844S012AKILF [IDT]

Clock Generator, 250MHz, CMOS, 8 X 8 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, VFQFN-56;
844S012AKILF
型号: 844S012AKILF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 250MHz, CMOS, 8 X 8 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, VFQFN-56

时钟 外围集成电路 晶体
文件: 总23页 (文件大小:877K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Crystal-to-LVDS/LVCMOS  
Frequency Synthesizer  
ICS844S012I  
DATA SHEET  
General Description  
Features  
The ICS844S012I is an optimized PCIe, sRIO and  
Gigabit Ethernet Frequency Synthesizer. The  
ICS844S012I uses a 25MHz parallel resonant crystal  
to generate 33.33MHz - 200MHz clock signals,  
replacing solutions requiring multiple oscillator and  
Two differential LVDS outputs (Bank A), configurable for PCIe  
(100MHz or 250MHz) and sRIO (100MHz or 125MHz) clock  
signals  
S
IC  
HiPerClockS™  
Eight LVCMOS/LVTTL outputs (Bank B/C), 18typical output  
impedance  
fanout buffer solution. The device supports 0.25% center-spread,  
and -0.6% down-spread clocking with two spread select pins  
(SSC[1:0]). The VCO operates at frequency of 2GHz. The device has  
three output banks: Bank A with two LVDS outputs, 100MHz –  
250MHz; Bank B with seven 33.33MHz – 200MHz LVCMOS/ LVTTL  
outputs; and Bank C with one 33.33MHz – 200MHz LVCMOS/LVTTL  
output.  
Two REF_OUT LVCMOS/LVTTL clock outputs 23typical output  
impedance  
Selectable crystal oscillator interface, 25MHz, 18pF parallel  
resonant crystal or one LVCMOS/LVTTL single-ended reference  
clock input  
Supports the following output frequencies:  
LVDS Bank A: 100MHz, 125MHz, 200MHz and 250MHz  
LVCMOS/LVTTL Bank B/C: 33.33MHz, 50MHz, 66.67MHz,  
100MHz, 125MHz, 133.33MHz, 166.67MHz and 200MHz  
All Banks A, B and C have their own dedicated frequency select pins  
and can be independently set for the frequencies mentioned above.  
The low jitter characteristic of the ICS844S012I makes it an ideal  
clock source for PCIe, sRIO and Gigabit Ethernet applications.  
Designed for networking and industrial applications, the  
VCO: 2GHz  
Spread spectrum clock: 0.25% center-spread, and  
-0.6% down-spread  
PLL bypass and output enable  
ICS844S012I can also drive the high-speed clock inputs of  
communication processors, DSPs, switches and bridges.  
RMS period jitter: 17ps (maximum), QB outputs  
Full 3.3V supply voltage  
-40°C to 85°C ambient operating temperature  
Available in a lead-free (RoHS 6) compliant package  
Pin Assignment  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
42  
41  
VDD  
1
VDDOC  
QC  
REF_OUT0  
2
GND  
QBC_OE  
VDDA  
VDDA  
GND  
GND  
GND  
QA0  
3
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
REF_OUT1  
GND  
4
5
ICS844S012I  
56-Lead VFQFN  
8mm x 8mm x 0.925mm  
package body  
K Package  
GND  
6
REF_IN  
VDD  
7
REF_SEL  
XTAL_IN  
XTAL_OUT  
BYPASS  
8
9
10  
11  
12  
13  
14  
Top View  
nQA0  
QA1  
nQA1  
REF_OE  
nMR  
VDD  
VDD  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
ICS844S012AKI REVISION A APRIL 2, 2010  
1
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Block Diagram  
Pullup  
QA_OE  
2
Pulldown  
F_SELA[1:0]  
QA0  
nQA0  
QA1  
Pulldown  
BYPASS  
÷NA  
25MHz  
XTAL_IN  
nQA1  
1
0
OSC  
0
1
XTAL_OUT  
PLL  
VCO  
2GHz  
QB0  
Pulldown  
REF_IN  
QB1  
QB2  
Pulldown  
REF_SEL  
M = ÷80  
QB3  
QB4  
÷NB  
3
Pulldown  
F_SELB[2:0]  
QB5  
QB6  
QC  
÷NC  
3
2
Pulldown  
F_SELC[2:0]  
Pullup  
nMR  
Pullup  
QBC_OE  
Spread  
Spectrum  
Pullup  
SSC[1:0]  
REF_OUT0  
REF_OUT1  
Pulldown  
REF_OE  
ICS844S012AKI REVISION A APRIL 2, 2010  
2
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1, 7, 14, 28, 29  
VDD  
Power  
Output  
Core supply pins.  
