72V7280L10BBG8 [IDT]

PBGA-256, Reel;
72V7280L10BBG8
型号: 72V7280L10BBG8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PBGA-256, Reel

文件: 总42页 (文件大小:444K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.3 VOLTHIGH-DENSITYSUPERSYNCII72-BITFIFO  
512 x 72, 1,024 x 72  
2,048 x 72, 4,096 x 72  
8,192 x 72, 16,384 x 72  
32,768 x 72, 65,536 x 72  
IDT72V7230, IDT72V7240  
IDT72V7250, IDT72V7260  
IDT72V7270, IDT72V7280  
IDT72V7290,IDT72V72100  
Master Reset clears entire FIFO  
FEATURES:  
Partial Reset clears data, but retains programmable settings  
Choose among the following memory organizations:  
Empty, Full and Half-Full flags signal FIFO status  
Programmable Almost-Empty and Almost-Full flags, each flag can  
default to one of eight preselected offsets  
Selectable synchronous/asynchronous timing modes for Almost-  
Empty and Almost-Full flags  
Program programmable flags by either serial or parallel means  
Select IDT Standard timing (using EF and FF flags) or First Word  
Fall Through timing (using OR and IR flags)  
IDT72V7230  
IDT72V7240  
IDT72V7250  
IDT72V7260  
IDT72V7270  
IDT72V7280  
IDT72V7290  
512 x 72  
1,024 x 72  
2,048 x 72  
4,096 x 72  
8,192 x 72  
16,384 x 72  
32,768 x 72  
IDT72V72100 65,536 x 72  
100 MHz operation (10 ns read/write cycle time)  
User selectable input and output port bus-sizing  
- x72 in to x72 out  
- x72 in to x36 out  
- x72 in to x18 out  
Output enable puts data outputs into high impedance state  
Easily expandable in depth and width  
Independent Read and Write Clocks (permit reading and writing  
simultaneously)  
Asynchronous operation of Output Enable, OE  
Read Chip Select ( RCS ) on Read Side  
- x36 in to x72 out  
- x18 in to x72 out  
Available in a 256-pin Fine Pitch Ball Grid Array package (PBGA)  
Features JTAG (Boundary Scan)  
Big-Endian/Little-Endian user selectable word representation  
Fixed, low first word latency  
High-performance submicron CMOS technology  
Industrial temperature range (–40°C to +85°C) is available  
Zero latency retransmit  
Auto power down minimizes standby power consumption  
FUNCTIONALBLOCKDIAGRAM  
D0 -Dn (x72, x36 or x18)  
LD SEN  
SCLK  
WEN  
WCLK  
INPUT REGISTER  
OFFSET REGISTER  
FF/IR  
PAF  
EF/OR  
PAE  
FLAG  
LOGIC  
WRITE CONTROL  
LOGIC  
RAM ARRAY  
512 x 72  
HF  
FWFT/SI  
PFM  
1,024 x 72  
2,048 x 72  
4,096 x 72  
8,192 x 72  
16,384 x 72  
32,768 x 72  
65,536 x 72  
FSEL0  
FSEL1  
WRITE POINTER  
READ POINTER  
BE  
CONTROL  
LOGIC  
IP  
READ  
CONTROL  
LOGIC  
RT  
BM  
IW  
OW  
BUS  
OUTPUT REGISTER  
RM  
CONFIGURATION  
MRS  
PRS  
RESET  
LOGIC  
RCLK  
TCK  
TRST  
TMS  
TDO  
TDI  
REN  
RCS  
JTAG  
CONTROL  
(BOUNDARY SCAN)  
OE  
4680 drw01  
Q0 -Qn (x72, x36 or x18)  
IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. SuperSync II FIFO is a trademark of Integrated Device Technology, Inc.  
DECEMBER 2003  
COMMERCIAL TEMPERATURE RANGE  
1
2003 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
DSC-4680/10  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
Bus-MatchingSyncFIFOsareparticularlyappropriatefornetwork,video,  
telecommunications,datacommunicationsandotherapplicationsthatneedto  
bufferlargeamountsofdataandmatchbussesofunequalsizes.  
EachFIFOhas a data inputport(Dn)anda data outputport(Qn), bothof  
whichcanassumeeithera72-bit, 36-bitora18-bitwidthasdeterminedbythe  
stateofexternalcontrolpinsInputWidth(IW),OutputWidth(OW),andBus-  
Matching(BM)pinduringtheMasterResetcycle.  
TheinputportiscontrolledbyaWriteClock(WCLK)inputandaWriteEnable  
(WEN)input. DataiswrittenintotheFIFOoneveryrisingedgeofWCLKwhen  
WENisasserted. TheoutputportiscontrolledbyaReadClock(RCLK)input  
DESCRIPTION:  
The IDT72V7230/72V7240/72V7250/72V7260/72V7270/72V7280/  
72V7290/72V72100areexceptionallydeep,highspeed,CMOSFirst-In-First-  
Out(FIFO)memorieswithclockedreadandwritecontrolsandaflexibleBus-  
Matchingx72/x36/x18dataflow. TheseFIFOsofferseveralkeyuserbenefits:  
• Flexible x72/x36/x18 Bus-Matching on both read and write ports  
The period required by the retransmit operation is fixed and short.  
Thefirstworddatalatencyperiod,fromthetimethefirstwordiswrittentoan  
emptyFIFOtothe time itcanbe read, is fixedandshort.  
Highdensityofferingsupto4Mbit  
PINCONFIGURATION  
A1 BALL PAD CORNER  
A
Q33 Q35 Q47 Q50  
Q32 Q34 Q46 Q49  
D50  
D33  
Q53 Q65 Q68 Q71 D71 D68  
D65 D53  
D64 D52  
D47  
D35  
B
C
D
E
F
D67  
D49 D46 D34 D32  
Q52 Q64 Q67 Q70 D70  
Q51 Q63 Q66 Q69 D69  
Q30 Q45 Q48  
D48  
Q31  
D66 D63 D51  
D45  
D30 D31  
TRST  
Q29 Q28 Q27 VCC GND VCC GND TCK TDI  
GND VCC GND VCC GND VCC  
TDO TMS GND D27 D28 D29  
VCC  
Q17 Q16 Q15 VCC  
Q14 Q13 Q12 VCC GND  
GND  
GND  
GND D15 D16 D17  
D12 D13 D14  
VCC GND VCC GND VCC  
VCC GND  
G
H
J
Q11 Q10 Q9 VCC  
GND D9  
D10 D11  
GND VCC GND VCC GND VCC GND VCC  
Q62 Q61 Q60 VCC GND VCC GND VCC GND VCC GND VCC GND D60 D61 D62  
Q59 Q58 Q57 VCC GND VCC GND VCC GND VCC GND VCC GND D57 D58 D59  
K
L
Q56 Q55 Q54 VCC GND VCC GND VCC GND VCC  
Q44 Q43 Q42 VCC  
VCC GND D54 D55 D56  
D42 D43 D44  
GND  
GND  
GND VCC GND VCC GND VCC  
GND IW  
GND SCLK D39 D40 D41  
M
N
P
R
T
Q41 Q40 Q39 VCC GND VCC GND GND FS1 FS0 OW  
FWFT/  
SI  
RT  
Q6  
Q7  
BE  
HF  
LD  
D3  
D4  
SEN  
D6  
Q38 Q37 Q36  
Q26 Q25 Q18  
Q24 Q21 Q19  
Q23 Q22 Q20  
RM PFM  
BM  
IP  
D36 D37 D38  
Q3  
Q4  
Q0  
Q1  
D0  
D1  
D18 D25  
D26  
RCS PAE MRS PRS  
D7  
D19 D21 D24  
OE  
REN  
7
EF  
RCLK  
8
PAF WEN  
WCLK  
D20 D22  
14 15  
D23  
FF  
Q8  
Q5  
Q2  
D2  
D5  
D8  
1
2
3
4
5
6
9
10  
11  
12  
13  
16  
4680 drw02  
PBGA (BB256-1, order code: BB)  
TOP VIEW  
2
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
ForapplicationsrequiringmoredatastoragecapacitythanasingleFIFO  
canprovide,theFWFTtimingmodepermitsdepthexpansionbychainingFIFOs  
inseries(i.e.thedataoutputsofoneFIFOareconnectedtothecorresponding  
data inputs of the next). No external logic is required.  
These FIFOs have five flagpins, EF/OR (EmptyFlagorOutputReady),  
FF/IR (Full Flag or Input Ready), HF (Half-full Flag), PAE (Programmable  
Almost-Emptyflag)andPAF(ProgrammableAlmost-Fullflag). TheEFandFF  
functions are selected in IDT Standard mode. The IR and OR functions are  
selected in FWFT mode. HF, PAE and PAF are always available for use,  
irrespectiveoftimingmode.  
PAEandPAFcanbeprogrammedindependentlytoswitchatanypointin  
memory. Programmableoffsetsdeterminetheflagswitchingthresholdandcan  
beloadedbytwomethods:parallelorserial. Eightdefaultoffsetsettingsarealso  
provided,sothatPAEcanbesettoswitchatapredefinednumberoflocations  
from the empty boundary and the PAF threshold can also be set at similar  
predefinedvaluesfromthefullboundary. Thedefaultoffsetvaluesaresetduring  
MasterResetbythe state ofthe FSEL0, FSEL1, and LD pins.  
For serial programming, SEN together with LD on each rising edge of  
SCLK,areusedtoloadtheoffsetregistersviatheSerialInput(SI). Forparallel  
programming,WENtogetherwithLDoneachrisingedgeofWCLK,areused  
toloadtheoffsetregistersviaDn. RENtogetherwithLDoneachrisingedge  
ofRCLKcanbeusedtoreadtheoffsetsinparallelfromQnregardlessofwhether  
serialorparalleloffsetloadinghasbeenselected.  
DESCRIPTION(CONTINUED)  
andReadEnable(REN)input. DataisreadfromtheFIFOoneveryrisingedge  
ofRCLKwhenRENisasserted. AnOutputEnable(OE)inputisprovidedfor  
three-statecontroloftheoutputs.  
AReadChipSelect(RCS)inputisalsoprovidedforsynchronousenable  
anddisableofthereadportcontrolinput,REN. TheRCSinputissynchronized  
tothereadclock,andalsoprovidesthree-statecontroloftheQnoutputs.When  
RCS is disable, REN will be disabled internally and data outputs will be in  
High-Impedancestate.  
ThefrequenciesofboththeRCLKandtheWCLKsignalsmayvaryfrom0  
tofMAXwithcompleteindependence. Therearenorestrictionsonthefrequency  
oftheoneclockinputwithrespecttotheother.  
Therearetwopossibletimingmodesofoperationwiththesedevices:IDT  
Standard mode and First Word Fall Through (FWFT) mode.  
InIDTStandardmode,thefirstwordwrittentoanemptyFIFOwillnotappear  
onthedataoutputlinesunlessaspecificreadoperationisperformed. Aread  
operation,whichconsistsofactivatingRENandenablingarisingRCLKedge,  
willshiftthewordfrominternalmemorytothedataoutputlines.  
InFWFTmode,thefirstwordwrittentoanemptyFIFOisclockeddirectly  
tothedataoutputlinesafterthreetransitionsoftheRCLKsignal. ARENdoes  
not have to be asserted for accessing the first word. However, subsequent  
wordswrittentotheFIFOdorequireaLOWonRENforaccess. Thestateof  
theFWFT/SIinputduringMasterResetdeterminesthetimingmodeinuse.  
PARTIAL RESET (PRS) MASTER RESET (MRS)  
WRITE CLOCK (WCLK)  
READ CLOCK (RCLK)  
READ ENABLE (REN)  
READ CHIP SELECT (RCS)  
OUTPUT ENABLE (OE)  
WRITE ENABLE (WEN)  
LOAD (LD)  
IDT  
(x72, x36, x18) DATA IN (D0 - Dn)  
(x72, x36, x18) DATA OUT (Q0 - Qn)  
72V7230  
72V7240  
72V7250  
72V7260  
72V7270  
72V7280  
72V7290  
72V72100  
RETRANSMIT (RT)  
SERIAL IN CLOCK(SCLK)  
EMPTY FLAG/OUTPUT READY (EF/OR)  
PROGRAMMABLE ALMOST-EMPTY (PAE)  
SERIAL ENABLE(SEN)  
FIRST WORD FALL THROUGH/SERIAL INPUT  
(FWFT/SI)  
HALF-FULL FLAG (HF)  
FULL FLAG/INPUT READY (FF/IR)  
JTAG CLOCK (TCLK)  
PROGRAMMABLE ALMOST-FULL (PAF)  
JTAG RESET (TRST)  
JTAG MODE (TMS)  
(TDO)  
INTERSPERSED/  
NON-INTERSPERSED PARITY (IP)  
BIG-ENDIAN/LITTLE-ENDIAN (BE)  
(TDI)  
OUTPUT WIDTH (OW)  
INPUT WIDTH (IW)  
BUS-  
4680 drw03  
MATCHING  
(BM)  
Figure 1. Single Device Configuration Signal Flow Diagram  
3
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
DuringMasterReset(MRS)thefollowingeventsoccur: thereadandwrite  
Thedevicecanbeconfiguredwithdifferentinputandoutputbuswidthsas  
pointers are set to the first location of the FIFO. The FWFT pin selects IDT shown in Table 1.  
Standardmode orFWFTmode.  
ABig-Endian/Little-Endiandatawordformatisprovided. Thisfunctionis  
The Partial Reset (PRS) also sets the read and write pointers to the first usefulwhentheFIFOisusedinBus-Matchingmode,todetermineorderofthe  
location of the memory. However, the timing mode, programmable flag words. Asanexample,ifBig-Endianmodeisselected,thenthemostsignificant  
programmingmethod,anddefaultorprogrammedoffsetsettingsexistingbefore word of the long word written into the FIFO will be read out of the FIFO first,  
PartialResetremainunchanged. Theflagsareupdatedaccordingtothetiming followedbytheleastsignificantword. IfLittle-Endianformatisselected,thenthe  
modeandoffsetsineffect. PRSisusefulforresettingadeviceinmid-operation, leastsignificantwordofthelongwordwrittenintotheFIFOwillbereadoutfirst,  
whenreprogrammingprogrammableflagswouldbeundesirable.  
followedbythemostsignificantword. Themodedesiredisconfiguredduring  
ItisalsopossibletoselectthetimingmodeofthePAE(ProgrammableAlmost- masterresetbythestateoftheBig-Endian(BE)pin.  
Empty flag) and PAF (Programmable Almost-Full flag) outputs. The timing  
TheInterspersed/Non-InterspersedParity(IP)bitfunctionallowstheuser  
modescanbesettobeeitherasynchronousorsynchronousforthePAEand to select the parity bit in the word loaded into the parallel port (D0-Dn) when  
PAFflags.  
programmingtheflagoffsets. IfInterspersedParitymodeisselected,thenthe  
IfasynchronousPAE/PAFconfigurationisselected, thePAEisasserted FIFOwillassumethattheparitybitislocatedinbitpositionD8duringtheparallel  
LOWontheLOW-to-HIGHtransitionofRCLK.PAEisresettoHIGHontheLOW- programmingoftheflagoffsets. IfNon-InterspersedParitymodeisselected,  
to-HIGHtransitionofWCLK. Similarly,thePAFisassertedLOWontheLOW- thenD8is assumedtobe a validbitandD16andD17are ignored. IPmode  
to-HIGHtransitionofWCLKandPAF is resettoHIGHonthe LOW-to-HIGH is selectedduring MasterResetbythestateoftheIPinputpin.  
transitionofRCLK.  
If,atanytime,theFIFOisnotactivelyperforminganoperation,thechipwill  
IfsynchronousPAE/PAFconfigurationisselected,thePAEisassertedand automaticallypowerdown. Onceinthepowerdownstate,thestandbysupply  
updated on the rising edge of RCLK only and not WCLK. Similarly, PAF is currentconsumptionisminimized. Initiatinganyoperation(byactivatingcontrol  
asserted and updated on the rising edge of WCLK only and not RCLK. The inputs)willimmediatelytakethedeviceoutofthepowerdownstate.  
modedesiredisconfiguredduringmasterresetbythestateoftheProgrammable  
Flag Mode (PFM) pin.  
Both an Asynchronous Output Enable pin (OE) and Synchronous Read  
Chip Select pin (RCS) are provided on the FIFO. The Synchronous Read  
TheRetransmitfunctionallowsdatatoberereadfromtheFIFOmorethan ChipSelect issynchronizedtotheRCLK. Boththeoutputenableandreadchip  
