843207AY-350LFT [IDT]

Clock Generator;
843207AY-350LFT
型号: 843207AY-350LFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator

文件: 总16页 (文件大小:3411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
FEMTOCLOCKS™ CRYSTAL-TO-LVPECL  
350MHZ FREQUENCY MARGINING SYNTHESIZER  
ICS843207-350  
GENERAL DESCRIPTION  
FEATURES  
Seven independently configurable LVPECL outputs at  
87.5MHz, 175MHz or 350MHz  
The ICS843207-350 is a low phase-noise  
ICS  
HiPerClockS™  
frequency margining synthesizer that targets  
clocking for high performance interfaces such  
as SPI4.2 and is a member of the HiPerClockS™  
family of high performance clock solutions from  
Individual tri-state control of each output  
Selectable crystal oscillator interface designed for 14MHz,  
18pF parallel resonant crystal or LVCMOS single-ended input  
IDT. In the default mode, the each output can be configured  
individually to generate an 87.5MHz, 175MHZ or 350MHz  
LVPECL output clock signal from a 14MHz crystal input.  
There is also a frequency margining mode available where  
the device can be configured, using control pins, to vary  
the output frequency up or down from nominal by 5%. The  
ICS843207-350 is provided in a 48-pin LQFP package.  
• Output frequency can be varied 5% from nominal  
• VCO range: 620MHz - 750MHz  
• RMS phase jitter @ 350MHz, using a 14MHz crystal  
(12kHz - 20MHz): 1.29ps (typical)  
• Full 3.3V output supply mode  
• 0°C to 70°C ambient operating temperature  
PIN ASSIGNMENT  
• Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
48 47 46 45 44 43 42 41 40 39 38 37  
1
VCCA  
VCC  
VCCO  
nQ6  
Q6  
VCCO  
Q0  
36  
35  
34  
33  
2
Q0  
00 HiZ  
01 ÷2  
10 ÷8  
11 ÷4  
nQ0  
Q1  
3
BLOCK DIAGRAM  
ICS843207-350  
4
nQ0  
nQ1  
VEE  
VCCO  
Q2  
5
32  
31  
30  
48-Pin LQFP  
7mm x 7mm x 1.4mm  
package body  
Y Package  
Pullup  
Pullup  
Pullup  
Pullup  
2
2
SEL[1:0]  
VEE  
6
7
VCCO  
nQ5  
Q5  
Q1  
00 HiZ  
01 ÷2  
10 ÷8  
11 ÷4  
8
29  
28  
27  
Top View  
nQ2  
Q3  
9
nQ1  
10  
11  
12  
nQ4  
Q4  
nQ3  
VCCO  
SEL[3:2]  
26  
25  
VCCO  
13 14 15 16 17 18 19 20 21 22 23 24  
Q2  
00 HiZ  
01 ÷2  
10 ÷8  
11 ÷4  
nQ2  
2
2
2
SEL[5:4]  
Pulldown  
nPLL_SEL  
XTAL_IN  
00 HiZ  
01 ÷2  
10 ÷8  
11 ÷4  
Q3  
14MHz  
1
0
nQ3  
OSC  
0
1
SEL[7:6]  
Phase  
Detector  
Predivider  
÷2  
VCO  
XTAL_OUT  
REF_CLK  
620 - 750MHz  
Q4  
00 HiZ  
01 ÷2  
10 ÷8  
11 ÷4  
Pulldown  
nQ4  
Pulldown  
Pullup  
Pullup  
Pullup  
nXTAL_SEL  
÷100  
(÷95, ÷105)  
SEL[9:8]  
00 HiZ  
01 ÷2  
10 ÷8  
11 ÷4  
Q5  
nQ5  
Pulldown  
Pulldown  
Pulldown  
MODE  
2
SEL[11:10]  
MARGIN  
00 HiZ  
01 ÷2  
10 ÷8  
11 ÷4  
Q6  
To O/P Dividers  
MR  
nQ6  
2
SEL[13:12]  
The Preliminary Information presented herein represents a product in pre-production.The noted characteristics are based on initial product characterization  
and/or qualification.Integrated DeviceTechnology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.  
IDT/ ICSLVPECL FREQUENCY MARGINING SYNTHESIZER  
1
ICS843207AY-350 REV A OCTOBER 19, 2006  
ICS843207-350  
FEMTOCLOCKS™ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER  
PRELIMINARY  
FUNCTIONAL DESCRIPTION  
pin to change the M feedback divider. Frequency margining  
mode operation occurs when the MODE input is HIGH. The  
phase detector and the M divider force the VCO output  
frequency to be M times the reference frequency by adjusting  
