84329AVT [IDT]

Clock Generator, PQCC28;
84329AVT
型号: 84329AVT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, PQCC28

文件: 总19页 (文件大小:279K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH , LOW JITTER, CRYSTAL-TO-3.3V  
Z
D
IFFERENTIAL LVPECL FREQUENCY  
SYNTHESIZER  
GENERAL DESCRIPTION  
FEATURES  
The ICS84329 is a general purpose, single output Fully integrated PLL, no external loop filter requirements  
ICS  
high frequency synthesizer and a member of the  
HiPerClockS™ family of High Performance Clock  
Series resonant crystal oscillator interface  
Solutions from ICS. The VCO operates at a fre-  
1 differential 3.3V LVPECL output  
HiPerClockS™  
Output frequency range: 25MHz to 700MHz  
VCO range: 200MHz to 700MHz  
Parallel interface for programming counter  
and output dividers during power-up  
quency range of 200MHz to 700MHz. The VCO  
frequency is programmed in steps equal to the value of the  
crystal frequency divided by 16.TheVCO and output frequency  
can be programmed using the serial or parallel interfaces to the  
configuration logic.The output can be configured to divide the  
VCO frequency by 1, 2, 4, and 8. Output frequency steps as  
small as 125KHz to 1MHz can be achieved using a 16MHz  
crystal depending on the output dividers.  
Serial 3 wire interface  
RMS Period jitter: 5.5ps (maximum)  
Cycle-to-cycle jitter: 35ps (maximum)  
3.3V supply voltage  
0°C to 70°C ambient operating temperature  
Lead-Free package fully RoHS compliant  
Pin compatible with the MC12429  
PIN ASSIGNMENT  
BLOCK DIAGRAM  
OE  
25 24 23 22 21 20 19  
S_CLOCK  
26  
18  
N1  
N0  
M8  
M7  
M6  
M5  
M4  
XTAL_IN  
OSC  
XTAL_OUT  
S_DATA  
S_LOAD  
VCCA  
27  
28  
1
17  
16  
15  
14  
13  
12  
ICS84329  
28-Lead PLCC  
V Package  
÷ 16  
nc  
2
11.6mm x 11.4mm x 4.1mm  
TopView  
nc  
3
4
XTAL_IN  
PLL  
PHASE DETECTOR  
÷1  
÷2  
÷4  
÷8  
5
6
7
8
9 10 11  
1
0
FOUT  
nFOUT  
VCO  
÷ M  
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
CONFIGURATION  
INTERFACE  
LOGIC  
TEST  
32 31 30 29 28 27 26 25  
24  
1
2
3
4
5
6
7
8
S_CLOCK  
S_DATA  
S_LOAD  
VCCA  
nc  
M0:M8  
N0:N1  
23  
22  
21  
20  
19  
18  
17  
N1  
N0  
M8  
M7  
M6  
M5  
M4  
ICS84329  
32-Lead LQFP  
Y package  
VCCA  
7mm x 7mm x 1.4mm  
TopView  
nc  
nc  
XTAL_IN  
9
10 11 12 13 14 15 16  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
1
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
FUNCTIONAL DESCRIPTION  
latched and the M divider remains loaded until the next LOW  
transition on nP_LOAD or until a serial event occurs.The TEST  
output is Mode 000 (shift register out) when operating in the  
parallel input mode.The relationship between theVCO frequency,  
the crystal frequency and the M divider is defined as follows:  
NOTE: The functional description that follows describes op-  
eration using a 16MHz crystal. Valid PLL loop divider values  
for different crystal or input frequencies are defined in the In-  
put Frequency Characteristics, Table 6, NOTE 1.  
The ICS84329 features a fully integrated PLL and therefore  
requires no external components for setting the loop band-  
width. A series-resonant, fundamental crystal is used as the  
input to the on-chip oscillator. The output of the oscillator is  
divided by 16 prior to the phase detector.With a 16MHz crys-  
tal this provides a 1MHz reference frequency.The VCO of the  
PLL operates over a range of 200MHz to 700MHz.The output  
of the M divider is also applied to the phase detector.  
fxtal  
16  
x
fVCO =  
M
The M value and the required values of M0 through M8 are  
shown in Table 3B, Programmable VCO Frequency Function  
Table. Valid M values for which the PLL will achieve lock are  
defined as 200 M 511. The frequency out is defined as  
follows:  
fVCO fxtal  
M
N
fout  
x
=
=
The phase detector and the M divider force the VCO output fre-  
quency to be M times the reference frequency by adjusting the  
VCO control voltage. Note that for some values of M (either too  
high or too low), the PLL will not achieve lock.The output of the  
