810252BKI-03LF [IDT]

VCXO Jitter Attenuator and FemtoClock™ Multiplier; VCXO抖动衰减器和FemtoClock ™乘法器
810252BKI-03LF
型号: 810252BKI-03LF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

VCXO Jitter Attenuator and FemtoClock™ Multiplier
VCXO抖动衰减器和FemtoClock ™乘法器

石英晶振 压控振荡器 衰减器
文件: 总24页 (文件大小:212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VCXO Jitter Attenuator and  
FemtoClock™ Multiplier  
ICS810252BI-03  
DATA SHEET  
GENERAL DESCRIPTION  
FEATURES  
Two LVCMOS/LVTTL outputs, 17Ω impedance  
Each output supports independent frequency selection at  
25MHz, 62.5MHz, 125MHz, and 156.25MHz  
The ICS810252BI-03 is a member of the  
ICS  
HiperClockSfamily of high performance clock  
solutions from IDT. The ICS810252BI-03 is a PLL  
based synchronous multiplier that is optimized for  
PDH or SONET to Ethernet clock jitter attenuation  
HiPerClockS™  
Two differential inputs support the following input types:  
LVPECL, LVDS, LVHSTL, SSTL, HCSL  
and frequency translation. The device contains two internal  
frequency multiplication stages that are cascaded in series.  
The first stage is a VCXO PLL that is optimized to provide  
reference clock jitter attenuation. The second stage is a  
FemtoClock™ frequency multiplier that provides the low jitter,  
high frequency Ethernet output clock that easily meets Gigabit  
and 10 Gigabit Ethernet jitter requirements. Pre-divider and  
output divider multiplication ratios are selected using device  
selection control pins. The multiplication ratios are optimized  
to support most common clock rates used in PDH, SONET  
and Ethernet applications. The VCXO requires the use of an  
external, inexpensive pullable crystal. The VCXO uses external  
passive loop filter components which allows configuration of  
the PLL loop bandwidth and damping characteristics. The  
device is packaged in a space-saving 32-TQFP, E-Pad and 32-  
VFQFN packages and supports industrial temperature range.  
Accepts input frequencies from 8kHz to 155.52MHz including  
8kHz, 1.544MHz, 2.048MHz, 19.44MHz, 25MHz, 77.76MHz,  
125MHz and 155.52MHz  
Attenuates the phase jitter of the input clock by using a low-  
cost pullable fundamental mode VCXO crystal  
VCXO PLL bandwidth can be optimized for jitter attenuation  
and reference tracking using external loop filter connection  
FemtoClock frequency multiplier provides low jitter, high  
frequency output  
Absolute pull range: 50ppm  
FemtoClock VCO frequency: 625MHz  
RMS phase jitter @ 125MHz, using a 25MHz crystal  
(12kHz - 20MHz): 1.1ps (typical)  
3.3V supply voltage  
-40°C to 85°C ambient operating temperature  
Available in lead-free (RoHS 6) package  
PIN ASSIGNMENT  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
LF1  
LF0  
GND  
24  
23  
22  
21  
20  
19  
18  
17  
VDDO_QB  
QB  
ISET  
GND  
GND  
ICS810252BI-03  
CLK_SEL  
VDD  
VDDO_QA  
QA  
RESERVED  
GND  
7
8
GND  
ODASEL_0  
9 10 11 12 13 14 15 16  
32-Lead TQFP, E-Pad  
7mm x 7mm x 1.0mm package body  
Y package  
Top View  
32-Lead VFQFN  
5mm x 5mm x 0.925mm package body  
K Package  
Top View  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
1
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
BLOCK DIAGRAM  
Loop  
Filter  
3
PU  
Output  
Divider  
PDSEL_[2:0]  
QA  
00 = 25  
01 = 5  
10 = 4  
VCXO Input  
Pre-Divider  
25MHz  
PD  
11 = 10  
CLK0  
Phase  
Detector  
000 = 1  
PU/PD  
0
1
nCLK0  
2
001 = 193  
010 = 256  
011 = 2430  
100 = 3125  
101 = 9720  
110 = 15625  
111 = 19440  
PD  
ODASEL_[1:0]  
FemtoClock PLL  
625MHz  
VCXO  
PD  
Charge  
Pump  
CLK1  
PU/PD  
nCLK1  
Output  
Divider  
VCXO Feedback Divider  
÷3125  
Pulldown  
CLK_SEL  
QB  
00 = 25  
01 = 5  
VCXO Jitter Attenuation PLL  
10 = 4  
11 = 10  
2
PD  
ODBSEL_[1:0]  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
2
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Analog  
Input/Output  
Analog  
Input/Output  
Description  
1, 2  
LF1, LF0  
Loop filter connection node pins.  
Charge pump current setting pin.  
Power supply ground.  
3
ISET  
GND  
4, 8, 18,  
21, 24  
Power  
Input  
Input clock select. When HIGH selects CLK1/nCLK1.  
When LOW, selects CLK0/nCLK0. LVCMOS/LVTTL interface levels.  
5
CLK_SEL  
Pulldown  
Pullup  
6, 12, 27  
7
VDD  
Power  
Core power supply pins.  
RESERVED  
Reserved  
Reserved pin. Do not connect.  
9,  
10,  
11  
PDSEL_2,  
PDSEL_1,  
PDSEL_0  
Pre-divider select pins. LVCMOS/LVTTL interface levels.  
See Table 3A.  
Input  
13  
VDDA  
Power  
Input  
Analog supply pin.  
14,  
15  
16,  
17  
ODBSEL_1,  
ODBSEL_0  
ODASEL_1,  
ODASEL_0  
Frequency select pins for Bank B output. See Table 3B.  
LVCMOS/LVTTL interface levels.  
Frequency select pins for Bank A output. See Table 3B.  
LVCMOS/LVTTL interface levels.  
Pulldown  
Pulldown  
Input  
Bank A single-ended clock output. LVCMOS/LVTTL interface levels.  
17Ω output impedance.  
19  
20  
QA  
Output  
Power  
VDDO_QA  
Output power supply pin for QA clock output.  
Bank B single-ended clock output. LVCMOS/LVTTL interface levels.  
17Ω output impedance.  
22  
23  
25  
26  
28  
29  
QB  
Output  
Power  
Input  
VDDO_QB  
nCLK1  