the VCO control voltage. The output of the VCO is scaled by  
an output divider prior to being sent to the LVPECL output  
buffer. The divider provides a 50% output duty cycle. The  
relationship between the crystal input frequency, the M divider,  
the VCO frequency and the output frequency is provided in  
Table 1A. When changing back from frequency margining  
mode to nominal mode, the device will return to the default  
nominal configuration described above.  
The ICS843207-350 features a fully integrated PLL and  
therefore requires no external components for setting the loop  
bandwidth. A 14MHz fundamental crystal is used as the input  
to the on chip oscillator. The output of the oscillator is fed into  
the pre-divider. In frequency margining mode, the 14MHz  
crystal frequency is divided by 2 and a 7MHz reference  
frequency is applied to the phase detector. The VCO of the  
PLL operates over a range of 620MHz to 800MHz. The output  
of the M divider is also applied to the phase detector. The  
default mode for the ICS843207-350 is a nominal 350MHz with  
each output configurable to divide by 1, 2 or 4. The nominal  
output frequency can be changed by placing the device into  
the margining mode using the mode pin and using the margin  
TABLE 1A. FREQUENCY SELECT FUNCTION TABLE  
XTAL (MHz)  
SELx  
SELx-1  
VCO (MHz)  
700  
Output Divider  
Output Frequency (MHz)  
14  
14  
14  
14  
0
0
1
1
0
1
0
1
N/A  
2
HiZ  
350  
87.5  
175  
700  
700  
8
700  
4
TABLE 1B. FREQUENCY MARGIN FUNCTION TABLE  
Reference  
Frequency (MHz)  
Feedback  
Divider  
MODE  
MARGIN XTAL (MHz)  
Pre-Divider (P)  
VCO (MHz)  
% Change  
1
0
1
0
X
1
14  
14  
14  
2
1
2
7
95  
665  
700  
735  
-5.0  
Nom. Mode  
5.0  
14  
7
100  
105  
IDT/ ICSLVPECL FREQUENCY MARGINING SYNTHESIZER  
2
ICS843207AY-350 REV A OCTOBER 19, 2006  
ICS843207-350  
FEMTOCLOCKS™ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER  
PRELIMINARY  
TABLE 2. PIN DESCRIPTIONS  
Number  
Name  
Type  
Type  
Description  
Description  
1, 7, 12,  
25, 30, 34  
VCCO  
Power  
Output supply pins.  
2, 3  
4, 5  
Q0, nQ0  
Q1, nQ1  
VEE  
Ouput  
Ouput  
Power  
Ouput  
Ouput  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Negative supply pins.  
6, 16, 31  
8, 9  
Q2, nQ2  
Q3, nQ3  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
10, 11  
MODE pin. LOW = default mode. HIGH = frequency margining mode.  
See Table 4B. LVCMOS/LVTTL interface levels.  
Sets the frequency margin to 5% in frequency margining mode.  
See Table 1B. LVCMOS/LVTTL interface levels.  
Active High Master Reset. When logic HIGH, the internal dividers are  
reset causing the true outputs Qx to go low and inverted outputs nQx  
to go high. When logic LOW, the internal dividers and the outputs are  
enabled. LVCMOS/LVTTL interface levels.  
13  
14  
MODE  
Margin  
Input  
Input  
Pulldown  
Pulldown  
Pulldown  
15  
MR  
Input  
17  
18  
REF_CLK  
Input  
Input  
Pulldown Reference input clock. LVCMOS/LVTTL interface levels.  
Crystal select pin. Selects between the crystal and the reference clock  
nXTAL_SEL  
Pulldown  
inputs. LVCMOS/LVTTL interface levels.  
19,  
20  
XTAL_OUT,  
XTAL_IN  
Parallel resonant crystal interface. XTAL_OUT is the output,  
XTAL_IN is the input.  
Input  
21, 35  
VCC  
Power  
Core supply pins.  
PLL select pin. When HIGH, PLL is bypassed and input is fed directly  
