82V2081PPG8 [IDT]

PCM Transceiver, 1-Func, PQFP44, TQFP-44;
82V2081PPG8
型号: 82V2081PPG8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PCM Transceiver, 1-Func, PQFP44, TQFP-44

PC 电信 电信集成电路
文件: 总68页 (文件大小:826K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SINGLE CHANNEL T1/E1/J1 LONG HAUL/  
SHORT HAUL LINE INTERFACE UNIT  
IDT82V2081  
FEATURES:  
Single channel T1/E1/J1 long haul/short haul line interfaces  
Supports HPS (Hitless Protection Switching) for 1+1 protection  
without external relays  
- Active edge of transmit clock (TCLK) and receive clock (RCLK)  
- Active level of transmit data (TDATA) and receive data (RDATA)  
- Receiver or transmitter power down  
Receiver sensitivity exceeds -36 dB@772KHz and -43 dB@1024  
KHz  
Programmable T1/E1/J1 switchability allowing one bill of ma-  
terial for any line condition  
Single 3.3 V power supply with 5 V tolerance on digital interfaces  
Meets or exceeds specifications in  
- ANSI T1.102, T1.403 and T1.408  
- ITU I.431, G.703,G.736, G.775 and G.823  
- ETSI 300-166, 300-233 and TBR12/13  
- AT&T Pub 62411  
Software programmable or hardware selectable on:  
- Wave-shapingtemplatesforshorthaulandlonghaulLBO(LineBuild  
Out)  
- Line terminating impedance (T1:100 , J1:110 Ω, E1:75 Ω/120 Ω)  
- Adjustment of arbitrary pulse shape  
- High impedance setting for line drivers  
- PRBS (Pseudo Random Bit Sequence) generation and detection  
15  
with 2 -1 PRBS polynomials for E1  
- QRSS(QuasiRandomSequenceSignals)generationanddetection  
20  
with 2 -1 QRSS polynomials for T1/J1  
- 16-bit BPV (Bipolar Pulse Violation) /Excess Zero/PRBS or QRSS  
error counter  
- Analog loopback, Digital loopback, Remote loopback and Inband  
loopback  
Cable attenuation indication  
Adaptive receive sensitivity  
Shortcircuitprotectionandinternalprotectiondiodeforlinedriv-  
ers  
LOS (Loss Of Signal) & AIS (Alarm Indication Signal) detection  
Supports serial control interface, Motorola and Intel Multiplexed  
interfaces and hardware control mode  
Package:  
- JA (Jitter Attenuator) position (receive path or transmit path)  
- Single rail/dual rail system interfaces  
- B8ZS/HDB3/AMI line encoding/decoding  
IDT82V2081: 44-pin TQFP  
DESCRIPTION:  
maintenance, a PRBS/QRSS generation/detection circuit is integrated in  
the chip, and different types of loopbacks can be set according to the appli-  
cations. Four different kinds of line terminating impedance, 75 , 100 Ω,  
110and120areselectable. Thechipalsoprovidesdrivershort-circuit  
protectionandinternalprotectiondiode.Thechipcanbecontrolledbyeither  
software or hardware.  
TheIDT82V2081canbeconfiguredasasinglechannelT1,E1orJ1Line  
Interface Unit. In receive path, an Adaptive Equalizer is integrated to  
removethedistortionintroducedbythecableattenuation.TheIDT82V2081  
also performs clock/data recovery, AMI/B8ZS/HDB3 line decoding and  
detects and reports the LOS conditions. In transmit path, there is an AMI/  
B8ZS/HDB3 encoder, Waveform Shaper and LBOs. There is one Jitter  
Attenuator, which can be placed in either the receive path or the transmit  
path.TheJitterAttenuatorcanalsobedisabled.TheIDT82V2081supports  
both Single Rail and Dual Rail system interfaces. To facilitate the network  
The IDT82V2081 can be used in LAN, WAN, Routers, Wireless Base  
Stations, IADs, IMAs, IMAPs, Gateways, Frame Relay Access Devices,  
CSU/DSU equipment, etc.  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
INDUSTRIAL TEMPERATURE RANGES  
July 2004  
1
2003 Integrated Device Technology, Inc. All rights reserved.  
DSC-6228/4  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
FUNCTIONAL BLOCK DIAGRAM  
LOS/AIS  
Detector  
LOS  
Receiver  
Internal  
Termination  
RCLK  
RD/RDP  
CV/RDN  
Data and  
Clock  
Recovery  
Adaptive  
Equalizer  
RTIP  
B8ZS/  
HDB3/AMI  
Decoder  
Data  
Slicer  
Jitter  
Attenuator  
RRING  
PRBS Detector  
IBLC Detector  
Analog  
Loopback  
Remote  
Loopback  
Digital  
Loopback  
TCLK  
TD/TDP  
TDN  
TTIP  
B8ZS/  
HDB3/AMI  
Decoder  
Transmitter  
Internal  
Termination  
Jitter  
Attenuator  
Line  
Driver  
Waveform  
Shaper/LBO  
TRING  
PRBS Generator  
IBLC Generator  
TAOS  
Clock  
Generator  
Register  
Files  
Software Control Interface  
Pin Control  
VDDIO  
VDDD  
VDDA  
VDDT  
Figure-1 Block Diagram  
2
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
TABLE OF CONTENTS  
1
2
3
IDT82V2081 PIN CONFIGURATIONS .......................................................................................... 8  
PIN DESCRIPTION ....................................................................................................................... 9  
FUNCTIONAL DESCRIPTION .................................................................................................... 15  
3.1  
3.2  
3.3  
CONTROL MODE SELECTION ....................................................................................... 15  
T1/E1/J1 MODE SELECTION .......................................................................................... 15  
TRANSMIT PATH ............................................................................................................. 15  
3.3.1 TRANSMIT PATH SYSTEM INTERFACE.............................................................. 15  
3.3.2 ENCODER............................................................................................................. 15  
3.3.3 PULSE SHAPER .................................................................................................... 15  
3.3.3.1 Preset Pulse Templates .......................................................................... 15  
3.3.3.2 LBO (Line Build Out) ............................................................................... 16  
3.3.3.3 User-Programmable Arbitrary Waveform ................................................ 16  
3.3.4 TRANSMIT PATH LINE INTERFACE..................................................................... 20  
3.3.5 TRANSMIT PATH POWER DOWN........................................................................ 20  
3.4  
RECEIVE PATH ............................................................................................................... 21  
3.4.1 RECEIVE INTERNAL TERMINATION.................................................................... 21  
3.4.2 LINE MONITOR...................................................................................................... 22  
3.4.3 ADAPTIVE EQUALIZER......................................................................................... 22  
3.4.4 RECEIVE SENSITIVITY ......................................................................................... 22  
3.4.5 DATA SLICER ........................................................................................................ 22  
3.4.6 CDR (Clock & Data Recovery)................................................................................ 22  
3.4.7 DECODER.............................................................................................................. 22  
3.4.8 RECEIVE PATH SYSTEM INTERFACE ................................................................ 23  
3.4.9 RECEIVE PATH POWER DOWN........................................................................... 23  
JITTER ATTENUATOR .................................................................................................... 23  
3.5.1 JITTER ATTENUATION FUNCTION DESCRIPTION ............................................ 23  
3.5.2 JITTER ATTENUATOR PERFORMANCE ............................................................. 23  
LOS AND AIS DETECTION ............................................................................................. 24  
3.6.1 LOS DETECTION................................................................................................... 24  
3.6.2 AIS DETECTION .................................................................................................... 25  
TRANSMIT AND DETECT INTERNAL PATTERNS ........................................................ 26  
3.7.1 TRANSMIT ALL ONES........................................................................................... 26  
3.7.2 TRANSMIT ALL ZEROS......................................................................................... 26  
3.7.3 PRBS/QRSS GENERATION AND DETECTION.................................................... 26  
3.5  
3.6  
3.7  
3.8  
LOOPBACK ...................................................................................................................... 26  
3.8.1 ANALOG LOOPBACK ............................................................................................ 26  
3.8.2 DIGITAL LOOPBACK ............................................................................................. 26  
3.8.3 REMOTE LOOPBACK............................................................................................ 26  
3.8.4 INBAND LOOPBACK.............................................................................................. 28  
3.8.4.1 Transmit Activate/Deactivate Loopback Code......................................... 28  
3.8.4.2 Receive Activate/Deactivate Loopback Code.......................................... 28  
3.8.4.3 Automatic Remote Loopback .................................................................. 28  
3
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
3.9  
ERROR DETECTION/COUNTING AND INSERTION ...................................................... 29  
3.9.1 DEFINITION OF LINE CODING ERROR ............................................................... 29  
3.9.2 ERROR DETECTION AND COUNTING ................................................................ 29  
3.9.3 BIPOLAR VIOLATION AND PRBS ERROR INSERTION ...................................... 30  
3.10 LINE DRIVER FAILURE MONITORING ........................................................................... 30  
3.11 MCLK AND TCLK ............................................................................................................. 31  
3.11.1 MASTER CLOCK (MCLK) ...................................................................................... 31  
3.11.2 TRANSMIT CLOCK (TCLK).................................................................................... 31  
3.12 MICROCONTROLLER INTERFACES ............................................................................. 32  
3.12.1 PARALLEL MICROCONTROLLER INTERFACE................................................... 32  
3.12.2 SERIAL MICROCONTROLLER INTERFACE ........................................................ 32  
3.13 INTERRUPT HANDLING .................................................................................................. 33  
3.14 5V TOLERANT I/O PINS .................................................................................................. 33  
3.15 RESET OPERATION ........................................................................................................ 33  
3.16 POWER SUPPLY ............................................................................................................. 33  
4
PROGRAMMING INFORMATION .............................................................................................. 34  
4.1  
4.2  
REGISTER LIST AND MAP ............................................................................................. 34  
REGISTER DESCRIPTION .............................................................................................. 35  
4.2.1 CONTROL REGISTERS......................................................................................... 35  
4.2.2 TRANSMIT PATH CONTROL REGISTERS........................................................... 36  
4.2.3 RECEIVE PATH CONTROL REGISTERS ............................................................. 38  
4.2.4 NETWORK DIAGNOSTICS CONTROL REGISTERS ........................................... 40  
4.2.5 INTERRUPT CONTROL REGISTERS................................................................... 43  
4.2.6 LINE STATUS REGISTERS................................................................................... 46  
4.2.7 INTERRUPT STATUS REGISTERS ...................................................................... 48  
4.2.8 COUNTER REGISTERS ........................................................................................ 49  
5
6
7
HARDWARE CONTROL PIN SUMMARY .................................................................................. 50  
TEST SPECIFICATIONS ............................................................................................................ 52  
MICROCONTROLLER INTERFACE TIMING CHARACTERISTICS ......................................... 63  
7.1  
7.2  
SERIAL INTERFACE TIMING .......................................................................................... 63  
PARALLEL INTERFACE TIMING ..................................................................................... 64  
4
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
LIST OF TABLES  
Table-1  
Table-2  
Table-3  
Table-4  
Table-5  
Table-6  
Table-7  
Table-8  
Pin Description................................................................................................................ 9  
Transmit Waveform Value For E1 75 ........................................................................ 17  
Transmit Waveform Value For E1 120 ...................................................................... 17  
Transmit Waveform Value For T1 0~133 ft................................................................... 17  
Transmit Waveform Value For T1 133~266 ft............................................................... 18  
Transmit Waveform Value For T1 266~399 ft............................................................... 18  
Transmit Waveform Value For T1 399~533 ft............................................................... 18  
Transmit Waveform Value For T1 533~655 ft............................................................... 18  
Transmit Waveform Value For J1 0~655 ft ................................................................... 19  
Transmit Waveform Value For DS1 0 dB LBO.............................................................. 19  
Transmit Waveform Value For DS1 -7.5 dB LBO ......................................................... 19  
Transmit Waveform Value For DS1 -15.0 dB LBO ....................................................... 19  
Transmit Waveform Value For DS1 -22.5 dB LBO ....................................................... 20  
Impedance Matching for Transmitter ............................................................................ 20  
Impedance Matching for Receiver ................................................................................ 21  
Criteria of Starting Speed Adjustment........................................................................... 23  
LOS Declare and Clear Criteria for Short Haul Mode ................................................... 24  
LOS Declare and Clear Criteria for Long Haul Mode.................................................... 25  
AIS Condition ................................................................................................................ 25  
Criteria for Setting/Clearing the PRBS_S Bit ................................................................ 26  
EXZ Definition ............................................................................................................... 29  
Interrupt Event............................................................................................................... 33  
Register List and Map ................................................................................................... 34  
ID: Device Revision Register ........................................................................................ 35  
RST: Reset Register ..................................................................................................... 35  
GCF: Global Configuration Register ............................................................................. 35  
TERM: Transmit and Receive Termination Configuration Register .............................. 35  
JACF: Jitter Attenuation Configuration Register ........................................................... 36  
TCF0: Transmitter Configuration Register 0 ................................................................. 36  
TCF1: Transmitter Configuration Register 1 ................................................................. 37  
TCF2: Transmitter Configuration Register 2 ................................................................. 37  
TCF3: Transmitter Configuration Register 3 ................................................................. 38  
TCF4: Transmitter Configuration Register 4 ................................................................. 38  
RCF0: Receiver Configuration Register 0..................................................................... 38  
RCF1: Receiver Configuration Register 1..................................................................... 39  
RCF2: Receiver Configuration Register 2..................................................................... 40  
MAINT0: Maintenance Function Control Register 0...................................................... 40  
MAINT1: Maintenance Function Control Register 1...................................................... 41  
MAINT2: Maintenance Function Control Register 2...................................................... 41  
MAINT3: Maintenance Function Control Register 3...................................................... 41  
MAINT4: Maintenance Function Control Register 4...................................................... 42  
MAINT5: Maintenance Function Control Register 5...................................................... 42  
MAINT6: Maintenance Function Control Register 6...................................................... 42  
INTM0: Interrupt Mask Register 0................................................................................. 43  
INTM1: Interrupt Masked Register 1............................................................................. 44  
INTES: Interrupt Trigger Edge Select Register............................................................. 45  
Table-9  
Table-10  
Table-11  
Table-12  
Table-13  
Table-14  
Table-15  
Table-16  
Table-17  
Table-18  
Table-19  
Table-20  
Table-21  
Table-22  
Table-23  
Table-24  
Table-25  
Table-26  
Table-27  
Table-28  
Table-29  
Table-30  
Table-31  
Table-32  
Table-33  
Table-34  
Table-35  
Table-36  
Table-37  
Table-38  
Table-39  
Table-40  
Table-41  
Table-42  
Table-43  
Table-44  
Table-45  
Table-46  
5
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-47  
Table-48  
Table-49  
Table-50  
Table-51  
Table-52  
Table-53  
Table-54  
Table-55  
Table-56  
Table-57  
Table-58  
Table-59  
Table-60  
Table-61  
Table-62  
Table-63  
Table-64  
Table-65  
Table-66  
Table-67  
Table-68  
Table-69  
STAT0: Line Status Register 0 (real time status monitor)............................................. 46  
STAT1: Line Status Register 1 (real time status monitor)............................................. 47  
INTS0: Interrupt Status Register 0................................................................................ 48  
INTS1: Interrupt Status Register 1................................................................................ 49  
CNT0: Error Counter L-byte Register 0......................................................................... 49  
CNT1: Error Counter H-byte Register 1........................................................................ 49  
Hardware Control Pin Summary ................................................................................... 50  
Absolute Maximum Rating ............................................................................................ 52  
Recommended Operation Conditions........................................................................... 52  
Power Consumption...................................................................................................... 53  
DC Characteristics ........................................................................................................ 53  
E1 Receiver Electrical Characteristics .......................................................................... 54  
T1/J1 Receiver Electrical Characteristics...................................................................... 55  
E1 Transmitter Electrical Characteristics ...................................................................... 56  
T1/J1 Transmitter Electrical Characteristics.................................................................. 57  
Transmitter and Receiver Timing Characteristics ......................................................... 58  
Jitter Tolerance ............................................................................................................. 59  
Jitter Attenuator Characteristics.................................................................................... 61  
Serial Interface Timing Characteristics ......................................................................... 63  
Multiplexed Motorola Read Timing Characteristics....................................................... 64  
Multiplexed Motorola Write Timing Characteristics....................................................... 65  
Multiplexed Intel Read Timing Characteristics.............................................................. 66  
Multiplexed Intel Write Timing Characteristics .............................................................. 67  
6
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
LIST OF FIGURES  
Figure-1  
Figure-2  
Figure-3  
Figure-4  
Figure-5  
Figure-6  
Figure-7  
Figure-8  
Block Diagram ................................................................................................................. 2  
IDT82V2081 TQFP44 Package Pin Assignment ............................................................ 8  
E1 Waveform Template Diagram .................................................................................. 15  
E1 Pulse Template Test Circuit ..................................................................................... 16  
DSX-1 Waveform Template .......................................................................................... 16  
T1 Pulse Template Test Circuit ..................................................................................... 16  
Receive Path Function Block Diagram .......................................................................... 21  
Transmit/Receive Line Circuit ....................................................................................... 21  
Monitoring Receive Line in Another Chip ...................................................................... 22  
Monitor Transmit Line in Another Chip .......................................................................... 22  
Jitter Attenuator ............................................................................................................. 23  
LOS Declare and Clear ................................................................................................. 24  
Analog Loopback .......................................................................................................... 27  
Digital Loopback ............................................................................................................ 27  
Remote Loopback ......................................................................................................... 27  
Auto Report Mode ......................................................................................................... 29  
Manual Report Mode ..................................................................................................... 30  
TCLK Operation Flowchart ............................................................................................ 31  
Serial Microcontroller Interface Function Timing ........................................................... 32  
Transmit System Interface Timing ................................................................................ 59  
Receive System Interface Timing ................................................................................. 59  
E1 Jitter Tolerance Performance .................................................................................. 60  
T1/J1 Jitter Tolerance Performance .............................................................................. 60  
E1 Jitter Transfer Performance ..................................................................................... 62  
T1/J1 Jitter Transfer Performance ................................................................................ 62  
Serial Interface Write Timing ......................................................................................... 63  
Serial Interface Read Timing with SCLKE=1 ................................................................ 63  
Serial Interface Read Timing with SCLKE=0 ................................................................ 63  
Multiplexed Motorola Read Timing ................................................................................ 64  
Multiplexed Motorola Write Timing ................................................................................ 65  
Multiplexed Intel Read Timing ....................................................................................... 66  
Multiplexed Intel Write Timing ....................................................................................... 67  
Figure-9  
Figure-10  
Figure-11  
Figure-12  
Figure-13  
Figure-14  
Figure-15  
Figure-16  
Figure-17  
Figure-18  
Figure-19  
Figure-20  
Figure-21  
Figure-22  
Figure-23  
Figure-24  
Figure-25  
Figure-26  
Figure-27  
Figure-28  
Figure-29  
Figure-30  
Figure-31  
Figure-32  
7
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
1
IDT82V2081 PIN CONFIGURATIONS  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
RD / DS / SCLKE / MONT  
IC  
VDDT  
TRING  
TTIP  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
CS / RXTXM1  
INT / RXTXM0  
VDDIO  
GNDIO  
MODE1  
MODE0  
JA1  
GNDT  
GNDA  
RRING  
RTIP  
IDT82V2081  
JA0  
VDDA  
REF  
THZ  
IC  
RST  
Figure-2 IDT82V2081 TQFP44 Package Pin Assignment  
8
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
2
PIN DESCRIPTION  
Table-1 Pin Description  
Name  
Type  
Pin No.  
Description  
TTIP  
TRING  
Analog  
output  
37  
36  
TTIP/TRING: Transmit Bipolar Tip/Ring  
These pins are the differential line driver outputs. They will be in high impedance state under the following conditions:  
THZ pin is high;  
THZ bit is set to 1;  
Loss of MCLK;  
Loss of TCLK (exceptions: Remote Loopback; transmit internal pattern by MCLK);  
Transmit path power down;  
After software reset; pin reset and power on.  
RTIP  
RRING  
Analog  
input  
41  
40  
RTIP/RRING: Receive Bipolar Tip/Ring  
These signals are the differential receiver inputs.  
TD/TDP  
TDN  
I
2
3
TD: Transmit Data  
When the device is in single rail mode, the NRZ data to be transmitted is input on this pin. Data on TD pin is sampled into the  
device on the active edge of TCLK and is encoded by AMI, HDB3 or B8ZS line code rules before being transmitted. In this  
mode, TDN should be connected to ground.  
TDP/TDN: Positive/Negative Transmit Data  
When the device is in dual rail mode, the NRZ data to be transmitted for positive/negative pulse is input on these pins. Data  
on TDP/TDN pin is sampled into the device on the active edge of TCLK. The line code in dual rail mode is as follows:  
TDP  
TDN  
Output Pulse  
Space  
0
0
1
1
0
1
0
1
Positive Pulse  
Negative Pulse  
Space  
TCLK  
I
1
TCLK: Transmit Clock input  
This pin inputs 1.544 MHz for T1/J1 mode or 2.048 MHz for E1 mode transmit clock. The transmit data at TD/TDP or TDN is  
sampled into the device on the active edge of TCLK. If TCLK is missing1 and the TCLK missing interrupt is not masked, an inter-  
rupt will be generated.  
RD/RDP  
CV/RDN  
O
5
6
RD: Receive Data output  
In single rail mode, this pin outputs NRZ data. The data is decoded according to AMI, HDB3 or B8ZS line code rules.  
CV: Code Violation indication  
In single rail mode, the BPV/CV code violation will be reported by driving the CV pin to high level for a full clock cycle. B8ZS/  
HDB3 line code violation can be indicated if the B8ZS/HDB3 decoder is enabled. When AMI decoder is selected, bipolar vio-  
lation will be indicated.  
In hardware control mode, the EXZ, BPV/CV errors in received data stream are always monitored by the CV pin if single rail  
mode is chosen.  
RDP/RDN: Positive/Negative Receive Data output  
In dual rail mode, this pin outputs the re-timed NRZ data when CDR is enabled, or directly outputs the raw RZ slicer data if CDR  
is bypassed.  
Active edge and level select:  
Data on RDP/RDN or RD is clocked with either the rising or the falling edge of RCLK. The active polarity is also selectable.  
RCLK  
O
4
RCLK: Receive Clock output  
This pin outputs 1.544 MHz for T1/J1 mode or 2.048 MHz for E1 mode receive clock. Under LOS condition with AIS enabled  
(bit AISE=1), RCLK is derived from MCLK. In clock recovery mode, this signal provides the clock recovered from the RTIP/  
RRING signal. The receive data (RD in single rail mode or RDP and RDN in dual rail mode) is clocked out of the device on the  
active edge of RCLK. If clock recovery is bypassed, RCLK is the exclusive OR (XOR) output of the dual rail slicer data RDP  
and RDN. This signal can be used in applications with external clock recovery circuitry.  
Notes:  
1. TCLK missing: the state of TCLK continues to be high level or low level over 70 MCLK cycles.  
9
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-1 Pin Description (Continued)  
Name  
MCLK  
Type  
I
Pin No.  
9
Description  
MCLK: Master Clock input  
A built-in clock system that accepts selectable 2.048MHz reference for E1 operating mode and 1.544MHz reference for T1/J1  
operating mode. This reference clock is used to generate several internal reference signals:  
Timing reference for the integrated clock recovery unit.  
Timing reference for the integrated digital jitter attenuator.  
Timing reference for microcontroller interface.  
Generation of RCLK signal during a loss of signal condition.  
Reference clock to transmit All Ones, all zeros, PRBS/QRSS pattern as well as activate or deactivate Inband Loopback  
code if MCLK is selected as the reference clock. Note that for ATAO and AIS, MCLK is always used as the reference  
clock.  
Reference clock during the Transmit All Ones (TAO) condition or sending PRBS/QRSS in hardware control mode.  
The loss of MCLK will turn TTIP/TRING into high impedance status.  
LOS  
REF  
O
7
LOS: Loss of Signal Output  
This is an active high signal used to indicate the loss of received signal. When LOS pin becomes high, it indicates the loss of  
received signal. The LOS pin will become low automatically when valid received signal is detected again. The criteria of loss  
of signal are described in 3.6 LOS AND AIS DETECTION.  
I
I
43  
REF: reference resister  
An external resistor (3K, 1%) is used to connect this pin to ground to provide a standard reference current for internal circuit.  
MODE1  
MODE0  
17  
16  
MODE[1:0]: operation mode of Control interface select  
The level on this pin determines which control mode is used to control the device as follows:  
MODE[1:0]  
Control Interface mode  
Hardware interface  
00  
01  
10  
11  
Serial Microcontroller Interface  
Parallel –Multiplexed -Motorola Interface  
Parallel –Multiplexed -Intel Interface  
The serial microcontroller Interface consists of CS, SCLK, SCLKE, SDI, SDO and INT pins. SCLKE is used for the  
selection of the active edge of SCLK.  
The parallel multiplexed microcontroller interface consists of CS, AD[7:0], DS/RD, R/W/WR, ALE/AS, ACK/RDY and  
INT pins. (refer to 3.12 MICROCONTROLLER INTERFACES for details)  
Hardware interface consists of PULS[3:0], THZ, RCLKE, LP[1:0], PATT[1:0], JA[1:0], MONT, TERM, EQ, RPD,  
MODE[1:0] and RXTXM[1:0]  
RCLKE  
I
I
11  
21  
RCLKE: the active edge of RCLK select  
In hardware control mode, this pin selects the active edge of RCLK  
L= select the rising edge as the active edge of RCLK  
H= select the falling edge as the active edge of RCLK  
In software control mode, this pin should be connected to GNDIO.  
CS  
CS: Chip Select  
In serial or parallel microcontroller interface mode, this is the active low enable signal. A low level on this pin enables serial or  
parallel microcontroller interface.  
RXTXM1  
RXTXM[1:0]: Receive and transmit path operation mode select  
In hardware control mode, these pins are used to select the single rail or dual rail operation modes as well as AMI or HDB3/  
B8ZS line coding:  
00= single rail with HDB3/B8ZS coding  
01= single rail with AMI coding  
10= dual rail interface with CDR enabled  
11= slicer mode (dual rail interface with CDR disabled)  
10  
 
