843034DY-06LF [IDT]

Clock Generator, 375MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-48;
843034DY-06LF
型号: 843034DY-06LF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 375MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-48

时钟 外围集成电路 晶体
文件: 总21页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
FEMTOCLOCKS™ MULTI-RATE 3.3V  
LVPECL FREQUENCY SYNTHESIZER  
ICS843034-06  
GENERAL DESCRIPTION  
FEATURES  
The ICS843034-06 is a general purpose, low phase  
Dual differential 3.3V LVPECL outputs  
ICS  
noise LVPECL synthesizer which can generate  
4:1 Input Mux:  
HiPerClockS™  
frequencies for a wide variety of applications. The  
ICS843034-06 has a 4:1 input multiplexer from which  
the following inputs can be selected: one differential  
input, one single-ended input, or one of two crystal  
One differential input  
One single-ended input  
Two crystal oscillator interfaces  
oscillators, thus making the device ideal for frequency translation  
or frequency generation. The ICS843034-06 has dual LVPECL  
outputs that may be programmed for ÷2, ÷4 or ÷5 of the VCO  
frequency. The ICS843034-06 also supplies a buffered copy of  
the reference clock or crystal frequency on the single-ended  
REF_OUT pin which can be enabled or disabled (disabled by  
default). The output frequency can be programmed using either  
a serial or parallel programming interface. This device supports  
Spread Spectrum Clocking (SSC) for EMI reduction.  
CLK, nCLK pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL  
Output frequency range: 112MHz to 375MHz  
Crystal input frequency range: 12MHz to 40MHz  
VCO range: 560MHz to 750MHz  
Supports Spread Spectrum Clocking (SSC)  
Parallel or serial interface for programming feedback divider  
and output dividers  
RMS phase jitter at 166.6MHz, using a 22.222MHz crystal  
(12kHz to 20MHz): 1.3ps (typical), SSC - Off  
3.3V supply mode  
0°C to 70°C ambient operating temperature  
Available in lead-free (RoHS 6) package  
BLOCK DIAGRAM  
Pullup  
OE_A  
÷
÷
÷
001  
011  
100  
2
4
5
Pullup  
VCO_SEL  
XTAL_IN0  
FOUTA0  
nFOUTA0  
PIN ASSIGNMENT  
00  
01  
OSC  
OSC  
Pullup  
XTAL_OUT0  
XTAL_IN1  
0
1
VCCO_A  
XTAL_OUT1  
Phase  
Detector  
VCO  
CLK  
nCLK  
VCCO_B  
10  
11  
Pullup/Pulldown  
FOUTB0  
nFOUTB0  
Pulldown  
48 47 46 45 44 43 42 41 40 39 38 37  
REF_CLK  
÷M  
XTAL_OUT1  
XTAL_IN1  
XTAL_OUT0  
XTAL_IN0  
REF_CLK  
SEL1  
M8  
RESERVED  
RESERVED  
RESERVED  
OE_REF  
OE_A  
1
36  
Pulldown  
Pulldown  
SEL1  
SEL0  
2
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
3
4
ICS843034-06  
Pullup  
OE_B  
MR  
5
VCCO_REF  
REF_OUT  
48-Pin LQFP  
7mm x 7mm x 1.4mm  
package body  
Pulldown  
6
SEL0  
OE_B  
7
Pulldown  
Pulldown  
Pulldown  
Pulldown  
Pulldown  
OE_REF  
S_LOAD  
VCCA  
VCC  
8
Y Package  
Top View  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
NA0  
9
TEST  
S_DATA  
NA1  
10  
11  
12  
Configuration  
Interface  
Logic  
S_CLOCK  
NA2  
nP_LOAD  
M8:M0  
VEE  
M0:M4 M6:M8 Pulldown, M5 Pullup  
13 14 15 16 17 18 19 20 21 22 23 24  
NA2 Pulldown, NA1:0 Pullup  
NA2:NA0  
The Preliminary Information presented herein represents a product in pre-production.The noted characteristics are based on initial product characterization  
and/or qualification.Integrated DeviceTechnology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
1
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
FUNCTIONAL DESCRIPTION  
NOTE: The functional description that follows describes opera-  
tion using a 22.22MHz crystal. Valid PLL loop divider values for  
different crystal or input frequencies are defined in the Input  
Frequency Characteristics, Table 6, NOTE 1.  
automatically occur during power-up. The TEST output is LOW  
when operating in the parallel input mode. The relationship  