CLK1  
Output power supply pin for QB clock output.  
Pullup/  
Pulldown  
Inverting differential clock input. VDD/2 bias voltage when left floating.  
Input  
Pulldown Non-inverting differential clock input.  
Pullup/  
nCLK0  
Input  
Inverting differential clock input. VDD/2 bias voltage when left floating.  
Pulldown  
CLK0  
Input  
Pulldown Non-inverting differential clock input.  
30,  
31  
XTAL_OUT,  
XTAL_IN  
Crystal oscillator interface. XTAL_IN is the input.  
XTAL_OUT is the output.  
Input  
32  
VDDX  
Power  
Power supply pin for VCXO charge pump.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CIN  
Input Capacitance  
4
pF  
Power Dissipation Capacitance  
(per output)  
CPD  
VDD, VDDX, VDDO_QA, VDDO_QB = 3.465V  
10  
pF  
RPULLUP  
Input Pullup Resistor  
51  
51  
17  
kΩ  
kΩ  
Ω
RPULLDOWN Input Pulldown Resistor  
ROUT Output Impedance  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
3
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
TABLE 3A. PRE-DIVIDER FUNCTION TABLE  
Inputs  
Pre-Divider Value  
PDSEL_2  
PDSEL_1 PDSEL_0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
193  
256  
2430  
3125  
9720  
15625  
19440 (default)  
TABLE 3B. OUTPUT DIVIDER FUNCTION TABLE  
Inputs  
Output Divider Value  
ODxSEL_1  
ODxSEL_0  
0
0
1
1
0
1
0
1
25 (default)  
5
4
10  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
4
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
TABLE 3C. FREQUENCY FUNCTION TABLE  
Input Frequency Pre-Divider VCXO Frequency  
Femtoclock  
Output Divider Output Frequency  
(MHz)  
Value  
(MHz)  
VCO Frequency (MHz)  
Value  
(MHz)  
0.008  
1
25  
625  
25  
25  
0.008  
0.008  
0.008  
1.544  
1.544  
1.544  
1.544  
2.048  
2.048  
2.048  
2.048  
19.44  
19.44  
19.44  
19.44  
25  
1
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
625  
5
4
125  
156.25  
62.5  
25  
1
1
10  
25  
5
193  
193  
125  
193  
4
156.25  
62.5  
25  
193  
10  
25  
5
256  
256  
125  
256  
4
156.25  
62.5  
25  
256  
10  
25  
5
2430  
2430  
2430  
2430  
3125  
3125  
3125  
3125  
9720  
9720  
9720  
9720  
15625  
15625  
15625  
15625  
19440  
19440  
19440  
19440  
125  
4
156.25  
62.5  
25  
10  
25  
5
25  
125  
25  
4
156.25  
62.5  
25  
25  
10  
25  
5
77.76  
77.76  
77.76  
77.76  
125  
125  
4
156.25  
62.5  
25  
10  
25  
5
125  
125  
125  
4
156.25  
62.5  
25  
125  
10  
25  
5
155.52  
155.52  
155.52  
155.52  
125  
4
156.25  
62.5  
10  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
5
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VDD  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
Inputs, V  
-0.5V to VDD + 0.5V  
-0.5V to VDDO + 0.5V  
I
Outputs, VO  
Package Thermal Impedance, θ  
32 Lead VFQFN  
32 Lead TQFP  
JA  
37°C/W (0 mps)  
32.2°C/W (0 mps)  
Storage Temperature, T  
-65°C to 150°C  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = VDDO_QA = VDDO_QB = VDDX = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol  
VDD  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Core Supply Voltage  
Analog Supply Voltage  
3.135  
3.3  
3.3  
3.465  
VDD  
V
V
VDDA  
VDD – 0.13  
VDDO_QA,  
VDDO_QB  
Output Supply Voltage  
3.135  
3.135  
3.3  
3.3  
3.465  
V
VDDX  
Charge Pump Supply Voltage  
3.465  
190  
V
Power and Charge Pump  
Supply Current  
IDD + IDDX  
IDDA  
mA  
Analog Supply Current  
13  
2
mA  
mA  
IDDO_QA + IDDO_QB Output Supply Current  
No Load  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VDD = VDDO_QA = VDDO_QB = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
Input High Voltage  
Input Low Voltage  
CLK_SEL,  
2
VDD + 0.3  
V
VIL  
-0.3  
0.8  
V
ODASEL_[0:1],  
ODBSEL_[0:1]  
VDD = VIN = 3.465V  
VDD = VIN = 3.465V  
150  
5
µA  
µA  
µA  
Input  
High Current  
IIH  
PDSEL[0:2]  
CLK_SEL,  
ODASEL_[0:1],  
ODBSEL_[0:1]  
VDD = 3.465V, VIN = 0V  
-5  
Input  
Low Current  
IIL  
PDSEL[0:2]  
VDD = 3.465V, VIN = 0V  
-150  
2.6  
µA  
VOH  
VOL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
V
V
0.5  
NOTE 1: Outputs terminated with 50Ω to VDDO_QA,_QB/2.  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
6
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VDD = VDDO_QA = VDDO_QB = VDDX = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VIN = VDD = 3.465V  
VIN = 0V, VDD = 3.465V  
Minimum Typical Maximum Units  
CLK0/nCLK0,  
CLK1/nCLK1  
150  
µA  
CLK0, CLK1  
-5  
-150  
µA  
µA  
V
IIL  
Input Low Current  
nCLK0, nCLK1  
VIN = 0V, VDD = 3.465V  
VPP  
Peak-to-Peak Input Voltage; NOTE 1  
0.15  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
GND + 0.5  
VDD - 0.85  
V
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
TABLE 5. AC CHARACTERISTICS, VDD = VDDO_QA = VDDO_QB = VDDX = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fIN  
Input Frequency  
0.008  
25  
155.52  
156.25  
MHz  
MHz  
fOUT  
Output Frequency  
RMS Phase Jitter (Random);  
NOTE 1  
125MHz, 25MHz crystal  
Integration Range: 12kHz - 20MHz  
tjit(Ø)  
1.1  
ps  
tsk(o)  
odc  
Output Skew; NOTE 2, 3  
Output Duty Cycle  
130  
53  
ps  
47  
tR / tF  
Output Rise/Fall Time  
20ꢀ to 80ꢀ  
200  
500  
ps  
VCXO & FemtoClock PLL  