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-1 Pin Description (Continued)  
Name  
Type  
O
Pin No.  
20  
Description  
INT  
INT: Interrupt Request  
In software control mode, this pin outputs the general interrupt request for all interrupt sources. These interrupt sources can be  
masked individually via registers (INTM0, 14H) and (INTM1, 15H). The interrupt status is reported via the registers (INTS0,  
19H) and (INTS1, 1AH).  
Output characteristics of this pin can be defined to be push-pull (active high or active low) or open-drain (active low) by setting  
INT_PIN[1:0] (GCF, 02H).  
RXTXM0  
SCLK  
I
I
RXTXM0  
See RXTXM1 above.  
25  
SCLK: Shift Clock  
In serial microcontroller interface mode, this signal is the shift clock for the serial interface. Configuration data on SDI pin is sam-  
pled on the rising edge of SCLK. Configuration and status data on SDO pin is clocked out of the device on the falling edge of  
SCLK if SCLKE pin is high, or on the rising edge of SCLK if SCLKE pin is low.  
ALE  
AS  
ALE: Address Latch Enable  
In parallel microcontroller interface mode with multiplexed Intel interface, the address on AD[7:0] is sampled into the device on  
the falling edge of ALE.  
AS: Address Strobe  
In parallel microcontroller interface mode with multiplexed Motorola interface, the address on AD[7:0] is latched into the device  
on the falling edge of AS.  
LP1  
LP[1:0]: Loopback mode select  
When the chip is configured by hardware, this pin is used to select loopback operation modes (Inband Loopback is not provided  
in hardware control mode)  
00= no loopback  
01= analog loopback  
10= digital loopback  
11= remote loopback  
SDI  
I
24  
SDI: Serial Data Input  
In serial microcontroller interface mode, this signal is the input data to the serial interface. Configuration data at SDI pin is sam-  
pled by the device on the rising edge of SCLK.  
WR  
WR: Write Strobe  
In Intel parallel multiplexed interface mode, this pin is asserted low by the microcontroller to initiate a write cycle. The data on  
AD[7:0] is sampled into the device in a write operation.  
R/W  
R/W: Read/Write Select  
In Motorola parallel multiplexed interface mode, this pin is low for write operation and high for read operation.  
LP0  
LP0  
See LP1 above.  
11  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-1 Pin Description (Continued)  
Name  
SDO  
Type  
O
Pin No.  
23  
Description  
SDO: Serial Data Output  
In serial microcontroller interface mode, this signal is the output data of the serial interface. Configuration or Status data at SDO  
pin is clocked out of the device on the falling edge of SCLK if SCLKE pin is high, or on the rising edge of SCLK if SCLKE pin  
is low.  
ACK  
ACK: Acknowledge Output  
In Motorola parallel mode interface, the low level on this pin means:  
The valid information is on the data bus during a read operation.  
The write data has been accepted during a write cycle.  
RDY  
RDY: Ready signal output  
In Intel parallel mode interface, the low level on this pin means a read or write operation is in progress; a high acknowledges  
a read or write operation has been completed.  
TERM  
I
I
TERM: Internal or external termination select in hardware mode  
This pin selects internal or external impedance matching for both receiver and transmitter.  
0 = ternary interface with external impedance matching network  
1 = ternary interface with internal impedance matching network  
SCLKE  
22  
SCLKE: Serial Clock Edge Select  
In serial microcontroller interface mode, this signal selects the active edge of SCLK for outputting SDO. The output data is valid  
after some delay from the active clock edge. It can be sampled on the opposite edge of the clock. The active clock edge which  
clocks the data out of the device is selected as shown below:  
SCLKE  
Low  
SCLK  
Rising edge is the active edge.  
Falling edge is the active edge.  
High  
RD: Read Strobe  
RD  
DS  
In Intel parallel multiplexed interface mode, the data is driven to AD[7:0] by the device during low level of RD in a read operation.  
DS: Data Strobe  
In Motorola parallel multiplexed interface mode, this signal is the data strobe of the parallel interface. In a write operation (R/  
W = 0), the data on AD[7:0] is sampled into the device. In a read operation (R/W = 1), the data is driven to AD[7:0] by the device.  
MONT: Receive Monitor gain select  
In hardware control mode with ternary interface, this pin selects the receive monitor gain of receiver:  
0= 0dB  
1= 26dB  
MONT  
AD7  
I/O  
33  
AD7: Address/Data Bus bit7  
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller  
interface.  
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kresistor.  
PULS3  
I
PULS[3:0]: these pins are used to select the following functions in hardware control mode:  
T1/J1/E1 mode  
Transmit pulse template  
Internal termination impedance (75/120/100/110)  
Refer to 5 HARDWARE CONTROL PIN SUMMARY for details.  
AD6  
I/O  
32  
AD6: Address/Data Bus bit6  
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller  
interface.  
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kresistor.  
PULS2  
I
See above.  
12  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-1 Pin Description (Continued)  
Name  
AD5  
Type  
I/O  
Pin No.  
31  
Description  
AD5: Address/Data Bus bit5  
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller  
interface.  
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kresistor.  
PULS1  
AD4  
I
See above.  
I/O  
30  
29  
AD4: Address/Data Bus bit4  
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller  
interface.  
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kresistor.  
PULS0  
AD3  
I
See above.  
I/O  
AD3: Address/Data Bus bit3  
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller  
interface.  
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kresistor.  
EQ  
I
EQ: Receive Equalizer on/off control in hardware control mode  
0= short haul (10 dB)  
1= long haul (36 dB for T1/J1, 43 dB for E1)  
AD2  
I/O  
28  
27  
AD2: Address/Data Bus bit2  
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller  
interface.  
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kresistor.  
RPD  
AD1  
I
RPD: Receiver power down control in hardware control mode  
0= normal operation  
1= receiver power down  
I/O  
AD1: Address/Data Bus bit1  
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller  
interface.  
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kresistor.  
PATT1  
AD0  
I
PATT[1:0]: Transmit pattern select  
In hardware control mode, this pin selects the transmit pattern  
00 = normal  
01= All Ones  
10= PRBS  
11= transmitter power down  
I/O  
26  
15  
AD0: Address/Data Bus bit0  
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller  
interface.  
In serial microcontroller interface mode, this pin should be connected to ground through a 10 kresistor.  
PATT0  
JA1  
I
I
See above.  
JA[1:0]: Jitter attenuation position, bandwidth and the depth of FIFO select (only used for hardware control mode)  
00 = JA is disabled  
01 = JA in receiver, broad bandwidth, FIFO=64 bits  
10 = JA in receiver, narrow bandwidth, FIFO=128 bits  
11 = JA in transmitter, narrow bandwidth, FIFO=128 bits  
In software control mode, this pin should be connected to ground.  
JA0  
I
I
14  
12  
See above.  
RST  
RST: Hardware reset  
The chip is forced to reset state if a low signal is input on this pin for more than 100ns.  
13  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-1 Pin Description (Continued)  
Name  
THZ  
Type  
I
Pin No.  
13  
Description  
THZ: Transmitter Driver High Impedance Enable  
This signal enables or disables transmitter driver. A low level on this pin enables the driver while a high level on this pin places  
driver in high impedance state. Note that the functionality of the internal circuits is not affected by this signal.  
Power Supplies and Grounds  
3.3 V I/O power supply  
VDDIO  
GNDIO  
VDDT  
GNDT  
VDDA  
GNDA  
VDDD  
GNDD  
-
-
-
-
-
-
-
-
19  
18  
35  
38  
42  
39  
8
I/O ground  
3.3 V power supply for transmitter driver  
Analog ground for transmitter driver  
3.3 V analog core power supply  
Analog core ground  
Digital core power supply  
Digital core ground  
10  
Others  
IC  
IC  
-
-
34  
44  
IC: Internal connection  
Internal Use. This pin should be left open when in normal operation.  
IC: Internal connection  
Internal Use. This pin should be connected to ground when in normal operation.  
14  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
3.3.2 ENCODER  
3
FUNCTIONAL DESCRIPTION  
In Single Rail mode, when T1/J1 mode is selected, the Encoder can be  
selected to be a B8ZS encoder or an AMI encoder by setting T_MD[0] bit  
(TCF0, 05H).  
3.1 CONTROL MODE SELECTION  
The IDT82V2081 can be configured by software or by hardware. The  
software control mode supports Serial Control Interface, Motorola Multi-  
plexed Control Interface and Intel Multiplexed Control Interface. The Con-  
trol mode is selected by MODE1 and MODE0 pins as follows:  
InSingleRailmode,whenE1modeisselected,theEncodercanbecon-  
figured to be a HDB3 encoder or an AMI encoder by setting T_MD[0] bit  
(TCF0, 05H).  
In both T1/J1 mode and E1 mode, when Dual Rail mode is selected (bit  
T_MD[1] is ‘1’), the Encoder is by-passed. In Dual Rail mode, a logic ‘1’ on  
the TDP pin and a logic ‘0’ on the TDN pin results in a negative pulse on the  
TTIP/TRING; a logic ‘0’ on TDP pin and a logic ‘1’ on TDN pin results in a  
positive pulse on the TTIP/TRING. If both TDP and TDN are high or low,  
the TTIP/TRING outputs a space (Refer to TD/TDP, TDN Pin Description).  
Control Interface mode  
00  
01  
10  
11  
Hardware interface  
Serial Microcontroller Interface.  
Parallel –Multiplexed -Motorola Interface  
Parallel –Multiplexed -Intel Interface  
In hardware control mode, the operation mode of receive and transmit  
path can be selected by setting RXTXM1 and RXTXM0 pins. Refer to 5  
HARDWARE CONTROL PIN SUMMARY for details.  
The serial microcontroller Interface consists of CS, SCLK, SCLKE,  
SDI, SDO and INT pins. SCLKE is used for the selection of active  
edge of SCLK.  
The parallel Multiplexed microcontroller Interface consists of CS,  
AD[7:0], DS/RD, R/W/WR, ALE/AS, ACK/RDY and INT pins.  
Hardware interface consists of PULS[3:0], THZ, RCLKE, LP[1:0],  
PATT[1:0], JA[1:0], MONT, TERM, EQ, RPD, MODE[1:0] and  
RXTXM[1:0]. Refer to 5 HARDWARE CONTROL PIN SUMMARY  
for details about hardware control.  
3.3.3 PULSE SHAPER  
The IDT82V2081 provides three ways of manipulating the pulse shape  
before sending it. The first is to use preset pulse templates for short haul  
application, the second is to use LBO (Line Build Out) for long haul appli-  
cation and the other way is to use user-programmable arbitrary waveform  
template.  
3.2 T1/E1/J1 MODE SELECTION  
In software control mode, the pulse shape can be selected by setting  
the related registers.  
When the chip is configured by software, T1/E1/J1 mode is selected by  
theT1E1bit(GCF, 02H). InE1application, theT1E1bit(GCF, 02H)should  
be set to ‘0’. In T1/J1 application, the T1E1 bit should be set to ‘1’.  
In hardware control mode, the pulse shape can be selected by setting  
PULS[3:0] pins. Refer to 5 HARDWARE CONTROL PIN SUMMARY for  
details.  
When the chip is configured by hardware, T1/E1/J1 mode is selected  
by PULS[3:0] pins. These pins also determine transmit pulse template and  
internal termination impedance. Refer to 5 HARDWARE CONTROL PIN  
SUMMARY for details.  
3.3.3.1 Preset Pulse Templates  
For E1 applications, the pulse shape is shown in Figure-3 according to  
the G.703 and the measuring diagram is shown in Figure-4. In internal  
impedance matching mode, if the cable impedance is 75 , the PULS[3:0]  
bits (TCF1, 06H) should be set to ‘0000’; if the cable impedance is 120 ,  
the PULS[3:0] bits (TCF1, 06H) should be set to ‘0001’. In external imped-  
ance matching mode, for both E1/75 and E1/120 cable impedance,  
PULS[3:0] should be set to ‘0001’.  
3.3 TRANSMIT PATH  
The transmit path of IDT82V2081 consists of an Encoder, an optional  
Jitter Attenuator, a Waveform Shaper, a set of LBOs, a Line Driver and a  
Programmable Transmit Termination.  
3.3.1 TRANSMIT PATH SYSTEM INTERFACE  
The transmit path system interface consists of TCLK pin, TD/TDP pin  
andTDNpin.InE1mode,TCLKisa2.048MHzclock.InT1/J1mode,TCLK  
is a 1.544 MHz clock. If TCLK is missing for more than 70 MCLK cycles, an  
interrupt will be generated if it is not masked.  
1.20  
1.00  
0.80  
0.60  
Transmit data is sampled on the TD/TDP and TDN pins by the active  
edgeofTCLK. Theactive edge ofTCLKcanbeselectedby theTCLK_SEL  
bit (TCF0, 05H). And the active level of the data on TD/TDP and TDN can  
be selected by the TD_INV bit (TCF0, 05H). In hardware control mode, the  
falling edge of TCLK and the active high of transmit data are always used.  
0.40  
0.20  
0.00  
The transmit data from the system side can be provided in two different  
ways: Single Rail and Dual Rail. In Single Rail mode, only TD pin is used  
for transmitting data and the T_MD[1] bit (TCF0, 05H) should be set to ‘0’.  
InDualRailMode,bothTDPpinandTDNpinareusedfortransmittingdata,  
the T_MD[1] bit (TCF0, 05H) should be set to ‘1’.  
-0.20  
0.6  
-0.6  
-0.4  
-0.2  
0
0.2  
0.4  
T im e in U nit Intervals  
Figure-3 E1 Waveform Template Diagram  
15  
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
3.3.3.3 User-Programmable Arbitrary Waveform  
WhenthePULS[3:0]bitsaresetto11xx’, user-programmablearbitrary  
waveform generator mode can be used. This allows the transmitter perfor-  
mance to be tuned for a wide variety of line condition or special application.  
TTIP  
IDT82V2081  
RLOAD  
VOUT  
Each pulse shape can extend up to 4 UIs (Unit Interval), addressed by  
UI[1:0] bits (TCF3, 08H) and each UI is divided into 16 sub-phases,  
addressedbytheSAMP[3:0]bits(TCF3,08H).Thepulseamplitudeofeach  
phase is represented by a binary byte, within the range from +63 to -63,  
stored in WDAT[6:0] bits (TCF4, 09H) in signed magnitude form. The most  
positivenumber+63(D)representsthe positivemaximumamplitudeofthe  
transmitpulsewhilethemostnegativenumber-63(D)representsthemax-  
imum negative amplitude of the transmit pulse. Therefore, up to 64 bytes  
are used.  
TRING  
Note: 1. For RLOAD = 75 (nom), Vout (Peak)=2.37V (nom)  
2. For RLOAD =120 (nom), Vout (Peak)=3.00V (nom)  
Figure-4 E1 Pulse Template Test Circuit  
For T1 applications, the pulse shape is shown in Figure-5 according to  
the T1.102 and the measuring diagram is shown in Figure-6. This also  
meets the requirement of G.703, 2001. The cable length is divided into five  
grades,andtherearefivepulsetemplatesusedforeachofthecablelength.  
The pulse template is selected by PULS[3:0] bits (TCF1, 06H).  
Therearetwelvestandardtemplateswhicharestoredinanon-chipROM.  
User can select one of them as reference and make some changes to get  
the desired waveform.  
User can change the wave shape and the amplitude to get the desired  
pulse shape. In order to do this, firstly, users can choose a set of waveform  
value from the following twelve tables, which is the most similar to the  
desired pulse shape. Table-2, Table-3, Table-4, Table-5, Table-6, Table-7,  
Table-8, Table-9, Table-10, Table-11, Table-12andTable-13listthesample  
data and scaling data ofeach of thetwelvetemplates. Thenmodifythe cor-  
responding sample data to get the desired transmit pulse shape.  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
Secondly, through the value of SCAL[5:0] bits increased or decreased  
by 1, the pulse amplitude can be scaled up or down at the percentage ratio  
againstthestandardpulseamplitudeifneeded. Fordifferentpulseshapes,  
the value of SCAL[5:0] bits and the scaling percentage ratio are different.  
The following twelve tables list these values.  
-0.2  
-0.4  
-0.6  
Do the followings step by step, the desired waveform can be pro-  
grammed, based on the selected waveform template:  
(1).Select the UI by UI[1:0] bits (TCF3, 08H)  
0
250  
500  
750  
1000  
1250  
Time (ns)  
Figure-5 DSX-1 Waveform Template  
(2).Specify the sample address in the selected UI by SAMP [3:0] bits  
(TCF3, 08H)  
(3).Write sample data to WDAT[6:0] bits (TCF4, 09H). It contains the  
data to be stored in the RAM, addressed by the selected UI and the  
corresponding sample address.  
(4).Set the RW bit (TCF3, 08H) to ‘0’ to implement writing data to RAM,  
or to ‘1’ to implement read data from RAM  
TTIP  
Cable  
IDT82V2081  
RLOAD  
VOUT  
TRING  
(5).Implement the Read from RAM/Write to RAM by setting the DONE  
bit (TCF3, 08H)  
Note: RLOAD = 100 ± 5%  
Repeat the above steps until all the sample data are written to or read  
from the internal RAM.  
Figure-6 T1 Pulse Template Test Circuit  
(6).Write the scaling data to SCAL[5:0] bits (TCF2, 07H) to scale the  
amplitude of the waveform based on the selected standard pulse  
amplitude  
For J1 applications, the PULS[3:0] (TCF1, 06H) should be set to ‘0111’.  
Table-14 lists these values.  
WhenmorethanoneUIisusedtocomposethepulsetemplate,theover-  
lap of two consecutive pulses could make the pulse amplitude overflow  
(exceed the maximum limitation) if the pulse amplitude is not set properly.  
This overflow is captured by DAC_OV_ISbit (INTS1, 1AH), and, if enabled  
by the DAC_OV_IM bit (INTM1, 15H), an interrupt will be generated.  
3.3.3.2 LBO (Line Build Out)  
Topreventthecross-talkatthefarend, theoutputofTTIP/TRINGcould  
beattenuatedbeforetransmissionforlonghaulapplications.TheFCCPart  
68 Regulations specifies four grades of attenuation with a step of 7.5 dB.  
Three LBOs are used to implement the pulse attenuation. The PULS[3:0]  
bits (TCF1, 06H) are used to select the attenuation grade. Both Table-14  
and Table-15 list these values.  
The following tables give all the sample data based on the preset pulse  
templates and LBOs in detail forreference. For preset pulsetemplatesand  
LBOs, scaling up/down against the pulse amplitude is not supported.  
16  
 