VCO is scaled by a divider prior to being sent to each of the  
LVPECL output buffers.The divider provides a 50% output duty  
cycle.  
N
16  
Serial operation occurs when nP_LOAD is HIGH and S_LOAD  
is LOW. The shift register is loaded by sampling the S_DATA  
bits with the rising edge of S_CLOCK. The contents of the  
shift register are loaded into the M divider when S_LOAD tran-  
sitions from LOW-to-HIGH.The M divide and N output divide  
values are latched on the HIGH-to-LOW transition of S_LOAD.  
If S_LOAD is held HIGH, data at the S_DATA input is passed  
directly to the M divider on each rising edge of S_CLOCK.  
The serial mode can be used to program the M and N bits and  
test bitsT2:T0.The internal registers T2:T0 determine the state  
of the TEST output as follows:  
The programmable features of the ICS84329 support two input  
modes to program the M divider and N output divider.The two  
input operational modes are parallel and serial. Figure 1 shows  
the timing diagram for each mode. In parallel mode the nP_LOAD  
input is LOW.The data on inputs M0 through M8 and N0 through  
N1 is passed directly to the M divider and N output divider. On  
the LOW-to-HIGH transition of the nP_LOAD input, the data is  
T2  
0
0
T1  
0
0
T0  
0
1
TEST Output  
Shift Register Out  
High  
fOUT  
fOUT  
fOUT  
0
0
1
1
0
1
PLL Reference Xtal ÷ 16  
VCO ÷ M  
(non 50% Duty M divider)  
fOUT  
fOUT  
1
0
0
fOUT  
fOUT  
fOUT  
LVCMOS Output Frequency < 200MHz  
1
1
0
1
1
0
Low  
S_CLOCK ÷ M  
(non 50% Duty Cycle M divider)  
S_CLOCK ÷ N divider  
1
1
1
fOUT ÷ 4  
fOUT  
SERIAL LOADING  
S_CLOCK  
T2  
T1  
T0  
N1  
N0  
M8 M7 M6 M5 M4 M3 M2 M1 M0  
S_DATA  
S_LOAD  
nP_LOAD  
t
t
H
S
t
S
PARALLEL LOADING  
M, N  
M0:M8, N0:N1  
nP_LOAD  
t
t
H
Time  
S
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
www.icst.com/products/hiperclocks.html  
84329AV  
REV. D DECEMBER 15, 2004  
2
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
TABLE 1. PIN DESCRIPTIONS  
Name  
Type  
Description  
VCCA  
Power  
Analog supply pin.  
XTAL_IN,  
XTAL_OUT  
Input  
Crystal oscillator interface. XTAL_IN is the input. XTAL_OUT is the output.  
Output enable. When logic HIGH, the outputs are enabled (default).  
When logic LOW, the outputs are disabled and drive differential low:  
FOUT = LOW, nFOUT = HIGH. LVCMOS / LVTTL interface levels.  
Parallel load input. Determines when data present at M8:M0 is loaded into  
M divider, and when data present at N1:N0 sets the N output divide value.  
LVCMOS / LVTTL interface levels.  
M divider inputs. Data latched on LOW-to-HIGH transistion of nP_LOAD input.  
LVCMOS / LVTTL interface levels.  
Determines N output divider value as defined in Table 3C Function Table.  
LVCMOS / LVTTL interface levels.  
OE  
Input  
Pullup  
nP_LOAD  
Input  
Input  
Pullup  
M0, M1, M2, M3,  
M4, M5, M6, M7, M8  
Pullup  
Pullup  
N0, N1  
VEE  
Input  
Power  
Output  
Negative supply pins.  
Test output which is used in the serial mode of operation.  
LVCMOS / LVTTL interface levels.  
TEST  
VCC  
Power  
Output  
Core supply pins.  
nFOUT, FOUT  
Differential output for the synthesizer. 3.3V LVPECL interface levels.  
Clocks the serial data present at S_DATA input into the shift register on the  
rising edge of S_CLOCK. LVCMOS / LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge of S_CLOCK.  
LVCMOS / LVTTL interface levels.  
Controls transition of data from shift register into the M divider.  
LVCMOS / LVTTL interface levels.  
S_CLOCK  
S_DATA  
Input  
Input  
Input  
Pulldown  
Pulldown  
Pulldown  
S_LOAD  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
KΩ  
KΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
3
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH , LOW JITTER, CRYSTAL-TO-3.3V  
Z
D
IFFERENTIAL LVPECL FREQUENCY  
SYNTHESIZER  
TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
nP_LOAD  
M
N
S_LOAD S_CLOCK S_DATA  
X
X
X
X
X
X
Reset. M and N bits are all set HIGH.  
Data on M and N inputs passed directly to M divider and  