Pulldown to the output dividers. When LOW, PLL is enabled.  
LVCMOS/LVTTL interface levels.  
22  
nPLL_SEL  
Input  
Input  
23, 24,  
37, 38,  
39, 40,  
41, 42,  
43, 44,  
45, 46,  
47, 48  
SEL0, SEL1,  
SEL2, SEL3,  
SEL4, SEL5,  
SEL6, SEL7,  
SEL8, SEL9,  
SEL10, SEL11,  
SEL12, SEL13  
Output divider select pins. See Table 1A.  
Pullup  
LVCMOS/LVTTL interface levels.  
26, 27  
28, 29  
32, 33  
36  
Q4, nQ4  
Q5, nQ5  
Q6, nQ6  
VCCA  
Ouput  
Ouput  
Ouput  
Power  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Analog supply pin.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 3. PIN CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CIN  
Input Capacitance  
4
pF  
k  
kΩ  
RPULLDOWN Input Pulldown Resistor  
RPULLUP Input Pulldown Resistor  
51  
51  
TABLE 4A. nXTAL_SEL CONTROL INPUT FUNCTION TABLE  
Input  
TABLE 4B. MODE CONTROL INPUT FUNCTION TABLE  
Input  
Condition  
Q0:Q6, nQ0:Q6  
MODE  
nXTAL_SEL  
Selected Source  
XTAL_IN, XTAL_OUT  
REF_CLK  
0
1
Default Mode  
0
1
Frequency Margining Mode  
IDT/ ICSLVPECL FREQUENCY MARGINING SYNTHESIZER  
3
ICS843207AY-350 REV A OCTOBER 19, 2006  
ICS843207-350  
FEMTOCLOCKS™ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER  
PRELIMINARY  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCC  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θ  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
JA  
Storage Temperature, T  
STG  
TABLE 5A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.465  
VCC  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
VCC – 0.15  
3.135  
3.3  
3.3  
3.465  
220  
V
mA  
mA  
ICCA  
15  
TABLE 5B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
VCC = 3.3V  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VCC + 0.3  
0.8  
V
V
Input Low Voltage  
VCC = 3.3V  
-0.3  
REF_CLK, MARGIN,  
MODE, nPLL_SEL,  
MR, nXTAL_SEL  
VCC = VIN = 3.465  
150  
5
µA  
µA  
µA  
Input  
High Current  
IIH  
SEL0:SEL13  
VCC = VIN = 3.465  
REF_CLK, MARGIN,  
MODE, nPLL_SEL,  
MR, nXTAL_SEL  
V
CC = 3.465V,  
VIN = 0V  
-5  
Input  
Low Current  
IIL  
VCC = 3.465V,  
VIN = 0V  
SEL0:SEL13  
-150  
µA  
Input Transistion  
Rise/Fall Rate  
t/v  
SEL0:SEL13, MODE  
20  
ns/v  
IDT/ ICSLVPECL FREQUENCY MARGINING SYNTHESIZER  
4
ICS843207AY-350 REV A OCTOBER 19, 2006  
ICS843207-350  
FEMTOCLOCKS™ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER  
PRELIMINARY  
TABLE 5C. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.6  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50to VCCO - 2V.  
TABLE 6. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Mode of Oscillation  
Frequency  
Fundamental  
14  
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
40  
7
pF  
300  
µW  
NOTE: Characterized using an 18pF parallel resonant crystal.  
TABLE 7. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
REF_CLK  
12.4  
12.4  
14  
14  
15  
15  
MHz  
MHz  
Input  
fIN  
Frequency  
XTAL_IN/XTAL_OUT  
TABLE 8. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
N = ÷2  
Minimum  
310  
Typical  
350  
Maximum Units  
375  
MHz  
MHz  
MHz  
fOUT  
Output Frequency  
N = ÷4  
155  
175  
187.5  
93.75  
N = ÷8  
77.5  
87.5  
Mode = LOW  
350MHz, (12kHz - 20MHz)  
Mode = LOW  
175MHz, (12kHz - 20MHz)  
Mode = LOW  
87.5MHz, (12kHz - 20MHz)  
1.29  
1.34  
1.46  
ps  
ps  
ps  
RMS Phase Jitter,  
Random; NOTE 1  