between the VCO frequency, the crystal frequency and the M  
divider is defined as follows: fVCO = fxtal x M  
The ICS843034-06 features a fully integrated PLL and there-  
fore requires no external components for setting the loop band-  
width. A fundamental crystal is used as the input to the on-  
chip oscillator. The output of the oscillator is fed into the phase  
detector. A 22.22MHz crystal provides a 22.22MHz phase de-  
tector reference frequency. The VCO of the PLL operates over  
a range of 560MHz to 750MHz. The output of the M divider is  
also applied to the phase detector.  
The M value and the required values of M0 through M8 are shown  
in Table 4B to program the VCO Frequency Function Table. Valid  
M values for which the PLL will achieve lock for a 22.22MHz ref-  
erence are defined as 26 M 33. The frequency out is defined  
as follows:  
FOUT = fVCO = fxtal x M  
N
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD  
is LOW. The shift register is loaded by sampling the S_DATA  
bits with the rising edge of S_CLOCK. The contents of the shift  
register are loaded into the M divider and NA output divider  
when S_LOAD transitions from LOW-to-HIGH. The M divide  
and NA output divide values are latched on the HIGH-to-LOW  
transition of S_LOAD. If S_LOAD is held HIGH, data at the  
S_DATA input is passed directly to the M divider and NA output  
divider on each rising edge of S_CLOCK. The serial mode can  
be used to program the M and NA bits and test bits T1 and T0.  
The internal registers T0 and T1 determine the state of the  
TEST output as follows:  
The phase detector and the M divider force the VCO output  
frequency to be M times the reference frequency by adjusting the  
VCO control voltage. Note that for some values of M (either too  
high or too low), the PLL will not achieve lock. The output of the  
VCO is scaled by a divider prior to being sent to each of the  
LVPECL output buffers. The divider provides a 50% output duty  
cycle.  
The ICS843034-06 supports either serial or parallel programming  
modes to program the M feedback divider and N output divider.  
Figure 1 shows the timing diagram for each mode. In parallel  
mode, the nP_LOAD input is initially LOW. The data on the M and  
NA inputs are passed directly to the M divider and N output divid-  
ers. On the LOW-to-HIGH transition of the nP_LOAD input, the  
data is latched and the M and N dividers remain loaded until the  
next LOW transition on nP_LOAD or until a serial event occurs.  
As a result, the M and NA bits can be hardwired to set the M  
divider and NA output divider to a specific default state that will  
T1 T0  
TEST Output  
LOW  
0
0
1
1
0
1
0
1
S_Data, Shift Register Output  
Output of M divider  
Same frequency as FOUTA0  
S
ERIAL LOADING  
S_CLOCK  
S_DATA  
S_LOAD  
SSC3 SSC2 SSC1 SSC0 T1  
tS tH  
T0  
X
X
X
NA2 NA1 NA0  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
M0  
nP_LOAD  
tS  
P
ARALLEL  
L
OADING  
M0:M8, NA0:NA2  
nP_LOAD  
M, N  
t
t
H
S
S_LOAD  
Time  
NOTE: X = Don’t Care  
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
2
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TABLE 1. SSM OPERATION  
SS Bit Pattern  
Operation  
SS3  
0
SS2  
0
SS1  
0
SS0  
0
Mode  
%
off  
0
0
0
0
1
center  
center  
center  
center  
center  
center  
center  
off  
±0.25  
±0.25  
±0.85  
±0.85  
±1.45  
±1.45  
±1.7  
0
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
down  
down  
down  
down  
down  
down  
down  
-0.25  
-0.25  
-0.85  
-0.85  
-1.45  
-1.45  
-1.7  
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
NOTE: SS modulation frequency is approximately 32kHz using  
reference frequency of 22.22MHz, providing a VCO frequency of  
666.66MHz.  
SPREAD SPECTRUM MODULATION  
The ICS843034-06 offers the option of a spread spectrum  
