83PN187I [IDT]

Programmable FemtoClock NG LVPECL Oscillator Replacement;
83PN187I
型号: 83PN187I
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Programmable FemtoClock NG LVPECL Oscillator Replacement

文件: 总22页 (文件大小:273K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Programmable FemtoClock® NG  
LVPECL Oscillator Replacement  
83PN187I  
Data Sheet  
General Description  
Features  
The 83PN187I is a programmable LVPECL synthesizer that is  
“forward” footprint compatible with standard 5mm x 7mm oscillators.  
The device uses IDT’s fourth generation FemtoClock® NG  
technology for an optimum of high clock frequency and low phase  
noise performance. Forward footprint compatibility means that a  
board designed to accommodate the crystal oscillator interface and  
the optional control pins is also fully compatible with a canned  
oscillator footprint - the canned oscillator will drop onto the  
10-VFQFN footprint for second sourcing purposes. This capability  
provides designers with programability and lead time advantages of  
silicon/crystal based solutions while maintaining compatibility with  
industry standard 5mm x 7mm oscillator footprints for ease of supply  
chain management. Oscillator-level performance is maintained with  
IDT’s 4th Generation FemtoClock® NG PLL technology, which  
delivers sub 0.5ps rms phase jitter.  
Fourth Generation FemtoClock® Next Generation (NG)  
technology  
Footprint compatible with 5mm x 7mm differential oscillators  
One differential LVPECL output pair  
Crystal oscillator interface can also be overdriven by a  
single-ended reference clock  
Output frequency range: 125MHz –187.5MHz  
Crystal/input frequency: 25MHz, 12pF parallel resonant crystal  
VCO range: 2GHz – 2.5GHz  
Cycle-to-cycle jitter: 10ps (maximum), 3.3V 5%  
RMS phase jitter @ 156.25MHz, 12kHz – 20MHz:  
0.339ps (typical)  
Full 3.3V or 2.5V operating supply  
-40°C to 85°C ambient operating temperature  
Available in lead-free (RoHS 6) package  
The 83PN187I defaults to 150MHz using a 25MHz crystal with 2  
programming pins floating (pulled down/pulled up with internal pullup  
or pulldown resistors) but can also be set to 4 different frequency  
multiplier settings to support a wide variety of applications. The  
below table shows some of the more common application settings.  
Common Applications and Settings  
FSEL[1:0]  
XTAL (MHz)  
Output Frequency (MHz)  
Application(s)  
Pin Assignment  
00  
01  
10  
25  
25  
25  
156.25  
187.5  
125  
XAUI, 10GigE  
8Gig Fibre Channel  
Ethernet  
SAS, Embedded  
Processor  
10  
9
11 (default)  
25  
150  
1
2
3
VCC  
nQ  
OE  
RESERVED  
VEE  
8
7
6
Block Diagram  
Q
4
5
Pullup  
OE  
XTAL_IN  
PFD  
&
FemtoClock® NG  
VCO  
Q
nQ  
OSC  
÷N  
XTAL_OUT  
83PN187I  
10-Lead VFQFN  
÷M  
5mm x 7mm x 1mm package body  
K Package  
Top View  
Pullup  
Pullup  
FSEL0  
FSEL1  
Control  
Logic  
©2016 Integrated Device Technology, Inc  
1
Revision A March 4, 2016  
83PN187I Data Sheet  
Table 1. Pin Descriptions  
Number  
Name  
OE  
Type  
Description  
1
2
3
Input  
Pullup  
Output enable. LVCMOS/LVTTL interface levels.  
Reserved pin. Do not connect.  
Negative supply pin.  
RESERVED  
VEE  
Reserve  
Power  
4,  
5
XTAL_OUT  
XTAL_IN  
Crystal oscillator interface XTAL_IN is the input, XTAL_OUT is the output. This  
oscillator interface can also be driven by a single-ended reference clock.  
Input  
6, 7  
8
Q, nQ  
VCC  
Output  
Power  
Differential output pair. LVPECL interface levels.  
Power supply pin.  
Output divider control inputs. Sets the output divider value to one of four values.  
See Table 3. LVCMOS/LVTTL interface levels.  
9
FSEL0  
FSEL1  
Input  
Input  
Pullup  
Pullup  