Lock Time; NOTE 4  
Reference Clock Input is 50ppm  
from Nominal Frequency  
tLOCK  
3
s
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established  
when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet  
specifications after thermal equilibrium has been reached under these conditions.  
NOTE: Characterized with outputs at the same frequency using the loop filter components for the high loop bandwidth.  
Refer to VCXO-PLL Loop Bandwidth Selection Table.  
NOTE 1: Please refer to the Phase Noise Plot.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 3: Defined as skew between outputs at the same supply voltage, same frequency and with equal load conditions.  
Measured at VDDO/2.  
NOTE 4: Lock time measured from power-up to stable output frequency.  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
7
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
TYPICAL PHASE NOISE AT 125MHZ  
125MHz  
RMS Phase Jitter (Random)  
12kHz to 20MHz = 1.1ps (typical)  
OFFSET FREQUENCY (HZ)  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
8
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
PARAMETER MEASUREMENT INFORMATION  
1.65V 5ꢀ  
1.65V 5ꢀ  
VDD  
SCOPE  
,
VDD  
VDDO_QA,  
VDDO_QB,  
VDDX  
nCLK0,  
nCLK1  
VDDA  
Qx  
VPP  
VCMR  
Cross Points  
LVCMOS  
CLK0,  
CLK1  
GND  
GND  
-1.65V 5ꢀ  
DIFFERENTIAL INPUT LEVEL  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
Phase Noise Plot  
VDDO_Q  
FOUTx  
FOUTy  
2
VDDO_Q  
2
tsk(o)  
Offset Frequency  
f1  
f2  
RMS Jitter = Area Under Offset Frequency Markers  
PHASE JITTER  
OUTPUT SKEW  
VDDO_Q  
2
80ꢀ  
tF  
80ꢀ  
QA, QB  
tPW  
20ꢀ  
20ꢀ  
tPERIOD  
QA, QB  
tR  
tPW  
x 100ꢀ  
odc =  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/tPERIOD  
OUTPUT RISE/FALL TIME  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
9
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
PARAMETER MEASUREMENT INFORMATION, CONTINUED  
VCXO & FEMTOCLOCK PLL LOCK TIME  
APPLICATION INFORMATION  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
CLK/nCLK INPUTS  
LVCMOS OUTPUTS  
For applications not requiring the use of the differential input,  
both CLK and nCLK can be left floating. Though not required, but  
for additional protection, a 1kΩ resistor can be tied from CLK to  
ground.  
All unused LVCMOS output can be left floating. There should be  
no trace attached.  
LVCMOS CONTROL PINS  
All control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
10  
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter perfor-  
mance, power supply isolation is required. The ICS810252BI-03  
provides separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VDD, VDDX, VDDA, VDDO_QA  
and VDDO_QB should be individually connected to the power supply  
plane through vias, and 0.01µF bypass capacitors should be used  
for each pin. Figure 1 illustrates this for a generic VDD pin and  
also shows that VDDA requires that an additional10Ω resistor  
along with a 10µF bypass capacitor be connected to the VDDA pin.  
3.3V  
VDD  
.01µF  
VDDX  
10Ω  
.01µF  
VDDA  
.01µF  
10µF  
FIGURE 1. POWER SUPPLY FILTERING  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
of R1 and R2 might need to be adjusted to position the V_REF in  
the center of the input voltage swing. For example, if the input  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF ~ V /2 is  
generated by the bias resistors R1, R2 and C1. This bias DcDircuit  
should be located as close as possible to the input pin. The ratio  
clock swing is only 2.5V and V = 3.3V, V_REF should be 1.25V  
DD  
and R2/R1 = 0.609.  
VDD  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLKx  
nCLKx  
C1  
0.1u  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
11  
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both signals must meet the VPP  
and VCMR input requirements. Figures 3A to 3F show interface  
examples for the HiPerClockS CLK/nCLK input driven by the  
most common driver types. The input interfaces suggested here  
are examples only. Please consult with the vendor of the driver  
component to confirm the driver termination requirements. For  
example in Figure 3A, the input termination applies for IDT  
HiPerClockS open emitter LVHSTL drivers. If you are using an  
LVHSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
LVPECL  
Input  
nCLK  
HiPerClockS  
LVHSTL  
Input  
R1  
50  
R2  
50  
ICS  
R1  
50  
R2  
50  
HiPerClockS  
LVHSTL Driver  
R3  
50  
FIGURE 3A. HIPERCLOCKS CLK/nCLK INPUT  
DRIVEN BY AN IDT OPEN EMITTER  
FIGURE 3B. HIPERCLOCKS CLK/nCLK INPUT  
DRIVEN BY A 3.3V LVPECL DRIVER  
HIPERCLOCKS LVHSTL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
R4  
125  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 3C. HIPERCLOCKS CLK/nCLK INPUT  
DRIVEN BY A 3.3V LVPECL DRIVER  
FIGURE 3D. HIPERCLOCKS CLK/nCLK INPUT  
DRIVEN BY A 3.3V LVDS DRIVER  
2.5V  
2.5V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120  
120  
Zo = 50Ω  
Zo = 50Ω  
*R3  
*R4  
33  
33  
Zo = 60Ω  
Zo = 60Ω  
CLK  
CLK  
nCLK  
nCLK  
HiPerClockS  
HiPerClockS  
Input  
SSTL  
HCSL  
R1  
50  
R2  
50  
R1  
120  
R2  
120  