modulated output clock. The spread spectrum is controlled via  
4 bits in the serial bit stream. These four bits configure the  
SSM to be enabled and the amount of spread modulation to be  
selected. See Table 1 for the definition of the four bits. The four  
bits are added at the beginning of the serial data stream and  
are labeled SS3, SS2, SS1 and SS0. The initial state of SS3,  
SS2, SS1 and SS0 is 0, 0, 0, 0 which places the ICS843034-06  
in the mode of spread spectrum off. Additionally, a parallel load  
will result in spread spectrum modulation being off. The  
ICS843034-06 offers down-spread or center-spread using tri-  
angle-wave modulation. NOTE: PLL operation not guaranteed  
for M >31 when using center spread.  
POWER-UP OPERATION  
MR PIN OPERATION  
The 843034-06 has internal power–up reset circuitry that initiates  
the phase lock loop to automatically acquire lock on power-up.  
On power-up the M/N values for the feedback and output dividers  
will be acquired from the M and N pins if nP_Load is held Low. If  
nP_Load is High during power-up, M/N values are indeterminate.  
The M/N values may be changed by either changing the values  
on the M/N pins when nP_LOAD is low or with a serial load when  
nP_LOAD is high and S_LOAD is low.  
Any time there is a change in the input frequency, either due to  
an external change or a change in the SEL pins, the MR pin must  
go high and low to relock to the new input frequency. A change in  
the M feedback divider by either a serial or parallel load will also  
cause a relock to the new input frequency.  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
3
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TABLE 2. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1, 41, 42,  
43, 44,  
45, 47, 48  
M8, M0, M1,  
M2, M3,  
M4, M6, M7  
M divider input. Data latched on LOW-to-HIGH transition of  
nP_LOAD input. LVCMOS/LVTTL interface levels.  
Input  
Pulldown  
2, 3, 4  
RESERVED  
Reserve  
Input  
Reserve pins.  
Output enable. Controls enabling and disabling of REF_OUT output.  
LVCMOS/LVTTL interface levels.  
Output enable. Controls enabling and disabling of FOUTA0,  
nFOUTA0 outputs. LVCMOS/LVTTL interface levels.  
Output enable. Controls enabling and disabling of FOUTB0,  
nFOUTB0 outputs. LVCMOS/LVTTL interface levels.  
5
OE_REF  
Pulldown  
Pullup  
6
7
OE_A  
OE_B  
Input  
Input  
Pullup  
8, 14  
9, 10  
11  
VCC  
NA0, NA1  
NA2  
Power  
Input  
Core supply pins.  
Pullup  
Determines output divider value as defined in Table 4C,  
Function Table. LVCMOS/LVTTL interface levels.  
Input  
Pulldown  
12, 24  
VEE  
Power  
Negative supply pins.  
Test output which is ACTIVE in the serial mode of operation.  
Output driven LOW in parallel mode.  
13  
TEST  
Output  
LVCMOS/LVTTL interface levels.  
FOUTA0,  
nFOUTA0  
15, 16  
17  
Output  
Power  
Output  
Differential output for the synthesizer. LVPECL interface levels.  
Output supply pin for FOUTA0, nFOUTA0.  
VCCO_A  
FOUTB0,  
nFOUTB0  
18, 19  
Differential output for the synthesizer. LVPECL interface levels.  
20  
21  
22  
23  
VCCO_B  
REF_OUT  
VCCO_REF  
nc  
Power  
Output  
Power  
Output supply pin for FOUTB0, nFOUTB0.  
Reference clock output. LVCMOS/LVTTL interface levels.  
Output supply pin for REF_OUT output.  
No connect.  
Unused  
Active High Master Reset. When logic HIGH, forces the internal PLL  
to a reset condition which holds the VCO at the minumum value.  
25  
MR  
Input  
Pulldown When logic LOW, the internal dividers and the outputs are enabled.  
Assertion of MR does not affect loaded M, N, S and T values.  
LVCMOS/LVTTL interface levels.  
Clocks in serial data present at S_DATA input into the shift register  
on the rising edge of S_CLOCK. LVCMOS/LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge  