N output divider. TEST mode 000.  
L
Data Data  
Data Data  
X
X
X
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the M divider  
and N output divider.  
X
L
X
L
X
H
H
X
X
X
X
Data  
Data  
H
H
X
X
X
X
L
Data  
X
M divide and N output divide values are latched.  
Parallel or serial input do not affect shift registers.  
L
X
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE  
256  
M8  
0
128  
M7  
1
64  
M6  
1
32  
M5  
0
16  
M4  
0
8
M3  
1
4
M2  
0
2
M1  
0
1
M0  
0
VCO Frequency  
(MHz)  
M Divide  
200  
201  
202  
203  
200  
201  
202  
203  
0
1
1
0
0
1
0
0
1
0
1
1
0
0
1
0
1
0
0
1
1
0
0
1
0
1
1
509  
510  
511  
509  
510  
511  
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
NOTE 1: These M divide values and the resulting frequencies correspond to a crystal frequency of 16MHz.  
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Inputs  
Output Frequency (MHz)  
N Divider Value  
N1  
0
N0  
0
Minimum  
200  
Maximum  
700  
1
2
4
8
0
1
100  
350  
1
0
50  
175  
1
1
25  
87.5  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
4
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
For 28 Lead PLCC  
For 32 Lead LQFP  
JA  
37.8°C/W (0 lfpm)  
47.9°C/W (0 lfpm)  
StorageTemperature, T  
-65°C to 150°C  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VCC  
VCCA  
ICC  
Core Supply Voltage  
3.135  
3.135  
3.3  
3.3  
3.465  
3.465  
125  
V
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
V
mA  
mA  
ICCA  
15  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VCC + 0.3  
0.8  
V
V
Input Low Voltage  
Input High Current  
-0.3  
M0-M8, N0, N1,  
OE, nP_LOAD  
S_LOAD,  
S_DATA, S_CLOCK  
M0-M8, N0, N1,  
OE, nP_LOAD  
S_LOAD,  
V
CC = VIN = 3.465V  
VCC = VIN = 3.465V  
CC = 3.465V, VIN = 0V  
5
µA  
µA  
µA  
µA  
IIH  
150  
V
-150  
IIL  
Input Low Current  
VCC = 3.465V, VIN = 0V  
-5  
S_DATA, S_CLOCK  
VOH  
VOL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
2.6  
V
V
0.5  
NOTE 1: Outputs terminated with 50to VCC/2. See Parameter Measurement Information, "3.3V Output Load Test Circuit".  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCC - 1.4  
VCC - 2.0  
0.6  
Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCC - 1.0  
VCC - 1.7  
0.95  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
5
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH , LOW JITTER, CRYSTAL-TO-3.3V  
Z
D
IFFERENTIAL LVPECL FREQUENCY  
SYNTHESIZER  
TABLE 5. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Fundamental  
Units  
Mode of Oscillation  
Frequency  
10  
25  
70  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
TABLE 6. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
MHz  
MHz  
MHz  
XTAL; NOTE 1  
10  
17  
17  
25  
50  
fIN  
Input Frequency XTAL; NOTE 1, 2  
S_CLOCK  
NOTE 1: For the crystal frequency range the M value must be set to achieve the minimum or maximum VCO frequency  
range of 200MHz or 700MHz. Using the minimum frequency of 10MHz valid values of M are 320 M 511.  
Using the maximum frequency of 25MHz valid values of M are 128 M 448.  
NOTE 2: For crystal frequencies greater than 17MHz, a series tuning capacitor is required for proper operation.  
For more information, please refer to the Application Information, "Crystal Input and Oscillator Interface".  
TABLE 7. AC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
FOUT  
Output Frequency  
700  
5.5  
12  
MHz  
ps  
fOUT 65MHz  
fOUT < 65MHz  
fOUT 50MHz  
fOUT < 50MHz  
20% to 80%  
tjit(per)  
Period Jitter, RMS; NOTE 1, 2  
Cycle-to-Cycle Jitter; NOTE 1, 2  
ps  
35  
ps  
tjit(cc)  
50  
ps  
tR / tF  
tS  
Output Rise/Fall Time  
Setup Time  
300  
5
800  
ps  
ns  
tH  
Hold Time  
5
ns  
tL  
PLL Lock Time  
Output Duty Cycle  
10  
55  
ms  
%
odc  
45  
50  
See Parameter Measurement Information section.  
Characterized using a 16MHz XTAL.  
NOTE 1: This parameter is defined in accordance with JEDEC Standard 65  
NOTE 2: See Applications section.  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
6
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