Output divider control inputs. Sets the output divider value to one of four values.  
See Table 3. LVCMOS/LVTTL interface levels  
10  
NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
k  
Function Table  
Table 3. Divider Function Table  
FSEL[1:0]  
0 0  
M Value  
÷100  
÷90  
N Value  
÷16  
0 1  
÷12  
1 0  
÷80  
÷16  
1 1 (default)  
÷84  
÷14  
©2016 Integrated Device Technology, Inc  
2
Revision A March 4, 2016  
83PN187I Data Sheet  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
3.63V  
Inputs, VI  
XTAL_IN  
Other Inputs  
0V to 2V  
-0.5V to VCC + 0.5V  
Outputs, IO  
Continuos Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, JA  
39.2C/W (0 mps)  
-65C to 150C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VCC = 3.3V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
VCC Power Supply Voltage  
IEE Power Supply Current  
Test Conditions  
Minimum  
Typical  
Maximum  
3.465  
Units  
V
3.135  
3.3  
131  
mA  
Table 4B. Power Supply DC Characteristics, VCC = 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
VCC Power Supply Voltage  
IEE Power Supply Current  
Test Conditions  
Minimum  
Typical  
Maximum  
2.625  
Units  
V
2.375  
2.5  
124  
mA  
Table 4C. LVCMOS/LVTTL DC Characteristics, VCC = 3.3V 5% or 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
VCC = 3.465V  
VCC = 2.625V  
VCC = 3.465V  
VCC = 2.625V  
Minimum  
Typical  
Maximum  
VCC + 0.3  
VCC + 0.3  
0.8  
Units  
2
V
V
V
V
VIH  
Input High Voltage  
1.7  
-0.3  
-0.3  
VIL  
Input Low Voltage  
0.7  
Input  
High Current  
OE,  
FSEL[1:0]  
IIH  
VCC = VIN = 3.465V or 2.625V  
5
µA  
µA  
Input  
Low Current  
OE,  
FSEL[1:0]  
IIL  
VCC = 3.465V or 2.625V, VIN = 0V  
-150  
©2016 Integrated Device Technology, Inc  
3
Revision A March 4, 2016  
83PN187I Data Sheet  
Table 4D. LVPECL DC Characteristics, VCC = 3.3V 5% or 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCC – 1.3  
VCC – 2.0  
0.6  
Typical  
Maximum  
VCC – 0.8  
VCC – 1.6  
1.0  
Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs termination with 50to VCC – 2V.  
Table 5. Crystal Characteristics  
Parameter  
Test Conditions  
Minimum  
Typical  
Fundamental  
25  
Maximum  
Units  
Mode of Oscillation  
Frequency  
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
50  
7
pF  
©2016 Integrated Device Technology, Inc  
4
Revision A March 4, 2016  
83PN187I Data Sheet  
AC Electrical Characteristics  
Table 6A. AC Characteristics, Vcc = 3.3V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
fMAX  
Output Frequency  
1250  
187.5  
MHz  
156.25MHz,  
Integration Range: 12kHz – 20MHz  
0.339  
0.321  
0.309  
0.315  
0.5  
0.5  
0.5  
0.5  
ps  
ps  
ps  
ps  
187.5MHz,  
Integration Range: 12kHz – 20MHz  
RMS Phase Jitter (Random);  
NOTE 1  
tjit(Ø)  
125MHz,  
Integration Range: 12kHz – 20MHz  
150MHz,  
Integration Range: 12kHz – 20MHz  
tjit(cc)  
tR / tF  
odc  
Cycle-to-Cycle Jitter; NOTE 2  
Output Rise/Fall Time  
Output Duty Cycle  
10  
350  
51  
ps  
ps  
%
20% to 80%  
100  
49  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE 1: Refer to the Phase Noise plots.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
Table 6B. AC Characteristics, Vcc = 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
fMAX  
Output Frequency  
125  
187.5  
MHz  
156.25MHz,  
Integration Range: 12kHz – 20MHz  
0.347  
0.326  
0.315  
0.317  
0.5  
0.5  
0.5  
0.5  
ps  
ps  
ps  
ps  
187.5MHz,  
Integration Range: 12kHz – 20MHz  
RMS Phase Jitter (Random);  
NOTE 1  
tjit(Ø)  
125MHz,  
Integration Range: 12kHz – 20MHz  
150MHz,  
Integration Range: 12kHz – 20MHz  
tjit(cc)  
tR / tF  
odc  
Cycle-to-Cycle Jitter; NOTE 2  
Output Rise/Fall Time  
Output Duty Cycle  
20  
350  
51  
ps  
ps  
%
20% to 80%  
100  