 
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
1.Table-2 Transmit Waveform Value For E1 75 Ω  
2.Table-3 Transmit Waveform Value For E1 120 Ω  
Table-3 Transmit Waveform Value For E1 120 Ω  
3. Table-4 Transmit Waveform Value For T1 0~133 ft  
4.Table-5 Transmit Waveform Value For T1 133~266 ft  
5.Table-6 Transmit Waveform Value For T1 266~399 ft  
6.Table-7 Transmit Waveform Value For T1 399~533 ft  
7.Table-8 Transmit Waveform Value For T1 533~655 ft  
8.Table-9 Transmit Waveform Value For J1 0~655 ft  
9.Table-10 Transmit Waveform Value For DS1 0 dB LBO  
10.Table-11 Transmit Waveform Value For DS1 -7.5 dB LBO  
11.Table-12 Transmit Waveform Value For DS1 -15.0 dB LBO  
12.Table-13 Transmit Waveform Value For DS1 -22.5 dB LBO  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
1
2
0000000  
0000000  
0000000  
0001111  
0111100  
0111100  
0111100  
0111100  
0111100  
0111100  
0111100  
0111100  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
3
4
5
6
7
8
9
Table-2 Transmit Waveform Value For E1 75 Ω  
10  
11  
12  
13  
14  
15  
16  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
1
2
0000000  
0000000  
0000000  
0001100  
0110000  
0110000  
0110000  
0110000  
0110000  
0110000  
0110000  
0110000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
3
4
5
6
SCAL[5:0] = 100001 (default), One step change of this value of SCAL[5:0]  
results in 3% scaling up/down against the pulse amplitude.  
7
8
9
Table-4 Transmit Waveform Value For T1 0~133 ft  
10  
11  
12  
13  
14  
15  
16  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
1
2
0010111  
0100111  
0100111  
0100110  
0100101  
0100101  
0100101  
0100100  
0100011  
1001010  
1001010  
1001001  
1000111  
1000101  
1000100  
1000011  
1000010  
1000001  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
3
4
5
6
SCAL[5:0] = 100001 (default), One step change of this value of SCAL[5:0]  
results in 3% scaling up/down against the pulse amplitude.  
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCAL[5:0] = 1101101 (default), One step change of this value of SCAL[5:0]  
results in 2% scaling up/down against the pulse amplitude.  
1. In T1 mode, when arbitrary pulse for short haul application is configured,  
users should write ‘110110’ to SCAL[5:0] bits if no scaling is required.  
17  
 
 
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-5 Transmit Waveform Value For T1 133~266 ft  
Table-7 Transmit Waveform Value For T1 399~533 ft  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
1
2
0011011  
0101110  
0101100  
0101010  
0101001  
0101000  
0100111  
0100110  
0100101  
1010000  
1001111  
1001101  
1001010  
1001000  
1000110  
1000100  
1000011  
1000010  
1000001  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
See Table-4  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
1
2
0100000  
0111011  
0110101  
0101111  
0101110  
0101101  
0101100  
0101010  
0101000  
1011000  
1011000  
1010011  
1001100  
1001000  
1000110  
1000100  
1000011  
1000010  
1000001  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
See Table-4  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
Table-6 Transmit Waveform Value For T1 266~399 ft  
Table-8 Transmit Waveform Value For T1 533~655 ft  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
1
2
0011111  
0110100  
0101111  
0101100  
0101011  
0101010  
0101001  
0101000  
0100101  
1010111  
1010011  
1010000  
1001011  
1001000  
1000110  
1000100  
1000011  
1000010  
1000001  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
See Table-4  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
1
2
0100000  
0111111  
0111000  
0110011  
0101111  
0101110  
0101101  
0101100  
0101001  
1011111  
1011110  
1010111  
1001111  
1001001  
1000111  
1000100  
1000011  
1000010  
1000001  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
See Table-4  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
18  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-9 Transmit Waveform Value For J1 0~655 ft  
Table-11 Transmit Waveform Value For DS1 -7.5 dB LBO  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
1
2
0010111  
0100111  
0100111  
0100110  
0100101  
0100101  
0100101  
0100100  
0100011  
1001010  
1001010  
1001001  
1000111  
1000101  
1000100  
1000011  
1000010  
1000001  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
1
2
0000000  
0000010  
0001001  
0010011  
0011101  
0100101  
0101011  
0110001  
0110110  
0111010  
0111001  
0110000  
0101000  
0100000  
0011010  
0010111  
0010100  
0010010  
0010000  
0001110  
0001100  
0001011  
0001010  
0001001  
0001000  
0000111  
0000110  
0000101  
0000100  
0000100  
0000011  
0000011  
0000010  
0000010  
0000010  
0000010  
0000010  
0000001  
0000001  
0000001  
0000001  
0000001  
0000001  
0000001  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
SCAL[5:0] = 110110 (default), One step change of this value of SCAL[5:0]  
results in 2% scaling up/down against the pulse amplitude.  
SCAL[5:0] = 010001 (default), One step change of this value of SCAL[5:0]  
results in 6.25% scaling up/down against the pulse amplitude.  
Table-10 Transmit Waveform Value For DS1 0 dB LBO  
Table-12 Transmit Waveform Value For DS1 -15.0 dB LBO  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
1
2
0010111  
0100111  
0100111  
0100110  
0100101  
0100101  
0100101  
0100100  
0100011  
1001010  
1001010  
1001001  
1000111  
1000101  
1000100  
1000011  
1000010  
1000001  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
0000000  
1
2
0000000  
0000000  
0000000  
0000001  
0000100  
0001000  
0001110  
0010100  
0011011  
0100010  
0101010  
0110000  
0110101  
0110111  
0111000  
0110111  
0110101  
0110011  
0110000  
0101101  
0101010  
0100111  
0100100  
0100001  
0011110  
0011100  
0011010  
0010111  
0010101  
0010100  
0010010  
0010000  
0001111  
0001101  
0001100  
0001011  
0001010  
0001001  
0001000  
0000111  
0000110  
0000110  
0000101  
0000101  
0000100  
0000100  
0000011  
0000011  
0000011  
0000010  
0000010  
0000010  
0000010  
0000001  
0000001  
0000001  
0000001  
0000001  
0000001  
0000001  
0000001  
0000000  
0000000  
0000000  
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
SCAL[5:0] = 110110 (default), One step change of this Value results in 2%  
scaling up/down against the pulse amplitude.  
SCAL[5:0] = 001000 (default), One step change of the value of SCAL[5:0]  
results in 12.5% scaling up/down against the pulse amplitude.  
19  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
‘0’, the internal impedance matching circuit will be selected. In this case,  
the T_TERM[1:0] bits (TERM, 03H) can be set to choose 75 , 100, 110  
or 120 internal impedance of TTIP/TRING. If T_TERM[2] is set to ‘1’,  
the internal impedance matching circuit will be disabled. In this case, the  
external impedance matching circuit will be used to realize the impedance  
matching. For T1/J1 mode, the external impedance matching circuit for the  
transmitter isnot supported. Figure-8 shows the appropriate external com-  
ponents to connect with the cable. Table-14 is the list of the recommended  
impedance matching for transmitter.  
Table-13 Transmit Waveform Value For DS1 -22.5 dB LBO  
Sample  
UI 1  
UI 2  
UI 3  
UI 4  
1
2
0000000  
0000000  
0000000  
0000000  
0000001  
0000011  
0000111  
0001011  
0001111  
0010101  
0011001  
0011100  
0100000  
0100011  
0100111  
0101010  
0101100  
0101110  
0110000  
0110001  
0110010  
0110010  
0110010  
0110001  
0110000  
0101110  
0101100  
0101001  
0100111  
0100100  
0100010  
0100000  
0011110  
0011100  
0011010  
0011000  
0010111  
0010101  
0010100  
0010011  
0010001  
0010000  
0001111  
0001110  
0001101  
0001100  
0001010  
0001001  
0001000  
0000111  
0000110  
0000101  
0000101  
0000100  
0000100  
0000011  
0000011  
0000010  
0000010  
0000010  
0000001  
0000001  
0000001  
0000001  
3
4
5
6
In hardware control mode, TERM pin can be used to select impedance  
matching for both receiver and transmitter. If TERM pin is low, external  
impedance network will be used for impedance matching. If TERM pin is  
high, internal impedance will be used for impedance matching and  
PULS[3:0] pins will be set to select the specific internal impedance. Refer  
to 5 HARDWARE CONTROL PIN SUMMARY for details.  
7
8
9
10  
11  
12  
13  
14  
15  
16  
TheTTIP/TRINGpinscanalsobeturnedintohighimpedancebysetting  
the THZ bit (TCF1, 06H) to ‘1’. In this state, the internal transmit circuits are  
still active.  
In hardware control mode, TTIP/TRING can be turned into high imped-  
ance by pulling THZ pin to high. Refer to 5 HARDWARE CONTROL PIN  
SUMMARY for details.  
SCAL[5:0] = 000100 (default), One step change of this value of SCAL[5:0]  
results in 25% scaling up/down against the pulse amplitude.  
Besides,inthefollowingcases,bothTTIP/TRINGpinswillalsobecome  
high impedance:  
Loss of MCLK;  
3.3.4 TRANSMIT PATH LINE INTERFACE  
Loss of TCLK (exceptions: Remote Loopback; Transmit internal  
pattern by MCLK);  
Transmit path power down;  
The transmit line interface consists of TTIP pin and TRING pin. The  
impedance matching can be realized by the internal impedance matching  
circuit or the external impedance matching circuit. If T_TERM[2] is set to  
After software reset; pin reset and power on.  
Table-14 Impedance Matching for Transmitter  
Cable Configuration  
Internal Termination  
External Termination  
T_TERM[2:0]  
PULS[3:0]  
RT  
T_TERM[2:0]  
PULS[3:0]  
RT  
E1/75 Ω  
000  
001  
010  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
0 Ω  
1XX  
0001  
0001  
-
9.4 Ω  
E1/120 Ω  
T1/0~133 ft  
T1/133~266 ft  
T1/266~399 ft  
T1/399~533 ft  
T1/533~655 ft  
J1/0~655 ft  
-
-
011  
010  
0 dB LBO  
-7.5 dB LBO  
-15.0 dB LBO  
-22.5 dB LBO  
Note: The precision of the resistors should be better than ± 1%  
3.3.5 TRANSMIT PATH POWER DOWN  
In hardware control mode, the transmit path can be powered down by  
pulling both PATT1 and PATT0 pins to high. Refer to 5 HARDWARE CON-  
TROL PIN SUMMARY for details.  
ThetransmitpathcanbepowereddownbysettingtheT_OFFbit(TCF0,  
05H) to ‘1’. In this case, the TTIP/TRING pins are turned into high imped-  
ance.  
20  
 
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
is set to ‘0’, the internal impedance matching circuit will be selected. In this  
case, the R_TERM[1:0] bits (TERM, 03H) can be set to choose 75 , 100  
, 110 or 120 internal impedance of RTIP/RRING. If R_TERM[2] is  
set to ‘1’, the internal impedance matching circuit will be disabled. In this  
case, the external impedance matching circuit will be used to realize the  
impedance matching. Figure-8 shows the appropriate external compo-  
nents to connect with the cable. Table-15 is the list of the recommended  
impedance matching for receiver.  
3.4 RECEIVE PATH  
The receive path consists of Receive Internal Termination, Monitor  
Gain,Amplitude/WaveShapeDetector,DigitalTuningController,Adaptive  
Equalizer, Data Slicer, CDR (Clock & Data Recovery), Optional Jitter  
Attenuator, Decoder and LOS/AIS Detector. Refer to Figure-7.  
3.4.1 RECEIVE INTERNAL TERMINATION  
The impedance matching can be realized by the internal impedance  
matching circuit or the external impedance matching circuit. If R_TERM[2]  
LOS/AIS  
LOS  
Detector  
RCLK  
Receive  
Internal  
termination  
RTIP  
Clock  
Jitter  
Adaptive  
Equalizer  
Data Slicer  
Monitor Gain  
Decoder  
RDP  
RDN  
and Data  
Recovery  
Attenuator  
RRING  
Figure-7 Receive Path Function Block Diagram  
Table-15 Impedance Matching for Receiver  
Cable Configuration  
Internal Termination  
R_TERM[2:0]  
External Termination  
RR  
R_TERM[2:0]  
RR  
E1/75 Ω  
E1/120 Ω  
T1  
000  
001  
010  
011  
120 Ω  
1XX  
75 Ω  
120 Ω  
100 Ω  
110 Ω  
J1  
VDDA  
D8  
1:1  
·
RTIP  
3.3 V  
68µF1  
A
D7  
VDDA  
GNDA  
VDDA  
RX Line  
RR  
0.1µF  
0.1µF  
D6  
D5  
·
B
RRING  
TTIP  
VDDT  
D4  
2:1  
RT  
·
3.3 V  
68µF1  
D3  
VDDT  
GNDT  
TX Line  
Cp  
VDDT  
D2  
·  
TRING  
RT  
D1  
Note: 1. Common decoupling capacitor  
2. Cp 0-560 (pF)  
3. D1 - D8, Motorola - MBR0540T1;  
International Rectifier - 11DQ04 or 10BQ060  
Figure-8 Transmit/Receive Line Circuit  
21  
 
 
 
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Inhardwarecontrolmode, TERM, PULS[3:0]pinscanbeusedtoselect  
impedance matching for both receiver and transmitter. If TERM pin is low,  
externalimpedancenetworkwillbeusedforimpedancematching.IfTERM  
pin is high, internal impedance will be used for impedance matching and  
PULS[3:0] pins can be set to select the specific internal impedance. Refer  
to 5 HARDWARE CONTROL PIN SUMMARY for details.  
3.4.3 ADAPTIVE EQUALIZER  
The adaptive equalizer can remove most of the signal distortion due to  
intersymbol interference caused by cable attenuation. It can be enabled or  
disabled by setting EQ_ON bit to ‘1’ or ‘0’ (RCF1, 0BH).  
Whentheadaptiveequalizerisoutofrange,EQ_Sbit(STAT0,17H)will  
be set to ‘1’ to indicate the status of equalizer. If EQ_IES bit (INTES, 16H)  
is set to ‘1’, any changes of EQ_S bit will generate an interrupt and EQ_IS  
bit (INTS0, 19H) will be set to ‘1’ if it is not masked. If EQ_IES is set to ‘0’,  
only the ‘0’ to ‘1’ transition of the EQ_S bit will generate an interrupt and  
EQ_ISbitwillbesetto1ifitisnot masked. TheEQ_ISbitwillberesetafter  
being read.  
3.4.2 LINE MONITOR  
In both T1/J1 and E1 short haul applications, the non-intrusive monitor-  
ingonchannelslocatedinotherchipscanbeperformedbytappingthemon-  
itored channel through a high impedance bridging circuit. Refer to Figure-  
9 and Figure-11.  
The Amplitude/wave shape detector keeps on measuring the ampli-  
tude/waveshapeoftheincomingsignalsduringanobservationperiod.This  
observation period can be 32, 64, 128 or 256 symbol periods, as selected  
by UPDW[1:0] bits (RCF2, 0CH). A shorter observation period allows  
quicker responses to pulse amplitude variation while a longer observation  
period can minimize the possible overshoots. The default observation  
period is 128 symbol periods.  
After a high resistance bridging circuit, the signal arriving at the RTIP/  
RRING is dramatically attenuated. To compensate this attenuation, the  
Monitor Gain can be used to boost the signal by 22 dB, 26 dB and 32 dB,  
selected by MG[1:0] bits (RCF2, 0CH). For normal operation, the Monitor  
Gain should be set to 0 dB.  
In hardware control mode, MONT pin can be used to set the Monitor  
Gain. When MONT pin is low, the Monitor Gain is 0 dB. When MONT pin  
is high, the Monitor Gain is 26 dB. Refer to 5 HARDWARE CONTROL PIN  
SUMMARY for details.  
Based on the observed peak value for a period, the equalizer will be  
adjusted to achievea normalized signal. LATT[4:0] bits(STAT1, 18H) indi-  
cate the signal attenuation introduced by the cable in approximately 2 dB  
per step.  
DSX cross connect  
point  
3.4.4 RECEIVE SENSITIVITY  
RTIP  
For short haul application, the Receive Sensitivity for both E1 and T1/  
J1 is -10 dB. For long haul application, the receive sensitivity is -43 dB for  
E1 and -36 dB for T1/J1.  
monitor  
gain=0dB  
RRING  
R
normal receive mode  
When the chip is configured by hardware, the short haul or long haul  
operating mode can be selected by setting EQ pin. For short haul mode,  
theReceiveSensitivityforbothE1andT1/J1is-10dB.Forlonghaulmode,  
thereceivesensitivityis-43dBforE1and-36dBforT1/J1.Referto5HARD-  
WARE CONTROL PIN SUMMARY for details.  
RTIP  
monitor gain  
=22/26/32dB  
RRING  
3.4.5 DATA SLICER  
monitor mode  
The Data Slicer is used to generate a standard amplitude mark or a  
space according to the amplitude of the input signals. The threshold can  
be40%,50%,60%or70%,asselectedbytheSLICE[1:0]bits(RCF2,0CH).  
TheoutputoftheDataSlicerisforwardedtotheCDR(Clock&DataRecov-  
ery) unit or to the RDP/RDN pins directly if the CDR is disabled.  
Figure-9 Monitoring Receive Line in Another Chip  
DSX cross connect  
point  
TTIP  
3.4.6 CDR (Clock & Data Recovery)  
TheCDRisusedtorecovertheclockanddatafromthereceivedsignal.  
The recovered clock tracks the jitter in the data output from the Data Slicer  
and keeps the phase relationship between data and clock during the  
absenceoftheincomingpulse.TheCDRcanalsobeby-passedintheDual  
Railmode. WhenCDRisby-passed, the data fromtheDataSlicer isoutput  
to the RDP/RDN pins directly.  
TRING  
R
normal transmit mode  
RTIP  
monitor gain  
=22/26/32dB  
3.4.7 DECODER  
RRING  
monitor mode  
In T1/J1 applications, the R_MD[1:0] bits (RCF0, 0AH) is used to select  
the AMI decoder or B8ZS decoder. In E1 applications, the R_MD[1:0] bits  
(RCF0, 0AH) are used to select the AMI decoder or HDB3 decoder.  
Figure-10 Monitor Transmit Line in Another Chip  
Whenthechipisconfiguredbyhardware,theoperationmodeofreceive  
and transmit path can be selected by setting RXTXM1 and RXTXM0 pins.  
Refer to 5 HARDWARE CONTROL PIN SUMMARY for details.  
22  
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
3.4.8 RECEIVE PATH SYSTEM INTERFACE  
The receive path system interface consists of RCLK pin, RD/RDP pin  
andRDNpin. InE1 mode, the RCLKoutputsarecovered2.048MHzclock.  
In T1/J1 mode, the RCLK outputs a recovered 1.544 MHz clock. The  
RD/RDP  
De-jittered Data  
RDN  
FIFO  
32/64/128  
Jittered Data  
received data is updated on the RD/RDP and RDN pins on the active edge  
of RCLK. The active edge of RCLK can be selected by the RCLK_SEL bit  
(RCF0, 0AH). And the active level of the data on RD/RDP and RDN can be  
selected by the RD_INV bit (RCF0, 0AH).  
W
R
Jittered Clock  
De-jittered Clock  
RCLK  
In hardware control mode, only the active edge of RCLK can be  
DPLL  
selected.IfRCLKEissettohigh,thefallingedgewillbechosenastheactive  
edge of RCLK. If RCLKE is set to low, the rising edge will be chosen as the  
active edge of RCLK. The active level of the data on RD/RDP and RDN is  
the same as that in software control mode.  
MCLK  
Thereceiveddatacanbeoutputtothesystemsideintwodifferentways:  
SingleRailorDualRail,asselectedbyR_MDbit[1](RCF0,0AH). InSingle  
Rail mode, only RD pin is used to output data and the RDN/CV pin is used  
to report the received errors. In Dual Rail Mode, both RDP pin and RDN pin  
are used for outputting data.  
Figure-11 Jitter Attenuator  
In E1 applications, the Corner Frequency of the DPLL can be 0.9 Hz or  
6.8 Hz, as selected by the JABW bit (JACF, 04H). In T1/J1 applications,  
the Corner Frequency of the DPLL can be 1.25 Hz or 5.00 Hz, as selected  
bytheJABWbit(JACF,04H).ThelowertheCornerFrequencyis,thelonger  
time is needed to achieve synchronization.  
InthereceiveDualRailmode,theCDRunitcanbeby-passedbysetting  
R_MD[1:0] to ‘11’ (binary). In this situation, the output data from the Data  
Slicer will be output to the RDP/RDN pins directly, and the RCLK outputs  
the exclusive OR (XOR) of the RDP and RDN. This is called receiver slicer  
mode. In this case, the transmit path is still operating in Dual Rail mode.  
When the incoming data moves faster than the outgoing data, the FIFO  
will overflow. This overflow is captured by the JAOV_IS bit (INTS1, 1AH).  
If the incoming data moves slower than the outgoing data, the FIFO will  
underflow.ThisunderflowiscapturedbytheJAUD_IS bit(INTS1,1AH).For  
some applications that are sensitive to data corruption, the JA limit mode  
can be enabled by setting JA_LIMIT bit (JACF, 04H) to ‘1’. In the JA limit  
mode, the speed of the outgoing data will be adjusted automatically when  
theFIFOisclosetoitsfulloremptiness.Thecriteriaofstartingspeedadjust-  
ment are shown in Table-16. The JA limit mode can reduce the possibility  
of FIFO overflow and underflow, but the quality of jitter attenuation is dete-  
riorated.  
3.4.9 RECEIVE PATH POWER DOWN  
The receive path can be powered down by setting R_OFF bit (RCF0,  
0AH)to1’.Inthiscase,theRCLK,RD/RDP,RDNandLOSwillbelogiclow.  
Inhardwarecontrolmode,receiverpowerdowncanbeselectedbypull-  
ing RPD pin to high. Refer to 5 HARDWARE CONTROL PIN SUMMARY  
for more details.  
3.5 JITTER ATTENUATOR  
There is one Jitter Attenuator in the IDT82V2081. The Jitter Attenuator  
can be deployed in the transmit path or the receive path, and can also be  
disabled. This is selected by the JACF[1:0] bits (JACF, 04H).  
Table-16 Criteria of Starting Speed Adjustment  
FIFO Depth  
32 Bits  
Criteria for Adjusting Data Outgoing Speed  
2 bits close to its full or emptiness  
3 bits close to its full or emptiness  
4 bits close to its full or emptiness  
In hardware control mode, Jitter Attenuator position, bandwidth and the  
depth of FIFO can be selected by JA[1:0] pins. Refer to 5 HARDWARE  
CONTROL PIN SUMMARY for details.  
64 Bits  
128 Bits  
3.5.1 JITTER ATTENUATION FUNCTION DESCRIPTION  
3.5.2 JITTER ATTENUATOR PERFORMANCE  
The Jitter Attenuator is composed of a FIFO and a DPLL, as shown in  
Figure-11. The FIFO is used as a pool to buffer the jittered input data, then  
the data is clocked out of the FIFO by a de-jittered clock. The depth of the  
FIFO can be 32 bits, 64 bits or 128 bits, as selected by the JADP[1:0] bits  
(JACF, 04H). In hardware control mode, the depth of FIFO can be selected  
by JA[1:0] pins. Refer to 5 HARDWARE CONTROL PIN SUMMARY for  
details. Consequently, the constant delay of the Jitter Attenuator will be 16  
bits, 32 bits or 64 bits. Deeper FIFO can tolerate larger jitter, but at the cost  
of increasing data latency time.  
The performance of the Jitter Attenuator in the IDT82V2081 meets the  
ITU-TI.431,G.703,G.736-739,G.823,G.824, ETSI300011,ETSITBR12/  
13, AT&T TR62411 specifications. Details of the Jitter Attenuator perfor-  
manceisshowninTable-63JitterToleranceandTable-64JitterAttenuator  
Characteristics.  
23  
 