PARAMETER MEASUREMENT INFORMATION  
2V  
SCOPE  
nFOUT  
VCC  
VCCA  
,
Qx  
FOUT  
LVPECL  
VEE  
tcycle n  
tcycle n+1  
nQx  
t
jit(cc) =  
t
cycle n –  
tcycle n+1  
1000 Cycles  
-1.3V 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
CYCLE-TO-CYCLE JITTER  
VOH  
nFOUT  
FOUT  
VREF  
Pulse Width  
tPERIOD  
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
tPW  
odc =  
tPERIOD  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
PERIOD JITTER  
OUTPUT  
D
UTY  
C
YCLE/PULSE  
WIDTH/PERIOD  
S_DATA  
80%  
80%  
tHOLD  
S_CLOCK  
VSWING  
20%  
tSET-UP  
Clock  
20%  
Outputs  
S_LOAD  
tF  
tR  
tSET-UP  
M0:M8  
N0:N1  
tHOLD  
nP_LOAD  
tSET-UP  
OUTPUT RISE/FALL TIME  
SETUP AND  
H
OLD  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
7
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS84329 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VCC and VCCA  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 2 illustrates how  
a 10resistor along with a 10µF and a .01µF bypass  
capacitor should be connected to each VCCA pin.  
3.3V  
VCC  
.01µF  
.01µF  
10Ω  
VCCA  
10µF  
FIGURE 2. POWER SUPPLY FILTERING  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina- drive 50transmission lines. Matched impedance techniques  
tion for LVPECL outputs.The two different layouts mentioned should be used to maximize operating frequency and minimize  
are recommended only as guidelines.  
signal distortion. Figures 3A and 3B show two different layouts  
which are recommended only as guidelines. Other suitable clock  
FOUT and nFOUT are low impedance follower outputs that layouts may exist and it would be recommended that the board  
generate ECL/LVPECL compatible outputs.Therefore, terminat- designers simulate to guarantee compatibility across all printed  
ing resistors (DC current path to ground) or current sources circuit and clock component process variations.  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
8
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
14  
12  
10  
8
6
4
2
0
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525  
Output Frequency (MHz)  
FIGURE 4A. RMS JITTER VS. fOUT (using a 16MHz XTAL)  
60  
50  
40  
30  
20  
10  
0
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525  
Output Frequency (MHz)  
FIGURE 4B. CYCLE-TO-CYCLE JITTER VS. fOUT (using a 16MHz XTAL)  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
9
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH , LOW JITTER, CRYSTAL-TO-3.3V  
Z
D
IFFERENTIAL LVPECL FREQUENCY  
SYNTHESIZER  
CRYSTAL INPUT AND OSCILLATOR INTERFACE  
The ICS84329 features an internal oscillator that uses an external  
quartz crystal as the source of its reference frequency. The  
oscillator is a series resonant, multi-vibrator type design. This  
design provides better stability and eliminates the need for large  
on chip capacitors.Though a series resonant crystal is preferred,  
a parallel resonant crystal can be used. A parallel resonant mode  
crystal used in a series resonant circuit will exhibit a frequency  
of oscillation a few hundred ppm lower than specified. A few  
hundred ppm translates to KHz inaccuracy.In general computing  
applications, this level of inaccuracy is irrelevant. If better ppm  
accuracy is required, an external capacitor can be added to a  
quartz crystal in series to XTAL_IN. Figure 5A shows how to  
interface with a crystal.  
ICS84329  
XTAL_OUT  
XTAL_IN  
Figures 5A and 5B show various crystal parameters which are  
recommended only as guidelines. Figure 5A shows how to inter-  
face a capacitor with a parallel resonant crystal. Figure 5B shows  
the capacitor value needed for the optimum ppm performance  
over various series resonant crystal frequencies. For IA64/32  
platforms which required a Raltron Parallel Resonant Quartz  
crystal part #AS-16.66-18-SMD-T-M1, a 7pF series capacitor can  
be used to better the ppm accuracy.  
FIGURE 5A. CRYSTAL INTERFACE  
NOTE:For crystal frequencies higher than 17MHz,  