once. ALOWontheRTinputduringarisingRCLKedgeinitiatesaretransmit selectcontroltheoutputbufferoftheFIFO,causingthebuffertobeeitherHIGH  
operationbysettingthereadpointertothefirstlocationofthememoryarray. impedanceorLOWimpedance.  
Azero-latencyretransmittimingmodecanbeselectedusingtheRetransmit  
JTAGtestpinsarealsoprovided,theFIFOhasfullyfunctionalBoundary  
timing Mode pin (RM). During Master Reset, a LOW on RM will select zero Scan feature, compliant with IEEE 1149.1 Standard Test Access Port and  
latency retransmit. A HIGH on RM during Master Reset will select normal BoundaryScanArchitecture.  
latency.  
The IDT72V7230/72V7240/72V7250/72V7260/72V7270/72V7280/  
If zero latency retransmit operation is selected, the first data word to be 72V7290/72V72100arefabricatedusingIDT’shighspeedsubmicronCMOS  
retransmittedwillbeplacedontheoutputregisterwithrespecttothesameRCLK technology.  
edgethatinitiatedtheretransmitbasedonRTbeingLOW.  
RefertoFigure16and17forRetransmitTimingwithnormallatency. Refer  
to Figure 18 and 19 for Zero Latency Retransmit Timing.  
TABLE 1 BUS-MATCHING CONFIGURATION MODES  
BM  
IW  
OW  
Write Port Width  
Read Port Width  
L
H
H
H
H
X
H
H
L
X
L
x72  
x36  
x18  
x72  
x72  
x72  
x72  
x72  
x36  
x18  
H
L
L
H
4
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
PIN DESCRIPTION  
Symbol  
Name  
DataInputs  
I/O  
Description  
D0–D71  
I
Data inputs for a 72-, 36- or 18-bit bus. When in 36- or 18-bit mode, the unused input pins should be tied  
LOW.  
MRS  
MasterReset  
I
MRSinitializesthereadandwritepointerstozeroandsetstheoutputregistertoallzeroes. DuringMasterReset,  
theFIFOis configuredforeitherFWFTorIDTStandardmode,Bus-Matchingconfigurations,oneofeight  
programmableflagdefaultsettings,serialorparallelprogrammingoftheoffsetsettings,Big-Endian/Little-Endian  
format,zerolatencytimingmode,interspersedparity,andsynchronousversusasynchronousprogrammable  
flagtimingmodes.  
PRS  
RT  
PartialReset  
Retransmit  
I
I
I
PRSinitializesthereadandwritepointerstozeroandsetstheoutputregistertoallzeroes. DuringPartialReset,  
theexistingmode(IDTorFWFT),programmingmethod(serialorparallel),andprogrammableflagsettings  
are allretained.  
RT assertedontherisingedgeofRCLKinitializes theREADpointertozero,sets theEFflagtoLOW(OR to  
HIGHinFWFTmode)anddoesnotdisturbthewritepointer,programmingmethod,existingtimingmodeor  
programmableflagsettings.RTisusefultorereaddatafromthefirstphysicallocationoftheFIFO.  
DuringMasterReset,selectsFirstWordFallThroughorIDTStandardmode.AfterMasterReset,thispinfunctions  
asaserialinputforloadingoffsetregisters.  
FWFT/SI FirstWordFall  
Through/Serial In  
OW  
IW  
OutputWidth  
InputWidth  
I
I
I
Thispin,alongwithIWandBM,selectsthebuswidthofthereadport.SeeTable1forbussizeconfiguration.  
Thispin,alongwithOWandBM, selectsthebuswidthofthewriteport.SeeTable1forbussizeconfiguration.  
BM  
Bus-Matching  
BM works with IW and OW to select the bus sizes for both write and read ports. See Table 1 for bus size  
configuration.  
BE  
Big-Endian/  
Little-Endian  
I
I
I
I
I
I
I
During Master Reset, a LOW on BE will select Big-Endian operation. A HIGH on BE during Master Reset  
willselectLittle-Endianformat.  
RM  
RetransmitTiming  
Mode  
DuringMasterReset,aLOWonRMwillselectzerolatencyRetransmittimingMode.AHIGHonRMwillselect  
normallatencymode.  
PFM  
IP  
Programmable  
Flag Mode  
DuringMasterReset,aLOWonPFMwillselectAsynchronousProgrammableflagtimingmode.AHIGHon  
PFM willselectSynchronousProgrammableflagtimingmode.  
InterspersedParity  
FlagSelectBit0  
FlagSelectBit1  
WriteClock  
DuringMasterReset,aLOWonIPwillselectNon-InterspersedParitymode.A HIGHwillselectInterspersed  
Paritymode.  
FSEL0  
FSEL1  
WCLK  
DuringMasterReset,thisinputalongwithFSEL1andtheLDpin,willselectthedefaultoffsetvaluesforthe  
programmableflags PAEandPAF.Thereareuptoeightpossiblesettings available.  
DuringMasterReset,thisinputalongwithFSEL0andtheLDpinwillselectthedefaultoffsetvaluesforthe  
programmableflags PAEandPAF.Thereareuptoeightpossiblesettings available.  
WhenenabledbyWEN,therisingedgeofWCLKwritesdataintotheFIFOandoffsetsintotheprogrammable  
registersforparallelprogramming.  
WEN  
RCLK  
WriteEnable  
ReadClock  
I
I
WENenablesWCLKforwritingdataintotheFIFOmemoryandoffsetregisters.  
WhenenabledbyREN, the risingedge ofRCLKreads data fromthe FIFOmemoryandoffsets fromthe  
programmableregisters.(RCSmustbeactive).  
REN  
OE  
ReadEnable  
OutputEnable  
I
I
REN enables RCLKforreadingdata fromthe FIFOmemoryandoffsetregisters. (RCSmustbe active).  
OE provides asynchronous controlof the outputimpedance ofQn. Duringa MasterorPartialResetthe OE  
inputistheonlyinputthatprovideHigh-Impedancecontrolofthedataoutputs.  
RCS  
ReadChipSelect  
SerialInputClock  
I
I
RCSprovidessynchronouscontrolof thereadportandoutputimpedanceofQn,synchronoustoRCLK.During  
aMasterorPartialResettheRCSinputis dontcare,ifOEis LOWthedataoutputs willbeLow-Impedance  
regardless ofRCS.  
when enabled by SEN, the rising edge of SCLK writes one bit of data (present on the SI input), into the  
programmableregisterforserialprogramming.  
SCLK  
SEN  
LD  
SerialEnable  
Load  
I
I
SENenablesserialloadingofprogrammableflagoffsets.  
This is a dual purpose pin. During Master Reset, the state of the LD input along with FSEL0 and FSEL1,  
determinesoneofeightdefaultoffsetvaluesforthePAEandPAFflags,alongwiththemethodbywhichthese  
offsetregisterscanbeprogrammed,parallelorserial(seeTable2). AfterMasterReset,thispinenableswriting  
toandreadingfromtheoffsetregisters.  
FF/IR  
Full Flag/  
Input Ready  
O
IntheIDTStandardmode, the FF functionis selected. FF indicates whetherornottheFIFOmemoryis full.  
IntheFWFTmode,theIRfunctionisselected. IRindicateswhetherornotthereisspaceavailableforwriting  
totheFIFOmemory.  
5
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
PINDESCRIPTION(CONTINUED)  
Symbol  
Name  
I/O  
Description  
EF/OR EmptyFlag/  
O
IntheIDTStandardmode,theEFfunctionisselected. EFindicateswhetherornottheFIFOmemoryisempty.  
InFWFTmode,theOR functionisselected. ORindicateswhetherornotthereisvaliddataavailableattheoutputs.  
OutputReady  
PAF  
PAE  
HF  
Programmable  
Almost-FullFlag  
O
O
PAF goes HIGHifthenumberoffreelocations intheFIFOmemoryis morethanoffsetm,whichis storedin  
theFullOffsetregister. PAF goes LOWifthenumberof freelocations intheFIFOmemoryis less thanor  
equaltom.  
Programmable  
Almost-Empty  
PAEgoes LOWifthenumberofwords intheFIFOmemoryis less thanoffsetn,whichis storedintheEmpty  
Offset register. PAE goes HIGH if the number of Flag words in the FIFO memory is greater than or equal to  
offsetn.  
Half-FullFlag  
O
O
HFindicates whethertheFIFOmemoryis moreorless thanhalf-full.  
Data outputs for an 72-, 36- or 18-bit bus. When in 36- or 18-bit mode, the unused output pins should not  
Q0–Q71 DataOutputs  
beconnected. DataOutputs arenot5Vtolerantregardless ofthestateoftheOEandRCS.  
(1)  
TCK  
JTAGClock  
I
I
ClockinputforJTAGfunction.OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.Testoperations  
of the device are synchronous to TCK. Data from TMS and TDI are sampled on the rising edge of TCK and  
outputschangeonthefallingedgeofTCK.IftheJTAGfunctionisnotusedthissignalneedstobetiedtoGND.  
(1)  
TDI  
JTAGTestDataInput  
JTAGTestDataOutput  
One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation,  
testdata seriallyloadedvia the TDIonthe risingedge ofTCKtoeitherthe InstructionRegister, IDRegister  
andBypassRegister.Aninternalpull-upresistorforcesTDIHIGHifleftunconnected.  
(1)  
TDO  
O
One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation,  
testdataseriallyloadedoutputviatheTDOonthefallingedgeofTCKfromeithertheInstructionRegister,ID  
RegisterandBypass Register. This outputis highimpedance exceptwhenshifting, while inSHIFT-DRand  
SHIFT-IRcontrollerstates.  
TMS(1)  
JTAGModeSelect  
JTAGReset  
I
I
TMS is a serial input pin. One of four terminals required by IEEE Standard 1149.1-1990. TMS directs the  
thedevicethroughitsTAPcontrollerstates.Aninternalpull-upresistorforcesTMSHIGHifleftunconnected.  
(1)  
TRST  
TRSTisanasynchronousresetpinfortheJTAGcontroller.TheJTAGTAPcontrollerdoesnotautomatically  
resetuponpower-up, thus itmustbe resetbyeitherthis signalorbysettingTMS=HIGHforfive TCKcycles.  
IftheTAPcontrollerisnotproperlyresetthentheFIFOoutputswillalwaysbeinhigh-impedance.IftheJTAG  
function is used but the user does not want to use TRST, then TRST can be tied with MRS to ensure proper  
FIFOoperation.IftheJTAGfunctionis notusedthenthis signalneeds tobetiedtoGND.  
NOTE:  
1. These pins are for the JTAG port. Please refer to pages 22-25 and Figures 5-7.  
6
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
ABSOLUTEMAXIMUMRATINGS  
RECOMMENDED DC OPERATING  
CONDITIONS  
Symbol  
Rating  
Commercial  
Unit  
VTERM  
TerminalVoltage  
with respect to GND  
–0.5to+4.5  
V
Symbol  
Parameter  
SupplyVoltage  
Min.  
Typ.  
Max.  
Unit  
VCC  
3.15  
3.3  
3.45  
V
TSTG  
IOUT  
Storage  
Temperature  
–55 to +125  
–50 to +50  
°C  
GND  
VIH  
SupplyVoltage  
0
2.0  
0
0
0
VCC+0.3  
0.8  
V
V
InputHighVoltage  
InputLowVoltage  
DCOutputCurrent  
mA  
(1)  
VIL  
V
NOTE:  
TA  
OperatingTemperature  
Commercial  
70  
°C  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
NOTES:  
1. VCC = 3.3V ± 0.15V, JEDEC JESD8-A compliant.  
2. 1.5V undershoots are allowed for 10ns once per cycle.  
DCELECTRICALCHARACTERISTICS  
(Commercial: VCC = 3.3V ± 0.15V, TA = 0°C to +70°C; JEDEC JESD8-A compliant)  
IDT72V7230L  
IDT72V7240L  
IDT72V7250L  
IDT72V7260L  
IDT72V7270L  
IDT72V7280L  
IDT72V7290L  
IDT72V72100L  
Commercial  
tCLK = 10, 15 ns  
Symbol  
Parameter  
Min.  
Max.  
Unit  
(1)  
ILI  
InputLeakageCurrent  
OutputLeakageCurrent  
–10  
–10  
2.4  
10  
10  
µ A  
µA  
V
(2)  
ILO  
VOH  
VOL  
Output Logic 1Voltage, IOH = –2 mA  
Output Logic 0Voltage, IOL = 4 mA  
0.4  
V
(3,4,5)  
ICC1  
Active Power Supply Current  
StandbyCurrent  
75  
15  
mA  
mA  
(3,6)  
ICC2  
NOTES:  
1. Measurements with 0.4 VIN VCC.  
2. OE VIH, 0.4 VOUT VCC.  
3. Tested with outputs open (IOUT = 0).  
4. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz.  
5. Typical ICC1 = 15.5 + 2.275*fS + 0.002*CL*fS (in mA) with VCC = 3.3V, tA = 25°C, fS = WCLK frequency = RCLK frequency (in MHz, using TTL levels), data switching at  
fS/2, CL = capacitive load (in pF).  
6. All Inputs = VCC - 0.2V or GND + 0.2V, except RCLK and WCLK, which toggle at 20 MHz.  
CAPACITANCE(TA = +25°C, f = 1.0MHz)  
Symbol  
Parameter(1)  
Conditions  
Max.  
Unit  
(2)  
CIN  
Input  
VIN = 0V  
10  
pF  
Capacitance  
(1,2)  
COUT  
Output  
VOUT = 0V  
10  
pF  
Capacitance  
NOTES:  
1. With output deselected, (OE VIH).  
2. Characterized values, not currently tested.  
7
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
ACELECTRICALCHARACTERISTICS(1)  
(Commercial: VCC = 3.3V ± 0.15V, TA = 0°C to +70°C; JEDEC JESD8-A compliant)  
Commercial  
IDT72V7230L10  
IDT72V7240L10  
IDT72V7250L10  
IDT72V7260L10  
IDT72V7270L10  
IDT72V7280L10  
IDT72V7290L10  
IDT72V72100L10  
IDT72V7230L15  
IDT72V7240L15  
IDT72V7250L15  
IDT72V7260L15  
IDT72V7270L15  
IDT72V7280L15  
IDT72V7290L15  
IDT72V72100L15  
Symbol  
fS  
Parameter  
Min.  
1
Max.  
100  
6.5  
15  
Min.  
Max.  
66.7  
10  
Unit  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Cycle Frequency  
DataAccessTime  
Clock Cycle Time  
Clock High Time  
1
tA  
tCLK  
10  
4.5  
4.5  
3.5  
0.5  
3.5  
0.5  
3.5  
0.5  
10  
10  
10  
0
15  
6
15  
tCLKH  
tCLKL  
tDS  
Clock Low Time  
6
DataSetupTime  
4
tDH  
DataHoldTime  
1
tENS  
EnableSetupTime  
EnableHoldTime  
LoadSetupTime  
4
tENH  
tLDS  
1
4
tLDH  
LoadHoldTime  
1
tRS  
ResetPulseWidth(2)  
ResetSetupTime  
ResetRecoveryTime  
ResettoFlagandOutputTime  
ModeSelectTime  
RetransmitSetupTime  
15  
15  
15  
0
tRSS  
tRSR  
tRSF  
tFWFT  
tRTS  
6
8
3.5  
1
4
(3)  
tOLZ  
tOE  
OutputEnabletoOutputinLowZ  
OutputEnabletoOutputValid  
1
1
1
(3)  
tOHZ  
tWFF  
tREF  
OutputEnabletoOutputinHighZ  
Write Clock to FF or IR  
Read Clock to EF or OR  
ClocktoAsynchronousProgrammableAlmost-FullFlag  
WriteClocktoSynchronousProgrammableAlmost-FullFlag  
ClocktoAsynchronousProgrammableAlmost-EmptyFlag  
ReadClocktoSynchronousProgrammableAlmost-EmptyFlag  
Clock to HF  
1
6
1
8
3.5  
0.5  
1
6.5  
6.5  
16  
5
10  
10  
tPAFA  
tPAFS  
tPAEA  
tPAES  
tHF  
20  
6.5  
16  
10  
20  
6.5  
16  
10  
20  
tRCSS  
tRCSH  
tRCSLZ  
tRCSHZ  
tSKEW1  
tSKEW2  
RCSSetupTime  
RCS Hold Time  
RCLK to Active from High-Z  
6.5  
6.5  
10  
1
(3)  
1
(3)  
RCLK to High-Z  
1
1
10  