49  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE 1: Refer to the Phase Noise plots.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
©2016 Integrated Device Technology, Inc  
5
Revision A March 4, 2016  
83PN187I Data Sheet  
Typical Phase Noise at 125MHz (3.3V core, 3.3V output)  
Offset Frequency (Hz)  
Typical Phase Noise at 150MHz (3.3V core, 3.3V output)  
Offset Frequency (Hz)  
©2016 Integrated Device Technology, Inc  
6
Revision A March 4, 2016  
83PN187I Data Sheet  
Typical Phase Noise at 156.25MHz (3.3V core, 3.3V output)  
Offset Frequency (Hz)  
Typical Phase Noise at 187.5MHz (3.3V core, 3.3V output)  
Offset Frequency (Hz)  
©2016 Integrated Device Technology, Inc  
7
Revision A March 4, 2016  
83PN187I Data Sheet  
Parameter Measurement Information  
2V  
2V  
SCOPE  
SCOPE  
Qx  
V
CC  
V
Qx  
CC  
nQx  
nQx  
VEE  
VEE  
-1.3V 0.165V  
-0.5V 0.125V  
2.5V LVPECL Output Load AC Test Circuit  
3.3V LVPECL Output Load AC Test Circuit  
nQ  
Q
RMS Phase Jitter  
Output Duty Cycle/Pulse Width/Period  
nQ  
Q
nQ  
Q
tcycle n  
tcycle n+1  
tjit(cc) = tcycle n – tcycle n+1  
|
|
1000 Cycles  
Cycle-to-Cycle Jitter  
Output Rise/Fall Time  
©2016 Integrated Device Technology, Inc  
8
Revision A March 4, 2016  
83PN187I Data Sheet  
Application Information  
Recommendations for Unused Input Pins  
Inputs:  
LVCMOS Control Pins  
All control pins have internal pullups; additional resistance is not  
required but can be added for additional protection. A 1kresistor  
can be used.  
VFQFN EPAD Thermal Release Path  
In order to maximize both the removal of heat from the package and  
the electrical performance, a land pattern must be incorporated on  
the Printed Circuit Board (PCB) within the footprint of the package  
corresponding to the exposed metal pad or exposed heat slug on the  
package, as shown in Figure 1. The solderable area on the PCB, as  
defined by the solder mask, should be at least the same size/shape  
as the exposed pad/slug area on the package to maximize the  
thermal/electrical performance. Sufficient clearance should be  
designed on the PCB between the outer edges of the land pattern  
and the inner edges of pad pattern for the leads to avoid any shorts.  
While the land pattern on the PCB provides a means of heat transfer  
and electrical grounding from the package to the board through a  
solder joint, thermal vias are necessary to effectively conduct from  
the surface of the PCB to the ground plane(s). The land pattern must  
be connected to ground through these vias. The vias act as “heat  
pipes”. The number of vias (i.e. “heat pipes”) are application specific  
and dependent upon the package power dissipation as well as  
electrical conductivity requirements. Thus, thermal and electrical  
analysis and/or testing are recommended to determine the minimum  
number needed. Maximum thermal and electrical performance is  
achieved when an array of vias is incorporated in the land pattern. It  
is recommended to use as many vias connected to ground as  
possible. It is also recommended that the via diameter should be 12  
to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is  
desirable to avoid any solder wicking inside the via during the  
soldering process which may result in voids in solder between the  
exposed pad/slug and the thermal land. Precautions should be taken  
to eliminate any solder voids between the exposed heat slug and the  
land pattern. Note: These recommendations are to be used as a  
guideline only. For further information, please refer to the Application  
Note on the Surface Mount Assembly of Amkor’s Thermally/  
Electrically Enhance Leadframe Base Package, Amkor Technology.  
SOLDER  
SOLDER  
PIN  
PIN  
