844251BG-14 [IDT]

FEMTOCLOCK™ CRYSTAL-TO-LVDS CLOCK GENERATOR; FEMTOCLOCK ™ CRYSTAL - TO- LVDS时钟发生器
844251BG-14
型号: 844251BG-14
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FEMTOCLOCK™ CRYSTAL-TO-LVDS CLOCK GENERATOR
FEMTOCLOCK ™ CRYSTAL - TO- LVDS时钟发生器

晶体 时钟发生器 微控制器和处理器 外围集成电路 光电二极管
文件: 总16页 (文件大小:801K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEMTOCLOCK™ CRYSTAL-TO-LVDS  
CLOCK GENERATOR  
ICS844251-14  
General Description  
Features  
The ICS844251-14 is an Ethernet Clock Generator  
One differential LVDS output pair  
and a member of the HiPerClocksTM family of high  
performance devices from IDT. The ICS844251-14  
uses an 18pF parallel resonant crystal over the  
range of 23.2MHz – 30MHz. For Ethernet  
S
IC  
Crystal oscillator interface designed for 18pF, parallel resonant  
HiPerClockS™  
crystal (23.2MHz – 30MHz)  
Output frequency ranges: 145MHz – 187.5MHz and  
580MHz – 750MHz  
applications, a 25MHz crystal is used. The device has excellent  
<1ps phase jitter performance, over the 1.875MHz – 20MHz  
integration range. The ICS844251-14 is packaged in a small 8-pin  
TSSOP, making it ideal for use in systems with limited board  
space.  
VCO range: 580MHz – 750MHz  
RMS phase jitter at 156.25MHz, using a 25MHz crystal  
(1.875MHz – 20MHz): 0.53ps (typical)  
Full 3.3V or 2.5V output supply modes  
0°C to 70°C ambient operating temperature  
Available in lead-free (RoHS 6) package  
Common Configuration Table  
Inputs  
Output Frequency Range  
Crystal Frequency (MHz)  
FREQ_SEL  
M
25  
25  
25  
N
1
1
4
Multiplication Value M/N  
(MHz)  
25  
1
1
0
25  
25  
625  
26.67  
666.67  
156.25  
25 (default)  
6.25  
Pin Assignment  
Block Diagram  
Pulldown  
FREQ_SEL  
1
2
3
4
8
7
6
5
VDDA  
GND  
VDD  
Q
nQ  
XTAL_OUT  
XTAL_IN  
FREQ_SEL  
0 (default)  
1
N
÷4  
÷1  
XTAL_IN  
OSC  
XTAL_OUT  
FREQ_SEL  
Q
nQ  
VCO  
Phase  
Detector  
580MHz - 750MHz  
ICS844251-14  
8 Lead TSSOP  
4.40mm x 3.0mm x 0.925mm  
package body  
M = ÷25 (fixed)  
G Package  
Top View  
IDT™ / ICS™ LVDS CLOCK GENERATOR  
1
ICS844251BG-14 REV. A MAY 1, 2009  
ICS844251-14  
FEMTOCLOCK™CRYSTAL-TO-LVDS CLOCK GENERATOR  
Table 1. Pin Descriptions  
Number  
Name  
VDDA  
GND  
Type  
Description  
1
2
Output  
Power  
Analog supply pin.  
Power supply ground.  
3,  
4
XTAL_OUT  
XTAL_IN  
Input  
Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.  
5
6, 7  
8
FREQ_SEL  
nQ, Q  
Input  
Output  
Power  
Pulldown Frequency select pin. LVCMOS/LVTTL interface levels.  
Differential output pair. LVDS interface levels.  
Core supply pin.  
VDD  
NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
CIN  
Input Capacitance  
4
RPULLdown Input Pulldown Resistor  
51  
k  
IDT™ / ICS™ LVDS CLOCK GENERATOR  
2
ICS844251BG-14 REV. A MAY 1, 2009  
ICS844251-14  
FEMTOCLOCK™CRYSTAL-TO-LVDS CLOCK GENERATOR  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
Inputs, VI  
4.6V  
-0.5V to VDD + 0.5V  
Outputs, IO  
Continuos Current  
Surge Current  
10mA  
15mA  
Package Thermal Impedance, θJA  
129.5°C/W (0 mps)  
-65°C to 150°C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 3A. Power Supply DC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol  
VDD  
Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
VDD  
Units  
V
Core Supply Voltage  
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