Skew time between RCLK and WCLK for EF/OR and FF/IR  
Skew time between RCLK and WCLK for PAE and PAF  
7
9
10  
14  
NOTES:  
1. All AC timings apply to both Standard IDT mode and First Word Fall Through mode.  
2. Pulse widths less than minimum values are not allowed.  
3.3V  
3. Values guaranteed by design, not currently tested.  
4. Data Sheet slow conditions: 85°c, 3.0V. Data Sheet fast conditions: -40°c, 3.6V.  
330Ω  
ACTESTCONDITIONS  
D.U.T.  
InputPulseLevels  
GND to 3.0V  
3ns  
30pF*  
510Ω  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
OutputLoad  
1.5V  
4680 drw04  
1.5V  
Figure 2. Output Load  
* Includes jig and scope capacitances  
SeeFigure2  
8
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
FUNCTIONALDESCRIPTION  
If the FIFO is full, the first read operation will cause FF to go HIGH.  
SubsequentreadoperationswillcausePAFandHFtogoHIGHattheconditions  
describedinTable3. Iffurtherreadoperationsoccur,withoutwriteoperations,  
PAE will go LOW when there are n words in the FIFO, where n is the empty  
offsetvalue. ContinuingreadoperationswillcausetheFIFOtobecomeempty.  
WhenthelastwordhasbeenreadfromtheFIFO,theEFwillgoLOWinhibiting  
further read operations. REN is ignored when the FIFO is empty.  
WhenconfiguredinIDTStandardmode,theEFandFFoutputsaredouble  
register-bufferedoutputs.  
TIMING MODES: IDT STANDARD vs FIRST WORD FALL THROUGH  
(FWFT) MODE  
The IDT72V7230/72V7240/72V7250/72V7260/72V7270/72V7280/  
72V7290/72V72100 support two different timing modes of operation: IDT  
Standardmode orFirstWordFallThrough(FWFT)mode. The selectionof  
whichmodewilloperateisdeterminedduringMasterReset,bythestateofthe  
FWFT/SIinput.  
If,atthetimeofMasterReset,FWFT/SIisLOW,thenIDTStandardmode  
willbeselected. This modeuses theEmptyFlag(EF)toindicatewhetheror  
notthereareanywordspresentintheFIFO. ItalsousestheFullFlagfunction  
(FF)toindicatewhetherornottheFIFOhasanyfreespaceforwriting. InIDT  
Standard mode, every word read from the FIFO, including the first, must be  
requested using the Read Enable (REN) and RCLK.  
If,atthetimeofMasterReset,FWFT/SIisHIGH,thenFWFTmodewillbe  
selected. ThismodeusesOutputReady(OR)toindicatewhetherornotthere  
isvaliddataatthedataoutputs(Qn). ItalsousesInputReady(IR)toindicate  
whether or not the FIFO has any free space for writing. In the FWFT mode,  
thefirstwordwrittentoanemptyFIFOgoesdirectlytoQnafterthreeRCLKrising  
edges,REN=LOWisnotnecessary. Subsequentwordsmustbeaccessed  
using the Read Enable (REN) and RCLK.  
Relevanttimingdiagrams forIDTStandardmodecanbefoundinFigure  
10,11,12,16 and 18.  
FIRST WORD FALL THROUGH MODE (FWFT)  
In this mode, the status flags, IR, PAF, HF, PAE, and OR operate in the  
manneroutlinedinTable4. TowritedataintototheFIFO,WENmustbeLOW.  
DatapresentedtotheDATAINlineswillbeclockedintotheFIFOonsubsequent  
transitionsofWCLK. Afterthefirstwriteisperformed,theOutputReady(OR)  
flagwillgoLOW. SubsequentwriteswillcontinuetofilluptheFIFO. PAEwill  
goHIGHaftern + 2wordshavebeenloadedintotheFIFO,wherenistheempty  
offsetvalue. ThedefaultsettingforthesevaluesarestatedinthefootnoteofTable  
2. Thisparameterisalsouserprogrammable. SeesectiononProgrammable  
FlagOffsetLoading.  
If one continued to write data into the FIFO, and we assumed no read  
operationsweretakingplace,theHFwouldtoggletoLOWoncethe258thword  
for the IDT72V7230, 514th word for the IDT72V7240, 1,026th word for the  
IDT72V7250, 2,050th word for the IDT72V7260, 4,098th word for the  
IDT72V7270, 8,194th word for the IDT72V7280, 16,386th word for the  
IDT72V7290 and 32,770th word for the IDT72V72100, respectively was  
writtenintotheFIFO. ContinuingtowritedataintotheFIFOwillcausethePAF  
togoLOW. Again,ifnoreadsareperformed,thePAFwillgoLOWafter(513-m)  
writesfortheIDT72V7230,(1,025-m)writesfortheIDT72V7240,(2,049-m)  
writesfortheIDT72V7250,(4,097-m)writesfortheIDT72V7260and(8,193-m)  
writesfortheIDT72V7270,16,385writesfortheIDT72V7280,32,769writes  
fortheIDT72V7290and65,537writes fortheIDT72V72100,wheremis the  
fulloffsetvalue. Thedefaultsettingforthesevaluesarestatedinthefootnote  
of Table 2.  
Varioussignals,bothinputandoutputsignalsoperatedifferentlydepending  
onwhichtimingmodeisineffect.  
IDT STANDARD MODE  
In this mode, the status flags, FF, PAF, HF, PAE, and EF operate in the  
manneroutlinedinTable3. TowritedataintototheFIFO,WriteEnable(WEN)  
mustbeLOW. DatapresentedtotheDATAINlineswillbeclockedintotheFIFO  
on subsequent transitions of the Write Clock (WCLK). After the first write is  
performed,theEmptyFlag(EF)willgoHIGH. Subsequentwriteswillcontinue  
tofilluptheFIFO. TheProgrammableAlmost-Emptyflag(PAE)willgoHIGH  
aftern + 1wordshavebeenloadedintotheFIFO,wherenistheemptyoffset  
value. ThedefaultsettingforthesevaluesarestatedinthefootnoteofTable  
2. Thisparameterisalsouserprogrammable. SeesectiononProgrammable  
FlagOffsetLoading.  
If one continued to write data into the FIFO, and we assumed no read  
operationsweretakingplace,theHalf-Fullflag(HF)wouldtoggletoLOWonce  
the 257thwordforIDT72V7230, 513rdwordforIDT72V7240, 1,025thword  
forIDT72V7250,2,049thwordforIDT72V7260,4,097thwordforIDT72V7270,  
8,193th word for the IDT72V7280, 16,385th word for the IDT72V7290 and  
32,769thwordfortheIDT72V72100,respectivelywaswrittenintotheFIFO.  
ContinuingtowritedataintotheFIFOwillcausetheProgrammableAlmost-Full  
flag(PAF)togoLOW. Again,ifnoreadsareperformed, thePAFwillgoLOW  
after(512-m)writesfortheIDT72V7230,(1,024-m)writesfortheIDT72V7240,  
(2,048-m)writesfortheIDT72V7250,(4,096-m)writesfortheIDT72V7260,  
(8,192-m)writesfortheIDT72V7270,(16,384-m)writesfortheIDT72V7280,  
(32,768-m) writes for the IDT72V7290 and (65,536-m) writes for the  
IDT72V72100. Theoffsetm”isthefulloffsetvalue. Thedefaultsettingforthese  
values are stated in the footnote of Table 2. This parameter is also user  
programmable. SeesectiononProgrammableFlagOffsetLoading.  
WhentheFIFOisfull,theFullFlag(FF)willgoLOW,inhibitingfurtherwrite  
operations. Ifnoreadsareperformedafterareset,FFwillgoLOWafterDwrites  
to the FIFO. D = 512 writes for the IDT72V7230, 1,024 writes for the  
IDT72V7240,2,048writesfortheIDT72V7250,4,096writesfortheIDT72V7260,  
8,192writesfortheIDT72V7270,16,384writesfortheIDT72V7280,32,768  
writesfortheIDT72V7290,65,536writesfortheIDT72V72100,respectively.  
WhentheFIFOisfull,theInputReady(IR)flagwillgoHIGH,inhibitingfurther  
writeoperations. Ifnoreadsareperformedafterareset,IRwillgoHIGHafter  
DwritestotheFIFO. D =513writesfortheIDT72V7230,1,025writesforthe  
IDT72V7240,2,049writesfortheIDT72V7250,4,097writesfortheIDT72V7260  
and 8,193 writes for the IDT72V7270, 16,385 writes for the IDT72V7280,  
32,769 writes for the IDT72V7290, 65,537 writes for the IDT72V72100,  
respectively. NotethattheadditionalwordinFWFTmodeisduetothecapacity  
ofthememoryplusoutputregister.  
IftheFIFOisfull,thefirstreadoperationwillcausetheIRflagtogoLOW.  
Subsequent read operations will cause the PAF and HF to go HIGH at the  
conditionsdescribedinTable4. Iffurtherreadoperationsoccur,withoutwrite  
operations,thePAEwillgoLOWwhentherearen+1wordsintheFIFO,where  
nistheemptyoffsetvalue. ContinuingreadoperationswillcausetheFIFOto  
becomeempty. WhenthelastwordhasbeenreadfromtheFIFO,ORwillgo  
HIGH inhibiting further read operations. REN is ignored when the FIFO is  
empty.  
When configured in FWFT mode, the OR flag output is triple register-  
buffered,andtheIRflagoutputisdoubleregister-buffered.  
RelevanttimingdiagramsforFWFTmodecanbefoundinFigure13,14,15,  
17, and 19.  
9
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
PROGRAMMING FLAG OFFSETS  
TABLE 2 DEFAULT PROGRAMMABLE  
FLAG OFFSETS  
FullandEmptyFlagoffsetvaluesareuserprogrammable. TheIDT72V7230/  
72V7240/72V7250/72V7260/72V7270/72V7280/72V7290/72V72100have  
internalregistersfortheseoffsets. Thereareeightdefaultoffsetvaluesselectable  
duringMasterReset. TheseoffsetvaluesareshowninTable2. Offsetvalues  
can also be programmed into the FIFO in one of two ways; serial or parallel  
loadingmethod. TheselectionoftheloadingmethodisdoneusingtheLD(Load)  
pin. DuringMasterReset,thestateoftheLDinputdetermineswhetherserial  
orparallelflagoffsetprogrammingis enabled. AHIGHonLD duringMaster  
Resetselectsserialloadingofoffsetvalues. ALOWonLDduringMasterReset  
selectsparallelloadingofoffsetvalues.  
InadditiontoloadingoffsetvaluesintotheFIFO,itisalsopossibletoread  
thecurrentoffsetvalues. Offsetvaluescanbereadviatheparalleloutputport  
Q0-Qn,regardlessoftheprogrammingmodeselected(serialorparallel). Itis  
notpossibletoreadtheoffsetvaluesinserialfashion.  
Figure3,ProgrammableFlagOffsetProgrammingSequence,summaries  
thecontrolpinsandsequenceforbothserialandparallelprogrammingmodes.  
Foramoredetaileddescription,seediscussionthatfollows.  
IDT72V7230, 72V7240  
LD  
L
L
L
L
H
H
H
H
FSEL1  
FSEL0  
Offsets n,m  
H
L
L
H
L
H
L
H
L
H
L
H
L
L
H
H
511  
255  
127  
63  
31  
15  
7
3
LD  
H
FSEL1  
FSEL0  
Program Mode  
(3)  
X
X
Serial  
(4)  
L
X
X
Parallel  
IDT72V7250, 72V7260, 72V7270, 72V7280  
Theoffsetregistersmaybeprogrammed(andreprogrammed)anytimeafter  
MasterReset,regardlessofwhetherserialorparallelprogramminghasbeen  
selected. Validprogrammingranges are from0toD-1.  
LD  
H
L
L
L
FSEL1  
FSEL0  
Offsets n,m  
L
H
L
L
L
H
L
H
L
H
H
1,023  
511  
255  
127  
63  
SYNCHRONOUS vs ASYNCHRONOUS PROGRAMMABLE FLAG  
TIMING SELECTION  
The IDT72V7230/72V7240/72V7250/72V7260/72V7270/72V7280/  
72V7290/72V72100 can be configured during the Master Reset cycle with  
either synchronousorasynchronoustimingforPAFandPAEflagsbyuseof  
the PFM pin.  
If synchronous PAF/PAE configuration is selected (PFM, HIGH during  
MRS),thePAFisassertedandupdatedontherisingedgeofWCLKonlyand  
notRCLK. Similarly,PAEisassertedandupdatedontherisingedgeofRCLK  
onlyandnotWCLK. Fordetailtimingdiagrams,seeFigure23forsynchronous  
PAF timingandFigure24forsynchronous PAEtiming.  
L
L
H
H
L
H
H
H
31  
15  
7
H
LD  
H
L
FSEL1  
FSEL0  
Program Mode  
(3)  
X
X
X
X
Serial  
Parallel  
(4)  
If asynchronous PAF/PAE configuration is selected (PFM, LOW during  
MRS),thePAFisassertedLOWontheLOW-to-HIGHtransitionofWCLKand  
PAFisresettoHIGHontheLOW-to-HIGHtransitionofRCLK. Similarly,PAE  
isassertedLOWontheLOW-to-HIGHtransitionofRCLK. PAEisresettoHIGH  
ontheLOW-to-HIGHtransitionofWCLK. Fordetailtimingdiagrams,seeFigure  
25forasynchronousPAFtimingandFigure26forasynchronousPAEtiming.  
IDT72V7290, 72V72100  
LD  
L
L
FSEL1  
FSEL0  
Offsets n,m  
16,383  
8,191  
4,095  
2,047  
1,023  
511  
H
L
H
H
L
L
H
L
L
H
H
L
L
H
H
H
H
L
L
H
H
L
255  
127  
LD  
H
L
FSEL1  
FSEL0  
Program Mode  
(3)  
X
X
X
X
Serial  
(4)  
Parallel  
NOTES:  
1. n = empty offset for PAE.  
2. m = full offset for PAF.  
3. As well as selecting serial programming mode, one of the default values will also  
be loaded depending on the state of FSEL0 & FSEL1.  
4. As well as selecting parallel programming mode, one of the default values will  
also be loaded depending on the state of FSEL0 & FSEL1.  
10  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
11  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
IDT72V7230  
IDT72V7240  
IDT72V7250  
IDT72V7260  
IDT72V7270  
IDT72V7280  
IDT72V7290  
IDT72V72100  
WCLK RCLK  
SCLK  
LD  
WEN  
REN  
SEN  
Parallel write to registers:  
Empty Offset  
Full Offset  
X
X
0
0
1
1
Parallel read from registers:  
Empty Offset  
Full Offset  
X
X
0
0
1
1
0
1
1
0
Serial shift into registers:  
X
X
18 bits for the IDT72V7230  
20 bits for the IDT72V7240  
22 bits for the IDT72V7250  
24 bits for the IDT72V7260  
26 bits for the IDT72V7270  
28 bits for the IDT72V7280  
30 bits for the IDT72V7290  
32 bits for the IDT72V72100  
1 bit for each rising WCLK edge  
Starting with Empty Offset (LSB)  
Ending with Full Offset (MSB)  
X
X
X
X
X
X
1
1
1
No Operation  
Write Memory  
X
1
1
0
X
0
X
X
X
X
X
Read Memory  
X
X
1
1
1
X
No Operation  
4680 drw06  
NOTES:  
1. The programming method can only be selected at Master Reset.  
2. Parallel reading of the offset registers is always permitted regardless of which programming method has been selected.  
3. The programming sequence applies to both IDT Standard and FWFT modes.  
Figure 3. Programmable Flag Offset Programming Sequence  
12  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
1st Parallel Offset Write/Read Cycle  
D/Q71  
D/Q19  
D/Q0  
D/Q17  
D/Q8  
EMPTY OFFSET REGISTER (PAE)  
Non-Interspersed  
Parity  
16  
13 12 11 10  
8 7  
6
6
5
5
1
1
15 14  
9
4 3 2  
4 3 2  
Interspersed  
Parity  
14  
7
8
16 15  
13 12 11 10 9  