EXPOSED HEAT SLUG  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
Figure 1. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)  
©2016 Integrated Device Technology, Inc  
9
Revision A March 4, 2016  
83PN187I Data Sheet  
Crystal Input Interface  
The 83PN187I has been characterized with 12pF parallel resonant  
crystals. The capacitor values shown in Figure 2A below were  
determined using a 25MHz, 12pF parallel resonant crystal and were  
chosen to minimize the ppm error. Other parallel resonant crystal’s  
values can be used. For example, a crystal with a CL = 18pF can be  
used, but would require the tuning capacitors to be adjusted.  
XTAL_IN  
XTAL_IN  
C1  
16pF  
C1  
4pF  
X1  
18pF Parallel Crystal  
X1  
12pF Parallel Crystal  
XTAL_OUT  
XTAL_OUT  
C2  
16pF  
C2  
4pF  
Figure 2B. Crystal Input Interface, using 18pF crystal  
Figure 2A. Crystal Input Interface, using 12pF crystal  
Overdriving the XTAL Interface  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 3A. The XTAL_OUT pin can be left floating. The  
maximum amplitude of the input signal should not exceed 2V and the  
input edge rate can be as slow as 10ns. This configuration requires  
that the output impedance of the driver (Ro) plus the series resistance  
(Rs) equals the transmission line impedance. In addition, matched  
termination at the crystal input will attenuate the signal in half. This  
can be done in one of two ways. First, R1 and R2 in parallel should  
equal the transmission line impedance. For most 50applications,  
R1 and R2 can be 100. This can also be accomplished by removing  
R1 and making R2 50. By overdriving the crystal oscillator, the  
device will be functional, but note, the device performance is  
guaranteed by using a quartz crystal.  
3.3V  
3.3V  
R1  
100  
C1  
Ro  
~ 7 Ohm  
Zo = 50 Ohm  
XTAL_I N  
RS  
43  
0.1uF  
R2  
100  
Driver_LVCMOS  
XTAL_OU T  
Crystal Input Interf ace  
Figure 3A. General Diagram for LVCMOS Driver to XTAL Input Interface  
VCC=3.3V  
C1  
Zo = 50 Ohm  
XTAL_IN  
0.1uF  
R1  
50  
Zo = 50 Ohm  
XTAL_OUT  
LVPECL  
Cry stal Input Interface  
R2  
50  
R3  
50  
Figure 3B. General Diagram for LVPECL Driver to XTAL Input Interface  
©2016 Integrated Device Technology, Inc  
10  
Revision A March 4, 2016  
83PN187I Data Sheet  
Termination for 3.3V LVPECL Outputs  
transmission lines. Matched impedance techniques should be used  
to maximize operating frequency and minimize signal distortion.  
Figures 4A and 4B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers simulate  
to guarantee compatibility across all printed circuit and clock  
component process variations.  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
The differential outputs are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be used  
for functionality. These outputs are designed to drive 50  
3.3V  
R3  
125  
R4  
125  
3.3V  
3.3V  
Zo = 50  
+
_
Input  
Zo = 50  
R1  
84  
R2  
84  
Figure 4A. 3.3V LVPECL Output Termination  
Figure 4B. 3.3V LVPECL Output Termination  
©2016 Integrated Device Technology, Inc  
11  
Revision A March 4, 2016  
83PN187I Data Sheet  
Termination for 2.5V LVPECL Outputs  
Figure 5A and Figure 5B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating 50  
to VCC – 2V. For VCC = 2.5V, the VCC – 2V is very close to ground  
level. The R3 in Figure 5B can be eliminated and the termination is  
shown in Figure 5C.  
2.5V  
VCC = 2.5V  
2.5V  
2.5V  
VCC = 2.5V  
50  
R1  
250Ω  
R3  
250Ω  
+
50Ω  
50Ω  
50Ω  
+
2.5V LVPECL Driver  
R1  
50Ω  
R2  
50Ω  
2.5V LVPECL Driver  
R2  
62.5Ω  
R4  
62.5Ω  
R3  
18Ω  
Figure 5A. 2.5V LVPECL Driver Termination Example  
Figure 5B. 2.5V LVPECL Driver Termination Example  
2.5V  