a series tuning capacitor is required for proper operation.  
FIGURE 5B. Recommended tuning capacitance for various series  
resonant crystals.  
30  
10.000  
25  
12.000  
20  
14.318  
15  
10  
5
16.000  
20.000  
24.000  
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
Series Resonant Crystal Frequency (MHz)  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
10  
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
LAYOUT GUIDELINE  
The schematic of the ICS84329 layout example used in this  
layout guideline is shown in Figure6A.The ICS84329 recommended density of the components, the density of the traces, and the stack  
actual system will depend on the selected component types, the  
up of the P.C.board.  
PCB board layout for this example is shown in Figure 6B. This  
layout example is used as a general guideline. The layout in the  
C3  
22p  
16MHz,18pF  
X1  
VCC  
VCC=3.3V  
C4  
22p  
R7  
10  
SP = Space (i.e. not intstalled)  
M4  
12  
4
M4  
13  
XTALIN  
3
M5  
M6  
M7  
M8  
N2  
N1  
M[8:0]= 110010000 (400)  
N[1:0] =01 (Divide by 2)  
M5  
14  
nc  
2
M6  
15  
nc  
1
VCCA  
M7  
16  
VCCA  
28  
M8  
17  
S_LOAD  
27  
N0  
18  
S_DATA  
26  
C11  
0.01u  
C16  
10u  
N1  
S_CLOCK  
U1  
84329AV  
C1  
VCC  
0.1uF  
Zo = 50 Ohm  
Fout = 200 MHz  
RU0  
SP  
RU1  
SP  
RU7  
1K  
RU8  
1K  
RU9  
SP  
RU10  
1K  
RU11  
SP  
RU12  
1K  
C2  
0.1u  
Zo = 50 Ohm  
R2  
50  
R1  
50  
RD0  
1K  
RD1  
1K  
RD7  
SP  
RD8  
SP  
RD9  
1K  
RD10  
SP  
RD6  
1K  
RD12  
SP  
R3  
50  
FIGURE 6A. SCHEMATIC OF RECOMMENDED LAYOUT  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
11  
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
• The differential 50output traces should have the  
same length.  
The following component footprints are used in this layout  
example:  
• Avoid sharp angles on the clock trace.Sharp angle  
turns cause the characteristic impedance to change on  
the transmission lines.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
Place the decoupling capacitors C1, C2 and C3, as close as  
possible to the power pins. If space allows, placement of the  
decoupling capacitor on the component side is preferred. This  
can reduce unwanted inductance between the decoupling  
capacitor and the power pin caused by the via.  
• Keep the clock traces on the same layer.Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
Maximize the power and ground pad sizes and number of vias  
capacitors.This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the VCCA pin as possible.  
• Make sure no other signal traces are routed between the  
clock trace pair.  
CLOCK TRACES AND TERMINATION  
• The matching termination resistors should be located as  
close to the receiver input pins as possible.  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
trace delay might be restricted by the available space on the board  
and the component location.While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
CRYSTAL  
The crystal X1 should be located as close as possible to the pins  
4 (XTAL_IN) and 5 (XTAL_IN).The trace length between the X1  
and U1 should be kept to a minimum to avoid unwanted parasitic  
inductance and capacitance. Other signal traces should not be  
routed near the crystal traces.  
X1  
U1  
GND  
VCC  
PIN 2  
C16  
C11  
R7  
VCCA  
VIA  
PIN 1  
VCCA  
Signals  
Traces  
C1  
C2  
50 Ohm  
Traces  
FIGURE 6B. PCB BOARD LAYOUT FOR ICS84329  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
12  
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS84329.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS84329 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 140mA = 485mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 1 * 30.2mW = 30.2mW  
Total Power_MAX (3.465V, with all outputs switching) = 485mW + 30.2mW = 515.2mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 31.1°C/W perTable 8A below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.515W * 31.1°C/W = 86°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 8A. THERMAL RESISTANCE θJA FOR 28-PIN PLCC, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.8°C/W  