# of Bits Used  
2nd Parallel Offset Write/Read Cycle  
D/Q71  
D/Q19  
D/Q0  
D/Q17  
D/Q8  
FULL OFFSET REGISTER (PAF)  
Non-Interspersed  
Parity  
16  
15  
13 12 11 10  
8
8
7
7
6
6
5
5
15 14  
9
1
1
4 3 2  
4 3 2  
Interspersed  
Parity  
14  
13 12 11 10 9  
16  
# of Bits Used  
x72 Bus Width  
1st Parallel Offset Write/Read Cycle  
D/Q35  
D/Q35  
D/Q19  
D/Q19  
D/Q0  
D/Q17  
D/Q8  
EMPTY OFFSET REGISTER (PAE)  
Non-Interspersed  
Parity  
16  
13 12 11 10  
8 7  
6
6
5
5
1
1
15 14  
9
4 3 2  
4 3 2  
Interspersed  
Parity  
14  
7
8
16 15  
13 1211 10 9  
# of Bits Used  
2nd Parallel Offset Write/Read Cycle  
D/Q0  
D/Q17  
D/Q8  
FULL OFFSET REGISTER (PAF)  
Non-Interspersed  
Parity  
16  
15  
13 12 11 10  
8
8
7
7
6
6
5
5
15 14  
9
1
1
4 3 2  
4 3 2  
Interspersed  
Parity  
14  
13 12 11 10 9  
16  
# of Bits Used  
x36 Bus Width  
1st Parallel Offset Write/Read Cycle  
D/Q17  
Data Inputs/Outputs  
D/Q16  
D/Q0  
EMPTY OFFSET (LSB) REGISTER (PAE)  
Non-Interspersed  
Parity  
16 15 14 13 12 11 10 9 8 7  
13 12 10  
6
6
5
5
4
4
3 2 1  
3 2 1  
16  
Interspersed  
Parity  
15 14  
11  
9
8 7  
# of Bits Used:  
D/Q8  
# of Bits Used  
09 bits for the IDT72V7230  
10 bits for the IDT72V7240  
11 bits for the IDT72V7250  
12 bits for the IDT72V7260  
13 bits for the IDT72V7270  
14 bits for the IDT72V7280  
15 bits for the IDT72V7290  
16 bits for the IDT72V72100  
Note: All unused input bits  
are don’t care.  
2nd Parallel Offset Write/Read Cycle  
D/Q17  
Data Inputs/Outputs  
D/Q0  
D/Q16  
FULL OFFSET (LSB) REGISTER (PAF)  
13  
10 9 8 7  
12 11  
6
5
4
3 2  
3 2  
1
1
16 15 14  
14 13 12 11 10 9  
16 15  
8 7  
D/Q8  
6
5
4
x18 Bus Width  
4680 drw07  
Figure 3. Programmable Flag Offset Programming Sequence (Continued)  
13  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
WhenLDissetLOWagain,andWENisLOW,thenextoffsetregisterinsequence  
iswrittento. AsanalternativetoholdingWENLOWandtogglingLD,parallel  
programmingcanalsobeinterruptedbysettingLDLOWandtogglingWEN.  
Notethatthestatusofaprogrammableflag(PAEorPAF)outputisinvalid  
during the programming process. From the time parallel programming has  
begun,aprogrammableflagoutputwillnotbevaliduntiltheappropriateoffset  
wordhasbeenwrittentotheregisterpertainingtothatflag. Measuringfromthe  
risingWCLKedgethatachievestheabovecriteria;PAFwillbevalidaftertwo  
morerisingWCLKedgesplustPAF,PAEwillbevalidafterthenexttworising  
RCLK edges plus tPAE plus tSKEW2.  
The act of reading the offset registers employs a dedicated read offset  
registerpointer. ThecontentsoftheoffsetregisterscanbereadontheQ0-Q16  
pinswhenLDissetLOWandRENissetLOW. Forx72,x36orx18outputbus  
width, data are read via Q0-Q16 from the Empty Offset Register on the first  
LOW-to-HIGHtransitionofRCLK. UponthesecondLOW-to-HIGHtransition  
ofRCLK,dataarereadfromtheFullOffsetRegister. ThethirdtransitionofRCLK  
reads,onceagain,fromtheEmptyOffsetRegister. SeeFigure3,Program-  
mableFlagOffsetProgrammingSequence. SeeFigure22,ParallelReadof  
ProgrammableFlagRegisters,forthetimingdiagramforthismode.  
Itispermissibletointerrupttheoffsetregisterreadsequencewithreadsor  
writestotheFIFO. TheinterruptionisaccomplishedbydeassertingREN,LD,  
orbothtogether. WhenRENandLD arerestoredtoaLOW level,readingof  
theoffsetregisterscontinueswhereitleftoff. Itshouldbenoted,andcareshould  
betakenfromthefactthatwhenaparallelreadoftheflagoffsetsisperformed,  
the data wordthatwas presentonthe outputlines Qnwillbe overwritten.  
Parallelreadingofthe offsetregisters is always permittedregardless of  
whichtimingmode (IDTStandardorFWFTmodes)has beenselected.  
FUNCTIONALDESCRIPTION  
(CONTINUED)  
SERIAL PROGRAMMING MODE  
IfSerialProgrammingmodehasbeenselected,asdescribedabove,then  
programmingofPAEandPAFvaluescanbeachievedbyusingacombination  
oftheLD,SEN,SCLKandSIinputpins. ProgrammingPAEandPAFproceeds  
asfollows:whenLDandSENaresetLOW,dataontheSIinputarewritten,one  
bitforeachSCLKrisingedge,startingwiththeEmptyOffsetLSBandending  
withtheFullOffsetMSB. Atotalof18bitsfortheIDT72V7230,20bitsforthe  
IDT72V7240,22bitsfortheIDT72V7250,24bitsfortheIDT72V7260,26bits  
fortheIDT72V7270,28bitsfortheIDT72V7280,30bitsfortheIDT72V7290  
and 32 bits for the IDT72V72100. See Figure 20, Serial Loading of  
ProgrammableFlagRegisters,forthetimingdiagramforthismode.  
Using the serial method, individual registers cannot be programmed  
selectively. PAEandPAFcanshowavalidstatusonlyafterthecompleteset  
of bits (for all offset registers) has been entered. The registers can be  
reprogrammedaslongasthecompletesetofnewoffsetbitsisentered. When  
LD is LOW and SEN is HIGH, no serial write to the registers can occur.  
Write operations to the FIFO are allowed before and during the serial  
programmingsequence. Inthiscase,theprogrammingofalloffsetbitsdoesnot  
havetooccuratonce. AselectnumberofbitscanbewrittentotheSIinputand  
then,bybringingLDandSENHIGH,datacanbewrittentoFIFOmemoryvia  
DnbytogglingWEN. WhenWENisbroughtHIGHwithLDandSENrestored  
toaLOW,thenextoffsetbitinsequenceiswrittentotheregistersviaSI. Ifan  
interruptionofserialprogrammingisdesired,itissufficienteithertosetLDLOW  
anddeactivateSENortosetSENLOWanddeactivateLD. OnceLDandSEN  
arebothrestoredtoaLOWlevel,serialoffsetprogrammingcontinues.  
Fromthetimeserialprogramminghasbegun,neitherprogrammableflag  
willbevaliduntilthefullsetofbitsrequiredtofillalltheoffsetregistershasbeen  
written. MeasuringfromtherisingSCLKedgethatachievestheabovecriteria;  
PAFwillbevalidafterthreemorerisingWCLKedgesplustPAF,PAEwillbevalid  
afterthe nextthree risingRCLKedges plus tPAE.  
RETRANSMITOPERATION  
The Retransmit operation allows data that has already been read to be  
accessedagain. Thereare2modesofRetransmitoperation,normallatency  
andzerolatency. TherearetwostagestoRetransmit:first,asetupprocedure  
that resets the read pointer to the first location of memory, then the actual  
retransmit,whichconsistsofreadingoutthememorycontents,startingatthe  
beginningofmemory.  
ItisonlypossibletoreadtheflagoffsetvaluesviatheparalleloutputportQn.  
RetransmitsetupisinitiatedbyholdingRTLOWduringarisingRCLKedge.  
RENandWENmustbeHIGHbeforebringingRTLOW. Whenzerolatencyis  
utilized,RENdoesnotneedtobeHIGHbeforebringingRTLOW. Atleasttwowords,  
butnomorethanD-2wordsshouldhavebeenwrittenintotheFIFO,andread  
fromtheFIFO,betweenReset(MasterorPartial)andthetimeofRetransmit  
setup. D = 512fortheIDT72V7230,1,024fortheIDT72V7240,2,048forthe  
IDT72V7250,4,096fortheIDT72V7260,8,192fortheIDT72V7270,16,384  
for the IDT72V7280, 32,768 for the IDT72V7290 and 65,536 for the  
IDT72V72100. In FWFT mode, D = 513 for the IDT72V7230, 1,025 for the  
IDT72V7240,2,049fortheIDT72V7250,4,097fortheIDT72V7260,8,193for  
theIDT72V7270,16,385fortheIDT72V7280,32,769fortheIDT72V7290and  
65,537 for the IDT72V72100.  
PARALLELMODE  
IfParallelProgrammingmodehasbeenselected,asdescribedabove,then  
programmingofPAEandPAFvaluescanbeachievedbyusingacombination  
of the LD, WCLK, WEN and Dn input pins. Programming PAE and PAF  
proceeds as follows:LD andWEN mustbesetLOW. Forx72,x36orx18bit  
inputbuswidths,dataontheinputsDnarewrittenintotheEmptyOffsetRegister  
onthefirstLOW-to-HIGHtransitionofWCLK. UponthesecondLOW-to-HIGH  
transition of WCLK, data are written into the Full Offset Register. The third  
transitionofWCLKwrites,onceagain,totheEmptyOffsetRegister. SeeFigure  
3, Programmable Flag Offset Programming Sequence. See Figure 21,  
ParallelLoadingofProgrammableFlagRegisters,forthetimingdiagramfor  
thismode.  
IfIDTStandardmodeisselected,theFIFOwillmarkthebeginningofthe  
RetransmitsetupbysettingEFLOW. Thechangeinlevelwillonlybenoticeable  
if EF was HIGHbefore setup. Duringthis period, the internalreadpointeris  
initializedtothefirstlocationoftheRAMarray.  
WhenEFgoesHIGH,Retransmitsetupiscompleteandreadoperations  
maybeginstartingwiththefirstlocationinmemory. SinceIDTStandardmode  
isselected,everywordreadincludingthefirstwordfollowingRetransmitsetup  
requires a LOW on REN to enable the rising edge of RCLK. See Figure 16,  
Retransmit Timing (IDT Standard Mode), forthe relevanttimingdiagram.  
Theactofwritingoffsetsinparallelemploysadedicatedwriteoffsetregister  
pointer. The act of reading offsets employs a dedicated read offset register  
pointer. Thetwopointersoperateindependently;however,areadandawrite  
shouldnotbeperformedsimultaneouslytotheoffsetregisters. AMasterReset  
initializesbothpointerstotheEmptyOffsetregister. APartialResethasnoeffect  
onthepositionofthesepointers.  
Write operations to the FIFO are allowed before and during the parallel  
programmingsequence. Inthiscase,theprogrammingofalloffsetregistersdoes  
nothavetooccuratonetime. Oneoffsetregistercanbewrittenandthenby  
bringing LD HIGH, write operations can be redirected to the FIFO memory.  
14  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
IfFWFTmodeisselected,theFIFOwillmarkthebeginningoftheRetransmit  
setupbysettingORHIGH. Duringthisperiod,theinternalreadpointerisset  
tothefirstlocationoftheRAMarray.  
WhenORgoesLOW,Retransmitsetupiscomplete;atthesametime,the  
contentsofthefirstlocationappearontheoutputs. SinceFWFTmodeisselected,  
thefirstwordappearsontheoutputs,noLOWonRENisnecessary. Reading  
all subsequent words requires a LOW on REN to enable the rising edge of  
RCLK. SeeFigure17,RetransmitTiming(FWFTMode),fortherelevanttiming  
diagram.  
synchronizedtoRCLK,thusonthesecondrisingedgeofRCLKafterRTissetup,  
thePAEflagwillbeupdated. HFisasynchronous,thustherisingedgeofRCLK  
thatRTissetupwillupdateHF. PAFissynchronizedtoWCLK,thusthesecond  
risingedgeofWCLKthatoccurstSKEW aftertherisingedgeofRCLKthatRT  
is setup will update PAF. RT is synchronized to RCLK.  
TheRetransmitfunctionhastheoptionoftwomodesofoperation,either  
normal latency” or zero latency. Figure 16 and Figure 17 mentioned  
previously, relate to normal latency. Figure 18 and Figure 19 show zero  
latency”retransmitoperation. Zerolatencybasicallymeansthatthefirstdata  
wordtoberetransmitted,isplacedontotheoutputregisterwithrespecttothe  
RCLKpulsethatinitiatedtheretransmit.  
For either IDT Standard mode or FWFT mode, updating of the PAE, HF  
and PAF flags begin with the rising edge of RCLK that RT is setup. PAE is  
15  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
isselected,everywordreadincludingthefirstwordfollowingRetransmitsetup  
requires a LOW on REN to enable the rising edge of RCLK. See Figure 16,  
Retransmit Timing (IDT Standard Mode), forthe relevanttimingdiagram.  
IfFWFTmodeisselected,theFIFOwillmarkthebeginningoftheRetransmit  
setupbysettingORHIGH. Duringthisperiod,theinternalreadpointerisset  
tothefirstlocationoftheRAMarray.  
WhenORgoesLOW,Retransmitsetupiscomplete;atthesametime,the  
contentsofthefirstlocationappearontheoutputs. SinceFWFTmodeisselected,  
thefirstwordappearsontheoutputs,noLOWonRENisnecessary. Reading  
all subsequent words requires a LOW on REN to enable the rising edge of  
SIGNALDESCRIPTION  
INPUTS:  
DATA IN (D0 - Dn)  
Datainputsfor72-bitwidedata(D0-D71),datainputsfor36-bitwidedata  
(D0 - D35) or data inputs for 18-bit wide data (D0 - D17).  
CONTROLS:  
MASTER RESET ( MRS )  
AMasterResetisaccomplishedwhenevertheMRSinputistakentoaLOW RCLK. SeeFigure17,RetransmitTiming(FWFTMode),fortherelevanttiming  
state. Thisoperationsetstheinternalreadandwritepointerstothefirstlocation diagram.  
oftheRAMarray. PAEwill goLOW, PAFwillgoHIGH,and HFwillgoHIGH.  
In Retransmit operation, zero latency mode can be selected using the  
If FWFT/SI is LOW during Master Reset then the IDT Standard mode, RetransmitMode(RM)pinduringaMasterReset. Thiscanbeappliedtoboth  
along with EF and FF are selected. EF will go LOW and FF will go HIGH. If IDT Standard mode and FWFT mode.  
FWFT/SIisHIGH,thentheFirstWordFallThroughmode(FWFT),alongwith  
IR and OR, are selected. OR will go HIGH and IR will go LOW.  
AllcontrolsettingssuchasOW,IW,BM,BE,RM,PFMandIParedefined  
duringtheMasterResetcycle.  
Note,theReadChipSelect(RCS)inputmustbeLOWduringRetransmit.  
TheRCSinputenables/disablestheRENinput.  
FIRST WORD FALL THROUGH/SERIAL IN (FWFT/SI)  
DuringaMasterReset,theoutputregisterisinitializedtoallzeroes. AMaster  
This is adualpurposepin. DuringMasterReset,thestateoftheFWFT/  
Resetisrequiredafterpowerup,beforeawriteoperationcantakeplace. MRS SIinputdetermineswhetherthedevicewilloperateinIDTStandardmodeor  
isasynchronous.  
First Word Fall Through (FWFT) mode.  
See Figure 8, Master Reset Timing, forthe relevanttimingdiagram.  
If,atthetimeofMasterReset,FWFT/SIisLOW,thenIDTStandardmode  