*Optional – R3 and R4 can be 0Ω  
FIGURE 3F. HIPERCLOCKS CLK/nCLK INPUT  
DRIVEN BY A 2.5V SSTL DRIVER  
FIGURE 3E. HIPERCLOCKS CLK/nCLK INPUT  
DRIVEN BY A 3.3V HCSL DRIVER  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
12  
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
VFQFN EPADTHERMAL RELEASE PATH  
In order to maximize both the removal of heat from the package  
and the electrical performance, a land pattern must be  
incorporated on the Printed Circuit Board (PCB) within the footprint  
of the package corresponding to the exposed metal pad or  
exposed heat slug on the package, as shown in Figure 4. The  
solderable area on the PCB, as defined by the solder mask, should  
be at least the same size/shape as the exposed pad/slug area on  
the package to maximize the thermal/electrical performance.  
Sufficient clearance should be designed on the PCB between the  
outer edges of the land pattern and the inner edges of pad pattern  
for the leads to avoid any shorts.  
are application specific and dependent upon the package power  
dissipation as well as electrical conductivity requirements. Thus,  
thermal and electrical analysis and/or testing are recommended  
to determine the minimum number needed. Maximum thermal  
and electrical performance is achieved when an array of vias is  
incorporated in the land pattern. It is recommended to use as  
many vias connected to ground as possible. It is also  
recommended that the via diameter should be 12 to 13mils (0.30  
to 0.33mm) with 1oz copper via barrel plating. This is desirable to  
avoid any solder wicking inside the via during the soldering process  
which may result in voids in solder between the exposed pad/  
slug and the thermal land. Precautions should be taken to  
eliminate any solder voids between the exposed heat slug and  
the land pattern. Note: These recommendations are to be used  
as a guideline only. For further information, refer to the Application  
Note on the Surface Mount Assembly of Amkor’s Thermally/  
Electrically Enhance Leadframe Base Package, Amkor  
Technology.  
While the land pattern on the PCB provides a means of heat  
transfer and electrical grounding from the package to the board  
through a solder joint, thermal vias are necessary to effectively  
conduct from the surface of the PCB to the ground plane(s). The  
land pattern must be connected to ground through these vias.  
The vias act as “heat pipes”.The number of vias (i.e. “heat pipes”)  
SOLDER  
SOLDER  
PIN  
PIN  
EXPOSED HEAT SLUG  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
FIGURE 4. P.C.ASSEMBLY FOR EXPOSED PAD THERMAL RELEASE PATH –SIDE VIEW (DRAWING NOT TO SCALE)  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
13  
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
TQFP EPADTHERMAL RELEASE PATH  
In order to maximize both the removal of heat from the package  
and the electrical performance, a land pattern must be  
incorporated on the Printed Circuit Board (PCB) within the footprint  
of the package corresponding to the exposed metal pad or  
exposed heat slug on the package, as shown in Figure 5. The  
solderable area on the PCB, as defined by the solder mask, should  
be at least the same size/shape as the exposed pad/slug area on  
the package to maximize the thermal/electrical performance.  
Sufficient clearance should be designed on the PCB between the  
outer edges of the land pattern and the inner edges of pad pattern  
for the leads to avoid any shorts.  
are application specific and dependent upon the package power  
dissipation as well as electrical conductivity requirements. Thus,  
thermal and electrical analysis and/or testing are recommended  
to determine the minimum number needed. Maximum thermal  
and electrical performance is achieved when an array of vias is  
incorporated in the land pattern. It is recommended to use as  
many vias connected to ground as possible. It is also  
recommended that the via diameter should be 12 to 13mils (0.30  
to 0.33mm) with 1oz copper via barrel plating. This is desirable to  
avoid any solder wicking inside the via during the soldering process  
which may result in voids in solder between the exposed pad/  
slug and the thermal land. Precautions should be taken to  
eliminate any solder voids between the exposed heat slug and  
the land pattern. Note: These recommendations are to be used  
as a guideline only. For further information, refer to the Application  
Note on the Surface Mount Assembly of Amkor’s Thermally/  
Electrically Enhance Leadframe Base Package, Amkor  
Technology.  
While the land pattern on the PCB provides a means of heat  
transfer and electrical grounding from the package to the board  
through a solder joint, thermal vias are necessary to effectively  
conduct from the surface of the PCB to the ground plane(s). The  
land pattern must be connected to ground through these vias.  
The vias act as “heat pipes”.The number of vias (i.e. “heat pipes”)  
SOLDER  
SOLDER  
SOLDER  
EXPOSED HEAT SLUG  
PIN  
PIN  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
GROUND PLANE  
PIN PAD  
THERMAL VIA  