VCC = 2.5V  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
50Ω  
R2  
50Ω  
Figure 5C. 2.5V LVPECL Driver Termination Example  
©2016 Integrated Device Technology, Inc  
12  
Revision A March 4, 2016  
83PN187I Data Sheet  
Power Considerations  
This section provides information on power dissipation and junction temperature for the 83PN187I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the 83PN187I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 131mA = 453.915mW  
Power (outputs)MAX = 32mW/Loaded Output pair  
Total Power_MAX (3.3V, with all outputs switching) = 453.915mW + 32mW = 485.915mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 39.2°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.486W * 39.2°C/W = 104.1°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 7. Thermal Resistance JA for 10 Lead VFQFN, Forced Convection  
JA vs. Air Flow  
Meters per Second  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
39.2°C/W  
©2016 Integrated Device Technology, Inc  
13  
Revision A March 4, 2016  
83PN187I Data Sheet  
3. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the LVPECL output pair.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
Figure 6. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage of  
VCC – 2V.  
For logic high, VOUT = VOH_MAX = VCC_MAX – 0.8V  
(VCC_MAX – VOH_MAX) = 0.8V  
For logic low, VOUT = VOL_MAX = VCC_MAX 1.6V  
(VCC_MAX – VOL_MAX) = 1.6V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOH_MAX) = [(2V – (VCC_MAX – VOH_MAX))/RL] * (VCC_MAX – VOH_MAX) =  
[(2V – 0.8V)/50] * 0.8V = 19.2mW  
Pd_L = [(VOL_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOL_MAX) = [(2V – (VCC_MAX – VOL_MAX))/RL] * (VCC_MAX – VOL_MAX) =  
[(2V – 1.6V)/50] * 1.6V = 12.82mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 32mW  
©2016 Integrated Device Technology, Inc  
14  
Revision A March 4, 2016  
83PN187I Data Sheet  
Reliability Information  
Table 8. JA vs. Air Flow Table for a 10 Lead VFQFN  
JA vs. Air Flow  
Meters per Second  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
39.2°C/W  
Transistor Count  
The transistor count for 83PN187I is: 24,932  
©2016 Integrated Device Technology, Inc  
15  
Revision A March 4, 2016  
83PN187I Data Sheet  
Package Outline  
Package Outline - K Suffix for 10-Lead VFQFN  
D
B
4
INDEX AREA  
(D/ 2 xE/ 2)  
aaa  
C 2x  
9
TOP VIEW  
ccc  
C
C
C
SEATING  
PLANE  
8
SIDE VIEW  
e1  
0.08  
NX L2  
7
NX b1  
bbb  
C
A
B
7
NX b2  
bbb  
C
A
4
B
INDEX AREA  
(D/ 2 xE/ 2)  
PIN# 1 ID  
D2  
BOTTOM VIEW  
FOR REVISION UPDATE PLEASE REFER TO HISTORY OF CHANGES.  
ORIGINATOR  
ZAHRUL  
DWG. NO : PKGML00305  
DRAFT  
MLP QUAD  
ENGINEERING MANAGER  
TOOLING MANAGER  
TECH. SALES MANAGER  
DATE  
PACKAGE OUTLINE  
1
ARAVEN  
KANDA  
5.00x7.00 MLPQ 10LD  
1.00/ 2.54 Pit ch  
2007- APR- 18  
Page 1 Of 4  
©2016 Integrated Device Technology, Inc  
16  
Revision A March 4, 2016  
83PN187I Data Sheet  
Package Outline, continued  
Package Outline - K Suffix for 10-Lead VFQFN  
COMMON DIMENSION  
TOLERANCE OF FORM AND POSITION  
0.15  
aaa  
bbb  
ccc  
0.10  
0.10  
COMMON DIMENSION  
V : Very t hin  
SYMBOL  
MIN  
0.80  
0.00  
NOM  
0.90  
0.02  
MAX  
1.00  
A
A1  
0.05  
NOTES  
1, 2  
1, 2  
1, 2  
Summary Table  
Body  
Very Very Thin  
Lead  
Lead  
Count  
10  
Pin # 1 ID  
R0.30  
Variat ion  
Pit ch (e1 & e2)  
1.00/ 2.54  
Size  
5.00X7.00  
VNJR- 1  
FOR REVISION UPDATE PLEASE REFER TO HISTORY OF CHANGES.  
ORIGINATOR  
ZAHRUL  
DWG. NO : PKGML00305  
DRAFT  
MLP QUAD  
ENGINEERING MANAGER  
TOOLING MANAGER  
TECH. SALES MANAGER  
DATE  
PACKAGE OUTLINE  
5.00x7.00 MLPQ 10LD  
1.00/ 2.54 Pit ch  
1
ARAVEN  
KANDA  
2007- APR- 18  
PAGE: 2 of  
4
©2016 Integrated Device Technology, Inc  
17  
Revision A March 4, 2016  