of S_CLOCK. LVCMOS/LVTTL interface levels.  
Controls transition of data from shift register into the dividers.  
LVCMOS/LVTTL interface levels.  
26  
27  
28  
S_CLOCK  
S_DATA  
Input  
Input  
Input  
Pulldown  
Pulldown  
S_LOAD  
Pulldown  
29  
30, 31  
32  
VCCA  
Power  
Input  
Input  
Analog supply pin.  
SEL0, SEL1  
REF_CLK  
Pulldown Clock select inputs. LVCMOS/LVTTL interface levels.  
Pulldown Reference clock input. LVCMOS/LVTTL interface levels.  
XTAL_IN0,  
XTAL_OUT0  
XTAL_IN1,  
Crystal oscillator interface. XTAL_IN0 is the input,  
XTAL_OUT0 is the output.  
Crystal oscillator interface. XTAL_IN1 is the input,  
XTAL_OUT1 is the output.  
33, 34  
35, 36  
Input  
Input  
XTAL_OUT1  
Continued on next page...  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
4
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TABLE 2. PIN DESCRIPTIONS, CONTINUED  
Number  
Name  
Type  
Description  
37  
CLK  
Input Pulldown Non-inverting differential clock input.  
Pullup/  
38  
nCLK  
Input  
Inverting differential clock input.VCC/2 default when left floating.  
Pulldown  
Parallel load input. Determines when data present at M8:M0 is loaded into  
39  
nP_LOAD  
Input Pulldown M divider, and when data present at NA2:NA0 is loaded into the N output  
dividers. LVCMOS/LVTTL interface levels.  
Determines whether synthesizer is in PLL or bypass mode.  
LVCMOS/LVTTL interface levels.  
40  
46  
VCO_SEL  
M5  
Input  
Input  
Pullup  
Pullup  
M divider input. Data latched on LOW-to-HIGH transition of nP_LOAD input.  
LVCMOS/LVTTL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 3, Pin Characteristics, for typical values.  
TABLE 3. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CIN  
Input Capacitance  
Input Pullup Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
51  
51  
7
RPULLDOWN Input Pulldown Resistor  
ROUT  
Output Impedance  
REF_OUT  
5
12  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
5
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TABLE 4A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
MR nP_LOAD  
M
N
S_LOAD S_CLOCK S_DATA  
H
X
X
X
X
X
X
Reset the PLL.  
Data on M and N inputs passed directly to the M  
divider and N output divider. TEST output forced LOW.  
L
L
Data Data  
Data Data  
X
X
X
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the  
M divider and N output divider.  
L
L
L
L
L
X
L
X
H
H
X
X
X
X
Data  
Data  
L
L
L
H
H
H
X
X
X
X
X
X
L
L
X
Data  
X
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 4B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE  
256  
M8  
0
128  
M7  
0
64  
M6  
0
32  
M5  
0
16  
M4  
1
8
M3  
1
4
M2  
0
2
M1  
1
1
M0  
0
VCO Frequency  
(MHz)  
M Divide  
577.7  
26  
666.6  
30  
0
0
0
0
1
1
1
1
0
733.3  
33  
0
0
0
1
0
0
0
0
1
NOTE 1: These M divide values and the resulting frequencies correspond to crystal, CLK, or REF_CLK input frequency of  
22.22MHz.  
TABLE 4C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Inputs  
Output Frequency (MHz)  
N Divider Value  
*NA2  
*NA1  
*NA0  
Minimum  
280  
Maximum  
375  
0
0
1
0
1
0
1
1
0
2
4
5
140  
187.5  
150  
112  
*NOTE: Programming for Bank A and Bank B.  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
6
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
ABSOLUTE MAXIMUM RATINGS  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
Supply Voltage, V  
4.6V  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, VO (LVCMOS)  
-0.5V to VCCO + 0.5V  
Outputs, IO (LVPECL)  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA 65.7°C/W (0 mps)  
Storage Temperature, T -65°C to 150°C  
STG  
TABLE 5A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCO_A = VCCO_B = VCCO_REF = 3.3V±5%, VEE = 0V, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VCC  
Core Supply Voltage  
3.465  
VCC  
V
V
VCCA  
Analog Supply Voltage  