FIGURE 5. ASSEMBLY FOR EXPOSED PAD THERMAL RELEASE PATH –SIDE VIEW (DRAWING NOT TO SCALE)  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
14  
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
LAYOUT GUIDELINE  
Figure 6 shows an example of the 810252IB-03 application  
schematic. In this example, the device is operated at V = 3.3V.  
The decoupling capacitors should be located as close asDpD ossible  
to the power pin. The input is driven by a 3.3V LVPECL driver. An  
optional 3-pole filter can also be used for additional spur reduction.  
It is recommended that the loop filter components be laid out for  
the 3-pole option. This will also allow the 2-pole filter to be used.  
VDD  
R11  
125  
R13  
125  
CLK1  
Zo = 50  
Zo = 50  
nCLK1  
R12  
84  
R14  
84  
LVPECL Driv er  
VDD  
R7  
VDD = VDDX = VDDO_QA = VDDO_QB = 3.3V  
R9  
125  
125  
CLK0  
Zo = 50  
Zo = 50  
C28 and C29 are used for additional capacitance  
to center VCXO tuning curve. For most layouts,  
it is recommended to add an additional 3pf.  
For boards with high parasitics, C28 and 29  
might not be required.  
nCLK0  
XTAL_OUT  
R8  
84  
R10  
85  
LVPECL Driv er  
C28  
3pf  
25MHz, CL =10pf  
XTAL_IN  
VDD  
VDD  
C29  
3pf  
R26 10  
C15  
0.1u  
VDDX  
C47  
0.01u  
C46  
10u  
U1  
R1  
35  
Zo = 50  
VDDO_QB  
VDDO_QA  
Receiv er  
2-pole loop filter example  
LF0  
LF1  
LF0  
LF1  
LF0  
GND  
LF1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
LF1  
LF0  
ISET  
GND  
CLK_SEL  
VDD  
nc  
GND  
VDDO_QB  
QB  
GND  
VDDO_QA  
QA  
Rs  
GND  
CLK_SEL  
GND  
221k  
Cs  
VDD  
Cp  
0.001uF  
R2  
35  
Zo = 50  
GND  
GND  
ODASEL_0  
ODASEL_0  
0.1uF  
GND  
Receiv er  
R20  
2.21K  
C12  
0.1u  
VDDO_QB  
VDDO_QA  
ICS810252Bi-03  
VDD  
3-pole loop filter example - (optional)  
C17  
0.1u  
C18  
0.1u  
R3  
LF0  
LF1  
Rs  
820k  
200k  
Cp  
0.01uF  
C3  
220pF  
R25  
Cs  
1.0uF  
10  
VDDA  
VDD  
C14  
0.1u  
C30  
0.01u  
C45  
10u  
FIGURE 6. SCHEMATIC OF RECOMMENDED LAYOUT  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
15  
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
VCXO-PLL EXTERNAL COMPONENTS  
Choosing the correct external components and having a proper  
printed circuit board (PCB) layout is a key task for quality  
operation of the VCXO-PLL. In choosing a crystal, special  
precaution must be taken with the package and load  
the crystal specification. In either case, the absolute tuning  
range is reduced. The correct value of C is dependant on the  
L
characteristics of the VCXO. The recommended C in the  
L
Crystal Parameter Table balances the tuning range by  
centering the tuning curve.  
capacitance (C ). In addition, frequency, accuracy and  
L
temperature range must also be considered. Since the pulling  
range of a crystal also varies with the package, it is  
recommended that a metal-canned package like HC49 be  
used. Generally, a metal-canned package has a larger pulling  
range than a surface mounted device (SMD). For crystal  
selection information, refer to the VCXO Crystal Selection  
Application Note.  
The frequency of oscillation in the third overtone mode is not  
necessarily at exactly three times the fundamental frequency.  
The mechanical properties of the quartz element dictate the  
position of the overtones relative to the fundamental. The  
oscillator circuit may excite both the fundamental and overtone  
modes simultaneously. This will  
LF0  
cause a nonlinearity in the  
LF1  
The crystal’s load capacitance C characteristic determines its  
tuning curve. This potential  
problem is the reason VCXO  
crystals are required to be  
tested for absence of any  
activity inside a 200ppm  
window at three times the  
fundamental frequency. Refer to  
ISET  
L
resonating frequency and is closely related to the VCXO tuning  
range. The total external capacitance seen by the crystal when  
installed on a board is the sum of the stray board capacitance,  
IC package lead capacitance, internal varactor capacitance and  
RS RSET  
CP CS  
any installed tuning capacitors (C ).  
TUNE  
XTAL_IN  
If the crystal C is greater than the total external capacitance,  
CTUNE  
25MHz  
CTUNE  
L
F
and F  
in the Crystal  
L_30VT  
L_30VT_SPURS  
the VCXO will oscillate at a higher frequency than the crystal  
Characterization Table.  
specification. If the crystal C is lower than the total external  
XTAL_OUT  
L
capacitance, the VCXO will oscillate at a lower frequency than  
The crystal and external loop  
filter components should be  
VCXO CHARACTERISTICS TABLE  
kept as close as possible to the device. Loop filter and crystal  
traces should be kept short and separated from each other.  
Other signal traces should be kept separate and not run  
underneath the device, loop filter or crystal components.  
Symbol Parameter  
Typical  
8000  
8
Unit  
Hz/V  
pF  
kVCXO  
VCXO Gain  
CV_LOW  
CV_HIGH  
Low Varactor Capacitance  
High Varactor Capacitance  
17  
pF  
VCXO-PLL LOOP BANDWIDTH SELECTION TABLE  
Bandwidth  
10Hz (Low)  
50Hz (Mid)  
125Hz (High)  
Crystal Frequency (MHz)  
RS (kΩ)  
CS (µF)  
1.0  
CP (µF)  
0.01  
RSET (kΩ)  
8.8  
25MHz  
25MHz  