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
LOS detect level threshold  
3.6 LOS AND AIS DETECTION  
In short haul mode, the amplitude threshold Q is fixed on 800 mVpp,  
while P=Q+200 mVpp (200 mVpp is the LOS level detect hysteresis).  
3.6.1 LOS DETECTION  
TheLossofSignalDetectormonitors theamplitudeoftheincomingsig-  
nal level and pulse density of the received signal on RTIP and RRING.  
Inlonghaulmode,thevalueofQcanbeselectedbyLOS[4:0]bit(RCF1,  
0BH), while P=Q+4 dB (4 dB is the LOS level detect hysteresis). The  
LOS[4:0] default value is 10101 (-46 dB).  
LOS declare (LOS=1)  
A LOS is detected when the incoming signal has “no transitions”, i.e.,  
when the signal level is less than Q dB below nominal for N consecutive  
pulse intervals. Here N is defined by LAC bit (MAINT0, 0DH). LOS will be  
declared by pulling LOS pin to high (LOS=1) and LOS interrupt will be gen-  
erated if it is not masked.  
When the chip is configured by hardware, the LOS detect level is fixed  
if the IDT82V2081 operates in long haul mode. It is -46dB (E1) and -38dB  
(T1/J1).  
Criteria for declare and clear of a LOS detect  
The detection supports the ANSI T1.231 and I.431 for T1/J1 mode and  
G.775 and ETSI 300233/I.431 for E1 mode. The criteria can be selected  
by LAC bit (MAINT0, 0DH) and T1E1 bit (GCF, 02H).  
LOS clear (LOS=0)  
The LOS is cleared when the incoming signal has “transitions”, i.e.,  
when the signal level is greater than P dB below nominal and has an aver-  
age pulse density of at least 12.5% forM consecutive pulse intervals, start-  
ingwiththereceiptofapulse. HereMisdefinedbyLACbit(MAINT0,0DH).  
LOS status is cleared by pulling LOS pin to low.  
Table-17 and Table-18 summarize LOS declare and clear criteria for  
both short haul and long haul application.  
All Ones output during LOS  
Onthesystemside, theRDP/RDNwillreflecttheinputpulsetransition”  
at the RTIP/RRING side and output recovered clock (but the quality of the  
output clock can not be guaranteed when the input level is lower than the  
maximum receive sensitivity) when AISE bit (MAINT0, 0DH) is 0; or output  
All Ones as AIS when AISE bit (MAINT0, 0DH) is 1. In this case, RCLK out-  
put is replaced by MCLK.  
LOS=1  
Onthelineside,theTTIP/TRINGwilloutputAllOnesasAISwhenATAO  
bit (MAINT0, 0DH) is 1. The All Ones pattern uses MCLK as the reference  
clock.  
signal level>P  
density=OK  
signal level<Q  
(observing windows= M)  
(observing windows= N)  
LOS indicator is always active for all kinds of loopback modes.  
LOS=0  
Figure-12 LOS Declare and Clear  
Table-17 LOS Declare and Clear Criteria for Short Haul Mode  
Control bit  
LOS declare threshold  
LOS clear threshold  
T1E1  
LAC  
Level < 800 mVpp  
N=175 bits  
Level > 1 Vpp  
M=128 bits  
12.5% mark density  
<100 consecutive zeroes  
0=T1.231  
1=I.431  
1=T1/J1  
Level < 800 mVpp  
N=1544 bits  
Level > 1 Vpp  
M=128 bits  
12.5% mark density  
<100 consecutive zeroes  
Level < 800 mVpp  
N=32 bits  
Level > 1 Vpp  
M=32 bits  
0=G.775  
12.5% mark density  
<16 consecutive zeroes  
0=E1  
Level < 800 mVpp  
N=2048 bits  
Level > 1 Vpp  
M=32 bits  
1=I.431/ETSI  
12.5% mark density  
<16 consecutive zeroes  
24  
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-18 LOS Declare and Clear Criteria for Long Haul Mode  
Control bit  
LAC  
LOS declare threshold  
LOS clear threshold  
Note  
T1E1  
LOS[4:0]  
00000  
Q (dB)  
-4  
-6  
Level < Q  
N=175 bits  
Level > Q+ 4dB  
M=128 bits  
12.5% mark density  
<100 consecutive zeros  
00001  
T1.231 10001  
0
-38  
10101  
10110-11111  
-46  
-48  
00000  
-4  
Level < Q  
N=1544 bits  
Level > Q+ 4dB  
M=128 bits  
I.431 Level detect range is -18 to -30 dB  
-
00110  
-16  
12.5% mark density  
<100 consecutive zeros  
1=T1/J1  
I.431 00111  
-18  
01101  
-30  
1
01110  
-32  
-
10001  
-38  
10101  
10110-11111  
-46  
-48  
00000  
00010  
-4  
-8  
Level < Q  
N=32 bits  
Level > Q+ 4dB  
M=32 bits  
12.5% mark density  
<16 consecutive zeros  
G.775 Level detect range is -9 to -35 dB  
-
G.775  
-
00011  
10000  
-10  
-36  
0
10001  
-38  
10101(default)  
10110-11111  
-46  
-48  
0=E1  
00000  
-4  
Level < Q  
N=2048 bits  
Level > Q+ 4dB  
M=32 bits  
I.431 Level detect range is -6 to -20 dB  
-
12.5% mark density  
<16 consecutive zeros  
00001  
-6  
I.431/  
1
ETSI 01000  
-20  
01001  
-22  
-
10101(default)  
10110-11111  
-46  
-48  
3.6.2 AIS DETECTION  
T1.231. In E1 applications, the criteria for declaring/clearing AIS detection  
comply with the ITU G.775 or the ETSI 300233, as selected by the LAC bit  
(MAINT0, 0DH). Table-19 summarizes different criteria for AIS detection  
Declaring/Clearing.  
The Alarm Indication Signal can be detected by the IDT82V2081 when  
the Clock & Data Recovery unit is enabled. The status of AIS detection is  
reflected in the AIS_S bit (STAT0, 17H). In T1/J1 applications, the criteria  
for declaring/clearing AIS detection are in compliance with the ANSI  
Table-19 AIS Condition  
ITU G.775 for E1  
(LAC bit is set to ‘0’ by default)  
ETSI 300233 for E1  
(LAC bit is set to ‘1’)  
ANSI T1.231 for T1/J1  
Less than 3 zeros contained in each of two consecutive Less than 3 zeros contained in a 512-bit Less than 9 zeros contained in an 8192-bit stream  
512-bit streams are received stream are received (a ones density of 99.9% over a period of 5.3 ms)  
AIS  
detected  
3 or more zeros contained in each of two consecutive 3 or more zeros contained in a 512-bit 9 or more zeros contained in an 8192-bit stream  
AIS  
cleared  
512-bit streams are received  
stream are received  
are received  
25  
 