VCC – 0.17  
3.3  
VCCO_A,  
VCCO_B,  
VCCO_REF  
Output Supply Voltage  
3.135  
3.3  
3.465  
V
IEE  
Power Supply Current  
Analog Supply Current  
190  
17  
mA  
mA  
ICCA  
TABLE 5B. LVCMOS/LVTTL DC CHARACTERISTICS, VCC = VCCO_A = VCCO_B = VCCO_REF = 3.3V±5%, VEE = 0V, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VCC + 0.3  
0.8  
Units  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
REF_CLK, MR,  
2
V
V
-0.3  
SEL[1:0], OE_REF,  
S_CLOCK, S_DATA,  
S_LOAD, nP_LOAD,  
NA2, M1:M4, M6:M8  
V
CC = VIN = 3.465V  
150  
5
µA  
µA  
µA  
Input  
High Current  
IIH  
OE_A, M5, OE_B,  
VCO_SEL, NA0, NA1  
VCC = VIN = 3.465V  
REF_CLK, MR,  
SEL[1:0], OE_REF,  
S_CLOCK, S_DATA,  
S_LOAD, nP_LOAD,  
NA2, M1:M4, M6:M8  
VCC = 3.465V,  
VIN = 0V  
-5  
Input  
Low Current  
IIL  
V
CC = 3.465V,  
VIN = 0V  
OE_A, M5, OE_B,  
VCO_SEL, NA0, NA1  
-150  
µA  
TEST; NOTE 1  
REF_OUT  
2.6  
V
V
Output  
High Voltage  
VOH  
VCCO_REF = 3.3V±5%  
VCCO_REF = 3.3V±5%  
VCCO_REF - 0.3V  
TEST; NOTE 1  
REF_OUT  
0.5  
0.4  
V
V
Output  
Low Voltage  
VOL  
NOTE 1: Outputs terminated with 50to V  
/2. See Parameter Measurement Information Section,  
CCO_X  
“Output Load Test Circuit Diagrams.  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
7
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TABLE 5C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCO_A = VCCO_B = 3.3V±5%, VEE = 0V, TA = 0°C TO 70°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VIN = VCC = 3.465V  
Minimum Typical Maximum Units  
nCLK  
CLK  
150  
150  
µA  
µA  
µA  
µA  
V
VIN = VCC = 3.465V  
nCLK  
CLK  
VIN = 0V, VCC = 3.465V  
VIN = 0V, VCC = 3.465V  
-150  
-5  
IIL  
Input Low Current  
VPP  
Peak-to-Peak Input Voltage; NOTE 1  
0.15  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
TABLE 5D. LVPECL DC CHARACTERISTICS, VCC = VCCO_A = VCCO_B = 3.3V±5%, VEE = 0V, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.6  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50to VCCO_A, VCCO_B - 2V.  
TABLE 6. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCO_A = VCCO_B = 3.3V±5%, VEE = 0V, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
XTAL_IN0/XTAL_OUT0,  
XTAL_IN1/XTAL_OUT1  
12  
12  
40  
MHz  
fIN  
Input Frequency  
CLK/nCLK, REF_CLK  
S_CLOCK  
40  
50  
MHz  
MHz  
Input Rise/Fall  
Time  
tR/tF  
REF_CLK  
5
ns  
NOTE: For the input crystal, CLK/nCLK and REF_CLK frequency range, the M value must be set for the VCO to operate  
within the 560MHz to 750MHz range. Using the minimum input frequency of 12MHz, valid values of M are 47 M 62.  
Using the maximum frequency of 40MHz, valid values of M are 14 M 18.  
TABLE 7. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
12  
40  
50  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
8
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TABLE 8. AC CHARACTERISTICS, VCC = VCCO_A = VCCO_B = VCCO_REF = 3.3V±5%, VEE = 0V, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FOUT  
Output Frequency  
112  
375  
MHz  
166.6MHz,  
Integration Range:  
12kHz - 20MHz  
Phase Jitter, RMS (Random), SSC-Off  
NOTE 1, 2  
tjit(Ø)  
1.3  
ps  
tjit(cc)  
tsk(o)  
Cycle-to-Cycle Jitter; NOTE 3, 4  
Output Skew; NOTE 2, 4, 5  
35  
ps  
ps  
100  
Output  
tR / tF  
LVPECL Outputs  
Rise/Fall Time  
20% to 80%  
200  
700  
ps  
M, N to nP_LOAD  
5
5
ns  
ns  
ns  
ns  
ns  
ns  
%
tS  
Setup Time  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to nP_LOAD  
5
5
tH  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
5
odc  
Output Duty Cycle  
PLL Lock Time  
45  
55  
tLOCK  
100  
ms  
NOTE: Characterized using a 22.22MHz crystal producing a VCO frequency of 666.66MHz, unless otherwise noted.  
NOTE: See Parameter Measurement Information section.  
NOTE 1: Please refer to the Phase Noise Plot.  