tjit(Ø)  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20% to 80%  
425  
50  
ps  
%
NOTE 1: Characterized using a 14MHz crystal.  
IDT/ ICSLVPECL FREQUENCY MARGINING SYNTHESIZER  
5
ICS843207AY-350 REV A OCTOBER 19, 2006  
ICS843207-350  
FEMTOCLOCKS™ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER  
PRELIMINARY  
TYPICAL PHASE NOISE AT 175MHZ  
10 Gigabit Ethernet Filter  
175MHz  
RMS Phase Noise Jitter  
12kHz to 20MHz = 1.34ps (typical)  
Raw Phase Noise Data  
Phase Noise Result by adding  
10 Gigabit Ethernet Filter to raw data  
OFFSET FREQUENCY (HZ)  
TYPICAL PHASE NOISE AT 350MHZ  
10 Gigabit Ethernet Filter  
350MHz  
RMS Phase Noise Jitter  
12kHz to 20MHz = 1.29ps (typical)  
Raw Phase Noise Data  
Phase Noise Result by adding  
10 Gigabit Ethernet Filter to raw data  
OFFSET FREQUENCY (HZ)  
IDT/ ICSLVPECL FREQUENCY MARGINING SYNTHESIZER  
6
ICS843207AY-350 REV A OCTOBER 19, 2006  
ICS843207-350  
FEMTOCLOCKS™ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER  
PRELIMINARY  
PARAMETER MEASUREMENT INFORMATION  
2V  
2V  
Phase Noise Plot  
SCOPE  
VCC  
VCCO  
,
Qx  
VCCA  
Phase Noise Mask  
LVPECL  
nQx  
VEE  
Offset Frequency  
f1  
f2  
RMS Jitter = Area Under the Masked Phase Noise Plot  
-1.3V 0.165V  
3.3V CORE/3.3V OUTPUT LOAD AC TEST CIRCUIT  
RMS PHASE JITTER  
nQ0:nQ6  
80%  
tF  
80%  
tR  
Q0:Q6  
VSWING  
20%  
tPW  
Clock  
Outputs  
20%  
tPERIOD  
tPW  
odc =  
x 100%  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
OUTPUT RISE/FALL TIME  
IDT/ ICSLVPECL FREQUENCY MARGINING SYNTHESIZER  
7
ICS843207AY-350 REV A OCTOBER 19, 2006  
ICS843207-350  
FEMTOCLOCKS™ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER  
PRELIMINARY  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS843207-350 provides  
3.3V  
separate power supplies to isolate any high switching noise  
from the outputs to the internal PLL. VCC, VCCA, and VCCO should  
be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin.To achieve optimum jitter performance, power  
supply isolation is required. Figure 1 illustrates how  
a 10resistor along with a 10µF and a .01µF bypass  
VCC  
.01µF  
.01µF  
10Ω  
VCCA  
10µF  
capacitor should be connected to each VCCA  
.
FIGURE 1. POWER SUPPLY FILTERING  
CRYSTAL INPUT INTERFACE  
The ICS843207-350 has been characterized with 18pF  
parallel resonant crystals. The capacitor values shown in  
Figure 2 below were determined using a 14MHz, 18pF parallel  
resonant crystal and were chosen to minimize the ppm error.  
XTAL_OUT  
XTAL_IN  
C1  
27p  
X1  
18pF Parallel Crystal  
C2  
27p  
FIGURE 2. CRYSTAL INPUt INTERFACE  
IDT/ ICSLVPECL FREQUENCY MARGINING SYNTHESIZER  
8
ICS843207AY-350 REV A OCTOBER 19, 2006  
ICS843207-350  
FEMTOCLOCKS™ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER  
PRELIMINARY  
LVCMOS TO XTAL INTERFACE  
The XTAL_IN input can accept a single-ended LVCMOS  
signal through an AC couple capacitor. A general interface  
diagram is shown in Figure 3. The XTAL_OUT pin can  
be left floating. The input edge rate can be as slow as  
10ns. For LVCMOS inputs, it is recommended that the  
amplitude be reduced from full swing to half swing in order  
to prevent signal interference with the power rail and to  
reduce noise. This configuration requires that the output  
impedance of the driver (Ro) plus the series resistance  
(Rs) equals the transmission line impedance. In addition,  