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
PRBSdatacanbeinvertedthroughsettingthePRBS_INVbit(MAINT0,  
0DH).  
3.7 TRANSMIT AND DETECT INTERNAL PATTERNS  
The internal patterns (All Ones, All Zeros, PRBS/QRSS pattern and  
Activate/Deactivate Loopback Code) will be generated and detected by  
IDT82V2081. TCLK is used as the reference clock by default. MCLK can  
alsobe usedasthereferenceclockbysettingthePATT_CLK bit(MAINT0,  
0DH) to ‘1’.  
Any change of PRBS_S bit will be captured by PRBS_IS bit (INTS0,  
19H). The PRBS_IES bit (INTES, 16H) can be used to determine whether  
the ‘0’ to ‘1’ change of PRBS_S bit will be captured by the PRBS_IS bit or  
any changes of PRBS_S bit will be captured by the PRBS_IS bit. When the  
PRBS_ISbitis1’,aninterruptwillbegeneratedifthePRBS_IMbit(INTM0,  
14H) is set to ‘1’.  
If the PATT_CLK bit (MAINT0, 0DH) is set to ‘0’ and the PATT[1:0] bits  
(MAINT0,0DH)aresetto‘00’,thetransmitpathwilloperateinnormalmode.  
The received PRBS/QRSS logic errors can be counted in a 16-bit  
counter if the ERR_SEL [1:0] bits (MAINT6, 13H) are set to ‘00’. Refer to  
3.9 ERROR DETECTION/COUNTING AND INSERTIONfor the operation  
of the error counter.  
When the chip is configured by hardware, the transmit path will operate  
in normal mode by setting PATT[1:0] pins to ‘00’. Refer to 5 HARDWARE  
CONTROL PIN SUMMARY for details.  
3.7.1 TRANSMIT ALL ONES  
3.8 LOOPBACK  
In transmit direction, the All Ones data can be inserted into the data  
streamwhenthePATT[1:0]bits(MAINT0,0DH)aresetto01’.Thetransmit  
datastream is output from TTIP/TRING. In this case, either TCLK orMCLK  
can be used as the transmit clock, as selected by the PATT_CLK bit  
(MAINT0, 0DH).  
To facilitate testing and diagnosis, the IDT82V2081 provides four dif-  
ferent loopback configurations: Analog Loopback, Digital Loopback,  
Remote Loopback and Inband Loopback.  
3.8.1 ANALOG LOOPBACK  
Inhardwarecontrolmode,theAllOnesdatacanbeinsertedintothedata  
stream in transmit direction by setting PATT[1:0] pins to ‘01’. Refer to 5  
HARDWARE CONTROL PIN SUMMARY for details.  
When the ALP bit (MAINT1, 0EH) is set to ‘1’, the chip is configured in  
Analog Loopback mode. In thismode, thetransmit signals are looped back  
to the Receiver Internal Termination in the receive path then output from  
RCLK,RD,RDP/RDN.Atthesametime,thetransmitsignalsarestilloutput  
to TTIP/TRING in transmit direction. Figure-13 shows the process.  
3.7.2 TRANSMIT ALL ZEROS  
If the PATT_CLK bit (MAINT0, 0DH) is set to ‘1’, the All Zeros will be  
inserted into the transmit data stream when the PATT[1:0] bits (MAINT0,  
0DH) are set to ‘00’.  
In hardware control mode, Analog Loopback can be selected by setting  
LP[1:0] pins to ‘01’.  
3.8.2 DIGITAL LOOPBACK  
3.7.3 PRBS/QRSS GENERATION AND DETECTION  
When the DLP bit (MAINT1, 0EH) is set to ‘1’, the chip is configured in  
Digital Loopback mode. In this mode, the transmit signals are looped back  
to the jitter attenuator (if enabled) and decoder in receive path, then output  
from RCLK, RD, RDP/RDN. At the same time, the transmit signals are still  
output to TTIP/TRING in transmit direction. Figure-14 shows the process.  
A PRBS/QRSS will be generated in the transmit direction and detected  
20  
in thereceive direction by IDT82V2081. TheQRSS is 2 -1for T1/J1 appli-  
15  
cations and the PRBS is 2 -1 for E1 applications, with maximum zero  
restrictions according to the AT&T TR62411 and ITU-T O.151.  
When the PATT[1:0] bits (MAINT0, 0DH) are set to ‘10’, the PRBS/  
QRSS pattern will be inserted into the transmit data stream with the MSB  
first. The PRBS/QRSS pattern will be transmitted directly or invertedly.  
Both Analog Loopback mode and Digital Loopback mode allow the  
sending of the internal patterns (All Ones, All Zeros, PRBS, etc.) which will  
overwrite the transmit signals. In this case, either TCLK or MCLK can be  
used as the reference clock for internal patterns transmission.  
Inhardwarecontrolmode,thePRBSdatawillbegeneratedinthetrans-  
mitdirectionandinsertedintothetransmitdatastreambysettingPATT[1:0]  
pinsto10’. Referto5HARDWARECONTROLPINSUMMARYfordetails.  
In hardware control mode, Digital Loopback can be selected by setting  
LP[1:0] pins to ‘10’.  
The PRBS/QRSS in the received data stream will be monitored. If the  
PRBS/QRSS has reached synchronization status, the PRBS_S bit  
(STAT0, 17H)willbesetto1’, eveninthepresenceofalogicerrorrateless  
3.8.3 REMOTE LOOPBACK  
When the RLP bit (MAINT1, 0EH) is set to ‘1’, the chip is configured in  
RemoteLoopbackmode.Inthismode,therecoveredclockanddataoutput  
from Clock and Data Recovery on the receive path is looped back to the  
jitterattenuator(ifenabled)andWaveformShaperintransmitpath. Figure-  
15 shows the process.  
-1  
than or equal to 10 . The criteria for setting/clearing the PRBS_S bit are  
shown in Table-20.  
Table-20 Criteria for Setting/Clearing the PRBS_S Bit  
Inhardwarecontrolmode,RemoteLoopbackcanbeselectedbysetting  
LP[1:0] pins to ‘11’.  
6 or less than 6 bit errors detected in a 64 bits hopping window.  
PRBS/QRSS  
Detection  
More than 6 bit errors detected in a 64 bits hopping window.  
PRBS/QRSS  
Missing  
26  
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
LOS/AIS  
LOS  
Detection  
Receiver  
Internal  
Termination  
B8ZS/  
HDB3/AMI  
Decoder  
Clock and  
Data  
Recovery  
RCLK  
RD/RDP  
CV/RDN  
RTIP  
Jitter  
Attenuator  
Data  
Slicer  
Adaptive  
Equalizer  
RRING  
Analog  
Loopback  
B8ZS/  
HDB3/AMI  
Encoder  
Transmitter  
Internal  
Termination  
TTIP  
TCLK  
TD/TDP  
TDN  
Line  
Driver  
Jitter  
Attenuator  
Waveform  
Shaper/LBO  
TRING  
Figure-13 Analog Loopback  
LOS/AIS  
Detection  
LOS  
Receiver  
Internal  
Termination  
B8ZS/  
HDB3/AMI  
Decoder  
Clock and  
Data  
RCLK  
RD/RDP  
CV/RDN  
RTIP  
Jitter  
Attenuator  
Adaptive  
Equalizer  
Data  
Slicer  
RRING  
Recovery  
Digital  
Loopback  
B8ZS/  
HDB3/AMI  
Encoder  
TTIP  
Transmitter  
Internal  
Termination  
TCLK  
TD/TDP  
TDN  
Jitter  
Attenuator  
Waveform  
Shaper/LBO  
Line  
Driver  
TRING  
Figure-14 Digital Loopback  
LOS/AIS  
Detection  
LOS  
Receiver  
Internal  
Termination  
B8ZS/  
HDB3/AMI  
Decoder  
Clock and  
Data  
RCLK  
RD/RDP  
CV/RDN  
RTIP  
Jitter  
Attenuator  
Adaptive  
Equalizer  
Data  
Slicer  
RRING  
Recovery  
Remote  
Loopback  
B8ZS/  
HDB3/AMI  
Encoder  
TTIP  
Transmitter  
Internal  
Termination  
TCLK  
TD/TDP  
TDN  
Waveform  
Shaper/LBO  
Jitter  
Attenuator  
Line  
Driver  
TRING  
Figure-15 Remote Loopback  
27  
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
3.8.4 INBAND LOOPBACK  
bit-long or 8-bit-long respectively by repeating itself if it is 3-bit-long or 4-  
bit-long.  
When PATT[1:0] bits (MAINT0, 0DH) are set to ‘11’, the IDT82V2081  
isconfiguredinInbandLoopbackmode.Inthismode,anunframedactivate/  
Deactivate Loopback Code is generated repeatedly in transmit direction  
per ANSI T1. 403 which overwrite the transmit signals. In receive direction,  
theframedorunframedcodeisdetectedperANSIT1.403,eveninthepres-  
AftertheActivateLoopbackCodehasbeendetectedinthereceivedata  
for more than 30 ms (in E1 mode) / 40 ms (in T1/J1 mode), the IBLBA_S  
bit (STAT0, 17H) will be set to ‘1’ to declare the reception of the Activate  
Loopback Code.  
-2  
ence of 10 bit error rate.  
After the Deactivate Loopback Code has been detected in the receive  
dataformorethan30ms(InE1mode)/40ms(InT1/J1mode),theIBLBD_S  
bit (STAT0, 17H) will be set to ‘1’ to declare the reception of the Deactivate  
Loopback Code.  
If the Automatic Remote Loopback is enabled by setting ARLP bit  
(MAINT1, 0EH) to ‘1’, the chip will establish/demolish the Remote Loop-  
back based on the reception of the Activate Loopback Code/Deactivate  
Loopback Code for 5.1 s. If the ARLP bit (MAINT1, 0EH) is set to ‘0’, the  
Remote Loopback can also be demolished forcedly.  
WhentheIBLBA_IESbit(INTES, 16H)issetto0’, onlythe0to1tran-  
sition of the IBLBA_S bit will generate an interrupt and set the IBLBA_IS bit  
(INTS0, 19H) to ‘1’. When the IBLBA_IES bit is set to ‘1’, any changes of  
the IBLBA_S bit will generate an interruptand set theIBLBA_IS bit (INTS0,  
19H) to ‘1’. The IBLBA_IS bit will be reset to ‘0’ after being read.  
3.8.4.1 Transmit Activate/Deactivate Loopback Code  
The pattern of the transmit Activate/Deactivate Loopback Code is  
defined by the TIBLB[7:0] bits (MAINT3, 10H). Whether the code repre-  
sentsanActivateLoopbackCodeoraDeactivateLoopbackCodeisjudged  
bythefarendreceiver. Thelengthofthepatternrangesfrom5bitsto8bits,  
as selected by the TIBLB_L[1:0] bits (MAINT2, 0FH). The pattern can be  
programmed to 6-bit-long or 8-bit-long by repeating itself respectively if it  
is 3-bit-long or 4-bit-long. When the PATT[1:0] bits (MAINT0, 0DH) are set  
to ‘11’, the transmission of the Activate/Deactivate Loopback Code is initi-  
ated. If the PATT_CLK bit (MAINT0, 0DH) is set to ‘0’ and the PATT[1:0]  
bits (MAINT0, 0DH) are set to ‘00’, the transmission of the Activate/Deac-  
tivate Loopback Code will stop.  
WhentheIBLBD_IESbit(INTES, 16H)issetto0’, onlythe0to1tran-  
sition of the IBLBD_S bit will generate an interrupt and set the IBLBD_IS  
bit (INTS0, 19H) to ‘1’. When the IBLBD_IES bit is set to ‘1’, any changes  
of the IBLBD_S bit will generate an interrupt and set the IBLBD_IS bit  
(INTS0, 19H) to ‘1’. The IBLBD_IS bit will be reset to ‘0’ after being read.  
3.8.4.3 Automatic Remote Loopback  
When ARLP bit (MAINT1, 0EH) is set to ‘1’, the IDT82V2081 is config-  
ured into the Automatic Remote Loopback mode. In this mode, if the Acti-  
vate Loopback Code has been detected in the receive data for more than  
5.1s, theRemoteLoopback(shownasFigure-15)willbeestablishedauto-  
matically, and the RLP_S bit (STAT1, 18H) will be set to ‘1’ to indicate the  
establishment of the Remote Loopback. The IBLBA_S bit (STAT0, 17H) is  
set to ‘1’ to generate an interrupt. In this case, the Remote Loopback mode  
will still be kept even if the receiver stop receiving the Activate Loopback  
Code.  
The local transmit activate/deactivate code setting should be the same  
as the receive code setting in the remote end. It is the same thing for the  
other way round.  
3.8.4.2 Receive Activate/Deactivate Loopback Code  
The pattern of the receive Activate Loopback Code is defined by the  
RIBLBA[7:0] bits (MAINT4, 11H). The length of this pattern ranges from 5  
bits to 8 bits, as selected by the RIBLBA_L [1:0] bits (MAINT2, 0FH). The  
pattern can be programmed to 6-bit-long or 8-bit-long respectively by  
repeating itself if it is 3-bit-long or 4-bit-long.  
If the Deactivate Loopback Code has been detected in the receive data  
formorethan5.1s,theRemoteLoopbackwillbedemolishedautomatically,  
and theRLP_S bit (STAT1, 18H) will set to ‘0’ to indicate the demolishment  
oftheRemoteLoopback.TheIBLBD_Sbit(STAT0,17H)issetto1togen-  
erate an interrupt.  
The pattern of the receive Deactivate Loopback Code is defined by the  
RIBLBD[7:0] bits (MAINT5, 12H). The length of the receive Deactivate  
Loopback Code ranges from 5 bits to 8 bits, as selected by the  
RIBLBD_L[1:0] bits (MAINT2, 0FH). The pattern can be programmed to 6-  
The Remote Loopback can also be demolished forcedly by setting  
ARLP bit (MAINT1, 0EH) to ‘0’.  
28  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
HDB3/B8ZS Code Violation (CV) Error: In HDB3/B8ZS coding, a  
CV error is declared when two consecutive BPV errors are  
detected, and the pulses that have the same polarity as the previ-  
ous pulse are not the HDB3/B8ZS zero substitution pulses.  
Excess Zero (EXZ) Error: There are two standards defining the  
EXZ errors: ANSI and FCC. The EXZ_DEF bit (MAINT6, 13H)  
chooses which standard will be adopted by the chip to judge the  
EXZ error. Table-21 shows definition of EXZ. In hardware control  
mode, only ANSI standard is adopted.  
3.9 ERROR DETECTION/COUNTING AND INSERTION  
3.9.1 DEFINITION OF LINE CODING ERROR  
The following line encoding errors can be detected and counted by the  
IDT82V2081:  
Received Bipolar Violation (BPV) Error: In AMI coding, when two  
consecutive pulses of the same polarity are received, a BPV error  
is declared.  
Table-21 EXZ Definition  
EXZ Definition  
ANSI  
FCC  
AMI  
More than 15 consecutive 0s are detected  
More than 3 consecutive 0s are detected  
More than 7 consecutive 0s are detected  
More than 80 consecutive 0s are detected  
More than 3 consecutive 0s are detected  
More than 7 consecutive 0s are detected  
HDB3  
B8ZS  
3.9.2 ERROR DETECTION AND COUNTING  
Auto Report Mode  
(CNT_MD=1)  
Which type of the receiving errors (Received CV/BPV errors, excess  
zero errors and PRBS logic errors) will be counted is determined by  
ERR_SEL[1:0]bits(MAINT6, 13H). Onlyonetypeofreceivingerrorcanbe  
counted at a time except that when the ERR_SEL[1:0] bits are set to ‘11’,  
both CV/BPV and EXZ errors will be detected and counted.  
counting  
next second  
repeats the  
same process  
N
Theselectedtypeofreceivingerrorsiscountedinaninternal16-bitError  
Counter. Once an error is detected, an error interrupt which is indicated by  
corresponding bitin (INTS1, 1AH)willbegenerated ifit isnotmasked. This  
Error Counter can be operated in two modes: Auto Report Mode and Man-  
ualReportMode, asselectedbytheCNT_MDbit(MAINT6, 13H). InSingle  
Rail mode, once BPV or CV errors are detected, the CV pin will be driven  
to high for one RCLK period.  
One-Second Timer expired?  
Y
CNT0, CNT1  
counter  
data in counter  
0
Bit TMOV_IS is set to '1'  
• Auto Report Mode  
In Auto Report Mode, the internal counter starts to count the received  
errorswhentheCNT_MDbit(MAINT6,13H)issetto‘1’.Aone-secondtimer  
is used to set the counting period. The received errors are counted within  
one second. If the one-second timer expires, the value in the internal  
counterwillbetransferredto(CNT0,1BH)and(CNT1,1CH),thentheinter-  
nal counter will be reset and start to count received errors for the next sec-  
ond.Theerrorsoccurredduringthetransferwillbeaccumulatedtothenext  
round. Theexpirationoftheone-secondtimerwillsetTMOV_ISbit(INTS1,  
1AH) to1’, andwill generateaninterruptiftheTIMER_IMbit(INTM1, 15H)  
issetto0’.TheTMOV_ISbit(INTS1,1AH)willbeclearedaftertheinterrupt  
register is read. The content in the (CNT0, 1BH) and (CNT1, 1CH) should  
beread withinthe next second. If thecounter overflows, a counteroverflow  
interrupt which is indicated by CNT_OV_IS bit (INTS1, 1AH) will be gener-  
ated if it is not masked by CNT_IM bit (INTM1, 15H).  
read the data in CNT0, CNT1 within  
the next second  
Bit TMOV_IS is cleared after  
the interrupt register is read  
Figure-16 Auto Report Mode  
29  
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
• Manual Report Mode  
3.9.3 BIPOLAR VIOLATION AND PRBS ERROR INSERTION  
In Manual Report Mode, the internal Error Counter starts to count the  
received errors when the CNT_MD bit (MAINT6, 13H) is set to ‘0’. When  
there is a ‘0’ to ‘1’ transition on the CNT_TRF bit (MAINT6, 13H), the data  
in the counter will be transferred to (CNT0, 1BH) and (CNT1, 1CH), then  
the counter will be reset. The errors occurred during the transfer will be  
accumulated to thenext round. If thecounter overflows, a counteroverflow  
interrupt indicated by CNT_OV_IS bit (INTS1, 1AH) will be generated if it  
is not masked by CNT_IM bit (INTM1, 15H).  
Only when three consecutive ‘1’s are detected in the transmit data  
stream,willa‘0’to‘1’transitionontheBPV_INSbit(MAINT6,13H)generate  
a bipolar violation pulse, and the polarity of the second ‘1’ in the series will  
be inverted.  
A ‘0’ to ‘1’ transition on the EER_INS bit (MAINT6, 13H) will generate a  
logic error during the PRBS/QRSS transmission.  
3.10 LINE DRIVER FAILURE MONITORING  
Thetransmitdriverfailuremonitorcanbeenabledordisabledbysetting  
DFM_OFF bit (TCF1, 06H). If the transmit driver failure monitor is enabled,  
the transmit driver failure will be captured by DF_S bit (STAT0, 17H). The  
transition of the DF_S bit is reflected by DF_IS bit (INTS0, 19H), and, if  
enabled by DF_IMbit(INTM0, 14H), will generate aninterrupt. When there  
is a short circuit on the TTIP/TRING port, the output current will be limited  
to 100 mA (typical), and an interrupt will be generated.  
Manual Report mode  
(CNT_MD=0)  
counting  
N
A '0' to '1' transition  
on CNT_TRF?  
In hardware control mode, the transmit driver failure monitor is always  
enabled.  
next round  
Y
repeat the  
same process  
CNT0, CNT1  
counter  
data in  
counter  
0
Read the data in CNT0,  
CNT1 within next round1  
Reset CNT_TRF for the  
next '0' to '1' transition  
Figure-17 Manual Report Mode  
Note: It is recommended that users should do the followings within next round of  
error counting: Read the data in CNT0 and CNT1; Reset CNT_TRF bit for  
the next ‘0’ to ‘1’ transition on this bit.  
30  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
3.11.2 TRANSMIT CLOCK (TCLK)  
3.11 MCLK AND TCLK  
TCLK is used to sample the transmit data on TD/TDP and TDN. The  
active edge of TCLK can be selected by the TCLK_SEL bit (TCF0, 05H).  
During Transmit All Ones, PRBS/QRSS patterns or Inband Loopback  
Code, either TCLK or MCLK can be used as the reference clock. This is  
selected by the PATT_CLK bit (MAINT0, 0DH).  
3.11.1 MASTER CLOCK (MCLK)  
MCLK is an independent, free-running reference clock. MCLK is 1.544  
MHzforT1/J1applicationsand2.048MHzinE1mode.Thisreferenceclock  
is used to generate several internal reference signals:  
Timing reference for the integrated clock recovery unit.  
Timing reference for the integrated digital jitter attenuator.  
Timing reference for microcontroller interface.  
Generation of RCLK signal during a loss of signal condition if AIS is  
enabled.  
But for Automatic Transmit All Ones and AIS, only MCLK is used as the  
reference clock and the PATT_CLK bit is ignored. In Automatic Transmit  
All Ones condition, the ATAO bit (MAINT0, 0DH) is set to ‘1’. In AIS condi-  
tion, the AISE bit (MAINT0, 0DH) is set to ‘1’.  
Reference clock during Transmit All Ones, All Zeros, PRBS/QRSS  
pattern and Inband Loopback code if it is selected as the reference  
clock. For ATAO and AIS, MCLK is always used as the reference  
clock.  
Reference clock during Transmit All Ones (TAO) condition or send-  
ing PRBS/QRSS in hardware control mode.  
If TCLK has been missing for more than 70 MCLK cycles, TCLK_LOS  
bit (STAT0, 17H) will be set, and the TTIP/TRING will become high imped-  
anceifthechipisnotusedforremoteloopbackorisnotusingMCLKtotrans-  
mit internal patterns (TAOS, All Zeros, PRBS and in-band loopback code).  
WhenTCLKisdetectedagain,TCLK_LOSbit(STAT0,17H)willbecleared.  
The reference frequency to detect a TCLK loss is derived from MCLK.  
Figure-18 shows the chip operation status in different conditions of  
MCLK and TCLK. The missing of MCLK will set the TTIP/TRING to high  
impedance state.  
Clocked  
MCLK=H/L?  
yes  
clocked  
L/H  
TCLK status?  
generate transmit clock loss  
interrupt if not masked in  
software control mode;  
normal operation  
transmitter high impedance  
transmitter high impedance  
Figure-18 TCLK Operation Flowchart  
31  
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
3.12.1 PARALLEL MICROCONTROLLER INTERFACE  
3.12 MICROCONTROLLER INTERFACES  
TheinterfaceiscompatiblewithMotorolaorIntelmicrocontroller.When  
MODE[1:0] pins are set to ‘10’, Parallel-Multiplexed-Motorola interface is  
selected. When MODE[1:0] pins are set to ‘11’, Parallel-Multiplexed-Intel  
Interface is selected.  
Themicrocontrollerinterfaceprovidesaccesstoreadandwritethereg-  
isters in the device. The chip supports serial microcontroller interface and  
two kinds of parallel microcontroller interface: Motorola multiplexed mode  
and Intel multiplexed mode. Different microcontroller interfaces can be  
selected by setting MODE[1:0] pins to different values. Refer to MODE1  
and MODE0 in pin description and 7 MICROCONTROLLER INTERFACE  
TIMING CHARACTERISTICS for details.  
3.12.2 SERIAL MICROCONTROLLER INTERFACE  
When MODE[1:0] pins are set to01’, Serial Interface is selected. In this  
mode, the registers are programmed through a 16-bit word which contains  
an 8-bit address/command byte (5 address bits A0~A4 and bit R/W) and  
an 8-bit data byte (D0~D7). When bit R/W is ‘1’, data is read out from pin  
SDO. When bit R/W is ‘0’, data is written into SDI pin. Refer to Figure-19.  
CS  
SCLK  
A0 A1 A2 A3 A4  
-
-
R/W  
D3  
D7  
D7  
D0  
D0  
D1  
D2  
D4 D5 D6  
SDI  
address/command byte  
input data byte (R/W=0)  
D2  
D4  
D1  
D3  
D5 D6  
SDO  
output data byte (R/W=1)  
remains high impedance  
Figure-19 Serial Microcontroller Interface Function Timing  
32  
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
There are totally fourteen kinds of events that could be the interrupt  
source:  
3.13 INTERRUPT HANDLING  
All kinds of interrupt of the IDT82V2081 are indicated by the INT pin.  
When the INT_PIN[0] bit (GCF, 02H) is ‘0’, the INT pin is open drain active  
low, with a 10 Kexternal pull-up resistor. When the INT_PIN[1:0] bits  
(GCF, 02H) are ‘01’, the INT pin is push-pull active low; when the  
INT_PIN[1:0] bits are ‘10’, the INT pin is push-pull active high.  
(1).LOS Detected  
(2).AIS Detected  
(3).Driver Failure Detected  
(4).TCLK Loss  
(5).Synchronization Status of PRBS  
(6).PRBS Error Detected  
AnactivelevelontheINTpinrepresentsaninterruptoftheIDT82V2081.  
(7).Code Violation Received  
(8).Excessive Zeros Received  
(9).JA FIFO Overflow/Underflow  
(10).Inband Loopback Code Status  
(11).Equalizer Out of Range  
(12).One-Second Timer Expired  
(13).Error Counter Overflow  
(14).Arbitrary Waveform Generator Overflow  
The interrupt event is captured by the corresponding bit in the Interrupt  
Status Register (INTS0, 19H) or (INTS1, 1AH). Every kind of interrupt can  
be enabled/disabled individually by the corresponding bit in the register  
(INTM0, 14H) or(INTM1, 15H). Someeventisreflectedbythecorrespond-  
ing bit in the Status Register (STAT0, 17H) or (STAT1, 18H), and the Inter-  
rupt Trigger Edge Selection Register can be used to determine how the  
Status Register sets the Interrupt Status Register.  
AftertheInterruptStatusRegister(INTS0,19H)or(INTS1,1AH)isread,  
the INT pin become inactive.  
Table-22isasummaryofallkindsofinterruptandtheassociatedStatus  
bit, Interrupt Status bit, Interrupt Trigger Edge Selection bit and Interrupt  
Mask bit.  
Table-22 Interrupt Event  
Interrupt Event  
Status bit  
(STAT0, STAT1)  
Interrupt Status bit  
(INTS0, INTS1)  
Interrupt Edge Selection bit  
(INTES)  
Interrupt Mask bit  
(INTM0, INTM1)  
LOS Detected  
AIS Detected  
LOS_S  
AIS_S  
LOS_IS  
AIS_IS  
LOS_IES  
AIS_IES  
LOS_IM  
AIS_IM  
Driver Failure Detected  
DF_S  
DF_IS  
DF_IES  
DF_IM  
TCLK Loss  
TCLK_LOS  
PRBS_S  
TCLK_LOS_IS  
PRBS_IS  
ERR_IS  
TCLK_IES  
PRBS_IES  
TCLK_IM  
PRBS_IM  
ERR_IM  
CV_IM  
Synchronization Status of PRBS/QRSS  
PRBS/QRSS Error  
Code Violation Received  
Excessive Zeros Received  
JA FIFO Overflow  
CV_IS  
EXZ_IS  
EXZ_IM  
JAOV_IS  
JAUD_IS  
EQ_IS  
JAOV_IM  
JAUD_IM  
EQ_IM  
JA FIFO Underflow  
Equalizer Out of Range  
EQ_S  
EQ_IES  
Inband Loopback Activate Code Status  
Inband Loopback Deactivate Code Status  
One-Second Timer Expired  
Error Counter Overflow  
IBLBA_S  
IBLBD_S  
IBLBA_IS  
IBLBD_IS  
TMOV_IS  
CNT_OV_IS  
DAC_OV_IS  
IBLBA_IES  
IBLBD_IES  
IBLBA_IM  
IBLBD_IM  
TIMER_IM  
CNT_IM  
DAC_OV_IM  
Arbitrary Waveform Generator Overflow  
Hardware Reset: Asserting the RST pin low for a minimum of 100  
3.14 5V TOLERANT I/O PINS  
ns will reset the chip.  
All digital input pins willtolerate5.0 ± 10% voltsand are compatible with  
TTL logic.  
Afterreset, alldriversoutputareinhighimpedancestate, alltheinternal  
flip-flops are reset, and all the registers are initialized to default values.  
3.15 RESET OPERATION  
3.16 POWER SUPPLY  
The chip can be reset in two ways:  
This chip uses a single 3.3 V power supply.  
Software Reset: Writing to the RST register (01H) will reset the chip  
in 1 us.  
33  
 