31.1°C/W  
28.3°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TABLE 8B. THERMAL RESISTANCE θJA FOR 32-PIN LQFP, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
13  
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in the Figure 7.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 7. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage ofV - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 1.0V  
OH_MAX  
CC_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
CC  
L
[(2V - 1V)/50] * 1V = 20.0mW  
Pd_L = [(V – (V - 2V))/R ] * (V  
))  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
CC  
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
14  
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
RELIABILITY INFORMATION  
TABLE 9A. θJAVS. AIR FLOW TABLE FOR 28 LEAD PLCC  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.8°C/W  
31.1°C/W  
28.3°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TABLE 9B. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS84329 is: 4408  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
15  
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
PACKAGE OUTLINE - V SUFFIX FOR 28 LEAD PLCC  
TABLE 10A. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
SYMBOL  
MINIMUM  
MAXIMUM  
N
A
28  
4.19  
2.29  
4.57  
3.05  
A1  
A2  
b
1.57  
2.11  
0.33  
0.53  
c
0.19  
0.32  
D
12.32  
11.43  
4.85  
12.57  
11.58  
5.56  
D1  
D2  
E
12.32  
11.43  
4.85  
12.57  
11.58  
5.56  
E1  
E2  
Reference Document: JEDEC Publication 95, MS-018  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
16  
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 10B. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
17  
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
TABLE 11. ORDERING INFORMATION  
Part/Order Number  
ICS84329AV  
Marking  
Package  
Count  
38 per Tube  
500  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS84329AV  
ICS84329AV  
28 Lead PLCC  
ICS84329AVT  
ICS84329AVLF  
ICS84329AVLFT  
ICS84329AY  
28 Lead PLCC on Tape and Reel  
28 Lead "Lead Free" PLCC  
ICS84329AVLF  
38 per Tube  
500  
ICS84329AVLF 28 Lead "Lead Free" PLCC on Tape and Reel  
ICS84329AY  
ICS84329AY  
32 Lead LQFP  
250 per Tray  
1000  
ICS84329AYT  
32 Lead LQFP on Tape and Reel  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
18  
ICS84329  
Integrated  
Circuit  
Systems, Inc.  
700MH , LOW JITTER, CRYSTAL-TO-3.3V  
Z
D
IFFERENTIAL LVPECL FREQUENCY  
SYNTHESIZER  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
Page  
12  
2
Date  
A
Added Crystal Input and Oscillator Interface section.  
Updated Parallel & Serial Load Operations diagram.  
Changed VCC and crystal descriptions.  
03/15/02  
A
B
T1  
3
12/18/02  
1/24/03  
Updated format.  
Figure 1 - switched S_CLOCK and S_DATA labels.  
2
5
T4A  
Power Supply Table - changed IEE Power Supply Current, 110mA Max. to  
ICC Power Supply Current, 125mA Max.  
Power Considerations - changed IEE_MAX 110mA to 140mA to correspond with  
Table 4A Power Supply Table.  
Pin Description Table - added description to OE pin.  
Added LVCMOS/LVTTL... to S_DATA pin description.  
Block Diagram, replaced ÷N with dividers.  
13  
3
T1  
T6  
B
C
1/29/03  
4/3/03  
1
6
Changed 25MHz max. limit to 17MHz max.  
Added extra XTAL line with limits of 17MHz min. to 25MHz max.  
Added Note 2.  
10  
Crystal Input & Oscillator Interface section, added same crystal frequency note.  
Changed XTAL1 to XTAL_IN and XTAL2 to XTAL_OUT throughout the data  
sheet.  
T1  
3
5
Pin Characteristics Table - changed CIN from 4pF max. to 4pF typical.  
Absolute Maximum Ratings - revised Outputs rating.  
Updated LVPECL Output Termination drawings.  
D
D
6/15/04  
8
11  
18  
1
Updated Schematic Layout.  
Ordering Information Table - add "Lead Free" part numbers.  
Features Section - added "Series resonant" to crystal bullet.  
12/15/04  
84329AV  
www.icst.com/products/hiperclocks.html  
REV. D DECEMBER 15, 2004  
19  