2,  
3
REF_OUT0,  
REF_OUT1  
Single-ended reference clock outputs. 23typical output  
impedance. LVCMOS/LVTTL interface levels.  
4, 5, 15,  
27, 34, 35, 36,  
40, 46, 50, 54  
GND  
Power  
Power supply ground.  
Single-ended reference clock input. LVCMOS/LVTTL interface  
levels.  
6
8
REF_IN  
Input  
Input  
Input  
Input  
Input  
Pulldown  
Reference select pin. When HIGH selects REF_IN. When LOW,  
selects crystal. See Table 3E. LVCMOS/LVTTL interface levels.  
REF_SEL  
Pulldown  
9,  
10  
XTAL_IN  
XTAL_OUT  
Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the  
output.  
PLL bypass. When HIGH, bypasses PLL. When LOW, selects PLL.  
See Table 3J. LVCMOS/LVTTL interface levels.  
11  
12  
BYPASS  
REF_OE  
Pulldown  
Pulldown  
Active HIGH REF_OUT enable/disable pin. See Table 3F.  
LVCMOS/LVTTL interface levels.  
Active LOW Master Reset. When logic LOW, the internal dividers  
are reset. When logic HIGH, the internal dividers are enabled. This  
device requires a reset signal after powerup. See Table 3G.  
LVCMOS/LVTTL interface levels.  
13  
nMR  
Input  
Pullup  
16, 17  
SSC1, SSC0  
Input  
Input  
Pullup  
SSC control pins. See Table 3D. LVCMOS/LVTTL interface levels.  
18,  
19, 20  
F_SELB2,  
F_SELB1, F_SELB0  
Frequency select pins for QBx outputs. See Table 3B.  
LVCMOS/LVTTL interface levels.  
Pulldown  
21,  
22, 23  
F_SELC2,  
F_SELC1, F_SELC0  
Frequency select pins for QC output. See Table 3C.  
LVCMOS/LVTTL interface levels.  
Input  
Input  
Input  
Pulldown  
Pulldown  
Pullup  
Frequency select pins for QAx/nQAx outputs. See Table 3A.  
LVCMOS/LVTTL interface levels.  
24, 25  
26  
F_SELA1, F_SELA0  
QA_OE  
Output enable pin for Bank A outputs. See Table 3H.  
LVCMOS/LVTTL interface levels.  
30, 31  
32, 33  
nQA1, QA1  
nQA0, QA0  
Output  
Power  
Input  
Differential Bank A clock output pairs. LVDS interface levels.  
Analog supply pins.  
37, 38  
VDDA  
Output enable pin for Bank B and Bank C outputs. See Table 3I.  
LVCMOS/LVTTL Interface levels.  
39  
QBC_OE  
Pullup  
Single-ended Bank C clock output. LVCMOS/LVTTL interface  
levels. 18typical output impedance.  
41  
QC  
Output  
42  
VDDOC  
VDDOB  
Power  
Power  
Output supply pin for QC LVCMOS output.  
Output supply pins for QBx LVCMOS outputs.  
43, 48, 52, 56  
44, 45, 47,  
49, 51, 53, 55  
QB0, QB1, QB2,  
QB3, QB4, QB5, QB6  
Single-ended Bank B clock outputs. LVCMOS/LVTTL interface  
levels. 18typical output impedance.  