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
4
PROGRAMMING INFORMATION  
4.1 REGISTER LIST AND MAP  
The registers banks include control registers, status registers and  
counter registers.  
Table-23 Register List and Map  
Address (hex)  
Register  
R/W  
Map  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Control Registers  
00  
01  
02  
03  
04  
ID  
R
ID7  
ID6  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
RST  
W
GCF  
TERM  
JACF  
R/W  
R/W  
R/W  
-
-
-
-
-
-
-
-
-
T1E1  
R_TERM2  
JADP1  
INT_PIN1  
R_TERM1  
JADP0  
INT_PIN0  
R_TERM0  
JABW  
T_TERM2  
JA_LIMIT  
T_TERM1  
JACF1  
T_TERM0  
JACF0  
Transmit Path Control Registers  
05  
06  
07  
08  
09  
TCF0  
TCF1  
TCF2  
TCF3  
TCF4  
R/W  
R/W  
R/W  
R/W  
R/W  
-
-
-
T_OFF  
THZ  
TD_INV  
PULS3  
SCAL3  
SAMP3  
WDAT3  
TCLK_SEL  
PULS2  
T_MD1  
PULS1  
SCAL1  
SAMP1  
WDAT1  
T_MD0  
PULS0  
SCAL0  
SAMP0  
WDAT0  
-
-
-
DFM_OFF  
SCAL5  
UI1  
-
DONE  
-
SCAL4  
UI0  
SCAL2  
RW  
SAMP2  
WDAT2  
WDAT6  
WDAT5  
WDAT4  
Receive Path Control Registers  
0A  
0B  
0C  
RCF0  
RCF1  
RCF2  
R/W  
R/W  
R/W  
-
-
-
-
-
R_OFF  
LOS4  
RD_INV  
LOS3  
RCLK_SEL  
LOS2  
R_MD1  
LOS1  
MG1  
R_MD0  
LOS0  
MG0  
EQ_ON  
-
-
SLICE1  
SLICE0  
UPDW1  
UPDW0  
Network Diagnostics Control Registers  
0D  
0E  
0F  
10  
11  
MAINT0  
MAINT1  
MAINT2  
MAINT3  
MAINT4  
MAINT5  
MAINT6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
PATT1  
-
PATT0  
-
PATT_CLK  
-
PRBS_INV  
ARLP  
LAC  
RLP  
AISE  
ALP  
ATAO  
DLP  
-
-
-
TIBLB_L1  
TIBLB5  
RIBLBA5  
RIBLBD5  
ERR_INS  
TIBLB_L0  
TIBLB4  
RIBLBA_L1 RIBLBA_L0 RIBLBD_L1 RIBLBD_L0  
TIBLB7  
RIBLBA7  
RIBLBD7  
-
TIBLB6  
RIBLBA6  
RIBLBD6  
BPV_INS  
TIBLB3  
RIBLBA3  
RIBLBD3  
ERR_SEL1  
TIBLB2  
RIBLBA2  
RIBLBD2  
ERR_SEL0  
TIBLB1  
RIBLBA1  
RIBLBD1  
CNT_MD  
TIBLB0  
RIBLBA0  
RIBLBD0  
CNT_TRF  
RIBLBA4  
RIBLBD4  
EXZ_DEF  
12  
13  
Interrupt Control Registers  
14  
INTM0  
R/W  
EQ_IM  
IBLBA_IM  
IBLBD_IM  
JAUD_IM  
PRBS_IM  
ERR_IM  
TCLK_IM  
EXZ_IM  
DF_IM  
CV_IM  
DF_IES  
AIS_IM  
TIMER_IM  
AIS_IES  
LOS_IM  
CNT_IM  
LOS_IES  
15  
INTM1  
INTES  
R/W DAC_OV_IM JAOV_IM  
16  
R/W  
EQ_IES  
IBLBA_IES IBLBD_IES PRBS_IES  
TCLK_IES  
Line Status Register  
17  
18  
STAT0  
STAT1  
R
R
EQ_S  
-
IBLBA_S  
-
IBLBD_S  
RLP_S  
PRBS_S  
LATT4  
TCLK_LOS  
LATT3  
DF_S  
AIS_S  
LATT1  
LOS_S  
LATT0  
LATT2  
Interrupt Status Register  
19  
INTS0  
R
R
EQ_IS  
IBLBA_IS  
IBLBD_IS  
JAUD_IS  
PRBS_IS TCLK_LOS_IS  
DF_IS  
CV_IS  
AIS_IS  
LOS_IS  
1A  
INTS1  
DAC_OV_IS JAOV_IS  
ERR_IS  
EXZ_IS  
TMOV_IS CNT_OV_IS  
Counter Registers  
1B  
1C  
CNT0  
CNT1  
R
R
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit9  
Bit0  
Bit8  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
34  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
4.2 REGISTER DESCRIPTION  
4.2.1 CONTROL REGISTERS  
Table-24 ID: Device Revision Register  
(R, Address = 00H)  
Symbol  
Bit  
Default  
Description  
Description  
ID[7:0]  
7-0  
00H  
00H is for the first version.  
Table-25 RST: Reset Register  
(W, Address = 01H)  
Symbol  
Bit  
Default  
RST[7:0]  
7-0  
00H  
Software reset. A write operation on this register will reset all internal registers to their default values, and the status  
of all ports are set to the default status. The content in this register can not be changed.  
Table-26 GCF: Global Configuration Register  
(R/W, Address = 02H)  
Symbol  
-
Bit  
7-3  
2
Default  
00000  
0
Description  
Reserved.  
T1E1  
This bit selects the E1 or T1/J1 operation mode globally.  
= 0: E1 mode is selected.  
= 1: T1/J1 mode is selected.  
INT_PIN[1:0]  
1-0  
00  
Interrupt pin control  
= X0: Open drain, active low (with an external pull-up resistor)  
= 01: Push-pull, active low  
= 11: Push-pull, active high  
Table-27 TERM: Transmit and Receive Termination Configuration Register  
(R/W, Address = 03H)  
Symbol  
Bit  
7-6  
5-3  
Default  
00  
Description  
-
Reserved.  
T_TERM[2:0]  
000  
These bits select the internal termination for transmit line impedance matching.  
= 000: Internal 75 impedance matching  
= 001: Internal 120 impedance matching  
= 010: Internal 100 impedance matching  
= 011: Internal 110 impedance matching  
= 1xx: Selects external impedance matching resistors for E1 mode only. T1/J1 does not require external impedance  
resistors (see Table-14).  
R_TERM[2:0]  
2-0  
000  
These bits select the internal termination for receive line impedance matching.  
= 000: Internal 75 impedance matching  
= 001: Internal 120 impedance matching  
= 010: Internal 100 impedance matching  
= 011: Internal 110 impedance matching  
= 1xx: Selects external impedance matching resistors (see Table-15).  
35  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-28 JACF: Jitter Attenuation Configuration Register  
(R/W, Address = 04H)  
Symbol  
-
Bit  
7-6  
5
Default  
Description  
00  
1
Reserved.  
JA_LIMIT  
= 0: Normal mode  
= 1: JA limit mode  
JACF[1:0]  
JADP[1:0]  
JABW  
4-3  
2-1  
0
00  
00  
0
Jitter attenuation configuration  
= 00/10: JA not used  
= 01: JA in transmit path  
= 11: JA in receive path  
Jitter attenuation depth select  
= 00: 128 bits  
= 01: 64 bits  
= 1x: 32 bits  
Jitter transfer function bandwidth select  
= 0: 6.8 Hz (E1)  
5 Hz (T1/J1)  
= 1: 0.9 Hz (E1)  
1.25 Hz (T1/J1)  
4.2.2 TRANSMIT PATH CONTROL REGISTERS  
Table-29 TCF0: Transmitter Configuration Register 0  
(R/W, Address = 05H)  
Symbol  
-
Bit  
7-5  
4
Default  
000  
Description  
Reserved.  
T_OFF  
0
Transmitter power down enable  
= 0: Transmitter power up  
= 1: Transmitter power down (line driver high impedance)  
TD_INV  
TCLK_SEL  
T_MD[1:0]  
3
2
0
0
Transmit data invert  
= 0: Data on TD or TDP/TDN is active high  
= 1: Data on TD or TDP/TDN is active low  
Transmit clock edge select  
= 0: Data on TDP/TDN is sampled on the falling edge of TCLK  
= 1: Data on TDP/TDN is sampled on the rising edge of TCLK  
0-1  
00  
Transmitter operation mode control  
T_MD[1:0] select different stages of the transmit data path  
= 00: Enable HDB3/B8ZS encoder and waveform shaper blocks. Input on pin TD is single rail NRZ data  
= 01: Enable AMI encoder and waveform shaper blocks. Input on pin TD is single rail NRZ data  
= 1x: Encoder is bypassed, dual rail NRZ transmit data input on pin TDP/TDN  
36  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-30 TCF1: Transmitter Configuration Register 1  
(R/W, Address = 06H)  
Symbol  
-
Bit  
7-6  
5
Default  
Description  
00  
0
Reserved. This bit should be ‘0’ for normal operation.  
DFM_OFF  
Transmit driver failure monitor disable  
= 0: DFM is enabled  
= 1: DFM is disabled  
THZ  
4
1
Transmit line driver high impedance enable  
= 0: Normal state  
= 1: Transmit line driver high impedance enable (other transmit path still work normally)  
PULS[3:0]  
3-0  
0000 These bits select the transmit template/LBO for short-haul/long-haul applications.  
T1/E1/J1  
E1  
TCLK  
Cable impedance Cable range or  
Allowable Cable  
loss  
LBO  
00001  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
11XX  
2.048 MHz  
75 Ω  
-
0-43 dB  
E1  
2.048 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
120 Ω  
100 Ω  
100 Ω  
100 Ω  
100 Ω  
100 Ω  
110 Ω  
100 Ω  
100 Ω  
100 Ω  
100 Ω  
-
0-43 dB  
0-0.6 dB  
0.6-1.2 dB  
1.2-1.8 dB  
1.8-2.4 dB  
2.4-3.0 dB  
0-3.0 dB  
0-36 dB  
DSX1  
DSX1  
DSX1  
DSX1  
DSX1  
J1  
0-133 ft  
133-266 ft  
266-399 ft  
399-533 ft  
533-655 ft  
0-655 ft  
DS1  
0 dB LBO  
-7.5 dB LBO  
-15.0 dB LBO  
-22.5 dB LBO  
DS1  
0-28.5 dB  
0-21 dB  
DS1  
DS1  
0-13.5 dB  
User programmable waveform setting  
1. In internal impedance matching mode, for E1/75 cable impedance, the PULS[3:0] bits (TCF1, 06H) should be set to ‘0000’. In external impedance matching mode, for E1/75 cable  
impedance, the PULS[3:0] bits should be set to ‘0001’.  
Table-31 TCF2: Transmitter Configuration Register 2  
(R/W, Address = 07H)  
Symbol  
-
Bit  
7-6  
5-0  
Default  
00  
Description  
Reserved.  
SCAL[5:0]  
100001  
SCAL specifies a scaling factor to be applied to the amplitude of the user-programmable arbitrary pulses which is  
to be transmitted if needed. The default value of SCAL[5:0] is ‘100001’. Refer to 3.3.3.3 User-Programmable Arbi-  
trary Waveform.  
= 110110: Default value for T1 0~133 ft, T1 133~266 ft, T1 266~399 ft, T1 399~533 ft, T1 533~655 ft, J1 0~655 ft,  
DS1 0dB LBO. One step change of this value results in 2% scaling up/down against the pulse amplitude.  
= 010001: Default value for DS1 -7.5 dB LBO. One step change of this value results in 6.25% scaling up/down  
against the pulse amplitude.  
= 001000: Default value for DS1 -15.0 dB LBO. One step change of this value results in 12.5% scaling up/down  
against the pulse amplitude.  
= 000100: Default value for DS1 -22.5 dB LBO. One step change of this value results in 25% scaling up/down  
against the pulse amplitude.  
= 100001: Default value for E1 75 and 120 . One step change of this value results in 3% scaling up/down  
against the pulse amplitude.  
37  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-32 TCF3: Transmitter Configuration Register 3  
(R/W, Address = 08H)  
Symbol  
DONE  
RW  
Bit  
7
Default  
Description  
0
0
After ‘1’ is written to this bit, a read or write operation is implemented.  
6
This bit selects read or write operation  
= 0: Write to RAM  
= 1: Read from RAM  
UI[1:0]  
5-4  
3-0  
00  
These bits specify the unit interval address. There are totally 4 unit intervals.  
= 00: UI address is 0 (The most left UI)  
= 01: UI address is 1  
= 10: UI address is 2  
= 11: UI address is 3  
SAMP[3:0]  
0000  
These bits specify the sample address. Each UI has totally 16 samples.  
= 0000: Sample address is 0 (The most left sample)  
= 0001: Sample address is 1  
= 0010: Sample address is 2  
……  
= 1110: Sample address is 14  
= 1111: Sample address is 15  
Table-33 TCF4: Transmitter Configuration Register 4  
(R/W, Address = 09H)  
Symbol  
-
Bit  
7
Default  
Description  
0
Reserved  
WDAT[6:0]  
6-0  
0000000 In Indirect Write operation, the WDAT[6:0] will be loaded to the pulse template RAM, specifying the amplitude of  
the Sample.  
After an Indirect Read operation, the amplitude data of the Sample in the pulse template RAM will be output to the  
WDAT[6:0].  
4.2.3 RECEIVE PATH CONTROL REGISTERS  
Table-34 RCF0: Receiver Configuration Register 0  
(R/W, Address = 0AH)  
Symbol  
-
Bit  
7-5  
4
Default  
000  
Description  
Reserved  
R_OFF  
0
Receiver power down enable  
= 0: Receiver power up  
= 1: Receiver power down  
RD_INV  
RCLK_SEL  
R_MD[1:0]  
3
2
0
0
Receive data invert  
= 0: Data on RD or RDP/RDN is active high  
= 1: Data on RD or RDP/RDN is active low  
Receive clock edge select (this bit is ignored in slicer mode)  
= 0: Data on RD or RDP/RDN is updated on the rising edge of RCLK  
= 1: Data on RD or RDP/RDN is updated on the falling edge of RCLK  
1-0  
00  
Receive path decoding selection  
= 00: Receive data is HDB3 (E1)/B8ZS (T1/J1) decoded and output on RD pin with single rail NRZ format  
= 01: Receive data is AMI decoded and output on RD pin with single rail NRZ format  
= 10: Decoder is bypassed, re-timed dual rail data with NRZ format output on RDP/RDN (dual rail mode with clock  
recovery)  
= 11: CDR and decoder are bypassed, slicer data with RZ format output on RDP/RDN (slicer mode)  
38  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-35 RCF1: Receiver Configuration Register 1  
(R/W, Address= 0BH)  
Symbol  
-
Bit  
7
Default  
Description  
0
0
Reserved  
EQ_ON  
6
= 0: Receive equalizer off (short haul receiver)  
= 1: Receive equalizer on (long haul receiver)  
-
5
0
Reserved.  
LOS[4:0]  
4:0  
10101  
LOS Clear Level (dB)  
LOS Declare Level (dB)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
0
<-4  
>-2  
<-6  
>-4  
<-8  
>-6  
<-10  
<-12  
<-14  
<-16  
<-18  
<-20  
<-22  
<-24  
<-26  
<-28  
<-30  
<-32  
<-34  
<-36  
<-38  
<-40  
<-42  
<-44  
<-46  
<-48  
>-8  
>-10  
>-12  
>-14  
>-16  
>-18  
>-20  
>-22  
>-24  
>-26  
>-28  
>-30  
>-32  
>-34  
>-36  
>-38  
>-40  
>-42  
>-44  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110 -11111  
39  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-36 RCF2: Receiver Configuration Register 2  
(R/W, Address = 0CH)  
Symbol  
-
Bit  
7-6  
5-4  
Default  
00  
Description  
Reserved.  
SLICE[1:0]  
01  
Receive slicer threshold  
= 00: The receive slicer generates a mark if the voltage on RTIP/RRING exceeds 40% of the peak amplitude.  
= 01: The receive slicer generates a mark if the voltage on RTIP/RRING exceeds 50% of the peak amplitude.  
= 10: The receive slicer generates a mark if the voltage on RTIP/RRING exceeds 60% of the peak amplitude.  
= 11: The receive slicer generates a mark if the voltage on RTIP/RRING exceeds 70% of the peak amplitude.  
UPDW[1:0]  
MG[1:0]  
3-2  
1-0  
10  
00  
Equalizer observation window  
= 00: 32 bits  
= 01: 64 bits  
= 10: 128 bits  
= 11: 256 bits  
Monitor gain setting: these bits select the internal linear gain boost  
= 00: 0 dB  
= 01: 22 dB  
= 10: 26 dB  
= 11: 32 dB  
4.2.4 NETWORK DIAGNOSTICS CONTROL REGISTERS  
Table-37 MAINT0: Maintenance Function Control Register 0  
(R/W, Address = 0DH)  
Symbol  
-
Bit  
7
Default  
00  
Description  
Reserved.  
PATT[1:0]  
6-5  
00  
These bits select the internal pattern and insert it into transmit data stream.  
= 00: Normal operation (PATT_CLK = 0) / insert all zeros (PATT_CLK = 1)  
= 01: Insert All Ones  
= 10: Insert PRBS (E1: 215-1) or QRSS (T1/J1: 220-1)  
= 11: Insert programmable Inband loopback activate or deactivate code (default value 00001)  
PATT_CLK  
PRBS_INV  
LAC  
4
3
2
1
0
0
0
0
0
0
Selects reference clock for transmitting internal pattern  
= 0: Uses TCLK as the reference clock  
= 1: Uses MCLK as the reference clock  
Inverts PRBS  
= 0: The PRBS data is not inverted  
= 1: The PRBS data is inverted before transmission and detection  
LOS/AIS criterion is selected as below:  
= 0: G.775 (E1) / T1.231 (T1/J1)  
= 1: ETSI 300233& I.431 (E1) / I.431 (T1/J1)  
AISE  
AIS enable during LOS  
= 0: AIS insertion on RDP/RDN/RCLK is disabled during LOS  
= 1: AIS insertion on RDP/RDN/RCLK is enabled during LOS  
ATAO  
Automatically Transmit All Ones (enabled only when PATT[1:0] = 01)  
= 0: Disabled  
= 1: Automatically Transmit All Ones pattern at TTIP/TRING during LOS  
40  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-38 MAINT1: Maintenance Function Control Register 1  
(R/W, Address= 0EH)  
Symbol  
-
Bit  
7-4  
3
Default  
0000  
0
Description  
Reserved  
ARLP  
Automatic remote loopback enable  
= 0: Disables automatic remote loopback (normal transmit and receive operation)  
= 1: Enables automatic remote loopback  
RLP  
ALP  
DLP  
2
1
0
0
0
0
Remote loopback enable  
= 0: Disables remote loopback (normal transmit and receive operation)  
= 1: Enables remote loopback  
Analog loopback enable  
= 0: Disables analog loopback (normal transmit and receive operation)  
= 1: Enables analog loopback  
Digital loopback enable  
= 0: Disables digital loopback (normal transmit and receive operation)  
= 1: Enables digital loopback  
Table-39 MAINT2: Maintenance Function Control Register 2  
(R/W, Address = 0F0H)  
Symbol  
Bit  
7-6  
5-4  
Default  
00  
Description  
-
Reserved  
TIBLB_L[1:0]  
00  
Defines the length of the user-programmable transmit loopback activate/deactivate code contained in TIBLB reg-  
ister. The default selection is 5 bits length.  
= 00: 5-bit long activate code in TIBLB [4:0]  
= 01: 6-bit long activate code in TIBLB [5:0]  
= 10: 7-bit long activate code in TIBLB [6:0]  
= 11: 8-bit long activate code in TIBLB [7:0]  
RIBLBA_L[1:0]  
RIBLBD_L[1:0]  
3-2  
1-0  
00  
01  
Defines the length of the user-programmable receive activate loopback code contained in RIBLBA register. The  
default selection is 5 bits length.  
= 00: 5-bit long activate code in RIBLBA [4:0]  
= 01: 6-bit long activate code in RIBLBA [5:0]  
= 10: 7-bit long activate code in RIBLBA [6:0]  
= 11: 8-bit long activate code in RIBLBA [7:0]  
Defines the length of the user-programmable receive deactivate loopback code contained in RIBLBD register. The  
default selection is 6 bits length.  
= 00: 5-bit long deactivate code in RIBLBD [4:0]  
= 01: 6-bit long deactivate code in RIBLBD [5:0]  
= 10: 7-bit long deactivate code in RIBLBD [6:0]  
= 11: 8-bit long deactivate code in RIBLBD [7:0]  
Table-40 MAINT3: Maintenance Function Control Register 3  
(R/W, Address = 10H)  
Symbol  
Bit  
Default  
Description  
TIBLB[7:0]  
7-0  
(000)00001 Defines the user-programmable transmit Inband loopback activate or deactivate code. The default selection is  
00001.  
TIBLB [7:0] form the 8-bit repeating code  
TIBLB [6:0] form the 7-bit repeating code  
TIBLB [5:0] form the 6-bit repeating code  
TIBLB [4:0] form the 5-bit repeating code  
41  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-41 MAINT4: Maintenance Function Control Register 4  
(R/W, Address = 11H)  
Symbol  
Bit  
Default  
Description  
RIBLBA[7:0]  
7-0  
(000)00001 Defines the user-programmable receive Inband loopback activate code. The default selection is 00001.  
RIBLBA [7:0] form the 8-bit repeating code  
RIBLBA [6:0] form the 7-bit repeating code  
RIBLBA [5:0] form the 6-bit repeating code  
RIBLBA [4:0] form the 5-bit repeating code  
Table-42 MAINT5: Maintenance Function Control Register 5  
(R/W, Address = 12H)  
Symbol  
Bit  
Default  
Description  
RIBLBD[7:0]  
7-0  
(00)001001 Defines the user-programmable receive Inband loopback deactivate code. The default selection is 001001.  
RIBLBD [7:0] form the 8-bit repeating code  
RIBLBD [6:0] form the 7-bit repeating code  
RIBLBD [5:0] form the 6-bit repeating code  
RIBLBD [4:0] form the 5-bit repeating code  
Table-43 MAINT6: Maintenance Function Control Register 6  
(R/W, Address = 13H)  
Symbol  
-
Bit  
7
Default  
Description  
0
0
Reserved.  
BPV_INS  
6
BPV error insertion  
A ‘0’ to ‘1’ transition on this bit will cause a single bipolar violation error to be inserted into the transmit data stream.  
This bit must be cleared and set again for a subsequent error to be inserted.  
ERR_INS  
EXZ_DEF  
ERR_SEL  
5
5
0
0
PRBS logic error insertion  
A ‘0’ to ‘1’ transition on this bit will cause a single PRBS logic error to be inserted into the transmit PRBS data stream.  
This bit must be cleared and set again for a subsequent error to be inserted.  
EXZ definition select  
= 0: ANSI  
= 1: FCC  
3-2  
00  
These bits choose which type of error will be counted  
= 00: The PRBS logic error is counted by a 16-bit error counter.  
= 01: The EXZ error is counted by a 16-bit error counter.  
= 10: The Received CV (BPV) error is counted by a 16-bit error counter.  
= 11: Both CV (BPV) and EXZ errors are counted by a 16-bit error counter.  
CNT_MD  
CNT_TRF  
1
0
0
0
Counter operation mode select  
= 0: Manual Report mode  
= 1: Auto Report mode  
= 0: Clear this bit for the next ‘0’ to ‘1’ transition on this bit.  
= 1: Error counting result is transferred to CNT0 and CNT1 and the error counter is reset.  
42  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
4.2.5 INTERRUPT CONTROL REGISTERS  
Table-44 INTM0: Interrupt Mask Register 0  
(R/W, Address = 14H)  
Symbol  
Bit  
Default  
Description  
EQ_IM  
7
1
Equalizer out of range interrupt mask  
= 0: Equalizer out of range interrupt enabled  
= 1: Equalizer out of range interrupt masked  
IBLBA_IM  
IBLBD_IM  
PRBS_IM  
TCLK_IM  
DF_IM  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
In-band Loopback activate code detect interrupt mask  
= 0: In-band Loopback activate code detect interrupt enabled  
= 1: In-band Loopback activate code detect interrupt masked  
In-band Loopback deactivate code detect interrupt mask  
= 0: In-band Loopback deactivate code detect interrupt enabled  
= 1: In-band Loopback deactivate code detect interrupt masked  
PRBS synchronic signal detect interrupt mask  
= 0: PRBS synchronic signal detect interrupt enabled  
= 1: PRBS synchronic signal detect interrupt masked  
TCLK loss detect interrupt mask  
= 0: TCLK loss detect interrupt enabled  
= 1: TCLK loss detect interrupt masked  
Driver Failure interrupt mask  
= 0: Driver Failure interrupt enabled  
= 1: Driver Failure interrupt masked  
AIS_IM  
Alarm Indication Signal interrupt mask  
= 0: Alarm Indication Signal interrupt enabled  
= 1: Alarm Indication Signal interrupt masked  
LOS_IM  
Loss Of Signal interrupt mask  
= 0: Loss Of Signal interrupt enabled  
= 1: Loss Of Signal interrupt masked  
43  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-45 INTM1: Interrupt Masked Register 1  
(R/W, Address = 15H)  
Symbol  
Bit  
Default  
Description  
DAC_OV_IM  
7
1
DAC arithmetic overflow interrupt mask  
= 0: DAC arithmetic overflow interrupt enabled  
= 1: DAC arithmetic overflow interrupt masked  
JAOV_IM  
JAUD_IM  
ERR_IM  
EXZ_IM  
CV_IM  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
JA overflow interrupt mask  
= 0: JA overflow interrupt enabled  
= 1: JA overflow interrupt masked  
JA underflow interrupt mask  
= 0: JA underflow interrupt enabled  
= 1: JA underflow interrupt masked  
PRBS/QRSS logic error detect interrupt mask  
= 0: PRBS/QRSS logic error detect interrupt enabled  
= 1: PRBS/QRSS logic error detect interrupt masked  
Receive excess zeros interrupt mask  
= 0: Receive excess zeros interrupt enabled  
= 1: Receive excess zeros interrupt masked  
Receive error interrupt mask  
= 0: Receive error interrupt enabled  
= 1: Receive error interrupt masked  
TIMER_IM  
CNT_IM  
One-Second Timer expiration interrupt mask  
= 0: One-Second Timer expiration interrupt enabled  
= 1: One-Second Timer expiration interrupt masked  
Counter overflow interrupt mask  
= 0: Counter overflow interrupt enabled  
= 1: Counter overflow interrupt masked  
44  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-46 INTES: Interrupt Trigger Edge Select Register  
(R/W, Address = 16H)  
Symbol  
Bit  
Default  
Description  
EQ_IES  
7
0
This bit determines the Equalizer out of range interrupt event.  
= 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the EQ_S bit in the STAT0 status register  
= 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the EQ_S bit in the STAT0  
status register.  
IBLBA_IES  
IBLBD_IES  
PRBS_IES  
TCLK_IES  
DF_IES  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
This bit determines the Inband Loopback Activate Code interrupt event.  
= 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the IBLBA_S bit in STAT0 status register  
= 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the IBLBA_S bit in STAT0  
status register  
This bit determines the Inband Loopback Deactivate Code interrupt event.  
= 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the IBLBD_S bit in STAT0 status register  
= 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the IBLBD_S bit in STAT0  
status register  
This bit determines the PRBS/QRSS synchronization status interrupt event.  
= 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the PRBS_S bit in STAT0 status register  
= 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the PRBS_S bit in STAT0  
status register  
This bit determines the TCLK Loss interrupt event.  
= 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the TCLK_LOS bit in STAT0 status register  
= 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the TCLK_LOS bit in STAT0  
status register  
This bit determines the Driver Failure interrupt event.  
= 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the DF_S bit in STAT0 status register  
= 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the DF_S bit in STAT0 status  
register  
AIS_IES  
This bit determines the AIS interrupt event.  
= 0: Interrupt event is generated as a ‘0’ to ‘1’ transition of the AIS_S bit in STAT0 status register  
= 1: Interrupt event is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the AIS_S bit in STAT0 status  
register  
LOS_IES  
This bit determines the LOS interrupt event.  
= 0: Interrupt is generated as a ‘0’ to ‘1’ transition of the LOS_S bit in STAT0 status register  
= 1: Interrupt is generated as either a ‘0’ to ‘1’ transition or a ‘1’ to ‘0’ transition of the LOS_S bit in STAT0 status  
register  
45  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
4.2.6 LINE STATUS REGISTERS  
Table-47 STAT0: Line Status Register 0 (real time status monitor)  
(R, Address = 17H)  
Symbol  
Bit  
Default  
Description  
EQ_S  
7
0
Equalizer status indication  
= 0: In range  
= 1: Out of range  
IBLBA_S  
6
0
In-band Loopback activate code receive status indication  
= 0: No Inband Loopback activate code is detected  
= 1: Activate signal is detected and then received over a period of more than t ms, with a bit error rate less than 10-  
2. The bit remains set as long as the bit error rate does not exceed 10-2.  
Note1:  
If automatic remote loopback switching is disabled (ARLP = 0), t = 40 ms.  
If automatic remote loopback switching is enabled (ARLP = 1), t = 5.1 s. The rising edge of this bit activates the  
remote loopback operation in local end.  
Note2:  
If IBLBA_IM=0:  
A ‘0’ to ‘1’ transition on this bit causes an activate code detected interrupt if IBLBA _IES bit is ‘0’;  
Any changes of this bit causes an activate code detected interrupt if IBLBA _IES bit is set to ‘1’.  
IBLBD_S  
5
0
In-band Loopback deactivate code receive status indication  
= 0: No Inband Loopback deactivate signal is detected  
= 1: The Inband Loopback deactivate signal is detected and then received over a period of more than t, with a bit  
error rate less than 10-2. The bit remains set as long as the bit error rate does not exceed 10-2.  
Note1:  
If automatic remote loopback switching is disabled (ARLP = 0), t = 40 ms.  
If automatic remote loopback switching is enabled (ARLP = 1), t = 5.1 s. The rising edge of this bit disables the  
remote loopback operation.  
Note2:  
If IBLBD_IM=0:  
A ‘0’ to ‘1’ transition on this bit causes a deactivate code detected interrupt if IBLBD _IES bit is ‘0’  
Any changes of this bit causes a deactivate code detected interrupt if IBLBD _IES bit is set to ‘1’  
PRBS_S  
4
0
Synchronous status indication of PRBS/QRSS (real time)  
= 0: 215-1 (E1) PRBS or 220-1 (T1/J1) QRSS is not detected  
= 1: 215-1 (E1) PRBS or 220-1 (T1/J1) QRSS is detected  
Note:  
If PRBS_IM=0:  
A ‘0’ to ‘1’ transition on this bit causes a synchronous status detected interrupt if PRBS _IES bit is ‘0’.  
Any changes of this bit causes an interrupt if PRBS_IES bit is set to ‘1’.  
TCLK_LOS  
3
2
0
0
TCLK loss indication  
= 0: Normal  
= 1: TCLK pin has not toggled for more than 70 MCLK cycles.  
Note:  
If TCLK_IM=0:  