VDDA  
IDD  
VDD – 0.10  
3.3  
V
100  
mA  
mA  
IDDA  
10  
Table 3B. Power Supply DC Characteristics, VDD = 2.5V 5%, TA = 0°C to 70°C  
Symbol  
VDD  
Parameter  
Test Conditions  
Minimum  
2.375  
Typical  
2.5  
Maximum  
2.625  
VDD  
Units  
V
Core Supply Voltage  
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
VDDA  
IDD  
VDD – 0.10  
2.5  
V
95  
mA  
mA  
IDDA  
10  
Table 3C. LVCMOS/LVTTL DC Characteristics, VDD = 3.3V 5% or 2.5V 5%, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
VDD = 3.465V  
VDD = 2.625V  
Minimum  
Typical  
Maximum  
VDD + 0.3  
VDD + 0.3  
0.8  
Units  
V
2
VIH  
VIL  
Input High Voltage  
1.7  
-0.3  
-0.3  
V
V
DD = 3.465V  
DD = 2.625V  
V
Input Low Voltage  
V
0.7  
V
IIH  
IIL  
Input High Current  
Input Low Current  
VDD = VIN = 3.465V or 2.625V  
150  
µA  
µA  
VDD = 3.465V or 2.625V, VIN = 0V  
-5  
IDT™ / ICS™ LVDS CLOCK GENERATOR  
3
ICS844251BG-14 REV. A MAY 1, 2009  
ICS844251-14  
FEMTOCLOCK™CRYSTAL-TO-LVDS CLOCK GENERATOR  
Table 3D. LVDS DC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol  
VOD  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
454  
Units  
mV  
mV  
V
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
247  
VOD  
VOS  
50  
1.275  
1.525  
50  
VOS  
VOS Magnitude Change  
mV  
Table 3E. LVDS DC Characteristics, VDD = VDDA = 2.5V 5%, TA = 0°C to 70°C  
Symbol  
VOD  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
mV  
mV  
V
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
247  
454  
50  
VOD  
VOS  
1.0  
1.4  
50  
VOS  
VOS Magnitude Change  
mV  
Table 4. Crystal Characteristics  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
23.2  
30  
50  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
IDT™ / ICS™ LVDS CLOCK GENERATOR  
4
ICS844251BG-14 REV. A MAY 1, 2009  
ICS844251-14  
FEMTOCLOCK™CRYSTAL-TO-LVDS CLOCK GENERATOR  
AC Electrical Characteristics  
Table 5A. AC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Parameter Symbol  
Test Conditions  
FREQ_SEL = 0  
FREQ_SEL = 1  
Minimum Typical Maximum Units  
145  
580  
187.5  
750  
MHz  
MHz  
fOUT  
Output Frequency  
156.25MHz,  
Integration Range: 1.875MHz – 20MHz  
0.53  
0.45  
ps  
ps  
RMS Phase Jitter, Random;  
NOTE 1  
tjit(Ø)  
625MHz,  
Integration Range: 1.875MHz – 20MHz  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20% to 80%  
FREQ_SEL = 0  
FREQ_SEL = 1  
70  
48  
46  
550  
52  
ps  
%
%
54  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the  
device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after  
thermal equilibrium has been reached under these conditions.  
NOTE 1: Please refer to Phase Noise Plots.  
Table 5B. AC Characteristics, VDD = 2.5V 5%, TA = 0°C to 70°C  
Parameter Symbol  
Test Conditions  
FREQ_SEL = 0  
FREQ_SEL = 1  
Minimum Typical Maximum Units  
145  
580  
187.5  
750  
MHz  
MHz  
fOUT  
Output Frequency  
156.25MHz,  
Integration Range: 1.875MHz – 20MHz  
0.54  
0.45  
ps  
ps  
RMS Phase Jitter, Random;  
NOTE 1  
tjit(Ø)  
625MHz,  
Integration Range: 1.875MHz – 20MHz  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20% to 80%  
FREQ_SEL = 0  
FREQ_SEL = 1  
70  
48  
46  
550  
52  
ps  
%
%
54  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the  
device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after  