Output  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
ICS844S012AKI REVISION A APRIL 2, 2010  
3
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Table 2. Pin Characteristics  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
CIN  
Input Capacitance  
2
pF  
Power Dissipation  
Capacitance  
CPD  
QB[0:6], QC  
VDDOB, VDDOC = 3.465V  
4
pF  
RPULLUP  
Input Pullup Resistor  
51  
51  
18  
23  
kΩ  
kΩ  
RPULLDOWN Input Pulldown Resistor  
QB[0:6], QC  
VDDOB, VDDOC = 3.3V  
VDDOB, VDDOC = 3.3V  
ROUT  
Output Impedance  
REF_OUT[0:1]  
Function Tables  
Table 3A. F_SELA[1:0] Frequency Select Function Table  
Inputs  
Output Frequency (25MHz Reference)  
F_SELA1  
F_SELA0  
M Divider Value  
NA Divider Value  
QA[0:1], nQA[0:1] – (MHz)  
0
0
1
1
0
1
0
1
80  
80  
80  
80  
20  
16  
10  
8
100 (default)  
125  
200  
250  
Table 3B. F_SELB[2:0] Frequency Select Function Table  
Inputs  
Output Frequency (25MHz Reference)  
F_SELB2  
F_SELB1  
F_SELB0  
M Divider Value  
NB Divider Value  
QB[0:6] – (MHz)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
80  
80  
80  
80  
80  
80  
80  
80  
60  
40  
30  
20  
16  
15  
12  
10  
33.33 (default)  
50  
66.67  
100  
125  
133.33  
166.67  
200  
ICS844S012AKI REVISION A APRIL 2, 2010  
4
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Table 3C. F_SELC[2:0] Frequency Select Function Table  
Inputs  
Output Frequency (25MHz Reference)  
F_SELC2  
F_SELC1  
F_SELC0  
M Divider Value  
NC Divider Value  
QC – (MHz)  
33.33 (default)  
50  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
80  
80  
80  
80  
80  
80  
80  
80  
60  
40  
30  
20  
16  
15  
12  
10  
66.67  
100  
125  
133.33  
166.67  
200  
Table 3D. SSC_SEL[1:0] Function Table  
Inputs  
SSC1  
SSC0  
Mode  
0
0
1
1
0
1
0
1
0 to -0.6% Down-spread  
0.25% Center-spread  
0.25% Center-spread  
SSC Off (default)  
Table 3E. REF_SEL Function Table  
Input  
REF_SEL  
0 (default)  
1
Input Reference  
XTAL  
REF_IN  
Table 3F. REF_OE Function Table  
Input  
REF_OE  
0 (default)  
1
Function  
REF_OUT[0:1] - Disabled (High-Impedance)  
REF_OUT[0:1] - Enabled  
ICS844S012AKI REVISION A APRIL 2, 2010  
5
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Table 3G. nMR Function Table  
Input  
nMR  
0
Function  
Device reset, output divider - Disabled  
Output - Enabled  
1 (default)  
NOTE: This device requires a reset signal after power-up to function properly.  
Table 3H. QA_OE Function Table  
Input  
QA_OE  
0
Function  
QA[0:1], nQA[0:1] - Disabled (High-Impedance)  
QA[0:1], nQA[0:1] - Enabled  
1 (default)  
Table 3I. QBC_OE Function Table  
Input  
QBC_OE  
0
Function  
QB[0:6] and QC - Disabled (High-Impedance)  
QB[0:6] and QC - Enabled  
1 (default)  
Table 3J. BYPASS Function Table  
Input  
BYPASS  
0 (default)  
1
Function  
PLL  
Bypass (reference ÷N)  
ICS844S012AKI REVISION A APRIL 2, 2010  
6
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
4.6V  
Inputs, VI  
XTAL_IN  
0V to VDD  
Other Inputs  
-0.5V to VDDOx + 0.5V  
Outputs, VO (LVCMOS)  
-0.5V to VDDOx + 0.5V  
Outputs, IO (LVDS)  
Continuos Current  
Surge Current  
10mA  
15mA  
Package Thermal Impedance, θJA  
31.4°C/W (0 mps)  
Storage Temperature, TSTG  
-65°C to 150°C  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VDD = VDDOB = VDDOC = 3.3V 5ꢀ, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
Units  
VDD  
Core Supply Voltage  
V
V
VDDA  
Analog Supply Voltage  
Output Supply Voltage  
VDD – 0.20  
3.3  
VDD  
VDDOB,  
VDDOC  
3.135  
3.3  
3.465  
V
IDD  
Power Supply Current  
Analog Supply Current  
285  
20  
mA  
mA  
IDDA  
IDDOA  
IDDOB  
+
Output Supply Current  
1
mA  
ICS844S012AKI REVISION A APRIL 2, 2010  
7
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Table 4B. LVCMOS/LVTTL DC Characteristics, VDD = VDDOB = VDDOC = 3.3V 5ꢀ, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
2.2  
Typical  
Maximum  
VDD + 0.3  
0.8  
Units  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
nMR, SSC[1:0],  
V
V
-0.3  
V
DD = VIN = 3.465V  
VDD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
10  
µA  
µA  
µA  
µA  
QA_OE, QBC_OE  
Input  
High Current  
REF_IN, REF_SEL,  
BYPASS, REF_OE,  
F_SELA[1:0], F_SELB[2:0],  
F_SELC[2:0]  
IIH  
150  
nMR, SSC[1:0],  
QA_OE, QBC_OE  
V
-150  
-10  
Input  
Low Current  
REF_IN, REF_SEL,  
BYPASS, REF_OE,  
F_SELA[1:0], F_SELB[2:0],  
F_SELC[2:0]  
IIL  
VDD = 3.465V, VIN = 0V  
VDDOB, VDDOC, VDDO_REF  
IOH = -2mA  
=
=
Output  
High Voltage  
VOH  
QBx, QC, REF_OUTx  
QBx, QC, REF_OUTx  
2.6  
V
V
VDDOB, VDDOC, VDDO_REF  
IOH = 2mA  
Output  
Low Voltage  
VOL  
0.5  
Table 4C. LVDS DC Characteristics, VDD = 3.3V 5ꢀ, TA = -40°C to 85°C  
Symbol  
VOD  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
454  
Units  
V
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
247  
VOD  
VOS  
50  
mV  
V
1.125  
1.375  
50  
VOS  
VOS Magnitude Change  
mV  
Table 5. Crystal Characteristics  
Parameter  
Test Conditions  
Minimum  
Typical  
Fundamental  
25  
Maximum  
Units  
Mode of Oscillation  
Frequency  
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
50  
7
pF  
NOTE: Characterized using an 18pF parallel resonant crystal.  