matched termination at the crystal input will attenuate the signal  
in half. This can be done in one of two ways. First, R1 and R2 in  
parallel should equal the transmission line impedance. For most  
50applications, R1 and R2 can be 100. This can also be  
accomplished by removing R1 and making R2 50.  
VDD  
VDD  
R1  
.1uf  
Ro  
Rs  
Zo = 50  
XTAL_IN  
R2  
Zo = Ro + Rs  
XTAL_OU T  
FIGURE 3. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
CRYSTAL INPUT:  
OUTPUTS:  
LVPECL OUTPUT  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kresistor can be tied  
from XTAL_IN to ground.  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
REF_CLK INPUT:  
For applications not requiring the use of the reference clock,  
it can be left floating. Though not required, but for additional  
protection, a 1kresistor can be tied from the REF_CLK to  
ground.  
LVCMOS CONTROL PINS:  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kresistor can be used.  
IDT/ ICSLVPECL FREQUENCY MARGINING SYNTHESIZER  
9
ICS843207AY-350 REV A OCTOBER 19, 2006  
ICS843207-350  
FEMTOCLOCKS™ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER  
PRELIMINARY  
TERMINATION FOR 3.3V LVPECL OUTPUT  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs. The two different layouts mentioned  
are recommended only as guidelines.  
designed to drive 50transmission lines. Matched imped-  
ance techniques should be used to maximize operating fre-  
quency and minimize signal distortion. Figures 4A and 4B  
show two different layouts which are recommended only as  
guidelines. Other suitable clock layouts may exist and it  
would be recommended that the board designers simulate  
to guarantee compatibility across all printed circuit and clock  
component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, ter-  
minating resistors (DC current path to ground) or current  
sources must be used for functionality. These outputs are  
3.3V  
Z
o = 50  
125  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 4A. LVPECL OUTPUT TERMINATION  
FIGURE 4B. LVPECL OUTPUT TERMINATION  
IDT/ ICSLVPECL FREQUENCY MARGINING SYNTHESIZER  
10  
ICS843207AY-350 REV A OCTOBER 19, 2006  
ICS843207-350  
FEMTOCLOCKS™ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER  
PRELIMINARY  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS843207-350.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS843207-350 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5% = 3.465V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core) = V  
* I  
= 3.465V * 220mA = 762.3mW  
EE_MAX  
MAX  
CC_MAX  
Power (outputs) = 30mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 7 * 30mW = 210mW  
Total Power  
(3.63V, with all outputs switching) = 762.3mW + 210mW = 972.3mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 9 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.972W *42.1°C/W = 110.9°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and  
the type of board (single layer or multi-layer).  
TABLE 9. THERMAL RESISTANCE θ FOR 48-PIN LQFP, FORCED CONVECTION  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
IDT/ ICSLVPECL FREQUENCY MARGINING SYNTHESIZER  
11  
ICS843207AY-350 REV A OCTOBER 19, 2006  
ICS843207-350  
FEMTOCLOCKS™ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER  
PRELIMINARY  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 5.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 5. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CCO  