NOTE 2: Characterized with REF_OUT output disabled.  
NOTE 3: Jitter performance using XTAL inputs.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 5: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
9
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TYPICAL PHASE NOISE AT 166.6MHZ  
Filter  
166.6MHz  
RMS Phase Jitter (Random)  
12kHz to 20MHz = 1.3ps (typical)  
Raw Phase Noise Data  
Phase Noise Result by adding  
a Filter to raw data  
OFFSET FREQUENCY (HZ)  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
10  
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
PARAMETER MEASUREMENT INFORMATION  
2V  
2V  
V
VCC  
SCOPE  
,
Qx  
V
V
V
CC  
CCO_A,  
CCA  
nCLK  
CLK  
CCO__B  
VPP  
VCMR  
Cross Points  
LVPECL  
nQx  
VEE  
VEE  
-1.3V ± 0.165V  
DIFFERENTIAL INPUT LEVELS  
3.3V LVPECL OUTPUT LOAD AC TEST CIRCUIT  
nFOUTx  
FOUTx  
nFOUTA0  
nFOUTB0  
FOUTA0  
FOUTB0  
nFOUTy  
tcycle n  
tcycle n+1  
FOUTy  
tjit(cc) = tcycle n – tcycle n+1  
tsk(o)  
1000 Cycles  
OUTPUT SKEW  
CYCLE-TO-CYCLE JITTER  
nFOUTA0  
80%  
tF  
80%  
FOUTA0  
tPW  
20%  
20%  
tPERIOD  
Clock  
Outputs  
tR  
tPW  
odc =  
x 100%  
tPERIOD  
OUTPUT DUTY CYCLE/OUTPUT PULSE WIDTH/PERIOD  
LVCMOS OUTPUT RISE/FALL TIME  
80%  
80%  
tR  
VSWING  
20%  
Clock  
Outputs  
20%  
tF  
LVPECL OUTPUT RISE/FALL TIME  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
11  
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS843034-06 provides  
separate power supplies to isolate any high switching noise  
from the outputs to the internal PLL. VCC, VCCA and VCCO_x should  
be individually connected to the power supply plane through  
vias, and bypass capacitors should be used for each pin. To  
achieve optimum jitter performance, power supply isolation is  
required. Figure 2 illustrates how a 10resistor along with a  
10µF and a 0.01µF bypass capacitor should be connected to  
each VCCA pin.  
3.3V  
VCC  
.01µF  
.01µF  
10Ω  
VCCA  
10µF  
FIGURE 2. POWER SUPPLY FILTERING  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LVCMOS/LVTTL LEVELS  
Figure 3 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = V /2 is  
generated by the bias resistors R1, R2 and C1. This bias CcCircuit  
should be located as close as possible to the input pin. The ratio  
of R1 and R2 might need to be adjusted to position the V_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V and V = 3.3V, V_REF should be 1.25V  
CC  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLK  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 3. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
12  
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK/nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both VSWING and VOH must meet the  
VPP and VCMR input requirements. Figures 4A to 4D show interface  
examples for the HiPerClockS CLK/nCLK input driven by the most  
common driver types. The input interfaces suggested here are  
examples only. Please consult with the vendor of the driver  
component to confirm the driver termination requirements. For  
example in Figure 4A, the input termination applies for IDT  
HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
LVPECL  
Input  
nCLK  
HiPerClockS  
LVHSTL  
Input  
R1  
50  
R2  
50  
ICS  
R1  
50  
R2  
50  
HiPerClockS  
LVHSTL Driver  
R3  
50  
FIGURE 4A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
IDT HIPERCLOCKS LVHSTL DRIVER  
FIGURE 4B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
R4  
125  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiver  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
13  
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
CRYSTAL INPUT INTERFACE  
The ICS843034-06 has been characterized with 18pF parallel  
resonant crystals. The capacitor values, C1 and C2, shown in  
Figure 5 below were determined using a 18pF parallel resonant  