ICS844S012AKI REVISION A APRIL 2, 2010  
8
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
AC Electrical Characteristics  
Table 6. AC Characteristics, VDD = VDDOB = VDDOC = TA = -40°C to +85°C  
Symbol Parameter  
Test Conditions  
Minimum  
100  
Typical  
Maximum  
250  
Units  
MHz  
MHz  
MHz  
ps  
QA[0:1], nQA[0:1]  
QB[0:6]  
Output  
fOUT  
33.33  
200  
Frequency  
QC  
33.33  
200  
QB[0:6]  
60  
Bank Skew  
tsk(b)  
NOTE 1, 2  
QA[0:1], nQA[0:1]  
LVCMOS Outputs off  
10  
ps  
Across Banks B and C  
at Same Frequency  
tsk(o)  
Output Skew; NOTE 2, 3  
620  
55  
80  
50  
9
ps  
ps  
ps  
ps  
ps  
All Outputs at the Same Frequency,  
REF_OE = 0  
QA[0:1], nQA[0:1]  
QB[0:6]  
Cycle-to-Cycle  
Jitter; NOTE 2  
All Outputs at the Same Frequency,  
REF_OE = 0  
tjit(cc)  
All Outputs at the Same Frequency,  
REF_OE = 0  
QC  
All Outputs at the Same Frequency,  
REF_OE = 0  
QA[0:1], nQA[0:1]  
QBx, QC = 33.33MHz,  
QAx, nQAx = 100MHz,  
REF_OE = 0  
RMS  
Period Jitter  
tjit(per)  
17  
ps  
QB[0:6], QC  
All Outputs at the same Frequency,  
REF_OE = 0  
11  
ps  
SSC Modulation QA[0:1], nQA[0:1]  
FM  
tL  
29  
33.33  
kHz  
Frequency  
QB[0:6], QC  
SSC off  
SSC on  
100  
2.1  
450  
250  
52  
ms  
s
PLL Lock Time  
QB[0:6], QC  
20% to 80%  
150  
65  
ps  
ps  
%
%
%
Output  
tR / tF  
odc  
Rise/Fall Time  
QA[0:1], nQA[0:1]  
QA[0:1], nQA[0:1]  
QB[0:6], QC  
20% to 80%  
LVCMOS Outputs OFF  
Output Frequency 133.33MHz  
Output Frequency > 133.33MHz  
48  
Output  
Duty Cycle  
48  
52  
QB[0:6], QC  
46  
54  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE 1: Defined as skew within a bank of outputs at the same supply voltage and with equal load conditions.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at VDDOB/2.  