For logic high, V = V  
= V  
– 0.9V  
CCO_MAX  
OUT  
OH_MAX  
(V  
- V  
) = 0.9V  
CCO_MAX  
OH_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 0.9V)/50] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT/ ICSLVPECL FREQUENCY MARGINING SYNTHESIZER  
12  
ICS843207AY-350 REV A OCTOBER 19, 2006  
ICS843207-350  
FEMTOCLOCKS™ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER  
PRELIMINARY  
RELIABILITY INFORMATION  
TABLE 10. θ VS. AIR FLOW TABLE FOR 48 LEAD LQFP  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS843207-350 is: 4380  
IDT/ ICSLVPECL FREQUENCY MARGINING SYNTHESIZER  
13  
ICS843207AY-350 REV A OCTOBER 19, 2006  
ICS843207-350  
FEMTOCLOCKS™ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER  
PRELIMINARY  
PACKAGE OUTLINE - Y SUFFIX FOR 48 LEAD LQFP  
TABLE 11. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBC  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
48  
--  
--  
--  
1.60  
0.15  
1.45  
0.27  
0.20  
A1  
A2  
b
0.05  
1.35  
0.17  
0.09  
1.40  
0.22  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.50 Ref.  
9.00 BASIC  
7.00 BASIC  
5.50 Ref.  
0.50 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.08  
Reference Document: JEDEC Publication 95, MS-026  
IDT/ ICSLVPECL FREQUENCY MARGINING SYNTHESIZER  
14  
ICS843207AY-350 REV A OCTOBER 19, 2006  
ICS843207-350  
FEMTOCLOCKS™ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER  
PRELIMINARY  
TABLE 12. ORDERING INFORMATION  
Part/Order Number  
ICS843207AY-350  
Marking  
Package  
Shipping Packaging  
tray  
Temperature  
43207A350  
43207A350  
3207A350L  
3207A350L  
48 Lead LQFP  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS843207AY-350T  
ICS843207AY-350LF  
ICS843207AY-350LFT  
48 Lead LQFP  
1000 tape & reel  
tray  
48 Lead "Lead-Free" LQFP  
48 Lead "Lead-Free" LQFP  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial  
applications. Any other applications such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional  
processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical  
instruments.  
IDT/ ICSLVPECL FREQUENCY MARGINING SYNTHESIZER  
15  
ICS843207AY-350 REV A OCTOBER 19, 2006  
ICS843207-350  
FEMTOCLOCKS™ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER  
PRELIMINARY  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
#20-03 Wisma Atria  
England  
+408 284 8200 (outside U.S.)  
Singapore 238877  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
+65 6 887 5505  
© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

843207CY-350

FEMTOCLOCKS⑩ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER
IDT

843207CY-350LF

FEMTOCLOCKS⑩ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER
IDT

843207CY-350LFT

FEMTOCLOCKS⑩ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER
IDT

843207CY-350T

FEMTOCLOCKS⑩ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER
IDT

843208GT1N6

WIRE WOUND Ceramic Chip Inductor
FILTRAN

843208GT82N

WIRE WOUND Ceramic Chip Inductor
FILTRAN

843208GTR27

WIRE WOUND Ceramic Chip Inductor
FILTRAN

843208JT1N6

WIRE WOUND Ceramic Chip Inductor
FILTRAN

843208JT82N

WIRE WOUND Ceramic Chip Inductor
FILTRAN

843208JTR27

WIRE WOUND Ceramic Chip Inductor
FILTRAN

843208KT1N6

WIRE WOUND Ceramic Chip Inductor
FILTRAN

843208KT82N

WIRE WOUND Ceramic Chip Inductor
FILTRAN