thermal equilibrium has been reached under these conditions.  
NOTE 1: Please refer to Phase Noise Plots.  
IDT™ / ICS™ LVDS CLOCK GENERATOR  
5
ICS844251BG-14 REV. A MAY 1, 2009  
ICS844251-14  
FEMTOCLOCK™CRYSTAL-TO-LVDS CLOCK GENERATOR  
Typical Phase Noise at 156.25MHz (3.3V)  
Ethernet Filter  
156.25MHz  
RMS Phase Jitter (Random)  
1.875MHz to 20MHz = 0.53ps (typical)  
Raw Phase Noise Data  
Phase Noise Result by adding a  
Ethernet filter to raw data  
Offset Frequency (Hz)  
Typical Phase Noise at 625MHz (3.3V)  
Ethernet Filter  
625MHz  
RMS Phase Jitter (Random)  
1.875MHz to 20MHz = 0.45ps  
Raw Phase Noise Data  
Phase Noise Result by adding a  
Ethernet filter to raw data  
Offset Frequency (Hz)  
IDT™ / ICS™ LVDS CLOCK GENERATOR  
6
ICS844251BG-14 REV. A MAY 1, 2009  
ICS844251-14  
FEMTOCLOCK™CRYSTAL-TO-LVDS CLOCK GENERATOR  
Parameter Measurement Information  
SCOPE  
SCOPE  
Qx  
Qx  
VDD  
VDD  
3.3V 5%  
POWER SUPPLY  
2.5V 5%  
POWER SUPPLY  
VDDA  
VDDA  
+
Float GND –  
+
Float GND  
LVDS  
LVDS  
nQx  
nQx  
3.3V LVDS Output Load AC Test Circuit  
2.5V LVDS Output Load AC Test Circuit  
nQ  
nQ  
Q
80%  
80%  
tR  
tPW  
tPERIOD  
VOD  
20%  
20%  
Q
tPW  
tF  
odc =  
x 100%  
tPERIOD  
Output Rise/Fall Time  
Output Duty Cycle/Pulse Width/Period  
Phase Noise Plot  
VDD  
out  
DC Input  
Phase Noise Mask  
LVDS  
out  
VOS/VOS  
Offset Frequency  
f1  
f2  
RMS Jitter = Area Under the Masked Phase Noise Plot  
OFFSET VOLTAGE SETUP  
RMS Phase Jitter  
IDT™ / ICS™ LVDS CLOCK GENERATOR  
7
ICS844251BG-14 REV. A MAY 1, 2009  
ICS844251-14  
FEMTOCLOCK™CRYSTAL-TO-LVDS CLOCK GENERATOR  
Parameter Measurement Information, continued  
VDD  
out  
LVDS  
DC Input  
100  
V
OD/VOD  
out  
-
DIFFERENTIAL OUTPUT VOLTAGE SETUP  
Application Information  
Power Supply Filtering Technique  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter perform-  
ance, power supply isolation is required. The ICS844251-14  
provides separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VDD and VDDA should  
be individually connected to the power supply plane through vias,  
and 0.01µF bypass capacitors should be used for each pin. Figure  
1 illustrates this for a generic VDD pin and also shows that VDDA  
requires that an additional 10resistor along with a 10µF bypass  
capacitor be connected to the VDDA pin.  
3.3V or 2.5V  
VDD  
.01µF  
10Ω  
VDDA  
.01µF  
10µF  
Figure 1. Power Supply Filtering  
IDT™ / ICS™ LVDS CLOCK GENERATOR  
8
ICS844251BG-14 REV. A MAY 1, 2009  
ICS844251-14  
FEMTOCLOCK™CRYSTAL-TO-LVDS CLOCK GENERATOR  
Crystal Input Interface  
The ICS844251-14 has been characterized with 18pF parallel  
resonant crystals. The capacitor values, C1 and C2, shown in  
Figure 2 below were determined using a 25MHz, 18pF parallel  
resonant crystal and were chosen to minimize the ppm error. The  
optimum C1 and C2 values can be slightly adjusted for different  
board layouts.  
XTAL_IN  
C1  
27p  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
27p  
Figure 2. Crystal Input Interface  
LVCMOS to XTAL Interface  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 3. The XTAL_OUT pin can be left floating. The  
input edge rate can be as slow as 10ns. For LVCMOS inputs, it is  
recommended that the amplitude be reduced from full swing to half  