ICS844S012AKI REVISION A APRIL 2, 2010  
9
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Parameter Measurement Information  
1.65V 5%  
1.65V 5%  
SCOPE  
SCOPE  
V
DD,  
V
DD  
Qx  
V
3.3V 5%  
POWER SUPPLY  
DDOB,  
DDOC  
V
V
Qx  
V
DDA  
DDA  
LVCMOS  
+
Float GND –  
LVDS  
nQx  
GND  
-1.65V 5%  
3.3V LVDS Output Load AC Test Circuit  
3.3V LVCMOS Output Load AC Test Circuit  
nQAx  
QAx  
VDDOX  
2
QBx  
QBy  
nQAy  
VDDOX  
2
QAy  
tsk(b)  
tsk(b)  
LVDS Bank Skew  
LVCMOS Bank Skew  
QB[0:6],  
QC,  
REF_OUT0,  
nQA[0:1]  
VDDOX  
2
VDDOX  
2
VDDOX  
2
REF_OUT1  
QA[0:1]  
tcycle n  
tcycle n+1  
tcycle n  
tcycle n+1  
tjit(cc) = tcycle n – tcycle n+1  
|
|
tjit(cc) = tcycle n – tcycle n+1  
|
|
1000 Cycles  
1000 Cycles  
LVCMOS Cycle-to-Cycle Jitter  
LVDS Cycle-to-Cycle Jitter  
ICS844S012AKI REVISION A APRIL 2, 2010  
10  
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Parameter Measurement Information, continued  
VOH  
VDDOX  
VREF  
Qx  
Qy  
2
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
VDDOX  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
2
tsk(o)  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
LVCMOS Output Skew  
RMS Period Jitter  
nQA[0:1]  
QA[0:1]  
80%  
tF  
80%  
80%  
80%  
tR  
QB[0:6],  
QC,  
REF_OUT0,  
VOD  
20%  
20%  
20%  
20%  
REF_OUT1  
tR  
tF  
LVCMOS Rise/Fall Time  
LVDS Output Rise/Fall Time  
VDDOX  
2
nQA[0:1]  
QB[0:6],  
QC,  
REF_OUT0,  
QA[0:1]  
tPW  
tPW  
tPERIOD  
tPERIOD  
REF_OUT1  
tPW  
tPW  
odc =  
x 100%  
x 100%  
odc =  
tPERIOD  
tPERIOD  
LVCMOS Output Duty Cycle/Pulse Width/Period  
LVDS Output Duty Cycle/Pulse Width/Period  
ICS844S012AKI REVISION A APRIL 2, 2010  
11  
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Parameter Measurement Information, continued  
VDD  
VDD  
out  
out  
DC Input  
LVDS  
LVDS  
V
OD/VOD  
DC Input  
100  
out  
VOS/VOS  
out  
Offset Voltage Setup  
Differential Output Voltage Setup  
Applications Information  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
LVCMOS Control Pins  
LVCMOS Outputs  
All control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
All unused LVCMOS output can be left floating. We recommend that  
there is no trace attached.  
LVDS Outputs  
Crystal Inputs  
All unused LVDS outputs can be left floating. We recommend that  
there is no trace attached. Both sides of the differential output pair  
should either be left floating or terminated.  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kresistor can be tied from  
XTAL_IN to ground.  
REF_IN Input  
For applications not requiring the use of the reference clock, it can be  
left floating. Though not required, but for additional protection, a 1kΩ  
resistor can be tied from the REF_IN to ground.  
ICS844S012AKI REVISION A APRIL 2, 2010  
12  
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Power Supply Filtering Technique  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter performance,  
power supply isolation is required. The ICS844S012I provides  
separate power supplies to isolate any high switching noise from the  
outputs to the internal PLL. VDD, VDDA, VDDOB and VDDO should be  
individually connected to the power supply plane through vias, and  
0.01µF bypass capacitors should be used for each pin. Figure 1  
illustrates this for a generic VDD pin and also shows that VDDA  
requires that an additional 10resistor along with a 10µF bypass  
capacitor be connected to the VDDA pin.  
3.3V  
VDD  
.01µF  
10Ω  
VDDA  
.01µF  
10µF  
Figure 1. Power Supply Filtering  
VFQFN EPAD Thermal Release Path  
In order to maximize both the removal of heat from the package and  
the electrical performance, a land pattern must be incorporated on  
the Printed Circuit Board (PCB) within the footprint of the package  
corresponding to the exposed metal pad or exposed heat slug on the  
package, as shown in Figure 2. The solderable area on the PCB, as  
defined by the solder mask, should be at least the same size/shape  
as the exposed pad/slug area on the package to maximize the  
thermal/electrical performance. Sufficient clearance should be  
designed on the PCB between the outer edges of the land pattern  
and the inner edges of pad pattern for the leads to avoid any shorts.  
and dependent upon the package power dissipation as well as  
electrical conductivity requirements. Thus, thermal and electrical  
analysis and/or testing are recommended to determine the minimum  
number needed. Maximum thermal and electrical performance is  
achieved when an array of vias is incorporated in the land pattern. It  
is recommended to use as many vias connected to ground as  
possible. It is also recommended that the via diameter should be 12  
to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is  
desirable to avoid any solder wicking inside the via during the  
soldering process which may result in voids in solder between the  
exposed pad/slug and the thermal land. Precautions should be taken  
to eliminate any solder voids between the exposed heat slug and the  
land pattern. Note: These recommendations are to be used as a  
guideline only. For further information, please refer to the Application  
Note on the Surface Mount Assembly of Amkor’s Thermally/  
Electrically Enhance Leadframe Base Package, Amkor Technology.  