crystal and were chosen to minimize the ppm error. The optimum  
C1 and C2 values can be slightly adjusted for different board  
layouts.  
XTAL_OUT  
XTAL_IN  
C1  
18p  
X1  
18pF Parallel Crystal  
C2  
22p  
FIGURE 5. CRYSTAL INPUt INTERFACE  
LVCMOS TO XTAL INTERFACE  
impedance of the driver (Ro) plus the series resistance (Rs) equals  
the transmission line impedance.In addition, matched termination  
at the crystal input will attenuate the signal in half. This can be  
done in one of two ways. First, R1 and R2 in parallel should equal  
the transmission line impedance. For most 50applications, R1  
and R2 can be 100.This can also be accomplished by removing  
R1 and making R2 50.  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 6. The XTAL_OUT pin can be left floating. The  
input edge rate can be as slow as 10ns. For LVCMOS inputs, it is  
recommended that the amplitude be reduced from full swing to  
half swing in order to prevent signal interference with the power  
rail and to reduce noise.This configuration requires that the output  
VDD  
VDD  
R1  
.1uf  
Ro  
Rs  
Zo = 50  
XTAL_I N  
R2  
Zo = Ro + Rs  
XTAL_OUT  
FIGURE 6. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
14  
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
CRYSTAL INPUTS  
OUTPUTS:  
LVCMOS OUTPUTS  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kresistor can be tied  
from XTAL_IN to ground.  
All unused LVCMOS output can be left floating. We recommend  
that there is no trace attached.  
LVPECL OUTPUTS  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
CLK/nCLK INPUTS  
For applications not requiring the use of the differential input,  
both CLK and nCLK can be left floating. Though not required, but  
for additional protection, a 1kresistor can be tied from CLK to  
ground.  
REF_CLK INPUT  
For applications not requiring the use of the reference clock, it  
can be left floating. Though not required, but for additional  
protection, a 1kresistor can be tied from the REF_CLK to  
ground.  
LVCMOS CONTROL PINS  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kresistor can be used.  
TERMINATION FOR 3.3V LVPECL OUTPUT  
50transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 7A and 7B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board de-  
signers simulate to guarantee compatibility across all printed cir-  
cuit and clock component process variations.  
The clock layout topology shown below is a typical termination  
for LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
FOUTx and nFOUTx are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminat-  
ing resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 7A. LVPECL OUTPUT TERMINATION  
FIGURE 7B. LVPECL OUTPUT TERMINATION  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
15  
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS843034-06.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS843034-06 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5% = 3.465V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
·
·
Power (core) = V  
* I  
= 3.465V * 190mA = 658.35mW  
MAX  
CC_MAX  
EE_MAX  
Power (outputs) = 30mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power  
(3.465V, with all outputs switching) = 658.35mW + 60mW = 718.35mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air  
flow and a multi-layer board, the appropriate value is 65.7°C/W per Table 9 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.718W * 65.7°C/W = 117.2°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 9. THERMAL RESISTANCE θ FOR 48-PIN LQFP, FORCED CONVECTION  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
65.7°C/W  
55.9°C/W  
52.4°C/W  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
16  