willbeselected. This modeuses theEmptyFlag(EF)toindicatewhetheror  
notthereareanywordspresentintheFIFOmemory. ItalsousestheFullFlag  
PARTIAL RESET ( PRS )  
APartialResetisaccomplishedwheneverthePRS inputistakentoaLOW function(FF)toindicatewhetherornottheFIFOmemoryhasanyfreespace  
state. AsinthecaseoftheMasterReset,theinternalreadandwritepointers forwriting. InIDTStandardmode,everywordreadfromtheFIFO,including  
aresettothefirstlocationoftheRAMarray,PAEgoesLOW, PAFgoesHIGH, the first, mustbe requestedusingthe ReadEnable (REN)andRCLK.  
and HF goes HIGH.  
If,atthetimeofMasterReset,FWFT/SIisHIGH,thenFWFTmodewillbe  
WhichevermodeisactiveatthetimeofPartialReset,IDTStandardmode selected. ThismodeusesOutputReady(OR)toindicatewhetherornotthere  
orFirstWordFallThrough,thatmodewillremainselected. IftheIDTStandard isvaliddataatthedataoutputs(Qn). ItalsousesInputReady(IR)toindicate  
modeisactive,thenFFwillgoHIGHandEFwillgoLOW. IftheFirstWordFall whetherornottheFIFOmemoryhasanyfreespaceforwriting. IntheFWFT  
Through mode is active, then OR will go HIGH, and IR will go LOW.  
mode,thefirstwordwrittentoanemptyFIFOgoesdirectlytoQnafterthreeRCLK  
Following Partial Reset, all values held in the offset registers remain rising edges, REN = LOW is not necessary. Subsequent words must be  
unchanged. Theprogrammingmethod(parallelorserial)currentlyactiveat accessed using the Read Enable (REN) and RCLK.  
thetimeofPartialResetisalsoretained. Theoutputregisterisinitializedtoall  
zeroes. PRS is asynchronous.  
AfterMasterReset,FWFT/SIactsasaserialinputforloadingPAEandPAF  
offsetsintotheprogrammableregisters. Theserialinputfunctioncanonlybe  
A Partial Reset is useful for resetting the device during the course of usedwhentheserialloadingmethodhasbeenselectedduringMasterReset.  
operation,whenreprogrammingprogrammableflagoffsetsettingsmaynotbe SerialprogrammingusingtheFWFT/SIpinfunctionsthesamewayinbothIDT  
convenient.  
See Figure 9, PartialResetTiming, forthe relevanttimingdiagram.  
StandardandFWFTmodes.  
WRITE CLOCK (WCLK)  
RETRANSMIT ( RT )  
AwritecycleisinitiatedontherisingedgeoftheWCLKinput. Datasetup  
The Retransmit operation allows data that has already been read to be andholdtimesmustbemetwithrespecttotheLOW-to-HIGHtransitionofthe  
accessedagain. Thereare2modesofRetransmitoperation,normallatency WCLK. ItispermissibletostoptheWCLK. NotethatwhileWCLKisidle,theFF/  
andzerolatency. TherearetwostagestoRetransmit:first,asetupprocedure IR,PAFandHFflagswillnotbeupdated. (NotethatWCLKisonlycapableof  
that resets the read pointer to the first location of memory, then the actual updating HF flag to LOW.) The Write and Read Clocks can either be  
retransmit,whichconsistsofreadingoutthememorycontents,startingatthe independentorcoincident.  
beginningofthememory.  
RetransmitsetupisinitiatedbyholdingRTLOWduringarising RCLKedge. WRITE ENABLE ( WEN )  
RENandWENmustbeHIGHbeforebringingRTLOW. Whenzerolatencyis  
utilized, RENdoesnotneedtobeHIGHbeforebringingRT LOW.  
WhentheWENinput isLOW,datamaybeloadedintotheFIFORAMarray  
ontherisingedgeofeveryWCLKcycleifthedeviceisnotfull. Dataisstored  
IfIDTStandardmodeisselected,theFIFOwillmarkthebeginningofthe in the RAM array sequentially and independently of any ongoing read  
RetransmitsetupbysettingEFLOW. Thechangeinlevelwillonlybenoticeable operation.  
if EF was HIGHbefore setup. Duringthis period, the internalreadpointeris  
initializedtothefirstlocationoftheRAMarray.  
WhenEFgoesHIGH,Retransmitsetupiscompleteandreadoperations  
maybeginstartingwiththefirstlocationinmemory. SinceIDTStandardmode inhibitingfurtherwriteoperations. Uponthecompletionofavalidreadcycle,  
WhenWENisHIGH,nonewdataiswrittenintheRAMarrayoneachWCLK  
cycle.  
To prevent data overflow in the IDT Standard mode, FF will go LOW,  
16  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
READ CHIP SELECT ( RCS )  
FF will go HIGH allowing a write to occur. The FF is updated by two WCLK  
cycles +tSKEW afterthe RCLKcycle.  
The Read Chip Select input provides synchronous control of the Read  
outputport. WhenRCSgoesLOW,thenextrisingedgeofRCLKcausesthe  
QnoutputstogototheLOWZstate. WhenRCSgoesHIGH,thenextRCLK  
risingedgecausestheQnoutputstoreturntoHIGHZ.DuringaMasterorPartial  
Reset the RCS input can be HIGH or LOW. OE provides High-Impedance  
controlofthedataoutputs.IfOEisLOWthedataoutputswillbeLow-Impedance  
regardlessofRCSuntilthefirstrisingedgeofRCLKafterresetiscomplete.Then  
ifRCSisHIGHthedataoutputswillgotoHigh-Impedance.  
Topreventdataoverflow intheFWFTmode, IR willgoHIGH,inhibiting  
furtherwriteoperations. Uponthecompletionofavalidreadcycle,IRwillgo  
LOWallowingawritetooccur. TheIRflagis updatedbytwoWCLKcycles +  
tSKEW afterthe validRCLKcycle.  
WENisignoredwhentheFIFOisfullineitherFWFTorIDTStandardmode.  
READ CLOCK (RCLK)  
During the time while RCS is HIGH (disabled) all read operations are  
ignored. Thatis,theRENinputisdisabledanddataisnotclockedfromtheRAM  
arraytotheoutputregister.  
AreadcycleisinitiatedontherisingedgeoftheRCLKinput. Datacanbe  
readontheoutputs,ontherisingedgeoftheRCLKinput. Itispermissibleto  
stoptheRCLK. NotethatwhileRCLKisidle,theEF/OR,PAEandHFflagswill  
not be updated. (Note that RCLK is only capable of updating the HF flag to  
HIGH.) The Write and Read Clocks can be independent or coincident.  
TheRCSinputdoesnoteffecttheoperationoftheflags. Forexample,when  
thefirstwordiswrittentoanemptyFIFO,theEFwillstillgofromLOWtoHIGH  
based on a rising edge of RCLK, regardless of the state of the RCS input.  
Also,whenoperatingtheFIFOinFWFTmodethefirstwordwrittentoan  
emptyFIFOwillstillbeclockedthroughtotheoutputregisterbasedonRCLK,  
regardlessofthestateofRCS. TheRCSpinmustalsobeactive(LOW)inorder  
toperformaRetransmit. Seefigure12forReadCycleandReadChipSelect  
Timing (IDT Standard Mode). See figure 15 for Read Cycle and Read Chip  
Select Timing (First Word Fall Through Mode).  
READ ENABLE ( REN )  
WhenReadEnableisLOW,dataisloadedfromtheRAMarrayintotheoutput  
register on the rising edge of every RCLK cycle if the device is not empty.  
WhentheRENinputisHIGH,theoutputregisterholdsthepreviousdata  
andnonewdata is loadedintothe outputregister. The data outputs Q0-Qn  
maintainthepreviousdatavalue.  
IntheIDTStandardmode,everywordaccessedatQn,includingthefirst  
wordwrittentoanemptyFIFO,mustberequestedusingRENprovidedthatRCS  
isLOW. WhenthelastwordhasbeenreadfromtheFIFO,theEmptyFlag(EF)  
willgoLOW,inhibitingfurtherreadoperations. RENisignoredwhentheFIFO  
isempty. Onceawriteisperformed,EFwillgoHIGHallowingareadtooccur.  
TheEFflagisupdatedbytwoRCLKcycles+tSKEW afterthevalidWCLKcycle.  
IntheFWFTmode,thefirstwordwrittentoanemptyFIFOautomaticallygoes  
totheoutputsQn,onthethirdvalidLOW-to-HIGHtransitionofRCLK+tSKEW  
afterthefirstwrite. RENandRCSdonotneedtobeassertedLOW. Inorder  
toaccessallotherwords,areadmustbeexecutedusingRENandRCS must  
beenabledLOW. TheRCLKLOW-to-HIGHtransitionafterthelastword has  
been read from the FIFO, Output Ready (OR) will go HIGH with a true read  
(RCLKwithREN=LOW;RCS=LOW),inhibitingfurtherreadoperations. REN  
is ignored when the FIFO is empty.  
LOAD ( LD )  
Thisisadualpurposepin. DuringMasterReset,thestateoftheLDinput,  
alongwithFSEL0andFSEL1,determinesoneofeightdefaultoffsetvaluesfor  
thePAEandPAFflags,alongwiththemethodbywhichtheseoffsetregisters  
canbeprogrammed,parallelorserial(seeTable2). AfterMasterReset,LD  
enableswriteoperationstoandreadoperationsfromtheoffsetregisters. Only  
theoffsetloadingmethodcurrentlyselectedcanbeusedtowritetotheregisters.  
Offsetregisters canbereadonlyinparallel.  
AfterMasterReset,theLDpinisusedtoactivatetheprogrammingprocess  
oftheflagoffsetvaluesPAEandPAF. PullingLDLOWwillbeginaserialloading  
orparallelloadorreadofthese offsetvalues.  
BUS-MATCHING (BM, IW, OW)  
ThepinsBM,IWandOWareusedtodefinetheinputandoutputbuswidths.  
DuringMasterReset,thestateofthesepinsisusedtoconfigurethedevicebus  
sizes. SeeTable1forcontrolsettings. Allflagswilloperateontheword/byte  
sizeboundaryasdefinedbytheselectionofbuswidth. SeeFigure4forBus-  
MatchingByteArrangement.  
SERIAL CLOCK ( SCLK )  
Duringserialloadingoftheprogrammableflagoffsetregisters,arisingedge  
ontheSCLKinputisusedtoloadserialdatapresentontheSIinputprovided  
thattheSENinputisLOW.  
BIG-ENDIAN/LITTLE-ENDIAN ( BE )  
SERIAL ENABLE ( SEN )  
During Master Reset, a LOW on BE will select Big-Endian operation. A  
HIGHonBEduringMasterResetwillselectLittle-Endianformat. Thisfunction  
isusefulwhenthefollowinginputtooutputbuswidthsareimplemented:x72to  
x36, x72 to x18, x36 to x72 and x18 to x72. If Big-Endian mode is selected,  
thenthemostsignificantbyte(word)ofthelongwordwrittenintotheFIFOwill  
bereadoutoftheFIFOfirst,followedbytheleastsignificantlongword. IfLittle-  
Endianformatisselected,thentheleastsignificantwordofthelongwordwritten  
intotheFIFOwillbereadoutfirst,followedbythemostsignificantword. The  
modedesiredisconfiguredduringmasterresetbythestateoftheBig-Endian  
(BE) pin. See Figure 4 for Bus-Matching Byte Arrangement.  
TheSENinput isanenableusedonlyforserialprogrammingoftheoffset  
registers. The serial programming method must be selected during Master  
Reset. SENisalwaysusedinconjunctionwithLD. Whentheselinesareboth  
LOW,dataattheSIinputcanbeloadedintotheprogramregisteronebitforeach  
LOW-to-HIGHtransitionofSCLK.  
When SEN is HIGH, the programmable registers retains the previous  
settings andnooffsets areloaded. SEN functions thesamewayinbothIDT  
StandardandFWFTmodes.  
OUTPUT ENABLE ( OE )  
WhenOutputEnableisenabled(LOW),theparalleloutputbuffersreceive  
datafromtheoutputregister. WhenOEisHIGH,theoutputdatabus(Qn)goes  
intoahighimpedancestate.Note,duringaMasterorPartialResetRCScan  
beHIGHorLOW,OEistheonlyinputthatcanplacetheoutputbusintoHigh-  
Impedance.  
PROGRAMMABLEFLAGMODE(PFM)  
DuringMasterReset,aLOWonPFMwillselectAsynchronousProgram-  
mableflagtimingmode. AHIGHonPFMwillselectSynchronousProgrammable  
17  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
flagtimingmode. IfasynchronousPAF/PAEconfigurationisselected(PFM, theoutputs. ORstaysLOWaftertheRCLKLOWtoHIGHtransitionthatshifts  
LOWduringMRS),thePAEisassertedLOWontheLOW-to-HIGHtransition thelastwordfromtheFIFOmemorytotheoutputs. OR goesHIGHonlywith  
of RCLK. PAE is reset to HIGH on the LOW-to-HIGH transition of WCLK. atrueread(RCLKwithREN=LOW). Thepreviousdatastaysattheoutputs,  
Similarly,thePAFisassertedLOWontheLOW-to-HIGHtransitionofWCLKand indicatingthelastwordwasread. FurtherdatareadsareinhibiteduntilORgoes  
PAFis resettoHIGHontheLOW-to-HIGHtransitionofRCLK.  
LOWagain. SeeFigure10,ReadTiming(FWFTMode),fortherelevanttiming  
If synchronous PAE/PAF configuration is selected (PFM, HIGH during information.  
MRS),thePAEisassertedandupdatedontherisingedgeofRCLKonlyand  
notWCLK. Similarly,PAFisassertedandupdatedontherisingedgeofWCLK  
EF/OR is synchronous and updated on the rising edge of RCLK.  
InIDTStandardmode,EFisadoubleregister-bufferedoutput. InFWFT  
onlyandnotRCLK. The mode desiredis configuredduringmasterresetby mode,ORisatripleregister-bufferedoutput.  
thestateoftheProgrammableFlagMode(PFM)pin.  
PROGRAMMABLE ALMOST-FULL FLAG (PAF)  
INTERSPERSED PARITY (IP)  
The Programmable Almost-Full flag (PAF) will go LOW when the FIFO  
DuringMasterReset,aLOWonIPwillselectNon-InterspersedParitymode. reaches the almost-full condition. In IDT Standard mode, if no reads are  
A HIGHwillselectInterspersedParitymode. TheIPbitfunctionallowstheuser performedafterreset(MRS),PAFwillgoLOWafter(D - m)wordsarewritten  
toselecttheparitybitinthelongwordloadedintotheparallelport(D0-Dn)when tothe FIFO. The PAF willgoLOWafter(512-m)writes forthe IDT72V7230,  
programmingtheflagoffsets. IfInterspersedParitymodeisselected,thenthe (1,024-m)writesfortheIDT72V7240,(2,048-m)writesfortheIDT72V7250,  
FIFOwillassumethattheparitybitsarelocatedinbitpositionD8,D17,D26,D35, (4,096-m)writesfortheIDT72V7260,(8,192-m)writesfortheIDT72V7270,  
D44, D53, D62 andD71 duringthe parallelprogrammingofthe flagoffsets. If (16,384-m)writesfortheIDT72V7280,(32,768-m)writesfortheIDT72V7290,  
Non-InterspersedParitymodeisselected,thenD8,D17andD28areisassumed and(65,536-m)writesfortheIDT72V72100. Theoffsetm”isthefulloffsetvalue.  
to be valid bits and D64, D65, D66, D67, D68, D69, D70 and D71 are ignored. ThedefaultsettingforthisvalueisstatedinthefootnoteofTable1.  
IPmode is selectedduring MasterResetbythe state ofthe IPinputpin.  
InFWFTmode,thePAFwillgoLOWafter(513-m)writesfortheIDT72V7230,  
(1,025-m)writesfortheIDT72V7240,(2,049-m)writesfortheIDT72V7250,  