25MHz  
120  
221  
620  
0.1  
0.001  
0.0004  
2.21  
0.022  
2.21  
CRYSTAL CHARACTERISTICS  
Symbol  
Parameter  
Minimum Typical  
Maximum  
Units  
Mode of Operation  
Frequency  
Fundamental  
fN  
fT  
fS  
25  
MHz  
ppm  
ppm  
°C  
Frequency Tolerance  
Frequency Stability  
Operating Temperature Range  
Load Capacitance  
Shunt Capacitance  
Pullability Ratio  
20  
20  
-40  
85  
CL  
10  
4
pF  
CO  
pF  
CO/C1  
220  
200  
200  
240  
FL_30VT  
3rd Overtone FL  
FL_30VT_SPURS 3rd Overtone FL Spurs  
ESR Equivalent Series Resistance  
40  
1
Ω
Drive Level  
mW  
ppm  
Aging @ 25°C  
3 per year  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
16  
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS810252BI-03.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS810252BI-03 is the sum of the core power plus the analog plus the power dissipated in the  
load(s). The following is the power dissipation for VDD = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
Core Power Dissipation  
Power (core)MAX = VDD_MAX * ((IDD + IDDX) + IDDA) = 3.465V * (190mA + 13mA) = 703.4mW  
Output Power Dissipation  
Output Impedance ROUT Power Dissipation due to Loading 50Ω to VDDO/2  
Output Current IOUT = VDDO_MAX / [2 * (50Ω + ROUT)] = 3.465V / [2 * (50Ω + 17Ω)] = 25.9mA  
Power Dissipation on the ROUT per LVCMOS output  
2
Power (ROUT) = ROUT * (IOUT  
)
= 17Ω * (25.9mA)2 = 11.4mW per output  
Total Power Dissipation on the ROUT  
Total Power (ROUT) = 11.4mW * 2 = 22.8mW  
Dynamic Power Dissipation at 125MHz  
2
Power (125MHz) = CPD * Frequency * (VDDO  
)
= 10pF * 125MHz * (3.465V)2 = 15mW per output  
Total Dynamic Power (125MHz) = 15mW * 2 = 30mW  
Total Power Dissipation  
Total Power  
= Power (core)MAX + Total Power (ROUT) + Total Dynamic Power (125MHz)  
= 703.4mW + 22.8mW + 30mW  
= 756.2mW  
2. Junction Temperature.  
Junction temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum  
TM  
recommended junction temperature for HiPerClockS devices is 125°C. Limiting the internal transistor junction temperature, Tj, to  
125°C ensures that the bond wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air  
flow and a multi-layer board, the appropriate value is 37°C/W per Table 6A below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.756W * 37°C/W = 113°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of terminated outputs, supply voltage, air flow,  
and the number of board layers.  
TABLE 6A. THERMAL RESISTANCE θJA FOR 32 LEAD VFQFN, FORCED CONVECTION  
θJA vs. 0 Air Flow (Meters per Second)  
0
1
2.5  
29.0°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.0°C/W  
32.4°C/W  
TABLE 6B. θJA VS. AIR FLOW TABLE FOR 32 LEAD TQFP, E-PAD  
θJA by Velocity (Meters per Second)  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
32.2°C/W  
26.3°C/W  
24.7°C/W  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
17  
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
3. Case Temperature calculated from Junction Temperature θJC Calculations  
In applications where there is a heatsink present, and the majority of the power is dissipated through the top of the device, the  
junction temperature can be calculated from the case temperature, TC, using the junction-to-case thermal resistance value θJC. In  
practical application is it the average of the case temperature of the surface of the device on which the heatsink is attached.  
The equation for calculating the junction temperature is as follows:  
Tj = θJC * Pd_case+ TC  
Tj = Junction Temperature  
θJC= Junction-to-Case Thermal Resistance  
Pd_case= Total Device Power Dissipation through the case  
TC = Average Case Temperature  
It is important to emphasize that case temperature calculations using θJC do not use Pd_total, rather they use Pd_case, which is the  
portion of power dissipated through the case. In real applications it is difficult to quantify the power dissipated through the case, so  
the value of θJC is best used for a package-to-package comparison, rather than a junction temperature calculation. As such, the  
JEDEC standard (JESD51-2) uses another parameter, ψJT (PsiJT), which can be used to calculate junction temperature from a  
measured case temperature.  
ψJT Calculations  
ψJT is the thermal characterization parameter which reports the differences between junction temperature and the temperature at  
the top dead center of the outside surface of the component package, divided by the power applied to the component. This requires  
knowing the total power dissipation and a measured case temperature in order to calculate the junction temperature. It can also be  
calculated using an estimated case temperature for a given junction temperature. In the following equation, TT, is used to indicate  
the single-point temperature measurement at the top-center of the case. The change in the naming convention from TC to TT is to  
differentiate the use between the θJC and ψJT calculations.  
The equation for TJ is as follows: TJ = TT + ψJT * Pd_total  
Solving for TT yields:  
TT = TJ - ψJT * Pd_total  
TJ = Junction Temperature  