swing in order to prevent signal interference with the power rail and  
to reduce noise. This configuration requires that the output  
impedance of the driver (Ro) plus the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination  
at the crystal input will attenuate the signal in half. This can be  
done in one of two ways. First, R1 and R2 in parallel should equal  
the transmission line impedance. For most 50applications, R1  
and R2 can be 100. This can also be accomplished by removing  
R1 and making R2 50.  
VDD  
VDD  
R1  
0.1µf  
50Ω  
Ro  
Rs  
XTAL_IN  
R2  
Zo = Ro + Rs  
XTAL_OUT  
Figure 3. General Diagram for LVCMOS Driver to XTAL Input Interface  
IDT™ / ICS™ LVDS CLOCK GENERATOR  
9
ICS844251BG-14 REV. A MAY 1, 2009  
ICS844251-14  
FEMTOCLOCK™CRYSTAL-TO-LVDS CLOCK GENERATOR  
3.3V, 2.5V LVDS Driver Termination  
A general LVDS interface is shown in Figure 4. In a 100Ω  
matched load termination of 100across near the receiver input.  
differential transmission line environment, LVDS drivers require a  
3.3V or 2.5V  
VDD  
50Ω  
LVDS Driver  
+
R1  
100Ω  
50Ω  
100Differential Transmission Line  
Figure 4. Typical LVDS Driver Termination  
IDT™ / ICS™ LVDS CLOCK GENERATOR  
10  
ICS844251BG-14 REV. A MAY 1, 2009  
ICS844251-14  
FEMTOCLOCK™CRYSTAL-TO-LVDS CLOCK GENERATOR  
Schematic Example  
Figure 5 shows an example of ICS844251-14 application  
schematic. In this example, the device is operated at VDD = 3.3V.  
The decoupling capacitor should be located as close as possible  
to the power pin. The 18pF parallel resonant 25MHz crystal is  
used. The C1 = 27pF and C2 = 27pF are recommended for  
frequency accuracy. For different board layouts, the C1 and C2  
may be slightly adjusted for optimizing frequency accuracy. For the  
LVDS output drivers, place a 100resistor as close to the receiver  
as possible.  
VDD  
C5  
0.01u  
VDD  
R1  
VDDA  
10  
C3  
U1  
Zo = 50 Ohm  
Q
0.1u  
C4  
10u  
1
8
VDDA  
VDD  
2
3
4
7
6
5
GND  
Q
nQ  
+
-
R2  
XTAL_OUT  
XTAL_IN  
FREQ_SEL  
100  
FREQ_SEL  
25 MHz  
18pF  
Zo = 50 Ohm  
nQ  
C1  
27pF  
X1  
C2  
27pF  
Zo = 50 Ohm  
Q
Logic Input Pin Examples  
Set Logic  
R3  
50  
Set Logic  
Input to  
'0'  
VDD  
VDD  
+
-
Input to  
'1'  
RU1  
1K  
RU2  
Not Install  
C7  
0.1uF  
R4  
50  
Zo = 50 Ohm  
To Logic  
Input  
To Logic  
nQ  
Input  
pins  
pins  
RD1  
RD2  
1K  
Not Install  
Alternate  
LVDS  
Termination  
Figure 5. ICS844251-14 Schematic Example  
IDT™ / ICS™ LVDS CLOCK GENERATOR  
11  
ICS844251BG-14 REV. A MAY 1, 2009  
ICS844251-14  
FEMTOCLOCK™CRYSTAL-TO-LVDS CLOCK GENERATOR  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS844251-14.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS844251-14 is the sum of the core power plus the analog power plus the power dissipated in the  
load(s). The following is the power dissipation for VDD = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VDD_MAX * (IDD_MAX + IDDA_MAX) = 3.465V * (100mA + 10mA) = 381.15mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device.  
The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow  
and a multi-layer board, the appropriate value is 129.5.°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.381W *129.5°C/W = 119.3°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type  