While the land pattern on the PCB provides a means of heat transfer  
and electrical grounding from the package to the board through a  
solder joint, thermal vias are necessary to effectively conduct from  
the surface of the PCB to the ground plane(s). The land pattern must  
be connected to ground through these vias. The vias act as “heat  
pipes”. The number of vias (i.e. “heat pipes”) are application specific  
SOLDER  
SOLDER  
PIN  
PIN  
EXPOSED HEAT SLUG  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
Figure 2. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)  
ICS844S012AKI REVISION A APRIL 2, 2010  
13  
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Crystal Input Interface  
The ICS844S012I has been characterized with 18pF parallel  
resonant crystals. The capacitor values shown in Figure 3 below  
were determined using a 25MHz, 18pF parallel resonant crystal and  
were chosen to minimize the ppm error.  
XTAL_IN  
C1  
18pF  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
18pF  
Figure 3. Crystal Input Interface  
Overdriving the XTAL Interface  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 4A. The XTAL_OUT pin can be left floating. The  
maximum amplitude of the input signal should not exceed 2V and the  
input edge rate can be as slow as 10ns. This configuration requires  
that the output impedance of the driver (Ro) plus the series  
resistance (Rs) equals the transmission line impedance. In addition,  
matched termination at the crystal input will attenuate the signal in  
half. This can be done in one of two ways. First, R1 and R2 in parallel  
should equal the transmission line impedance. For most 50  
applications, R1 and R2 can be 100. This can also be accomplished  
by removing R1 and making R2 50. By overdriving the crystal  
oscillator, the device will be functional, but note, the device  
performance is guaranteed by using a quartz crystal.  
3.3V  
3.3V  
R1  
100  
C1  
Ro  
~ 7 Ohm  
Zo = 50 Ohm  
XTAL_I N  
RS  
43  
0.1uF  
R2  
Driver_LVCMOS  
100  
XTAL_OU T  
Crystal Input Interf ace  
Figure 4A. General Diagram for LVCMOS Driver to XTAL Input Interface  
VCC=3.3V  
C1  
Zo = 50 Ohm  
XTAL_IN  
0.1uF  
R1  
Zo = 50 Ohm  
50  
XTAL_OUT  
LVPECL  
Cry stal Input Interface  
R2  
50  
R3  
50  
Figure 4B. General Diagram for LVPECL Driver to XTAL Input Interface  
ICS844S012AKI REVISION A APRIL 2, 2010  
14  
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
LVDS Driver Termination  
A general LVDS interface is shown in Figure 4. Standard termination  
for LVDS type output structure requires both a 100parallel resistor  
at the receiver and a 100differential transmission line environment.  
In order to avoid any transmission line reflection issues, the 100Ω  
resistor must be placed as close to the receiver as possible. IDT  
offers a full line of LVDS compliant devices with two types of output  
structures: current source and voltage source. The standard  
termination schematic as shown in Figure 4 can be used with either  
type of output structure. If using a non-standard termination, it is  
recommended to contact IDT and confirm if the output is a current  
source or a voltage source type structure. In addition, since these  
outputs are LVDS compatible, the input receivers amplitude and  
common mode input range should be verified for compatibility with  
the output.  
+
LVDS  
Receiver  
LVDS Driver  
100  
100Differential Transmission Line  
Figure 4. Typical LVDS Driver Termination  
ICS844S012AKI REVISION A APRIL 2, 2010  
15  
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Schematic Example  
Figure 6 shows an example of ICS844S012I application schematic.  
optimizing frequency accuracy. Two examples of LVDS terminations  
and one example of an LVCMOS termination are shown in this  
schematic. The decoupling capacitors should be located as close as  
possible to the power pin.  