83PN187I Data Sheet  
Package Outline, continued  
Package Outline - K Suffix for 10-Lead VFQFN  
NOTE:  
1. Dimensioning and t olerancing conf orm t o ASME Y14.5M- 1994.  
2. All dimensions are in millimet ers, angles are in degrees(°).  
3. N is t he t ot al number of t erminals.  
4. The locat ion of t he t erminal # 1 ident if ier and t erminal numbering convent ion  
conf orms t o JEDEC publicat ion 95 SPP- 002.  
5. ND and NE ref er t o t he number of t erminals on each D and E side respect ively.  
6. NJR ref ers t o NON JEDEC REGISTERED  
7. Dimension b applies t o met allized t erminal and is measured bet ween 0.10mm  
and 0.30mm f rom t he t erminal t ip. If t he t erminal has t he opt ional radius  
on t he ot her end of t he t erminal, t he dimension b should not be measured  
in t hat radius area.  
8. Coplanarit y applies t o t he t erminals and all ot her bot t om surf ace met allizat ion.  
9. Drawing shown are f or illust rat ion only.  
FOR REVISION UPDATE PLEASE REFER TO HISTORY OF CHANGES.  
ORIGINATOR  
ZAHRUL  
DWG. NO : PKGML00305  
DRAFT  
MLP QUAD  
ENGINEERING MANAGER  
TOOLING MANAGER  
TECH. SALES MANAGER  
DATE  
PACKAGE OUTLINE  
1
ARAVEN  
KANDA  
5.00x7.00 MLPQ 10LD  
1.00/ 2.54 Pit ch  
2007- APR- 18  
PAGE: 3 of  
4
©2016 Integrated Device Technology, Inc  
18  
Revision A March 4, 2016  
83PN187I Data Sheet  
Package Outline, continued  
Package Outline - K Suffix for 10-Lead VFQFN  
VNJR- 1  
D BSC  
E BSC  
5.00  
7.00  
0.35  
0.40  
0.45  
1.35  
1.40  
1.45  
1.55  
1.70  
1.80  
3.55  
3.70  
3.80  
0.45  
0.55  
0.65  
1.00  
1.10  
1.20  
10  
MIN  
b1  
b2  
D2  
E2  
L1  
L2  
NOM  
MAX  
MIN  
NOM  
MAX  
MIN  
NOM  
MAX  
MIN  
NOM  
MAX  
MIN  
NOM  
MAX  
MIN  
NOM  
MAX  
N
ND  
NE  
2
3
NOTES  
-
PAD DESIGN  
-
FOR REVISION UPDATE PLEASE REFER TO HISTORY OF CHANGES.  
ORIGINATOR  
ZAHRUL  
DWG. NO : PKGML00305  
DRAFT  
MLP QUAD  
ENGINEERING MANAGER  
TOOLING MANAGER  
TECH. SALES MANAGER  
DATE  
PACKAGE OUTLINE  
1
ARAVEN  
KANDA  
5.00x7.00 MLPQ 10LD  
1.00/ 2.54 Pit ch  
2007- APR- 18  
PAGE: 4 of  
4
©2016 Integrated Device Technology, Inc  
19  
Revision A March 4, 2016  
83PN187I Data Sheet  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
83PN187DKILF  
Marking  
Package  
Shipping Packaging  
Tray  
Temperature  
-40C to 85C  
-40C to 85C  
ICS3PN187DIL  
ICS3PN187DIL  
“Lead-Free” 10 Lead VFQFN  
“Lead-Free” 10 Lead VFQFN  
83PN187DKILFT  
Tape & Reel  
©2016 Integrated Device Technology, Inc  
20  
Revision A March 4, 2016  
83PN187I Data Sheet  
Revision History Sheet  
Rev  
Table  
Page  
3, 16-19  
20  
Description of Change  
Date  
Supply Voltage, VCC. Rating changed from 4.5V min. to 3.63V per Errata NEN-11-03.  
Updated 10-Lead VFQFN package information.  
A
6/02/11  
3/4/16  
T9  
Ordering Information - removed quantity in tape and reel. Deleted LF note below table.  
Removed ICS from part numbers where needed.  
Updated header and footer.  
A
©2016 Integrated Device Technology, Inc  
21  
Revision A March 4, 2016  
83PN187I Data Sheet  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138 USA  
www.IDT.com  
Sales  
Tech Support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
www.idt.com/go/support  
DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications  
and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein  
is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability,  
or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably  
expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of  
IDT or their respective third party owners.  
For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary.  
Copyright ©2016 Integrated Device Technology, Inc. All rights reserved.  