(4,097-m)writesfortheIDT72V7260and(8,193-m)writesfortheIDT72V7270,  
(16,385-m)writesfortheIDT72V7280,(32,769-m)writesfortheIDT72V7290  
and(65,537-m)writesfortheIDT72V72100,wherem”isthefulloffsetvalue.  
ThedefaultsettingforthisvalueisstatedinTable2.  
SeeFigure23,SynchronousProgrammableAlmost-FullFlagTiming(IDT  
StandardandFWFTModes),fortherelevanttiminginformation.  
IfasynchronousPAFconfigurationisselected,thePAFisassertedLOW  
ontheLOW-to-HIGHtransitionoftheWriteClock(WCLK). PAFisresettoHIGH  
ontheLOW-to-HIGHtransitionoftheReadClock(RCLK). IfsynchronousPAF  
configurationisselected,thePAFisupdatedontherisingedgeofWCLK. See  
Figure25,AsynchronousAlmost-FullFlagTiming(IDTStandardandFWFT  
Modes).  
OUTPUTS:  
FULL FLAG ( FF/IR )  
Thisisadualpurposepin. InIDTStandardmode,theFullFlag (FF) function  
is selected. When the FIFO is full, FF will go LOW, inhibiting further write  
operations. WhenFF isHIGH,theFIFOisnotfull. Ifnoreadsareperformed  
after a reset (either MRS orPRS), FF willgoLOWafterDwrites tothe FIFO  
(D = 512 for the IDT72V7230, 1,024 for the IDT72V7240, 2,048 for the  
IDT72V7250,4,096fortheIDT72V7260,8,192fortheIDT72V7270,16,384  
for the IDT72V7280, 32,768 for the IDT72V7290 and 65,536 for the  
IDT72V72100). See Figure10, Write Cycle and Full Flag Timing (IDT  
StandardMode),fortherelevanttiminginformation.  
InFWFTmode, the InputReady(IR)functionis selected. IR goes LOW  
whenmemoryspaceis availableforwritingindata. Whenthereis nolonger  
anyfreespaceleft,IRgoesHIGH,inhibitingfurtherwriteoperations. Ifnoreads  
areperformedafterareset(eitherMRSorPRS),IRwillgoHIGHafterD writes  
tothe FIFO(D = 513forthe IDT72V7230, 1,025forthe IDT72V7240, 2,049  
for the IDT72V7250, 4,097 for the IDT72V7260, 8,193 for the IDT72V7270,  
16,385 for the IDT72V7280, 32,769 for the IDT72V7290 and 65,537 for the  
IDT72V72100). SeeFigure13,WriteTiming(FWFTMode),fortherelevant  
timinginformation.  
PROGRAMMABLEALMOST-EMPTYFLAG(PAE)  
TheProgrammableAlmost-Emptyflag(PAE)willgoLOWwhentheFIFO  
reachesthealmost-emptycondition. InIDTStandardmode,PAEwillgoLOW  
whentherearenwords orless intheFIFO. Theoffsetn”is theemptyoffset  
value. ThedefaultsettingforthisvalueisstatedinthefootnoteofTable 1.  
In FWFT mode, the PAE will go LOW when there are n+1 words or less  
inthe FIFO. The defaultsettingforthis value is statedinTable 2.  
See Figure 24, Synchronous ProgrammableAlmost-EmptyFlagTiming  
(IDTStandardandFWFTModes), forthe relevanttiminginformation.  
IfasynchronousPAEconfigurationisselected,thePAEisassertedLOW  
ontheLOW-to-HIGHtransitionoftheReadClock(RCLK). PAEisresettoHIGH  
ontheLOW-to-HIGHtransitionoftheWriteClock(WCLK). IfsynchronousPAE  
configurationisselected,thePAEisupdatedontherisingedgeofRCLK. See  
Figure 26, Asynchronous Programmable Almost-Empty Flag Timing (IDT  
Standard and FWFT Modes).  
TheIRstatusnotonlymeasuresthecontentsoftheFIFOmemory,butalso  
countsthepresenceofawordintheoutputregister. Thus,inFWFTmode,the  
totalnumberofwritesnecessarytodeassertIRisonegreaterthanneededto  
assert FF in IDT Standard mode.  
FF/IRissynchronousandupdatedontherisingedgeofWCLK. FF/IRare  
doubleregister-bufferedoutputs.  
EMPTY FLAG (EF/OR )  
Thisisadualpurposepin. IntheIDTStandardmode,theEmptyFlag(EF)  
functionisselected. WhentheFIFOisempty,EFwillgoLOW,inhibitingfurther  
read operations. When EF is HIGH, the FIFO is not empty. See Figure 11,  
ReadCycle,OutputEnable,EmptyFlagandFirstWordLatencyTiming(IDT  
StandardMode),fortherelevanttiminginformation.  
HALF-FULL FLAG ( HF )  
Thisoutputindicatesahalf-fullFIFO. TherisingWCLKedgethatfillstheFIFO  
beyondhalf-fullsetsHFLOW. TheflagremainsLOWuntilthedifferencebetween  
thewriteandreadpointersbecomeslessthanorequaltohalfofthetotaldepth  
ofthedevice;therisingRCLKedgethataccomplishesthisconditionsetsHF  
HIGH.  
InFWFTmode,theOutputReady(OR)functionisselected. ORgoesLOW  
atthesametimethatthefirstwordwrittentoanemptyFIFOappearsvalidon  
18  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
InIDTStandardmode,ifnoreadsareperformedafterreset(MRSorPRS), 32,769 for the IDT72V7290 and 65,537 for the IDT72V72100.  
HF will go LOW after (D/2 + 1) writes to the FIFO, where D = 512 for the See Figure 27, Half-Full Flag Timing (IDT Standard and FWFT Modes),  
IDT72V7230,1,024fortheIDT72V7240,2,048fortheIDT72V7250,4,096for fortherelevanttiminginformation. BecauseHFisupdatedbybothRCLKand  
the IDT72V7260, 8,192 for the IDT72V7270, 16,384 for the IDT72V7280, WCLK,itisconsideredasynchronous.  
32,768 for the IDT72V7290 and 65,536 for the IDT72V72100.  
In FWFT mode, if no reads are performed after reset (MRS or PRS), HF DATAOUTPUTS(Q0-Qn)  
will go LOW after (D-1/2 + 2) writes to the FIFO, where D = 513 for the  
(Q0-Q71)aredataoutputsfor72-bitwidedata,(Q0-Q35)aredataoutputs  
IDT72V7230,1,025fortheIDT72V7240,2,049fortheIDT72V7250,4,097for for 36-bit wide data or (Q0-Q17) are data outputs for 18-bit wide data.  
the IDT72V7260, 8,193 for the IDT72V7270, 16,385 for the IDT72V7280,  
19  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
D71-D54  
D53-D36  
D35-D18  
D17-D0  
BYTE ORDER ON INPUT PORT:  
Write to FIFO  
A
B
C
D
BYTE ORDER ON OUTPUT PORT:  
Q71-Q54  
Q53-Q36  
Q35-Q18  
Q17-Q0  
BE BM  
IW  
X
OW  
X
A
B
C
D
Read from FIFO  
X
L
(a) x72 INPUT to x72 OUTPUT  
Q71-Q54  
Q71-Q54  
Q53-Q36  
Q53-Q36  
Q35-Q18  
Q17-Q0  
BE BM  
IW  
L
OW  
L
1st: Read from FIFO  
2nd: Read from FIFO  
A
B
L
H
Q35-Q18  
Q17-Q0  
C
D
(b) x72 INPUT to x36 OUTPUT - BIG-ENDIAN  
Q71-Q54  
Q53-Q36  
Q35-Q18  
Q17-Q0  
BE BM  
IW  
L
OW  
L
1st: Read from FIFO  
2nd: Read from FIFO  
C
D
H
H
Q71-Q54  
Q53-Q36  
Q35-Q18  
Q17-Q0  
A
B
(c) x72 INPUT to x36 OUTPUT - LITTLE-ENDIAN  
Q71-Q54  
Q71-Q54  
Q71-Q54  
Q71-Q54  
Q53-Q36  
Q53-Q36  
Q53-Q36  
Q53-Q36  
Q35-Q18  
Q35-Q18  
Q35-Q18  
Q35-Q18  
Q17-Q0  
BE BM  
IW  
L
OW  
H
A
1st: Read from FIFO  
2nd: Read from FIFO  
L
H
Q17-Q0  
B
Q17-Q0  
C
3rd: Read from FIFO  
4th: Read from FIFO  
Q17-Q0  
D
(d) x72 INPUT to x18 OUTPUT - BIG-ENDIAN  
Q71-Q54  
Q53-Q36  
Q35-Q18  
Q17-Q0  
BE BM  
IW  
L
OW  
H
D
1st: Read from FIFO  
H
H
Q71-Q54  
Q71-Q54  
Q71-Q54  
Q53-Q36  
Q53-Q36  
Q53-Q36  
Q35-Q18  
Q35-Q18  
Q35-Q18  
Q17-Q0  
2nd: Read from FIFO  
3rd: Read from FIFO  
C
Q17-Q0  
B
Q17-Q0  
A
4th: Read from FIFO  
(e) x72 INPUT to x18 OUTPUT - LITTLE-ENDIAN  
4680 drw08  
Figure 4. Bus-Matching Byte Arrangement  
20  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
BYTE ORDER ON INPUT PORT:  
D71-D54  
D53-D36  
D35-D18  
D17-D0  
A
1st: Write to FIFO  
2nd: Write to FIFO  
B
D71-D54  
D53-D36  
D35-D18  
D17-D0  
C
D
BYTE ORDER ON OUTPUT PORT:  
Q71-Q54  
Q53-Q36  
Q35-Q18  
Q17-Q0  
BE BM IW  
OW  
L
B
D
A
C
Read from FIFO  
Read from FIFO  
L
H
H
(a) x36 INPUT to x72 OUTPUT - BIG-ENDIAN  
Q71-Q54  
Q53-Q36  
Q35-Q18  
Q17-Q0  
BE BM IW  
OW  
L
D
B
C
A
H
H
H
(b) x36 INPUT to x72 OUTPUT - LITTLE-ENDIAN  
BYTE ORDER ON INPUT PORT:  
Q71-Q54  
Q53-Q36  
Q35-Q18  
Q17-Q0  
A
1st: Write to FIFO  
2nd: Write to FIFO  
Q71-Q54  
Q71-Q54  
Q53-Q36  
Q53-Q36  
Q35-Q18  
Q35-Q18  
Q17-Q0  
B
Q17-Q0  
C
3rd: Write to FIFO  
4th: Write to FIFO  
Q71-Q54  
Q53-Q36  
Q35-Q18  
Q17-Q0  
D
BYTE ORDER ON OUTPUT PORT:  
Q71-Q54  
Q53-Q36  
Q35-Q18  
Q17-Q0  
BE BM IW  
OW  
H
A
B
C
D
Read from FIFO  
L
H
H
(a) x18 INPUT to x72 OUTPUT - BIG-ENDIAN  
Q71-Q54  
Q53-Q36  
Q35-Q18  
Q17-Q0  
BE BM IW  
OW  
H
C
A
D
B
Read from FIFO  
H
H
H
(b) x18 INPUT to x72 OUTPUT - LITTLE-ENDIAN  
4680 drw09  
Figure 4. Bus-Matching Byte Arrangement (Continued)  
21  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
JTAGTIMINGSPECIFICATION  
tTCK  
t
4
t
3
t
1
t
2
TCK  
TDI/  
TMS  
tDS  
tDH  
TDO  
TDO  
t
6
tDO  
TRST  
Notes to diagram:  
t1 = tTCKLOW  
4680 drw10  
t2 = tTCKHIGH  
t
5
t3 = tTCKFALL  
t4 = tTCKRise  
t5 = tRST (reset pulse width)  
t6 = tRSR (reset recovery)  
Figure 5. Standard JTAG Timing  
JTAGACELECTRICAL  
CHARACTERISTICS  
(vcc = 3.3V ± 5%; Tcase = 0°C to +85°C)  
SYSTEMINTERFACEPARAMETERS  
IDT72V7230  
IDT72V7240  
IDT72V7250  
IDT72V7260  
IDT72V7270  
IDT72V7280  
IDT72V7290  
IDT72V72100  
Parameter  
Symbol  
Test  
Conditions  
Min. Max. Units  
JTAGClockInputPeriod tTCK  
-
-
-
-
-
-
-
100  
40  
40  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
JTAGClockHIGH  
JTAGClockLow  
tTCKHIGH  
tTCKLOW  
tTCKRise  
tTCKFall  
tRST  
-
Parameter  
Symbol Test Conditions Min. Max. Units  
JTAGClockRiseTime  
JTAGClockFallTime  
JTAGReset  
5(1)  
5(1)  
-
DataOutput  
tDO = Max  
0
20  
ns  
ns  
ns  
-
(1)  
DataOutputHold tDOH  
50  
50  
DataInput  
tDS  
tDH  
trise=3ns  
tfall=3ns  
10  
10  
JTAG Reset Recovery  
tRSR  
-
NOTE:  
1. 50pf loading on external output signals.  
NOTE:  
1. Guaranteed by design.  
22  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
TheStandardJTAGinterfaceconsistsoffourbasicelements:  
JTAGINTERFACE  
Test Access Port (TAP)  
TAPcontroller  
Instruction Register (IR)  
Data Register Port (DR)  
Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to  
support the JTAG boundary scan interface. The IDT72V7230/72V7240/  
72V7250/72V7260/72V7270/72V7280/72V7290/72V72100 incorporates  
thenecessarytapcontrollerandmodifiedpadcellstoimplementtheJTAG facility.  
NotethatIDTprovidesappropriateBoundaryScanDescriptionLanguage  
programfilesforthesedevices.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
The Figure belowshows the standardBoundary-ScanArchitecture  
DeviceID Reg.  
Mux  
Boundary Scan Reg.  
Bypass Reg.  
TDO  
TDI  
T
A
clkDR, ShiftDR  
UpdateDR  
P
TMS  
TAP  
TCLK  
Cont-  
roller  
TRST  
Instruction Decode  
clklR, ShiftlR  
UpdatelR  
Instruction Register  
Control Signals  
4680 drw11  
Figure 6. Boundary Scan Architecture  
TEST ACCESS PORT (TAP)  
THETAPCONTROLLER  
The Tap interface is a general-purpose port that provides access to the  
TheTapcontrollerisasynchronousfinitestatemachinethatrespondsto  
internaloftheprocessor. Itconsistsoffourinputports(TCLK,TMS,TDI,TRST) TMSandTCLKsignalstogenerateclockandcontrolsignalstotheInstruction  
and one output port (TDO).  
andDataRegisters forcaptureandupdateofdata.  
23  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
1
Test-Logic  
Reset  
0
1
0
1
1
Run-Test/  
Idle  
Select-  
DR-Scan  
Select-  
IR-Scan  
0
0
1
1
Capture-DR  
Capture-IR  
0
0
0
0
Shift-DR  
Shift-IR  
1
1
1
1
Input = TMS  
Exit1-IR  
EXit1-DR  
0
0
0
0
Pause-DR  
Pause-IR  
1
1
Exit2-IR  
Exit2-DR  
0
0
1
1
Update-DR  
Update-IR  
1
0
1
0
4680 drw12  
NOTES:  
1. Five consecutive TCK cycles with TMS = 1 will reset the TAP.  
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).  
3. TAP controller must be reset before normal FIFO operations can begin.  
Figure 7. TAP Controller State Diagram  
UPDATE-DR  
The shifting process has been completed. The data is latched into their  
Refer to the IEEE Standard Test Access Port Specification (IEEE Std.  
1149.1)forthefullstatediagram  
paralleloutputsinthisstatetobeaccessedthroughtheinternalbus.  
AllstatetransitionswithintheTAPcontrolleroccurattherisingedgeofthe  
TCLKpulse. TheTMSsignallevel(0or1)determinesthestateprogression  
thatoccursoneachTCLKrisingedge. TheTAPcontrollertakesprecedence  
overtheFIFOmemoryandmustberesetafterpowerupofthedevice. See  
TRSTdescriptionformoredetailsonTAPcontrollerreset.  
EXIT1-DR / EXIT2-DR  
Thisisatemporarycontrollerstate.IfTMSisheldhigh,arisingedgeapplied  
toTCKwhileinthisstatecausesthecontrollertoentertheUpdate-DRstate.This  
terminatesthescanningprocess.Alltestdataregistersselectedbythecurrent  
instructionretaintheirpreviousstateunchanged.  
CAPTURE-DR  
Data is loaded from the parallel input pins or core outputs into the Data  
Register.  
PAUSE-DR  
Thiscontrollerstateallowsshiftingofthetestdataregisterintheserialpath  
betweenTDIandTDOtobetemporarilyhalted.Alltestdataregistersselected  
bythecurrentinstructionretaintheirpreviousstateunchanged.  
SHIFT-DR  
Thepreviouslycaptureddataisshiftedinserially,LSBfirstattherisingedge  
ofTCLKintheTDI/TDOpathandshiftedoutserially,LSBfirstatthefallingedge  
ofTCLKtowardstheoutput.  
Capture-IR, Shift-IR and Update-IR, Exit-IR and Pause-IR are  
similartoDataregisters.Theseinstructionsoperateontheinstructionregisters.  
24  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
THE INSTRUCTION REGISTER  
TheInstructionregisterallowsaninstructiontobeshiftedinseriallyintothe  
processor at the rising edge of TCLK.  
TheInstructionis usedtoselectthetesttobeperformed,orthetestdata  
registertobeaccessed,orboth. Theinstructionshiftedintotheregisterislatched  