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 8.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 8. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V – 2V.  
CCO  
For logic high, V = V  
= V  
– 0.9V  
OUT  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
– V  
CCO_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
– V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
– 2V))/R ] * (V  
– V  
) = [(2V – (V  
– V  
– V  
/R ] * (V  
– V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V – 0.9V)/50] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
– 2V))/R ] * (V  
– V  
) = [(2V – (V  
/R ] * (V  
– V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V – 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
17  
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
RELIABILITY INFORMATION  
TABLE 10. θ VS. AIR FLOW TABLE FOR 48 LEAD LQFP  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
65.7°C/W  
55.9°C/W  
52.4°C/W  
TRANSISTOR COUNT  
The transistor count for ICS843034-06 is: 7846  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
18  
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
PACKAGE OUTLINE - Y SUFFIX FOR 48 LEAD LQFP  
TABLE 11. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBC  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
48  
--  
--  
--  
1.60  
0.15  
1.45  
0.27  
0.20  
A1  
A2  
b
0.05  
1.35  
0.17  
0.09  
1.40  
0.22  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.50 Ref.  
9.00 BASIC  
7.00 BASIC  
5.50 Ref.  
0.50 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0
°
7°  
ccc  
--  
--  
0.08  
Reference Document: JEDEC Publication 95, MS-026  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
19  
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
TABLE 12. ORDERING INFORMATION  
Part/Order Number  
843034DY-06LF  
Marking  
Package  
Shipping Packaging  
tray  
Temperature  
ICS43034D06L  
ICS43034D06L  
48 Lead "Lead-Free" LQFP  
48 Lead "Lead-Free" LQFP  
0°C to 70°C  
0°C to 70°C  
843034DY-06LFT  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial  
applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional  
processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical  
instruments.  
IDT / ICS3.3V LVPECLFREQUENCY SYNTHESIZER  
20  
ICS843034DY-06 REV. C JANUARY 14, 2008  
ICS843034-06  
FEMTOCLOCKS™ MULTI-RATE 3.3V LVPECL FREQUENCY SYNTHESIZER  
PRELIMINARY  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
+408 284 8200 (outside U.S.)  
#20-03 Wisma Atria  
Singapore 238877  
+65 6 887 5505  
England  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
© 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo and HiPerClockS are trademarks of  
Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

843034DY-06LFT

Clock Generator, 375MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-48
IDT

843034EY-06LF

FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer
IDT

843034EY-06LFT

FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer
IDT

843034EYI-06LF

FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer
IDT

843034EYI-06LFT

Clock Generator, 375MHz, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026ABC-HD, TQFP-48
IDT

843034I-06

FemtoClock™ Multi-Rate 3.3V LVPECL Frequency Synthesizer
IDT

843051AG

Clock Generator, 161.13MHz, PDSO8, 4.40 X 3 MM, 0.925 MM HEIGHT, MO-153, TSSOP-8
IDT

843051AG-57LF

Clock Generator, 160MHz, PDSO8, 4.40 X 3 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-8
IDT

843051AG-57LFT

Clock Generator, 160MHz, PDSO8, 4.40 X 3 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-8
IDT

843051AGT

Clock Generator, 161.13MHz, PDSO8, 4.40 X 3 MM, 0.925 MM HEIGHT, MO-153, TSSOP-8
IDT

84306L

Toggle Switch, SPDT, Latched, Solder Terminal, Lever Actuator, Panel Mount,
SWITCH

843071

FemtoClock Crystal-to-3.3V, 2.5V LVPECL Clock Generator
IDT