A ‘0’ to ‘1’ transition on this bit causes an interrupt if TCLK _IES bit is ‘0’.  
Any changes of this bit causes an interrupt if TCLK_IES bit is set to ‘1’.  
DF_S  
Line driver status indication  
= 0: Normal operation  
= 1: Line driver short circuit is detected.  
Note:  
If DF_IM=0  
A ‘0’ to ‘1’ transition on this bit causes an interrupt if DF _IES bit is ‘0’.  
Any changes of this bit causes an interrupt if DF_IES bit is set to ‘1’.  
46  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-47 STAT0: Line Status Register 0 (real time status monitor) (Continued)  
(R, Address = 17H)  
Symbol  
Bit  
Default  
Description  
AIS_S  
1
0
Alarm Indication Signal status detection  
= 0: No AIS signal is detected in the receive path  
= 1: AIS signal is detected in the receive path  
Note:  
If AIS_IM=0  
A ‘0’ to ‘1’ transition on this bit causes an interrupt if AIS _IES bit is ‘0’.  
Any changes of this bit causes an interrupt if AIS_IES bit is set to ‘1’.  
LOS_S  
0
0
Loss Of Signal status detection  
= 0: Loss of signal on RTIP/RRING is not detected.  
= 1: Loss of signal on RTIP/RRING is detected.  
Note:  
If LOS_IM=0  
A ‘0’ to ‘1’ transition on this bit causes an interrupt if LOS _IES bit is ‘0’.  
Any changes of this bit causes an interrupt if LOS_IES bit is set to ‘1’.  
Table-48 STAT1: Line Status Register 1 (real time status monitor)  
(R, Address = 18H)  
Symbol  
-
Bit  
7-6  
5
Default  
Description  
00  
0
Reserved.  
RLP_S  
Indicating the status of Remote Loopback  
= 0: The remote loopback is inactive.  
= 1: The remote loopback is active (closed).  
LATT[4:0]  
4-0  
00000  
Line Attenuation Indication  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
0 to 2 dB  
2 to 4 dB  
4 to 6 dB  
6 to 8 dB  
8 to 10 dB  
10 to 12 dB  
12 to 14 dB  
14 to 16 dB  
16 to 18 dB  
18 to 20 dB  
20 to 22 dB  
22 to 24 dB  
24 to 26 dB  
26 to 28 dB  
28 to 30 dB  
30 to 32 dB  
32 to 34 dB  
34 to 36 dB  
36 to 38 dB  
38 to 40 dB  
40 to 42 dB  
42 to 44 dB  
>44 dB  
10000  
10001  
10010  
10011  
10100  
10101  
10110-11111  
47  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
4.2.7 INTERRUPT STATUS REGISTERS  
Table-49 INTS0: Interrupt Status Register 0  
(R, Address = 19H) (this register is reset and relevant interrupt request is cleared after a read)  
Symbol  
Bit  
Default  
Description  
EQ_IS  
7
0
This bit indicates the occurrence of Equalizer out of range interrupt event.  
= 0: No interrupt event from the Equalizer out of range occurred  
= 1: Interrupt event from the Equalizer out of range occurred  
IBLBA_IS  
IBLBD_IS  
PRBS_IS  
TCLK_LOS_IS  
DF_IS  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
This bit indicates the occurrence of the Inband Loopback Activate Code interrupt event.  
= 0: No Inband Loopback Activate Code interrupt event occurred  
= 1: Inband Loopback Activate Code interrupt event occurred  
This bit indicates the occurrence of the Inband Loopback Deactivate Code interrupt event.  
= 0: No Inband Loopback Deactivate Code interrupt event occurred  
= 1: Interrupt event of the received Inband Loopback Deactivate Code occurred.  
This bit indicates the occurrence of the interrupt event generated by the PRBS/QRSS synchronization status.  
= 0: No PRBS/QRSS synchronization status interrupt event occurred  
= 1: PRBS/QRSS synchronization status interrupt event occurred  
This bit indicates the occurrence of the interrupt event generated by the TCLK loss detection.  
= 0: No TCLK loss interrupt event.  
= 1:TCLK loss interrupt event occurred.  
This bit indicates the occurrence of the interrupt event generated by the Driver Failure.  
= 0: No Driver Failure interrupt event occurred  
= 1: Driver Failure interrupt event occurred  
AIS_IS  
This bit indicates the occurrence of the AIS (Alarm Indication Signal) interrupt event.  
= 0: No AIS interrupt event occurred  
= 1: AIS interrupt event occurred  
LOS_IS  
This bit indicates the occurrence of the LOS (Loss of signal) interrupt event.  
= 0: No LOS interrupt event occurred  
= 1: LOS interrupt event occurred  
48  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-50 INTS1: Interrupt Status Register 1  
(R, Address = 1AH) (this register is reset and the relevant interrupt request is cleared after a read)  
Symbol  
Bit  
Default  
Description  
DAC_OV_IS  
7
0
This bit indicates the occurrence of the pulse amplitude overflow of Arbitrary Waveform Generator interrupt event.  
= 0: No pulse amplitude overflow of Arbitrary Waveform Generator interrupt event occurred  
= 1: The pulse amplitude overflow of Arbitrary Waveform Generator interrupt event occurred  
JAOV_IS  
JAUD_IS  
ERR_IS  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
This bit indicates the occurrence of the Jitter Attenuator Overflow interrupt event.  
= 0: No JA Overflow interrupt event occurred  
= 1: JA Overflow interrupt event occurred  
This bit indicates the occurrence of the Jitter Attenuator Underflow interrupt event.  
= 0: No JA Underflow interrupt event occurred  
= 1: JA Underflow interrupt event occurred  
This bit indicates the occurrence of the interrupt event generated by the detected PRBS/QRSS logic error.  
= 0: No PRBS/QRSS logic error interrupt event occurred  
= 1: PRBS/QRSS logic error interrupt event occurred  
EXZ_IS  
This bit indicates the occurrence of the Excessive Zeros interrupt event.  
= 0: No Excessive Zeros interrupt event occurred  
= 1: EXZ interrupt event occurred  
CV_IS  
This bit indicates the occurrence of the Code Violation interrupt event.  
= 0: No Code Violation interrupt event occurred  
= 1: Code Violation interrupt event occurred  
TMOV_IS  
CNT_OV_IS  
This bit indicates the occurrence of the One-Second Timer Expiration interrupt event.  
= 0: No One-Second Timer Expiration interrupt event occurred  
= 1: One-Second Timer Expiration interrupt event occurred  
This bit indicates the occurrence of the Counter Overflow interrupt event.  
= 0: No Counter Overflow interrupt event occurred  
= 1: Counter Overflow interrupt event occurred  
4.2.8 COUNTER REGISTERS  
Table-51 CNT0: Error Counter L-byte Register 0  
(R, Address = 1BH)  
Symbol  
Bit  
Default  
Description  
CNT_L[7:0]  
7-0  
00H  
This register contains the lower eight bits of the 16-bit error counter. CNT_L[0] is the LSB.  
Table-52 CNT1: Error Counter H-byte Register 1  
(R, Address = 1CH)  
Symbol  
Bit  
Default  
Description  
CNT_H[7:0]  
7-0  
00H  
This register contains the upper eight bits of the 16-bit error counter. CNT_H[7] is the MSB.  
49  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
5
HARDWARE CONTROL PIN SUMMARY  
Table-53 Hardware Control Pin Summary  
Pin No.  
TQFP  
Symbol  
Description  
17  
16  
MODE1  
MODE0  
MODE[1:0]: Operation mode of control interface select  
00= Hardware interface  
01= Serial interface  
10= Parallel – multiplexed – Motorola Interface  
11= Parallel – multiplexed – Intel Interface  
23  
TERM  
TERM: Termination interface select  
This pin selects internal or external impedance matching for both receiver and transmitter  
0= ternary interface with external impedance matching network. External impedance matching is not supported in T1/J1 transmit  
line interface.  
1= ternary interface with internal impedance matching network  
21  
20  
RXTXM1  
RXTXM0  
RXTXM[1:0]: Receive and transmit path operation mode select  
00= single rail with HDB3/B8ZS coding  
01= single rail with AMI coding  
10= dual rail interface with CDR enable  
11= slicer mode  
33  
32  
31  
30  
PULS3  
PULS2  
PULS1  
PULS0  
PULS[3:0]: These pins are used to select the following functions:  
T1/E1/J1 mode  
Transmit pulse template  
Internal termination impedance (75/100/110/120)  
PULS[3:0]  
T1/E1/J1  
TCLK  
Cable impedance Cable range or  
Cable loss  
(internal matching  
impedance)  
LBO  
0000  
0001  
E1  
E1  
2.048 MHz  
2.048 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
1.544 MHz  
75Ω  
-
0-43 dB  
0-43 dB  
120Ω  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
110Ω  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
-
0010  
DSX1  
DSX1  
DSX1  
DSX1  
DSX1  
J1  
0-133 ft  
0-0.6 dB  
0.6-1.2 dB  
1.2-1.8 dB  
1.8-2.4 dB  
2.4-3.0 dB  
0-3.0 dB  
0-36 dB  
0011  
133-266 ft  
266-399 ft  
399-533 ft  
533-655 ft  
0-655 ft  
0100  
0101  
0110  
0111  
1000  
DS1  
DS1  
DS1  
DS1  
DS1  
0 dB LBO  
-7.5 dB LBO  
-15.0 dB LBO  
-22.5 dB LBO  
-
1001  
0-28.5 dB  
0-21 dB  
1010  
1011  
0-13.5 dB  
0-13.5 dB  
1100 - 1111  
29  
28  
EQ  
EQ: Receive equalizer on/off  
When the chip is configured by hardware, this pin selects Short Haul or Long Haul operation mode  
0= short haul (10 dB)  
1= long haul (36 dB for T1/J1, 43 dB for E1)  
RPD  
RPD: Receiver power down control  
0= Normal operation  
1= receiver power down  
27  
26  
PATT1  
PATT0  
PATT[1:0]: Transmit test pattern select  
In hardware control mode, these pins select the transmit pattern  
00 = normal  
01= All Ones  
10= PRBS  
11= transmitter power down  
50  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-53 Hardware Control Pin Summary (Continued)  
Pin No.  
TQFP  
Symbol  
Description  
15  
14  
JA1  
JA0  
JA[1:0]: Jitter attenuation position , bandwidth and the depth of FIFO select  
00= JA is disabled  
01= JA in receiver, broad bandwidth, FIFO=64 bits  
10= JA in receiver, narrow bandwidth, FIFO=128 bits  
11= JA in transmitter, narrow bandwidth, FIFO=128 bits  
22  
MONT  
MONT: Receive monitor n gain select  
0= 0 dB  
1= up to 26 dB  
25  
24  
LP1  
LP0  
LP[1:0]: Loopback mode select  
00= no loopback  
01= analog loopback  
10= digital loopback  
11= remote loopback  
13  
11  
THZ  
THZ: Transmitter Driver High Impedance Enable  
This signal enables or disables transmitter driver. A low level on this pin enables the driver while a high level on this pin places the  
driver in high impedance state.  
RCLKE  
RCLKE: the active edge of RCLK select when hardware control mode is used  
0= select the rising edge as active edge of RCLK  
1= select the falling edge as active edge of RCLK  
51  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
6
TEST SPECIFICATIONS  
Table-54 Absolute Maximum Rating  
Symbol  
Parameter  
Min  
-0.5  
Max  
4.6  
4.6  
4.6  
5.5  
Unit  
V
VDDA, VDDD  
VDDIO  
Core Power Supply  
I/O Power Supply  
-0.5  
V
VDDT  
Transmit Power Supply  
-0.5  
V
Input Voltage, Any Digital Pin  
GND-0.5  
GND-0.5  
V
Vin  
Input Voltage, Any RTIP and RRING pin1  
ESD Voltage, any pin  
VDDA+0.5  
V
V
V
2000 2  
500 3  
Transient latch-up current, any pin  
Input current, any digital pin 4  
100  
10  
mA  
mA  
Iin  
-10  
DC Input current, any analog pin 4  
Maximum power dissipation in package  
Case Temperature  
±100  
mA  
Pd  
1.41  
120  
W
°C  
°C  
Tc  
Ts  
Storage Temperature  
-65  
+150  
CAUTION:  
Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
1.Reference to ground  
2.Human body model  
3.Charge device model  
4.Constant input current  
Table-55 Recommended Operation Conditions  
Symbol  
Parameter  
Min  
3.13  
3.13  
3.13  
-40  
Typ  
3.3  
3.3  
3.3  
25  
Max  
3.47  
3.47  
3.47  
85  
Unit  
V
VDDA,VDDD  
VDDIO  
VDDT  
Core Power Supply  
I/O Power Supply  
V
Transmitter Power Supply  
Ambient operating temperature  
E1, 75 load  
V
TA  
°C  
50% ones density data  
100% ones density data  
-
-
52  
64  
58  
70  
mA  
mA  
mA  
mA  
E1, 120 Load  
T1, 100 Load  
J1, 110 Load  
50% ones density data  
100% ones density data  
-
-
58  
70  
64  
76  
Total current dissipation1,2,3  
50% ones density data  
100% ones density data  
-
-
59  
88  
65  
95  
50% ones density data  
100% ones density data  
-
-
47  
58  
53  
64  
1.Power consumption includes power consumption on device and load. Digital levels are 10% of the supply rails and digital outputs driving a 50 pF capacitive load.  
2.Maximum power consumption over the full operating temperature and power supply voltage range.  
3.Inshorthaulmode,ifinternalimpedancematchingischosen,E175powerdissipationvaluesaremeasuredwithtemplatePULS[3:0]=0000;E1120powerdissipationvaluesaremeasured  
with template PULS[3:0] = 0001; T1 power dissipation values are measured with template PULS[3:0] = 0110; J1 power dissipation values are measured with template PULS[3:0] = 0111.  
52  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-56 Power Consumption  
Max1,2  
Unit  
Symbol  
Parameter  
Min  
Typ  
E1, 3.3 V, 75 Load  
E1, 3.3 V, 120 Load  
50% ones density data:  
100% ones density data:  
-
-
172  
212  
-
mW  
mW  
mW  
243  
50% ones density data:  
100% ones density data:  
-
-
192  
243  
-
264  
T1, 3.3 V, 100 Load3  
J1, 3.3 V, 110 Load  
-
-
195  
291  
-
50% ones density data:  
100% ones density data:  
330  
50% ones density data:  
100% ones density data:  
-
-
155  
192  
mW  
222  
1.Maximum power and current consumption over the full operating temperature and power supply voltage range.  
2.Power consumption includes power absorbed by line load and external transmitter components.  
3.T1 is measured with maximum cable length.  
Table-57 DC Characteristics  
Symbol  
Parameter  
Input Low Level Voltage  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
-
-
0.8  
V
V
V
V
V
Input High Voltage  
2.0  
-
-
-
-
VOL  
VOH  
VMA  
Output Low level Voltage (Iout=1.6mA)  
Output High level Voltage (Iout=400µA)  
0.4  
2.4  
-
VDDIO  
Analog Input Quiescent Voltage (RTIP, RRING  
pin while floating)  
1.5  
IZL  
High Impedance Leakage Current  
-10  
10  
µA  
Ci  
Input capacitance  
15  
50  
pF  
pF  
pF  
Co  
Co  
Output load capacitance  
Output load capacitance (bus pins)  
100  
53  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-58 E1 Receiver Electrical Characteristics  
Symbol  
Parameter  
Receiver sensitivity  
Min  
Typ  
Max  
Unit  
Test conditions  
Short haul with cable loss@1024kHz:  
Long haul with cable loss@1024kHz:  
-10  
-43  
dB  
Analog LOS level  
Short haul  
Long haul  
800  
mVp-p A LOS level is programmable for Long Haul  
dB  
-4  
-48  
0.05  
±1%  
Allowable consecutive zeros before LOS  
G.775:  
32  
2048  
I.431/ETSI300233:  
LOS reset  
12.5  
% ones G.775, ETSI 300 233  
Receive Intrinsic Jitter  
20Hz - 100kHz  
U.I.  
JA enabled  
Input Jitter Tolerance  
1 Hz – 20 Hz  
37  
5
2
U.I.  
U.I.  
U.I.  
G.823, with 6 dB cable attenuation  
20 Hz – 2.4 KHz  
18 KHz – 100 KHz  
ZDM  
Receiver Differential Input Impedance  
Input termination resistor tolerance  
20  
KΩ  
Internal mode  
Receive Return Loss  
51 KHz – 102 KHz  
RRX  
RPD  
20  
20  
20  
dB  
dB  
dB  
G.703 Internal termination  
102 KHz – 2.048 MHz  
2.048 MHz – 3.072 MHz  
Receive path delay  
Single rail  
Dual rail  
7
2
U.I.  
U.I.  
JA disabled  
54  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-59 T1/J1 Receiver Electrical Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test conditions  
receiver sensitivity  
Short haul with cable loss@772kHz:  
Long haul with cable loss@772kHz:  
-10  
-36  
dB  
Analog LOS level  
Short haul  
Long haul  
800  
mVp-p A LOS level is programmable for Long Haul  
dB  
-4  
-48  
Allowable consecutive zeros before LOS  
T1.231-1993  
I.431  
175  
1544  
LOS reset  
12.5  
% ones G.775, ETSI 300 233  
Receive Intrinsic Jitter  
10 Hz - 8 kHz  
10 Hz - 40 kHz  
8 kHz - 40 kHz  
Wide band  
JA enabled  
0.02  
0.025  
0.025  
0.050  
U.I.  
U.I.  
U.I.  
U.I.  
Input Jitter Tolerance  
0.1 Hz – 1 Hz  
138.0  
28.0  
0.4  
U.I.  
U.I.  
U.I.  
AT&T62411  
4.9 Hz – 300 Hz  
10 KHz – 100 KHz  
ZDM  
Receiver Differential Input Impedance  
Input termination resistor tolerance  
20  
KΩ  
Internal mode  
±1%  
RRX  
Receive Return Loss  
39 KHz – 77 KHz  
20  
20  
20  
dB  
dB  
dB  
G.703  
Internal termination  
77 KHz - 1.544 MHz  
1.544 MHz – 2.316 MHz  
RPD  
Receive path delay  
Single rail  
JA disabled  
7
2
U.I.  
U.I.  
Dual rail  
55  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-60 E1 Transmitter Electrical Characteristics  
Symbol  
Vo-p  
Parameter  
Min  
Typ  
Max  
Unit  
Output pulse amplitudes  
E1, 75load  
2.14  
2.7  
2.37  
3.0  
2.60  
3.3  
V
V
E1, 120load  
Vo-s  
Zero (space) level  
E1, 75load  
-0.237  
-0.3  
0.237  
0.3  
V
V
E1, 120load  
Transmit amplitude variation with supply  
-1  
+1  
%
mV  
ns  
Difference between pulse sequences for 17 consecutive pulses (T1.102)  
Output Pulse Width at 50% of nominal amplitude  
200  
256  
1.05  
Tpw  
RTX  
232  
244  
Ratio of the amplitudes of Positive and Negative Pulses at the center of the pulse interval  
(G.703)  
0.95  
Ratio of the width of Positive and Negative Pulses at the center of the pulse interval (G.703)  
Transmit Return Loss (G.703)  
0.95  
1.05  
51 KHz – 102 KHz  
102 KHz - 2.048 MHz  
2.048 MHz – 3.072 MHz  
20  
15  
12  
dB  
dB  
dB  
JTXp-p  
Td  
Intrinsic Transmit Jitter (TCLK is jitter free)  
20 Hz – 100 KHz  
0.050  
U.I.  
Transmit path delay (JA is disabled)  
Single rail  
Dual rail  
8.5  
4.5  
U.I.  
U.I.  
Isc  
Line short circuit current  
100  
mA  
56  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-61 T1/J1 Transmitter Electrical Characteristics  
Symbol  
Parameter  
Min  
2.4  
Typ  
Max  
3.6  
Unit  
V
Vo-p  
Vo-s  
Output pulse amplitudes  
Zero (space) level  
3.0  
-0.15  
-1  
0.15  
+1  
V
Transmit amplitude variation with supply  
%
Difference between pulse sequences for 17 consecutive pulses  
(T1.102)  
200  
mV  
TPW  
Output Pulse Width at 50% of nominal amplitude  
Pulse width variation at the half amplitude (T1.102)  
338  
350  
362  
20  
ns  
ns  
Imbalance between Positive and Negative Pulses amplitude  
(T1.102)  
0.95  
1.05  
Output power level (T1.102)  
@772kHz  
@1544kHz (referenced to power at 772kHz)  
12.6  
-29  
17.9  
dBm  
dBm  
RTX  
Transmit Return Loss  
39 KHz – 77 KHz  
77 KHz – 1.544 MHz  
1.544 MHz – 2.316 MHz  
20  
15  
12  
dB  
dB  
dB  
JTXP-P  
Intrinsic Transmit Jitter (TCLK is jitter free)  
10 Hz – 8 KHz  
8 KHz – 40 KHz  
10 Hz – 40 KHz  
wide band  
0.020  
0.025  
0.025  
0.050  
U.I.p-p  
U.I.p-p  
U.I.p-p  
U.I.p-p  
Td  
Transmit path delay (JA is disabled)  
Single rail  
Dual rail  
8.5  
4.5  
U.I.  
U.I.  
ISC  
Line short circuit current  
100  
mA  
57  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-62 Transmitter and Receiver Timing Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
MCLK frequency  
E1:  
T1/J1:  
2.048  
1.544  
MHz  
MCLK tolerance  
MCLK duty cycle  
-100  
30  
100  
70  
ppm  
%
Transmit path  
TCLK frequency  
E1:  
T1/J1:  
2.048  
1.544  
MHz  
TCLK tolerance  
-50  
10  
40  
40  
+50  
90  
ppm  
%
TCLK Duty Cycle  
t1  
t2  
Transmit Data Setup Time  
Transmit Data Hold Time  
ns  
ns  
Delay time of THZ low to driver high impedance  
Delay time of TCLK low to driver high impedance  
10  
us  
75  
U.I.  
Receive path  
Clock recovery capture range 1  
E1  
± 80  
± 180  
50  
ppm  
%
T1/J1  
RCLK duty cycle 2  
40  
60  
RCLK pulse width 2  
t4  
E1:  
T1/J1:  
457  
607  
488  
648  
519  
689  
ns  
ns  
t5  
t6  
RCLK pulse width low time  
E1:  
T1/J1:  
203  
259  
244  
324  
285  
389  
RCLK pulse width high time  
E1:  
T1/J1:  
203  
259  
244  
324  
285  
389  
ns  
ns  
Rise/fall time 3  
20  
t7  
t8  
Receive Data Setup Time  
E1:  
T1/J1:  
200  
200  
244  
324  
ns  
ns  
Receive Data Hold Time  
E1:  
T1/J1:  
200  
200  
244  
324  
1.Relative to nominal frequency, MCLK= ± 100 ppm  
2.RCLK duty cycle widths will vary depending on extent of received pulse jitter displacement. Maximum and minimum RCLK duty cycles are for worst case jitter conditions (0.2UI displacement  
for E1 per ITU G.823).  
3.For all digital outputs. C load = 15pF  
58  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
TCLK  
t1  
t2  
TD/TDP  
TDN  
Figure-20 Transmit System Interface Timing  
t4  
RCLK  
t6  
t7  
t5  
t8  
RDP/RD  
(RCLK_SEL = 0 software mode)  
(RCLKE = 0 hardware mode)  
RDN/CV  
t7  
t8  
RDP/RD  
(RCLK_SEL = 1 software mode)  
(RCLKE = 1 hardware mode)  
RDN/CV  
Figure-21 Receive System Interface Timing  
Table-63 Jitter Tolerance  
Jitter Tolerance  
Min  
Typ  
Max  
Unit  
Standard  
E1: 1 Hz  
20 Hz – 2.4 KHz  
18 KHz – 100 KHz  
T1/J1: 1 Hz  
37  
1.5  
0.2  
U.I.  
U.I.  
U.I.  
G.823  
Cable attenuation is 6dB  
AT&T 62411  
138.0  
28.0  
0.4  
U.I.  
U.I.  
U.I.  
4.9 Hz – 300 Hz  
10 KHz – 100 KHz  
59  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Figure-22 E1 Jitter Tolerance Performance  
Figure-23 T1/J1 Jitter Tolerance Performance  
60  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-64 Jitter Attenuator Characteristics  
Parameter  
Min  
Typ  
Max  
Unit  
Jitter Transfer Function Corner (-3dB) Frequency  
E1, 32/64/128 bits FIFO  
JABW = 0:  
6.8  
0.9  
Hz  
Hz  
JABW = 1:  
T1/J1, 32/64/128 bits FIFO  
JABW = 0:  
5
1.25  
Hz  
Hz  
JABW = 1:  
Jitter Attenuator  
E1: (G.736)  
@ 3 Hz  
@ 40 Hz  
-0.5  
-0.5  
+19.5  
+19.5  
dB  
@ 400 Hz  
@ 100 kHz  
T1/J1: (Per AT&T pub.62411)  
@ 1 Hz  
0
0
@ 20 Hz  
@ 1 kHz  
@ 1.4 kHz  
@ 70 kHz  
+33.3  
40  
40  
Jitter Attenuator Latency Delay  
32 bits FIFO:  
64 bits FIFO:  
128 bits FIFO:  
16  
32  
64  
U.I.  
U.I.  
U.I.  
Input jitter tolerance before FIFO overflow or underflow  
32 bits FIFO:  
64 bits FIFO:  
128 bits FIFO:  
28  
58  
120  
U.I.  
U.I.  
U.I.  
61  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Figure-24 E1 Jitter Transfer Performance  
Figure-25 T1/J1 Jitter Transfer Performance  
62  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
7
MICROCONTROLLER INTERFACE TIMING CHARACTERISTICS  
7.1 SERIAL INTERFACE TIMING  
Table-65 Serial Interface Timing Characteristics  
Symbol  
t1  
Parameter  
Min  
100  
100  
5
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Comments  
SCLK High Time  
t2  
SCLK Low Time  
t3  
Active CS to SCLK Setup Time  
t4  
Last SCLK Hold Time to Inactive CS Time  
CS Idle Time  
41  
41  
0
t5  
t6  
SDI to SCLK Setup Time  
t7  
SCLK to SDI Hold Time  
82  
t10  
t11  
SCLK to SDO Valid Delay Time  
Inactive CS to SDO High Impedance Hold Time  
95  
90  
CS  
t4  
t5  
t3  
t6  
t1  
LSB  
3
t2  
SCLK  
SDI  
t7  
t7  
LSB  
Figure-26 Serial Interface Write Timing  
MSB  
13  
1
2
4
5
6
7
8
9
10  
11  
12  
3
14  
15  
16  
SCLK  
CS  
t4  
t10  
t11  
SDO  
0
1
2
4
5
6
7
Figure-27 Serial Interface Read Timing with SCLKE=1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
CS  
t4  
t10  
t11  
7
SDO  
0
1
2
3
4
5
6
Figure-28 Serial Interface Read Timing with SCLKE=0  
63  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
7.2 PARALLEL INTERFACE TIMING  
Table-66 Multiplexed Motorola Read Timing Characteristics  
Symbol  
tRC  
Parameter  
Min  
190  
180  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Read Cycle Time  
tDW  
Valid DS Width  
tRWV  
tRWH  
tASW  
tADD  
tADS  
Delay from DS to Valid Read  
R/W to DS Hold Time  
15  
65  
10  
0
Valid AS Width  
Delay from AS active to DS active  
Address to AS Setup Time  
5
tADH  
tPRD  
Address to AS Hold Time  
5
DS to Valid Read Data Propagation Delay  
Delay from DS inactive to data bus High Impedance  
Acknowledgement Delay  
175  
20  
190  
15  
5
tDAZ  
5
5
5
tAKD  
tAKH  
tAKZ  
Acknowledgement Hold Time  
Acknowledgement Release Time  
Recovery Time from Read Cycle  
tRecovery  
tRecovery  
tRC  
tDW  
DS+CS  
tRWH  
tRWV  
R/W  
tADD  
tASW  
AS  
tDAZ  
tPRD  
Valid address  
tADS  
Valid Data  
READ AD[7:0]  
tADH  
tAKH  
tAKZ  
tAKD  
ACK  
Figure-29 Multiplexed Motorola Read Timing  
64  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-67 Multiplexed Motorola Write Timing Characteristics  
Symbol  
tWC  
Parameter  
Min  
120  
100  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write Cycle Time  
tDW  
Valid DS Width  
tRWV  
tRWH  
tASW  
tADD  
tADS  
Delay from DS to Valid Write  
R/W to DS Hold Time  
15  
65  
10  
0
Valid AS Width  
Delay from AS active to DS active  
Address to AS Setup Time  
Address to AS Hold Time  
Delay from DS to Valid Write Data  
Write Data to DS Hold Time  
Acknowledgement Delay  
Acknowledgement Hold Time  
Acknowledgement Release Time  
Recovery Time from Write Cycle  
5
tADH  
tDV  
5
15  
tDHW  
tAKD  
tAKH  
tAKZ  
65  
5
150  
15  
5
tRecovery  
5
tRecovery  
tWC  
tDW  
tRWH  
DS+CS  
tRWV  
R/W  
AS  
tADD  
tASW  
tDHW  
tDV  
Valid address  
tADS  
Valid Data  
Write AD[7:0]  
tADH  
tAKH  
tAKZ  
tAKD  
ACK  
Figure-30 Multiplexed Motorola Write Timing  
65  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-68 Multiplexed Intel Read Timing Characteristics  
Symbol  
tRC  
Parameter  
Min  
190  
180  
0
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Read Cycle Time  
tRDW  
tARD  
Valid RD Width  
Delay from ALE to Valid Read  
Valid ALE Width  
tALEW  
tADS  
10  
5
Address to ALE Setup Time  
tADH  
Address to ALE Hold Time  
5
tPRD  
RD to Valid Read Data Propagation Delay  
Delay from RD inactive to data bus High Impedance  
Acknowledgement Delay  
175  
20  
190  
15  
tDAZ  
5
5
5
tAKD  
tAKH  
Acknowledgement Hold Time  
Acknowledgement Release Time  
Recovery Time from Read Cycle  
tAKZ  
5
tRecovery  
tRecovery  
tRC  
tRDW  
RD+CS  
tARD  
tALEW  
ALE  
tDAZ  
tPRD  
Valid address  
tADS  
Valid Data  
READ AD[7:0]  
tADH  
tAKH  
tAKZ  
tAKD  
RDY  
Figure-31 Multiplexed Intel Read Timing  
66  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
Table-69 Multiplexed Intel Write Timing Characteristics  
Symbol  
tWC  
Parameter  
Min  
120  
100  
10  
0
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write Cycle Time  
Valid WR Width  
Valid ALE Width  
tWRW  
tALEW  
tAWD  
tADS  
Delay from ALE to Valid Write  
Address to ALE Setup Time  
Address to ALE Hold Time  
5
tADH  
5
tDV  
Delay from WR to Valid Write Data  
Write Data to WR Hold Time  
Acknowledgement Delay  
15  
tDHW  
tAKD  
65  
5
150  
15  
5
tAKH  
Acknowledgement Hold Time  
Acknowledgement Release Time  
Recovery Time from Write Cycle  
tAKZ  
tRecovery  
5
tRecovery  
tWC  
tWRW  
WR+CS  
tAWD  
tALEW  
ALE  
tDHW  
tDV  
Valid address  
tADS  
Valid Data  
Write AD[7:0]  
tADH  
tAKH  
tAKZ  
tAKD  
RDY  
Figure-32 Multiplexed Intel Write Timing  
67  
INDUSTRIAL  
TEMPERATURE RANGES  
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT  
ORDERING INFORMATION  
XXXXXXX  
Device Type  
XX  
X
Process/  
Temperature  
Range  
Blank  
Industrial (-40 °C to +85 °C)  
Thin Quad Flatpack (TQFP, PP44)  
Long Haul/Short Haul LIU  
PP  
82V2081  
DATASHEET DOCUMENT HISTORY  
08/26/2003 pgs. 17, 18, 19, 20, 29, 30, 41, 55, 56  
07/19/2004 pgs. 30, 56, 57  
02/11/2009 pg. 68 removed IDT from orderable part number  
CORPORATE HEADQUARTERS  
for SALES:  
for Tech Support:  
2975 Stender Way  
Santa Clara, CA 95054  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
408-330-1753  
email:TELECOMhelp@idt.com  
www.idt.com*  
To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
68  