atthecompletionoftheshiftingprocesswhentheTAPcontrollerisatUpdate-  
IRstate.  
Theinstructionregistermustcontain4bitinstructionregister-basedcells  
whichcanholdinstructiondata. Thesemandatorycellsarelocatednearestthe  
serialoutputstheyaretheleastsignificantbits.  
31(MSB)  
28 27  
12 11  
1 0(LSB)  
Version (4 bits) Part Number (16-bit) Manufacturer ID (11-bit)  
0X0  
0X33  
1
IDT72V7230/40/50/60/70/80/90/100  
JTAG DEVICE IDENTIFICATION REGISTER  
JTAG INSTRUCTION REGISTER  
TheInstructionregisterallowsinstructiontobeseriallyinputintothedevice  
whentheTAPcontrollerisintheShift-IRstate. Theinstructionisdecodedto  
performthefollowing:  
Selecttestdataregistersthatmayoperatewhiletheinstructionis  
current. Theothertestdataregistersshouldnotinterferewithchip  
operationandtheselecteddataregister.  
TESTDATAREGISTER  
TheTestDataregistercontainsthreetestdataregisters:theBypass,the  
Boundary Scan register and Device ID register.  
Theseregistersareconnectedinparallelbetweenacommonserialinput  
andacommonserialdataoutput.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescription,refertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
Definetheserialtestdataregisterpaththatisusedtoshiftdatabetween  
TDI and TDO during data register scanning.  
TheInstructionRegisterisa4bitfield(i.e.IR3,IR2,IR1,IR0)todecode16  
differentpossibleinstructions. Instructionsaredecodedasfollows.  
Hex  
Instruction  
Function  
Value  
0x00  
0x02  
0x01  
0x03  
0x0F  
EXTEST  
IDCODE  
SAMPLE/PRELOAD  
HI-Z  
BYPASS  
SelectBoundaryScanRegister  
SelectChipIdentificationdataregister  
SelectBoundaryScanRegister  
JTAG  
TEST BYPASS REGISTER  
TheregisterisusedtoallowtestdatatoflowthroughthedevicefromTDI  
toTDO. Itcontainsasinglestageshiftregisterforaminimumlengthinserialpath.  
Whenthebypassregisterisselectedbyaninstruction,theshiftregisterstage  
is settoa logiczeroonthe risingedge ofTCLKwhenthe TAPcontrolleris in  
theCapture-DRstate.  
SelectBypassRegister  
JTAG INSTRUCTION REGISTER DECODING  
The operation of the bypass register should not have any effect on the  
operationofthedeviceinresponsetotheBYPASSinstruction.  
Thefollowingsectionsprovideabriefdescriptionofeachinstruction. For  
acompletedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
THE BOUNDARY-SCAN REGISTER  
TheBoundaryScanRegisterallowsserialdataTDIbeloadedintoorread  
outoftheprocessorinput/outputports. TheBoundaryScanRegisterisapart  
oftheIEEE1149.1-1990StandardJTAGImplementation.  
EXTEST  
ThemandatoryEXTESTinstructionis providedforexternalcircuityand  
boardlevelinterconnectioncheck.  
THE DEVICE IDENTIFICATION REGISTER  
The Device IdentificationRegisteris a ReadOnly32-bitregisterusedto  
specify the manufacturer, part number and version of the processor to be  
determinedthroughtheTAPinresponsetotheIDCODEinstruction.  
IDT JEDEC ID number is 0xB3. This translates to 0x33 when the parity  
is droppedinthe11-bitManufacturerIDfield.  
IDCODE  
ThisinstructionisprovidedtoselectDeviceIdentificationRegistertoread  
outmanufacturesidentity,partnumberandversionnumber.  
SAMPLE/PRELOAD  
For the IDT72V7230/72V7240/72V7250/72V7260/72V7270/72V7280/  
72V7290/72V72100,thePartNumberfieldcontainsthefollowingvalues:  
ThemandatorySAMPLE/PRELOADinstructionallowsdatavaluestobe  
loadedontothelatchedparalleloutputsoftheboundary-scanshiftregisterprior  
toselectionoftheboundary-scantestinstruction. TheSAMPLEinstruction  
allowsasnapshotofdataflowingfromthesystempinstotheon-chiplogicor  
vice versa.  
Device  
Part# Field  
0x57  
IDT72V7230  
IDT72V7240  
IDT72V7250  
IDT72V7260  
IDT72V7270  
IDT72V7280  
IDT72V7290  
IDT72V72100  
HIGH Z  
0x51  
0x52  
Thisinstructionplacesalltheoutputpinsonthedeviceintoahighimpedance  
state.  
0x53  
0x54  
BYPASS  
0x55  
0x56  
TheBypassinstructioncontainsasingleshift-registerstageandissetto  
provideaminimum-lengthserialpathbetweentheTDIandtheTDOpinsofthe  
device whennotestoperationofthe device is required.  
0x50  
25  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
tRS  
MRS  
REN  
t
RSR  
RSR  
t
RSS  
RSS  
t
t
WEN  
tRSR  
tRSS  
FWFT/SI  
tRSS  
tRSR  
LD  
tRSS  
FSEL0,  
FSEL1  
tRSS  
tRSS  
tRSS  
tRSS  
BM,  
OW, IW  
BE  
RM  
PFM  
tRSS  
IP  
RT  
t
RSS  
RSS  
t
SEN  
t
RSF  
If FWFT = HIGH, OR = HIGH  
If FWFT = LOW, EF = LOW  
EF/OR  
t
RSF  
If FWFT = LOW, FF = HIGH  
If FWFT = HIGH, IR = LOW  
FF/IR  
PAE  
t
RSF  
t
RSF  
PAF, HF  
t
RSF  
OE = HIGH  
OE = LOW  
Q0  
- Qn(1)  
4680 drw13  
NOTE:  
1. During Master Reset the High-Impedance control of the Qn data outputs is provided by OE only, RCS can be HIGH or LOW until the first rising edge of RCLK after Master Reset  
is complete.  
Figure 8. Master Reset Timing  
26  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
tRS  
PRS  
REN  
tRSS  
tRSR  
tRSS  
tRSR  
WEN  
RT  
tRSS  
tRSS  
SEN  
If FWFT = HIGH, OR = HIGH  
If FWFT = LOW, EF = LOW  
If FWFT = LOW, FF = HIGH  
If FWFT = HIGH, IR = LOW  
t
RSF  
EF/OR  
t
RSF  
FF/IR  
PAE  
t
RSF  
t
RSF  
PAF, HF  
t
RSF  
OE = HIGH  
OE = LOW  
Q0  
- Qn(1)  
4680 drw 14  
NOTE:  
1. During Partial Reset the High-Impedance control of the Qn data outputs is provided by OE only, RCS can be HIGH or LOW until the first rising edge of RCLK after Partial Reset  
is complete.  
Figure 9. Partial Reset Timing  
27  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
t
CLK  
t
CLKH  
t
CLKL  
NO WRITE  
NO WRITE  
WCLK  
2
1
(1)  
1
(1)  
2
t
SKEW1  
t
DH  
t
SKEW1  
tDS  
t
DH  
tDS  
DX+1  
DX  
D0 - Dn  
tWFF  
tWFF  
tWFF  
tWFF  
FF  
WEN  
RCLK  
tENS  
tENS  
t
ENH  
tENH  
REN  
RCS  
tRCSS  
tA  
tA  
Q0  
- Qn  
NEXT DATA READ  
DATA READ  
4680 drw15  
tRCSLZ  
NOTES:  
1. tSKEW1 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that FF will go HIGH (after one WCLK cycle pus tWFF). If the time between the  
rising edge of the RCLK and the rising edge of the WCLK is less than tSKEW1, then the FF deassertion may be delayed one extra WCLK cycle.  
2. LD = HIGH, OE = LOW, EF = HIGH  
Figure 10. Write Cycle and Full Flag Timing (IDT Standard Mode)  
tCLK  
tCLKH  
tCLKL  
1
2
RCLK  
REN  
tENH  
tENS  
tENS  
tENH  
tENH  
tENS  
NO OPERATION  
NO OPERATION  
tREF  
tREF  
tREF  
EF  
tA  
tA  
tA  
D0  
LAST WORD  
D1  
LAST WORD  
Q0 - Qn  
tOLZ  
tOHZ  
t
OLZ  
tOE  
OE  
WCLK  
WEN  
t
SKEW1(1)  
t
ENS  
t
ENH  
tENH  
tENS  
tDS  
tDH  
tDH  
tDS  
D0  
D1  
D0 - Dn  
4680 drw16  
NOTES:  
1. tSKEW1 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that EF will go HIGH (after one RCLK cycle plus tREF). If the time between the  
rising edge of WCLK and the rising edge of RCLK is less than tSKEW1, then EF deassertion may be delayed one extra RCLK cycle.  
2. LD = HIGH.  
3. First data word latency = tSKEW1 + 1*TRCLK + tREF.  
4. RCS is LOW.  
Figure 11. Read Cycle, Output Enable, Empty Flag and First Data Word Latency Timing (IDT Standard Mode)  
28  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
2
1
RCLK  
tENS  
REN  
tRCSH  
tRCSS  
tRCSS  
tRCSS  
RCS  
EF  
tREF  
tA  
tREF  
tRCSHZ  
tRCSHZ  
tA  
tRCSLZ  
tRCSLZ  
LAST DATA-1  
LAST DATA  
Q0 - Qn  
t
SKEW1(1)  
WCLK  
tENS  
tDS  
tENH  
WEN  
tDH  
Dn  
Dx  
4680 drw 17  
NOTES:  
1. tSKEW1 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that EF will go HIGH (after one RCLK cycle plus tREF). If the time between the  
rising edge of WCLK and the rising edge of RCLK is less than tSKEW1, then EF deassertion may be delayed one extra RCLK cycle.  
2. LD = HIGH.  
3. First data word latency = tSKEW1 + 1*TRCLK + tREF.  
4. OE is LOW.  
Figure 12. Read Cycle and Read Chip Select Timing (IDT Standard Mode)  
29  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
30  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
31  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
32  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
RCLK  
1
2
tENS  
tENH  
tENS  
tENH  
tRTS  
REN  
tA  
tA  
tA  
2(3)  
W
1(3)  
0 n  
Q - Q  
W
x
W
x+1  
W
tSKEW2  
1
2
WCLK  
tRTS  
WEN  
RT  
tENH  
tENS  
tREF  
tREF  
EF  
PAE  
HF  
tPAES  
tHF  
tPAFS  
PAF  
4680 drw21  
NOTES:  
1. Retransmit setup is complete after EF returns HIGH, only then can a read operation begin.  
2. OE = LOW; RCS = LOW.  
3. W1 = first word written to the FIFO after Master Reset, W2 = second word written to the FIFO after Master Reset.  
4. No more than D - 2 may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, FF will be HIGH throughout the Retransmit setup procedure.  
D = 512 for IDT72V7230, 1,024 for IDT72V7240, 2,048 for IDT72V7250, 4,096 for IDT72V7260, 8,192 for IDT72V7270, 16,384 for the IDT72V7280, 32,768 for the IDT72V7290  
and 65,536 for the IDT72V72100.  
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.  
6. RM is set HIGH during MRS.  
Figure 16. Retransmit Timing (IDT Standard Mode)  
33  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
3
1
2
4
RCLK  
tENH  
tENH  
tENS  
tENS  
tRTS  
REN  
tA  
tA  
tA  
tA  
(4)  
Q0 - Qn  
Wx+1  
Wx  
W
1(4)  
W
2 (4)  
W3  
W4  
tSKEW2  
1
2
WCLK  
tRTS  
WEN  
tENH  
tENS  
RT  
OR  
tREF  
tREF  
tPAES  
PAE  
tHF  
HF  
tPAFS  
PAF  
4680 drw22  
NOTES:  
1. Retransmit setup is complete after OR returns LOW.  
2. No more than D - 2 words may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, IR will be LOW throughout the Retransmit setup procedure.  
D = 513 for the IDT72V7230, 1,025 for the IDT72V7240, 2,049 for the IDT72V7250, 4,097 for the IDT72V7260, 8,193 for the IDT72V7270, 16,385 for the IDT72V7280, 32,769 for  
the IDT72V7290 and 65,537 for the IDT72V72100.  
3. OE = LOW; RCS = LOW.  
4. W1, W2, W3 = first, second and third words written to the FIFO after Master Reset.  
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.  
6. RM is set HIGH during MRS.  
Figure 17. Retransmit Timing (FWFT Mode)  
34  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
1
2
3
RCLK  
tENH  
tENS  
REN  
t
A
tA  
tA  
tA  
t
A
(3)  
2
(3)  
(3)  
W1  
Q0 - Qn  
W3  
W
Wx  
W0  
Wx+1  
tSKEW2  
1
2
WCLK  
tRTS  
WEN  
tENS  
tENH  
RT  
EF  
tPAES  
PAE  
tHF  
HF  
tPAFS  
PAF  
4680 drw23  
NOTES:  
1. If the part is empty at the point of Retransmit, the empty flag (EF) will be updated based on RCLK (Retransmit clock cycle), valid data will also appear on the output.  
2. OE = LOW; RSC = LOW.  
3. W0 = first word written to the FIFO after Master Reset, W1 = second word written to the FIFO after Master Reset.  
4. No more than D - 2 may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, FF will be HIGH throughout the Retransmit setup procedure.  
D = 512 for IDT72V7230, 1,024 for IDT72V7240, 2,048 for IDT72V7250, 4,096 for IDT72V7260, 8,192 for IDT72V7270, 16,384 for the IDT72V7280, 32,768 for the IDT72V7290  
and 65,536 for the IDT72V72100.  
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.  
6. RM is set LOW during MRS.  
Figure 18. Zero Latency Retransmit Timing (IDT Standard Mode)  
35  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
4
1
2
5
3
RCLK  
t
ENH  
t
ENS  
REN  
t
A
t
A
t
A
tA  
t
A
(4)  
(4)  
(4)  
Q0 - Qn  
Wx  
Wx+1  
W3  
W1  
W
2
W
4
W5  
t
SKEW2  
1
2
WCLK  
tRTS  
WEN  
t
ENS  
t
ENH  
RT  
OR  
t
PAES  
PAE  
HF  
tHF  
t
PAFS  
PAF  
4680 drw24  
NOTES:  
1. If the part is empty at the point of Retransmit, the output ready flag (OR) will be updated based on RCLK (Retransmit clock cycle), valid data will also appear on the output.  
2. No more than D - 2 words may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, IR will be LOW throughout the Retransmit setup procedure.  
D = 513 for the IDT72V7230, 1,025 for the IDT72V7240, 2,049 for the IDT72V7250, 4,097 for the IDT72V7260, 8,193 for the IDT72V7270, 16,385 for the IDT72V7280, 32,769 for  
the IDT72V7290 and 65,537 for the IDT72V72100.  
3. OE = LOW; RCS = LOW.  
4. W1, W2, W3 = first, second and third words written to the FIFO after Master Reset.  
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.  
6. RM is set LOW during MRS.  
Figure 19. Zero Latency Retransmit Timing (FWFT Mode)  
SCLK  
t
ENH  
LDH  
t
t
ENS  
LDS  
t
ENH  
SEN  
LD  
t
tLDH  
tDH  
t
DS  
(1)  
(1)  
BIT 0  
BIT 0  
BIT X  
BIT X  
SI  
4680 drw25  
FULL OFFSET  
EMPTY OFFSET  
NOTE:  
1. X = 9 for the IDT72V7230, X= 10 for the IDT72V7240, X = 11 for the IDT72V7250, X = 12 for the IDT72V7260, X = 13 for the IDT72V7270, X = 14 for the IDT72V7280,  
X = 15 for the IDT72V7290 and X = 16 for the IDT72V72100.  
Figure 20. Serial Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)  
36  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
t
CLK  
t
CLKH  
t
CLKL  
WCLK  
LD  
t
LDH  
t
LDS  
t
t
LDH  
ENH  