of board (single layer or multi-layer).  
Table 6. Thermal Resistance θJA for 8 Lead TSSOP, Forced Convection  
θJA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
129.5°C/W  
125.5°C/W  
123.5°C/W  
IDT™ / ICS™ LVDS CLOCK GENERATOR  
12  
ICS844251BG-14 REV. A MAY 1, 2009  
ICS844251-14  
FEMTOCLOCK™CRYSTAL-TO-LVDS CLOCK GENERATOR  
Reliability Information  
Table 7. θJA vs. Air Flow Table for a 8 Lead TSSOP  
θJA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
129.5°C/W  
125.5°C/W  
123.5°C/W  
Transistor Count  
The transistor count for ICS844251-14 is: 2401  
Package Outline and Package Dimensions  
Table 8. Package Dimensions  
Package Outline - G Suffix for 8 Lead TSSOP  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
8
1.20  
0.15  
1.05  
0.30  
0.20  
3.10  
A1  
A2  
b
0.5  
0.80  
0.19  
0.09  
2.90  
c
D
E
6.40 Basic  
E1  
e
4.30  
4.50  
0.65 Basic  
L
0.45  
0°  
0.75  
8°  
α
aaa  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
IDT™ / ICS™ LVDS CLOCK GENERATOR  
13  
ICS844251BG-14 REV. A MAY 1, 2009  
ICS844251-14  
FEMTOCLOCK™CRYSTAL-TO-LVDS CLOCK GENERATOR  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
844251BG-14  
844251BG-14T  
844251BG-14LF  
844251BG-14LFT  
Marking  
51B14  
51B14  
1B14L  
1B14L  
Package  
8 Lead TSSOP  
8 Lead TSSOP  
Shipping Packaging  
Tube  
2500 Tape & Reel  
Tube  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
“Lead-Free” 8 Lead TSSOP  
“Lead-Free” 8 Lead TSSOP  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for  
the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements  
are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any  
IDT product for use in life support devices or critical medical instruments.  
IDT™ / ICS™ LVDS CLOCK GENERATOR  
14  
ICS844251BG-14 REV. A MAY 1, 2009  
ICS844251-14  
FEMTOCLOCK™CRYSTAL-TO-LVDS CLOCK GENERATOR  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
A
11  
Added schematic layout.  
5/1/09  
IDT™ / ICS™ LVDS CLOCK GENERATOR  
15  
ICS844251BG-14 REV. A MAY 1, 2009  
ICS844251-14  
FEMTOCLOCK™CRYSTAL-TO-LVDS CLOCK GENERATOR  
Contact Information:  
www.IDT.com  
Corporate Headquarters  
Sales  
Technical Support  
Integrated Device Technology, Inc.  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
netcom@idt.com  
+480-763-2056  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
United States  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
www.IDT.com/go/contact IDT  
© 2008 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
www.IDT.com  
Printed in USA  

相关型号:

844251BG-14LF

FEMTOCLOCK™ CRYSTAL-TO-LVDS CLOCK GENERATOR
IDT

844251BG-14LFT

FEMTOCLOCK™ CRYSTAL-TO-LVDS CLOCK GENERATOR
IDT

844251BG-14T

FEMTOCLOCK™ CRYSTAL-TO-LVDS CLOCK GENERATOR
IDT

844251BGI-15

Clock Generator
IDT

844252AG-04

Clock Generator, 187.5MHz, PDSO16, 4.40 X 5 MM, 0.92 MM HEIGHT, MO-153, TSSOP-16
IDT

844252AG-04T

Clock Generator, 187.5MHz, PDSO16, 4.40 X 5 MM, 0.92 MM HEIGHT, MO-153, TSSOP-16
IDT

844256AGLF

PLL/Frequency Synthesis Circuit
IDT

844256AGLFT

PLL/Frequency Synthesis Circuit
IDT

844256AMLF

PLL/Frequency Synthesis Circuit
IDT

844256AMLFT

PLL/Frequency Synthesis Circuit
IDT

844256BG

Clock Generator, 622.08MHz, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, MO-153, TSSOP-24
IDT

844256BGI

Clock Generator, PDSO24
IDT