相关型号:

82V2082PF

PCM Transceiver, 1-Func, PQFP80, TQFP-80
IDT

82V2082PFG8

PCM Transceiver, 1-Func, PQFP80, TQFP-80
IDT

82V2084PF

PCM Transceiver, 1-Func, PQFP128, TQFP-128
IDT

82V2084PF8

PCM Transceiver, 1-Func, PQFP128, TQFP-128
IDT

82V2084PFG8

PCM Transceiver, 1-Func, PQFP128, TQFP-128
IDT

82V2088BB

PCM Transceiver, 1-Func, PBGA208, PLASTIC, BGA-208
IDT

82V2604BB

ATM/SONET/SDH Support Circuit, 1-Func, PBGA208, PLASTIC, BGA-208
IDT

82V2604BBG

ATM/SONET/SDH Support Circuit, 1-Func, PBGA208, GREEN, PLASTIC, BGA-208
IDT

82V2608BBG

ATM/SONET/SDH Support Circuit, 1-Func, PBGA208, GREEN, PLASTIC, BGA-208
IDT

82V3001

WAN PLL WITH SINGLE REFERENCE INPUT
IDT

82V3001APV

WAN PLL WITH SINGLE REFERENCE INPUT
IDT

82V3001APV8

Telecom Circuit, 1-Func, PDSO56, SSOP-56
IDT