相关型号:

84329AY

Clock Generator, PQFP32
IDT

84329BM-01

Clock Generator, 700MHz, PDSO28, 7.50 X 18.05 MM, 2.25 MM HEIGHT, MS-013, MO-119, SOIC-28
IDT

84329BM-01LF

SOIC-28, Tube
IDT

84329BM-01LFT

SOIC-28, Reel
IDT

84329BM-01T

Clock Generator, 700MHz, PDSO28, 7.50 X 18.05 MM, 2.25 MM HEIGHT, MS-013, MO-119, SOIC-28
IDT

84329BV

Clock Generator, 700MHz, PQCC28, 11.50 X 11.50 MM, 3.90 MM HEIGHT, PLASTIC, MS-018, LCC-28
IDT

84329BV-01

Clock Generator, 700MHz, PQCC28, 11.60 X 11.40 MM, 4.10 MM HEIGHT, PLASTIC, MS-018, LCC-28
IDT

84329BV-01LF

Clock Generator, 700MHz, PQCC28, 11.60 X 11.40 MM, 4.10 MM HEIGHT, PLASTIC, MS-018, LCC-28
IDT

84329BV-01LFT

Clock Generator, 700MHz, PQCC28, 11.60 X 11.40 MM, 4.10 MM HEIGHT, PLASTIC, MS-018, LCC-28
IDT

84329BV-01T

Clock Generator, 700MHz, PQCC28, 11.60 X 11.40 MM, 4.10 MM HEIGHT, PLASTIC, MS-018, LCC-28
IDT

84329BVLF

Clock Generator, 700MHz, PQCC28, 11.50 X 11.50 MM, 3.90 MM HEIGHT, ROHS COMPLIANT, PLASTIC, MS-018, LCC-28
IDT

84329BVLFT

Clock Generator, 700MHz, PQCC28, 11.50 X 11.50 MM, 3.90 MM HEIGHT, ROHS COMPLIANT, PLASTIC, MS-018, LCC-28
IDT