In this example, the device is operated at VDD = VDDOB = VDDOC  
=
3.3V. The 18pF parallel resonant 25MHz crystal is used. The C1 and  
C2 = 18pF and are recommended for frequency accuracy. For  
different board layouts, the C1 and C2 may be slightly adjusted for  
Logic Control Input Examples  
R1  
R3  
35  
30  
Zo = 50  
QB0  
Set Logic  
Input to  
'1'  
Set Logic  
Input to  
'0'  
VDD  
VDD  
VDD  
R2  
10  
LVCMOS  
LVCMOS  
VDDA  
RU1  
1K  
RU2  
Not Install  
VDDO  
C5  
10u  
C6  
0.01u  
VDD  
Zo = 50  
To Logic  
Input  
To Logic  
Input  
pins  
REF_OUT1  
pins  
RD1  
RD2  
1K  
VDD  
Not Install  
VDDO  
R4  
10  
VDDA  
U1  
C3  
C4  
10u  
VDD  
0.01u  
1
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
VDD  
VDDOC  
QC  
2
3
REF_OUT0  
REF_OUT1  
Q1  
REF_OUT0  
REF_OUT1  
GND  
Zo = 50 Ohm  
Zo = 50 Ohm  
GND  
4
Ro  
~
7
Ohm  
QA0  
R5  
Zo = 50 Ohm  
QBC_OE  
VDDA  
VDDA  
GND  
5
REF_IN  
XTAL_IN  
GND  
6
REF_IN  
VDD  
+
-
7
43  
R6  
8
REF_SEL  
100  
REF_SEL  
XTAL_IN  
XTAL_OUT  
BYPASS  
REF_OE  
nMR  
GND  
9
Driv er_LVCMOS  
25MHz, CL=18pF  
GND  
10  
11  
12  
13  
14  
QA0  
QA0  
BYPASS  
REF_OE  
nMR  
nQA0  
QA1  
C2  
nQA0  
QA1  
nQA0  
18pF  
X1  
nQA1  
nQA1  
VDD  
VDD  
XTAL_OUT  
C1  
VDD=3.3V  
VDDOB=3.3V  
VDDOC=3.3V  
18pF  
LVDS Termination  
Note: This device requires a  
reset signal at nMR after  
power-up to function properly.  
Zo = 50 Ohm  
QA1  
R7  
50  
+
-
VDDO  
VDD  
VDDO  
VDD  
(U1, 42)  
(U1, 43)  
(U1, 48)  
(U1, 52)  
(U1, 56)  
(U1, 1)  
(U1, 7) (U1, 14)  
(U1, 28)  
(U1, 29)  
C7  
0.1uF  
R8  
50  
C8  
0.1u  
C9  
C10  
0.1u  
C11  
0.1u  
C12  
C13  
0.1u  
C14  
0.1u  
C15  
0.1u  
C16  
C17  
0.1u  
Zo = 50 Ohm  
nQA1  
0.1u  
0.1u  
0.1u  
Alternate  
LVDS  
Termination  
Figure 6. ICS844S012I Schematic Example  
ICS844S012AKI REVISION A APRIL 2, 2010  
16  
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Spread Spectrum  
Spread-spectrum clocking is a frequency modulation technique for  
EMI reduction. When spread-spectrum is enabled, a 32kHz triangle  
waveform is used with 0.6% down-spread (+0.0% / -0.6%) from the  
nominal output frequency. An example of a triangle frequency  
modulation profile is shown in Figure 7A below. The ramp profile can  
be expressed as:  
The ICS844S012I triangle modulation frequency deviation will not  
exceed 0.7% down-spread from the nominal clock frequency (+0.0%  
/ -0.6%). An example of the amount of down spread relative to the  
nominal clock frequency can be seen in the frequency domain, as  
shown in Figure 7B. The ratio of this width to the fundamental  
frequency is typically 0.4%, and will not exceed 0.7%. The resulting  
spectral reduction will be greater than 5dB, as shown in Figure 7B. It  
is important to note the ICS844S012I 5dB minimum spectral  
reduction is the component-specific EMI reduction, and will not  
necessarily be the same as the system EMI reduction.  
Fnom = Nominal Clock Frequency in Spread Off mode  
Fm = Nominal Modulation Frequency (30kHz)  
δ = Modulation Factor (0.6% down spread)  
1
----------- ,  
2Fm  
(1 δ)Fnom + 2Fm × δ × Fnom × t when0< t <  
1
1
-----------  
2Fm  
-------  
Fm  
(1 δ)Fnom2Fm × δ × Fnom × t when  
< t <  
Fnom  
– 10 dBm  
A
B
(1 - δ) Fnom  
δ = 0.6% ➔  
0.5/fm  
Time  
1/fm  
Figure 7A. Triangle Frequency Modulation  
Figure 7B. 200MHz Clock Output In Frequency Domain  
(A) Spread-Spectrum OFF  
(B) Spread-Spectrum ON  
ICS844S012AKI REVISION A APRIL 2, 2010  
17  
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS44S012I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS44S012I is the sum of the core power plus the power dissipation in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5% = 3.465V, which gives worst case results.  
