
TherequiredEXTESTinstructionplacestheICintoanexternalboundary-  
testmodeandselectstheboundary-scanregistertobeconnectedbetweenTDI  
andTDO.Duringthisinstruction,theboundary-scanregisterisaccessedto  
drivetestdataoff-chipviatheboundaryoutputsandreceivetestdataoff-chip  
viatheboundaryinputs.Assuch,theEXTESTinstructionistheworkhorseof  
IEEE.Std1149.1,providingforprobe-lesstestingofsolder-jointopens/shorts  
andoflogicclusterfunction.  
The operation of the bypass register should not have any effect on the  
operationofthedeviceinresponsetotheBYPASSinstruction.  
THE BOUNDARY-SCAN REGISTER  
TheBoundaryScanRegisterallowsserialdataTDIbeloadedintoorread  
outoftheprocessorinput/outputports. TheBoundaryScanRegisterisapart  
oftheIEEE1149.1-1990StandardJTAGImplementation.  
IDCODE  
THE DEVICE IDENTIFICATION REGISTER  
TheoptionalIDCODEinstructionallowstheICtoremaininitsfunctionalmode  
andselectstheoptionaldeviceidentificationregistertobeconnectedbetween  
TDI and TDO. The device identification register is a 32-bit shift register  
containinginformationregardingtheICmanufacturer,devicetype,andversion  
code.Accessingthedeviceidentificationregisterdoesnotinterferewiththe  
operationoftheIC.Also,accesstothedeviceidentificationregistershouldbe  
immediatelyavailable,viaaTAPdata-scanoperation,afterpower-upofthe  
ICoraftertheTAPhasbeenresetusingtheoptionalTRSTpinorbyotherwise  
movingtotheTest-Logic-Resetstate.  
The Device IdentificationRegisteris a ReadOnly32-bitregisterusedto  
specify the manufacturer, part number and version of the processor to be  
determinedthroughtheTAPinresponsetotheIDCODEinstruction.  
IDT JEDEC ID number is 0xB3. This translates to 0x33 when the parity  
is droppedinthe11-bitManufacturerIDfield.  
FortheIDT72V51333/72V51343/72V51353,thePartNumberfieldcon-  
tainsthefollowingvalues:  
Device  
Part# Field (HEX)  
0x421  
IDT72V51333  
IDT72V51343  
IDT72V51353  
SAMPLE/PRELOAD  
0x422  
0x423  
TherequiredSAMPLE/PRELOADinstructionallowstheICtoremainina  
normalfunctionalmodeandselectstheboundary-scanregistertobeconnected  
betweenTDIandTDO.Duringthisinstruction,theboundary-scanregistercan  
beaccessedviaadatescanoperation,totakeasampleofthefunctionaldata  
enteringandleavingtheIC.This instructionis alsousedtopreloadtestdata  
intotheboundary-scanregisterbeforeloadinganEXTESTinstruction.  
31(MSB)  
28 27  
12 11  
1 0(LSB)  
Version (4 bits) Part Number (16-bit) Manufacturer ID (11-bit)  
0X0  
0X33  
1
JTAG DEVICE IDENTIFICATION REGISTER  
46  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
HIGH-IMPEDANCE  
TheoptionalHigh-Impedanceinstructionsetsalloutputs(includingtwo-state  
BYPASS  
The required BYPASS instruction allows the IC to remain in a normal  
aswellasthree-statetypes)ofanICtoadisabled(high-impedance)stateand functional mode and selects the one-bit bypass register to be connected  
selects the one-bit bypass register to be connected between TDI and TDO. between TDI and TDO. The BYPASS instruction allows serial data to be  