ψJT = (PsiJT) Junction-to-Top of Package Parameter  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TT = Temperature at the top-center of the package  
The advantage of this method is that it allows for the calculation of the junction temperature or case temperature using total power  
dissipation and eliminates the need to quantify power dissipation through the top of the device. In order to calculate TT, the  
appropriate ψJT factor must be used. Assuming no air flow, a multi-layer board, and E-Pad soldered to the board, the appropriate  
value is 0.3°C/W per Table 7 below. Therefore, TT for a TJ value of 113°C (from the example in section 2) with all outputs switching  
is:  
TT = 113.0°C – 0.756W * 0.3°C/W = 112.8°C.  
This calculation is only an example. TJ will vary depending on the number of terminated outputs, supply voltage, air flow and the  
number of board layers.  
Table 7. ψJT for 32 Lead VFQFN, Forced Convection  
ψ by Velocity (Meters per Second)  
JT  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
0.3°C/W  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
18  
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
RELIABILITY INFORMATION  
TABLE 8A. θ VS. AIR FLOW TABLE FOR 32 LEAD VFQFN  
JA  
θ vs. 0 Air Flow (Meters per Second)  
JA  
0
1
2.5  
29.0°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.0°C/W  
32.4°C/W  
TABLE 8B. θ VS. AIR FLOW TABLE FOR 32 LEAD TQFP, E-PAD  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
32.2°C/W  
26.3°C/W  
24.7°C/W  
TRANSISTOR COUNT  
The transistor count for ICS810252BI-03 is: 6597  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
19  
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD TQFP, E-PAD  
-HD VERSION  
EXPOSED PAD DOWN  
TABLE 9A. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
ABA-HD  
SYMBOL  
MINIMUM  
NOMINAL  
32  
MAXIMUM  
N
A
--  
--  
1.20  
0.15  
1.05  
0.40  
0.20  
A1  
0.05  
0.95  
0.30  
0.09  
0.10  
A2  
1.0  
b
0.35  
c
D, E  
D1, E1  
D2, E2  
e
--  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
L
0.45  
0.75  
θ
--  
--  
0
°
7°  
ccc  
--  
3.0  
0.10  
4.0  
D3 & D3  
3.5  
Reference Document: JEDEC Publication 95, MS-026  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
20  
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
PACKAGE OUTLINE AND DIMENSIONS - K SUFFIX FOR 32 LEAD VFQFN  
(Ref.)  
N & N  
Even  
Seating Plane  
(N -1)x e  
(Ref.)  
A1  
IndexArea  
L
A3  
E2  
e
2
N
N
(Ty p.)  
If N & N  
are Even  
Anvil  
Singulation  
1
2
(N -1)x e  
(Ref.)  
OR  
E2  
2
TopView  
b
e
Thermal  
Base  
A
(Ref.)  
D2  
2
D
N &N  
Odd  
0. 08  
C
Chamfer 4x  
0.6 x 0.6 max  
OPTIONAL  
D2  
C
NOTE: The following package mechanical drawing is a generic  
drawing that applies to any pin count VFQFN package.This draw-  
ing is not intended to convey the actual pin count or pin layout of  
this device.The pin count and pinout are shown on the front page.  
The package dimensions are in Table 9B below.  
TABLE 9B. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
VHHD-2  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
0.80  
0
1.00  
0.05  
A1  
A3  
b
--  
0.25 Ref.  
0.25  
0.18  
0.30  
8
ND  
NE  
D
8
5.00 BASIC  
3.15  
D2  
E
3.0  
3.0  
3.3  
3.3  
5.00 BASIC  
3.15  
E2  
e
0.50 BASIC  
0.40  
L
0.30  
0.50  
Reference Document: JEDEC Publication 95, MO-220  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
21  
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
810252BKI-03LF  
810252BKI-03LFT  
810252BYI-03LF  
810252BYI-03LFT  
Marking  
Package  
Shipping Packaging  
tray  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS252BI03L  
ICS252BI03L  
ICS0252BI03L  
ICS0252BI03L  
32 Lead "Lead-Free" VFQFN  
32 Lead "Lead-Free" VFQFN  
32 lead "Lead-Free" TQFP, E-Pad  
32 lead "Lead-Free" TQFP, E-Pad  
2500 tape & reel  
tray  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
22  
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Date  
16  
VCXO-PLL External Components - replace 2nd to last paragraph.  
Crystal Characteristics Table - add 3rd Overtone specs.  
VFQFN Package Dimensions - corrected D2/E2 dimensions.  
A
8/20/09  
T9B  
21  
ICS810252BYI-03 REVISION A AUGUST 20, 2009  
23  
©2009 Integrated Device Technology, Inc.  
ICS810252BI-03 Data Sheet  
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER  
www.IDT.com  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Techical Support  
netcom@idt.com  
+480-763-2056  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion.All information  
in this document, including descriptions of product features and performace, is subject to change without notice. Performance specifications and the operating parameters of the described products are  
determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any  
kind, whether express or implied, including, but not limited to, the suitablity of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property  
rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users.  
Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Techology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or  
their respective third party owners.  
Copyright 2009. All rights reserved.  