相关型号:

83PR100KLF

1/4 Single Turn Surface Mount Cermet Trimming Potentiometer
TTELEC

83PR100KLFTB

1/4 Single Turn Surface Mount Cermet Trimming Potentiometer
TTELEC

83PR100KLFTR

1/4 Single Turn Surface Mount Cermet Trimming Potentiometer
TTELEC

83PR100LF

1/4 Single Turn Surface Mount Cermet Trimming Potentiometer
TTELEC

83PR100LFTB

1/4 Single Turn Surface Mount Cermet Trimming Potentiometer
TTELEC

83PR100LFTR

1/4 Single Turn Surface Mount Cermet Trimming Potentiometer
TTELEC

83PR10KLF

1/4 Single Turn Surface Mount Cermet Trimming Potentiometer
TTELEC

83PR10KLFTB

1/4 Single Turn Surface Mount Cermet Trimming Potentiometer
TTELEC

83PR10KLFTR

1/4 Single Turn Surface Mount Cermet Trimming Potentiometer
TTELEC

83PR10LF

1/4 Single Turn Surface Mount Cermet Trimming Potentiometer
TTELEC

83PR10LFTB

1/4 Single Turn Surface Mount Cermet Trimming Potentiometer
TTELEC

83PR10LFTR

1/4 Single Turn Surface Mount Cermet Trimming Potentiometer
TTELEC