Duringthisinstruction,datacanbeshiftedthroughthebypassregisterfromTDI transferredthroughtheICfromTDItoTDOwithoutaffectingtheoperationof  
toTDOwithoutaffectingtheconditionoftheICoutputs.  
theIC.  
47  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V51333/72V51343/72V513533.3V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(8 QUEUES) 18 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
tTCK  
t4  
t1  
t2  
TCK  
t3  
TDI/  
TMS  
tDS  
tDH  
TDO  
TDO  
tDO  
t6  
TRST  
5940 drw31  
Notes to diagram:  
t1 = tTCKLOW  
t2 = tTCKHIGH  
t5  
t3 = tTCKFALL  
t4 = tTCKRISE  
t5 = tRST (reset pulse width)  
t6 = tRSR (reset recovery)  
Figure 29. Standard JTAG Timing  
JTAG  
ACELECTRICALCHARACTERISTICS  
(vcc = 3.3V ± 5%; Tcase = 0°C to +85°C)  
Parameter  
Symbol  
Test  
Conditions  
Min. Max. Units  
SYSTEMINTERFACEPARAMETERS  
JTAGClockInputPeriod tTCK  
-
-
-
-
-
-
-
100  
40  
40  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IDT72V51333  
IDT72V51343  
IDT72V51353  
JTAGClockHIGH  
JTAGClockLow  
tTCKHIGH  
tTCKLOW  
tTCKRISE  
tTCKFALL  
tRST  
-
Parameter  
Symbol Test Conditions Min. Max. Units  
JTAGClockRiseTime  
JTAGClockFallTime  
JTAGReset  
5(1)  
5(1)  
-
(1)  
DataOutput  
tDO  
-
20  
-
ns  
ns  
ns  
-
(1)  
DataOutputHold tDOH  
0
50  
50  
DataInput  
tDS  
tDH  
trise=3ns  
tfall=3ns  
10  
10  
-
-
JTAG Reset Recovery  
tRSR  
-
NOTE:  
1. Guaranteed by design.  
NOTE:  
1. 50pf loading on external output signals.  
48  
ORDERINGINFORMATION  
IDT  
XXXXX  
X
XX  
X
X
Process /  
Temperature  
Range  
Device Type  
Power  
Speed  
Package  
BLANK  
I(1)  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Plastic Ball Grid Array (PBGA, BB256-1)  
BB  
Commercial Only  
Commercial & Industrial  
Clock Cycle Time (tCLK  
Speed in Nanoseconds  
)
6
7-5  
L
Low Power  
72V51333 589,824 bits 3.3V Multi-Queue Flow-Control Device  
72V51343 1,179,648 bits 3.3V Multi-Queue Flow-Control Device  
72V51353 2,359,296 bits 3.3V Multi-Queue Flow-Control Device  
5940 drw32  
NOTE:  
1. Industrial temperature range product for the 7-5ns is available as a standard device. All other speed grades are available by special order.  
DATASHEETDOCUMENTHISTORY  
10/10/2001  
11/16/2001  
12/19/2001  
01/15/2002  
04/05/2002  
07/01/2002  
06/04/2003  
pgs. 1, 7, 9, 13, 14 and 26.  
pgs. 1, 4, 9, 14, 16, 17, 22, 23, 26-29 and 31.  
pgs. 11 and 27.  
pg. 46.  
pgs. 6, 8, 10, 12 and 47.  
pgs. 2 and 26.  
pgs. 1 through 49.  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-360-1533  
email:Flow-Controlhelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
49  

相关型号:

72V51343L7-5BBI8

PBGA-256, Reel
IDT

72V51346L10BB

PBGA-256, Tray
IDT

72V51346L10BB9

PBGA-256, Tray
IDT

72V51346L6BB9

PBGA-256, Tray
IDT

72V51346L7-5BB8

PBGA-256, Reel
IDT

72V51346L7-5BB9

PBGA-256, Tray
IDT

72V51346L7-5BBI8

PBGA-256, Reel
IDT

72V51356L10BB8

PBGA-256, Reel
IDT

72V51356L7-5BB

PBGA-256, Tray
IDT

72V51356L7-5BB8

PBGA-256, Reel
IDT

72V51456L7-5BB8

PBGA-256, Reel
IDT

72V70180PF8

TQFP-64, Reel
IDT