相关型号:

810252BKI-03LFT

VCXO Jitter Attenuator and FemtoClock™ Multiplier
IDT

810252BYI-03LF

VCXO Jitter Attenuator and FemtoClock™ Multiplier
IDT

810252BYI-03LFT

VCXO Jitter Attenuator and FemtoClock™ Multiplier
IDT

810252I

VCXO and Synchronous Ethernet Jit ter At tenuator
IDT

81026-500203

26 CONTACT(S), MALE, RIGHT ANGLE TWO PART BOARD CONNECTOR, SOLDER
3M

81026-500203-RB

26 CONTACT(S), MALE, RIGHT ANGLE TWO PART BOARD CONNECTOR, SOLDER, ROHS COMPLIANT
3M

81026-500303-RB

Board Connector, 26 Contact(s), 2 Row(s), Male, Right Angle, Solder Terminal, ROHS COMPLIANT
3M

81026-500403

Board Connector, 26 Contact(s), 2 Row(s), Male, Right Angle, 0.05 inch Pitch, Solder Terminal, Beige Insulator, Receptacle,
3M

81026-500403-RB

Board Connector, 26 Contact(s), 2 Row(s), Male, Right Angle, Solder Terminal, ROHS COMPLIANT
3M

81026-550203

26 CONTACT(S), MALE, RIGHT ANGLE TWO PART BOARD CONNECTOR, SOLDER
3M

81026-550203-RB

26 CONTACT(S), MALE, RIGHT ANGLE TWO PART BOARD CONNECTOR, SOLDER, ROHS COMPLIANT
3M

81026-550303

Board Connector, 26 Contact(s), 2 Row(s), Male, Right Angle, 0.05 inch Pitch, Solder Terminal, Latch & Eject, Beige Insulator, Receptacle,
3M