t
ENH  
t
ENS  
WEN  
t
DS  
tDH  
t
DH  
PAF  
OFFSET  
PAE  
OFFSET  
D0 - Dn  
4680 drw26  
Figure 21. Parallel Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)  
t
CLK  
t
CLKL  
t
CLKH  
RCLK  
t
LDS  
t
LDH  
t
t
LDH  
ENH  
LD  
t
ENS  
t
ENH  
REN  
t
A
t
A
DATA IN OUTPUT REGISTER  
PAE OFFSET  
PAF OFFSET  
Q0  
- Q16  
4680 drw27  
NOTES:  
1. OE = LOW; RCS = LOW.  
Figure 22. Parallel Read of Programmable Flag Registers (IDT Standard and FWFT Modes)  
tCLKL  
tCLKL  
1
2
WCLK  
WEN  
PAF  
2
1
tENS  
tENH  
t
PAFS  
t
PAFS  
D - (m+1) words in FIFO(2)  
D - m words in FIFO(2)  
D-(m+1) words  
in FIFO(2)  
t
SKEW2(3)  
RCLK  
tENS  
tENH  
4680 drw 28  
REN  
NOTES:  
1. m = PAF offset.  
2. D = maximum FIFO depth.  
In IDT Standard mode: D = 512 for the IDT72V7230, 1,024 for the IDT72V7240, 2,048 for the IDT72V7250, 4,096 for the IDT72V7260 and 8,192 for the IDT72V7270, 16,384 for  
the IDT72V7280, 32,768 for the IDT72V7290 and 65,536 for the IDT72V72100.  
In FWFT mode: D = 513 for the IDT72V7230, 1,025 for the IDT72V7240, 2,049 for the IDT72V7250, 4,097 for the IDT72V7260, 8,193 for the IDT72V7270, 16,385 for the IDT72V7280,  
32,769 for the IDT72V7290 and 65,537 for the IDT72V72100.  
3. tSKEW2 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that PAF will go HIGH (after one WCLK cycle plus tPAFS). If the time between the  
rising edge of RCLK and the rising edge of WCLK is less than tSKEW2, then the PAF deassertion time may be delayed one extra WCLK cycle.  
4. PAF is asserted and updated on the rising edge of WCLK only.  
5. Select this mode by setting PFM HIGH during Master Reset.  
Figure 23. Synchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)  
37  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
tCLKH  
tCLKL  
WCLK  
tENS  
tENH  
WEN  
PAE  
n words in FIFO (2)  
n+1 words in FIFO (3)  
,
n words in FIFO (2)  
n+1 words in FIFO (3)  
,
n+1 words in FIFO (2)  
n+2 words in FIFO (3)  
,
SKEW2(4)  
t
PAES  
t
PAES  
t
1
2
1
2
RCLK  
tENS  
tENH  
4680 drw29  
REN  
NOTES:  
1. n = PAE offset.  
2. For IDT Standard mode  
3. For FWFT mode.  
4. tSKEW2 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that PAE will go HIGH (after one RCLK cycle plus tPAES). If the time between the  
rising edge of WCLK and the rising edge of RCLK is less than tSKEW2, then the PAE deassertion may be delayed one extra RCLK cycle.  
5. PAE is asserted and updated on the rising edge of WCLK only.  
6. Select this mode by setting PFM HIGH during Master Reset.  
7. RCS is LOW.  
Figure 24. Synchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)  
tCLKH  
tCLKL  
WCLK  
tENS  
tENH  
WEN  
PAF  
tPAFA  
D - m words  
in FIFO  
D - (m + 1) words  
in FIFO  
D - (m + 1) words in FIFO  
tPAFA  
RCLK  
tENS  
REN  
4680 drw30  
NOTES:  
1. m = PAF offset.  
2. D = maximum FIFO Depth.  
In IDT Standard Mode: D = 512 for the IDT72V7230, 1,024 for the IDT72V7240, 2,048 for the IDT72V7250, 4,096 for the IDT72V7260, 8,192 for the IDT72V7270, 16,384 for the  
IDT72V7280, 32,768 for the IDT72V7290 and 65,536 for the IDT72V72100.  
In FWFT Mode: D = 513 for the IDT72V7230, 1,025 for the IDT72V7240, 2,049 for the IDT72V7250, 4,097 for the IDT72V7260, 8,193 for the IDT72V7270, 16,385 for the IDT72V7280,  
32,769 for the IDT72V7290 and 65,537 for the IDT72V72100.  
3. PAF is asserted to LOW on WCLK transition and reset to HIGH on RCLK transition.  
4. Select this mode by setting PFM LOW during Master Reset.  
Figure 25. Asynchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)  
38  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
tCLKH  
tCLKL  
WCLK  
tENS  
tENH  
WEN  
(2)  
(2)  
tPAEA  
n words in FIFO  
,
n words in FIFO  
,
(2)  
n+1wordsinFIFO  
,
(3)  
(3)  
PAE  
RCLK  
REN  
n + 1 words in FIFO  
n + 1 words in FIFO  
(3)  
n+2wordsinFIFO  
tPAEA  
tENS  
4680 drw 31  
NOTES:  
1. n = PAE offset.  
2. For IDT Standard Mode.  
3. For FWFT Mode.  
4. PAE is asserted LOW on RCLK transition and reset to HIGH on WCLK transition.  
5. Select this mode by setting PFM LOW during Master Reset.  
Figure 26. Asynchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)  
tCLKH  
tCLKL  
WCLK  
tENH  
tENS  
WEN  
HF  
tHF  
D/2 + 1 words in FIFO(1),  
D/2 words in FIFO(1)  
,
D/2 words in FIFO(1)  
,
D-1  
[
+ 2]  
words in FIFO(2)  
D-1  
2
D-1  
[
+ 1  
]
words in FIFO(2)  
[
+ 1  
]
words in FIFO(2)  
2
2
tHF  
RCLK  
tENS  
REN  
4680 drw32  
NOTES:  
1. In IDT Standard mode: D = maximum FIFO depth. D = 512 for the IDT72V7230, 1,024 for the IDT72V7240, 2,048 for the IDT72V7250, 4,096 for the IDT72V7260, 8,192 for the  
IDT72V7270, 16,384 for the IDT72V7280, 32,768 for the IDT72V7290 and 65,536 for the IDT72V72100.  
2. In FWFT mode: D = maximum FIFO depth. D = 513 for the IDT72V7230, 1,025 for the IDT72V7240, 2,049 for the IDT72V7250, 4,097 for the IDT72V7260, 8,193 for the IDT72V7270,  
16,385 for the IDT72V7280, 32,769 for the IDT72V7290 and 65,537 for the IDT72V72100.  
Figure 27. Half-Full Flag Timing (IDT Standard and FWFT Modes)  
39  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
avoided by creating composite flags, that is, ANDing EF of every FIFO, and  
separatelyANDingFFofeveryFIFO. InFWFTmode,compositeflagscanbe  
createdbyORingORofeveryFIFO,andseparatelyORingIRofeveryFIFO.  
Figure 28 demonstrates a width expansion using two IDT72V7230/  
72V7240/72V7250/72V7260/72V7270/72V7280/72V7290/72V72100 de-  
vices. D0 - D71 from each device form a 144-bit wide input bus and Q0-Q71  
fromeachdeviceforma144-bitwideoutputbus.Anywordwidthcanbeattained  
by adding additional IDT72V7230/72V7240/72V7250/72V7260/72V7270/  
72V7280/72V7290/72V72100devices.  
OPTIONALCONFIGURATIONS  
WIDTH EXPANSION CONFIGURATION  
Wordwidthmaybe increasedsimplybyconnectingtogetherthe control  
signalsofmultipledevices. Statusflagscanbedetectedfromanyonedevice.  
TheexceptionsaretheEFandFFfunctionsinIDTStandardmodeandtheIR  
andORfunctionsinFWFTmode. BecauseofvariationsinskewbetweenRCLK  
andWCLK, itis possible forEF/FF deassertionandIR/OR assertiontovary  
byonecyclebetweenFIFOs. InIDTStandardmode,suchproblems canbe  
PARTIAL RESET (PRS)  
MASTER RESET (MRS)  
FIRST WORD FALL THROUGH/  
SERIAL INPUT (FWFT/SI)  
RETRANSMIT (RT)  
Dm+1 - Dn  
m + n  
m
n
D0 - Dm  
DATA IN  
READ CLOCK (RCLK)  
READ SHIP SELECT (RCS)  
WRITE CLOCK (WCLK)  
WRITE ENABLE (WEN)  
LOAD (LD)  
IDT  
IDT  
READ ENABLE (REN)  
OUTPUT ENABLE (OE)  
72V7230  
72V7240  
72V7250  
72V7260  
72V7270  
72V7280  
72V7290  
72V72100  
FIFO  
72V7230  
72V7240  
72V7250  
72V7260  
72V7270  
72V7280  
72V7290  
72V72100  
FIFO  
PROGRAMMABLE (PAE)  
FULL FLAG/INPUT READY (FF/IR)  
#1  
(1)  
EMPTY FLAG/OUTPUT READY (EF/OR) #1  
EMPTY FLAG/OUTPUT READY (EF/OR) #2  
(1)  
GATE  
FULL FLAG/INPUT READY (FF/IR) #2  
GATE  
PROGRAMMABLE (PAF)  
HALF-FULL FLAG (HF)  
m + n  
n
Qm+1 - Qn  
#1  
DATA OUT  
#2  
m
4680 drw 33  
Q0 - Qm  
NOTES:  
1. Use an AND gate in IDT Standard mode, an OR gate in FWFT mode.  
2. Do not connect any output control signals directly together.  
3. FIFO #1 and FIFO #2 must be the same depth, but may be different word widths.  
Figure28. BlockDiagramof512x144,1,024x144,2,048x144,4,096x144,8,192x144,16,384x144,32,768x144and65,536x144WidthExpansion  
40  
IDT72V7230/7240/7250/7260/7270/7280/7290/72100 3.3V HIGH DENSITY SUPERSYNC IITM FIFO  
512 x 72, 1K x 72, 2K x 72, 4K x 72, 8K x 36, 16K x 72, 32K x 72, 64K x 72  
COMMERCIALTEMPERATURERANGE  
FWFT/SI  
TRANSFER CLOCK  
READ CLOCK  
FWFT/SI  
FWFT/SI  
RCLK  
WRITE CLOCK  
WCLK  
WEN  
IR  
RCLK  
WCLK  
READ CIP SELECT  
IDT  
IDT  
RCS  
72V7230  
72V7240  
72V7250  
72V7260  
72V7270  
72V7280  
72V7290  
72V72100  
72V7230  
72V7240  
72V7250  
72V7260  
72V7270  
72V7280  
72V7290  
72V72100  
WRITE ENABLE  
INPUT READY  
OR  
WEN  
READ ENABLE  
REN  
OR  
OUTPUT READY  
REN  
RCS  
OE  
IR  
OUTPUT ENABLE  
OE  
GND  
n
DATA OUT  
n
n
DATA IN  
Dn  
Qn  
Qn  
Dn  
4680 drw34  
Figure 29. Block Diagram of 1,024 x 72, 2,048 x 72, 4,096 x 72, 8,192 x 72, 16,384 x 72, 32,768 x 72, 65,572 x 72 and 131,072 x 72 Depth Expansion  
specificationisnotmetbetweenWCLKandtransferclock,orRCLKandtransfer  
clock,fortheORflag.  
The"rippledown"delayisonlynoticeableforthefirstwordwrittentoanempty  
depthexpansionconfiguration. Therewillbenodelayevidentforsubsequent  
wordswrittentotheconfiguration.  
The first free location created by reading from a full depth expansion  
configurationwill"bubbleup"fromthelastFIFOtothepreviousoneuntilitfinally  
movesintothefirstFIFOofthechain. Eachtimeafreelocationiscreatedinone  
FIFOofthechain,thatFIFO'sIRlinegoesLOW,enablingtheprecedingFIFO  
towrite a wordtofillit.  
Forafullexpansionconfiguration,theamountoftimeittakesforIRofthefirst  
FIFOinthechaintogoLOWafterawordhasbeenreadfromthelastFIFO is  
the sumofthe delays foreachindividualFIFO:  
DEPTH EXPANSION CONFIGURATION (FWFT MODE ONLY)  
The IDT72V7230 can easily be adapted to applications requiring depths  
greater than 512, 1,024 for the IDT72V7240, , 2,048 for the IDT72V7250,  
4,096 for the IDT72V7260, 8,192 for the IDT72V7270, 16,384 for the  
IDT72V7280,32,768fortheIDT72V7290and65,536fortheIDT72V72100  
withan72-bitbuswidth.InFWFTmode,theFIFOscanbeconnectedinseries  
(thedataoutputsofoneFIFOconnectedtothedatainputsofthenext)withno  
externallogicnecessary. Theresultingconfigurationprovides atotaldepth  
equivalenttothesumofthedepthsassociatedwitheachsingleFIFO. Figure  
29 shows a depth expansion using two IDT72V7230/72V7240/72V7250/  
72V7260/72V7270/72V7280/72V7290/72V72100devices.  
CareshouldbetakentoselectFWFTmodeduringMasterResetforallFIFOs  
in the depth expansion configuration. The first word written to an empty  
configurationwillpassfromoneFIFOtothenext("rippledown")untilitfinally  
appears at the outputs of the last FIFO in the chain – no read operation is  
necessarybutthe RCLKofeachFIFOmustbe free-running. Eachtime the  
datawordappearsattheoutputsofoneFIFO,thatdevice'sORlinegoesLOW,  
enabling a write to the next FIFO in line.  
(N – 1)*(3*transfer clock) + 2 TWCLK  
where N is the number of FIFOs in the expansion and TWCLK is the WCLK  
period. NotethatextracyclesshouldbeaddedforthepossibilitythatthetSKEW1  
specificationisnotmetbetweenRCLKandtransferclock,orWCLKandtransfer  
clock,fortheIRflag.  
TheTransferClocklineshouldbetiedtoeitherWCLKorRCLK,whichever  
isfaster. Boththeseactionsresultindatamoving,asquicklyaspossible,tothe  
endofthechainandfreelocations tothebeginningofthechain.  
Foranemptyexpansionconfiguration,theamountoftimeittakesforORof  
thelastFIFOinthechaintogoLOW(i.e.validdatatoappearonthelastFIFO's  
outputs)afterawordhasbeenwrittentothefirstFIFOisthesumofthedelays  
for each individual FIFO:  
(N – 1)*(4*transfer clock) + 3*TRCLK  
where N is the number of FIFOs in the expansion and TRCLK is the RCLK  
period. NotethatextracyclesshouldbeaddedforthepossibilitythatthetSKEW1  
41  
ORDERINGINFORMATION  
IDT  
XXXXX  
X
XX  
X
X
Process /  
Temperature  
Range  
Device Type  
Power  
Speed  
Package  
BLANK  
BB  
Commercial (0°C to +70°C)  
Fine Pitch Ball Grid Array (PBGA, BB2561)  
10  
15  
Clock Cycle Time (tCLK  
Speed in Nanoseconds  
)
Commercial  
L
Low Power  
512 x 72  
72V7230  
72V7240  
72V7250  
72V7260  
72V7270  
72V7280  
72V7290  
72V72100  
3.3V SuperSync II FIFO  
1,024 x 72 3.3V SuperSync II FIFO  
2,048 x 72 3.3V SuperSync II FIFO  
4,096 x 72 3.3V SuperSync II FIFO  
8,192 x 72 3.3V SuperSync II FIFO  
16,384 x 72 3.3V SuperSync II FIFO  
32,768 x 72 3.3V SuperSync II FIFO  
65,536 x 72 3.3V SuperSync II FIFO  
NOTE:  
4680 drw35  
1. Industrial temperature range is available by special order.  
DATASHEETDOCUMENTHISTORY  
06/01/2000  
11/01/2000  
01/10/2001  
04/12/2001  
05/01/2001  
10/04/2001  
12/16/2002  
02/11/2003  
09/29/2003  
12/17/2003  
pgs. 1, 2, 3, 7, 33, 34, 34, 35, 38, 41, and 42.  
pgs. 1, 2, and 42.  
pg. 7.  
pgs. 3, 4, 5, 17, 26, and 27.  
pg. 23.  
pg. 36.  
pgs. 1, 4, 6, 22, 24, and 41.  
pgs. 6, and 24.  
pg. 7.  
pg. 35.  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
for Tech Support:  
408-360-1753  
email:FIFOhelp@idt.com  
www.idt.com  
42  

相关型号:

72V7280L10BBGI

PBGA-256, Tray
IDT

72V7280L10BBGI8

PBGA-256, Reel
IDT

72V7280L15BB

PBGA-256, Tray
IDT

72V7280L15BBG

PBGA-256, Tray
IDT

72V7280L15BBG8

PBGA-256, Reel
IDT

72V7290L10BB

PBGA-256, Tray
IDT

72V7290L10BBG

PBGA-256, Tray
IDT

72V7290L10BBG8

PBGA-256, Reel
IDT

72V7290L15BB

PBGA-256, Tray
IDT

72V7290L15BBG

PBGA-256, Tray
IDT

72V7290L15BBG8

PBGA-256, Reel
IDT

72V73250DA

Telecom IC, PQFP144
IDT