The maximum current at 85° is as follows:  
IDD_MAX = 270mA  
IDDA_MAX = 20mA  
I
DDO_MAX = 1mA  
Core and LVDS Output Power Dissipation  
Power (core, LVDS) = VDD_MAX * (IDD + IDDA + IDDO) = 3.465V * (270mA + 20mA + 1mA) = 1008.315mW  
LVCMOS Output Power Dissipation  
Dynamic Power Dissipation at 200MHz, (QB, QC)  
Power (200MHz) = CPD * Frequency * (VDDO)2 = 4pF * 200MHz * (3.465V)2 = 9.6mW per output  
Total Power (200MHz) = 9.6mW * 8 = 76.7mW  
Dynamic Power Dissipation at 25MHz  
Power (25MHz) = CPD * Frequency * (VDDO)2 = 4pF * 25MHz * (3.465V)2 = 1.2mW per output  
Total Power (25MHz) = 1.2mW * 2 = 2.4mW  
Total Power Dissipation  
Total Power  
= Power (core, LVDS) + Total Power (200MHz) + Total Power (25MHz)  
= 1008.315mW + 76.7mW + 2.4mW  
= 1087.415mW  
ICS844S012AKI REVISION A APRIL 2, 2010  
18  
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 31.4°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 1.087W * 31.4°C/W = 119.1°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 7. Thermal Resistance θJA for 56 Lead VFQFN, Forced Convection  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
31.4°C/W  
27.5°C/W  
24.6°C/W  
ICS844S012AKI REVISION A APRIL 2, 2010  
19  
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Reliability Information  
Table 8. θJA vs. Air Flow Table for a 56 Lead VFQFN  
θJA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
31.4°C/W  
27.5°C/W  
24.6°C/W  
Transistor Count  
The transistor count for ICS844S012I is: 11,509  
ICS844S012AKI REVISION A APRIL 2, 2010  
20  
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Package Outline and Package Dimensions  
Package Outline - K Suffix for 56 Lead VFQFN  
(Ref.)  
Seating Plane  
N & N  
(N -1)x e  
(Ref.)  
Even  
A1  
IndexArea  
L
A3  
E2  
e
2
N
N
(Ty p.)  
If N & N  
are Even  
Anvil  
1
Singulation  
2
or  
(N -1)x e  
(Ref.)  
Sawn  
E2  
2
Singulation  
TopView  
D
b
(Ref.)e  
N &N  
Odd  
Thermal  
Base  
A
D2  
2
0. 08  
C
Chamfer 4x  
0.6 x 0.6 max  
OPTIONAL  
D2  
C
Bottom View w/Type A ID  
Bottom View w/Type B ID  
Bottom View w/Type C ID  
4
2
1
2
1
2
1
CHAMFER  
RADIUS  
4
N N-1  
N N-1  
DD  
N N-1  
4
4
There are 3 methods of indicating pin 1 corner  
at the back of the VFQFN package are:  
1. Type A: Chamfer on the paddle (near pin 1)  
2. Type B: Dummy pad between pin 1 and N.  
4
AA  
4
3. Type C: Mouse bite on the paddle (near pin 1)  
NOTE: The following package mechanical drawing is a generic  
drawing that applies to any pin count VFQFN package. This drawing  
is not intended to convey the actual pin count or pin layout of this  
device. The pin count and pinout are shown on the front page. The  
package dimensions are in Table 9.  
Table 9. Package Dimensions  
SPEC NON_JEDEC: VLLD-2/-5  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
56  
A
A1  
0.80  
0
1.00  
0.05  
A3  
0.25 Ref.  
b
0.18  
0.30  
ND & NE  
D & E  
D2  
14  
8.00 Basic  
4.35  
5.05  
4.65  
5.35  
E2  
e
0.50 Basic  
L
0.30  
0.50  
Reference Document: JEDEC Publication 95, MO-220  
ICS844S012AKI REVISION A APRIL 2, 2010  
21  
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Ordering Information  
Table 10. Ordering Information  
Part/Order Number  
844S012AKILF  
844S012AKILFT  
Marking  
ICS844S012AIL  
ICS844S012AIL  
Package  
“Lead-Free” 56 Lead VFQFN  
“Lead-Free” 56 Lead VFQFN  
Shipping Packaging  
Tray  
1000 Tape & Reel  
Temperature  
-40°C to +85°C  
-40°C to +85°C  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without  
additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support  
devices or critical medical instruments.  
ICS844S012AKI REVISION A APRIL 2, 2010  
22  
©2010 Integrated Device Technology, Inc.  
ICS844S012I Data Sheet  
CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
San Jose, California 95138  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2010. All rights reserved.  

相关型号:

844S012AKILFT

Clock Generator, 250MHz, CMOS, 8 X 8 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, VFQFN-56
IDT

844S012AKIT

Clock Generator, 250MHz, 8 X 8 MM, 0.90 MM HEIGHT, MO-220, VFQFN-56
IDT

844S2416CKILF

HCSL/LVCMOS Frequency Synthesizer
IDT

844S2416CKILFT

HCSL/LVCMOS Frequency Synthesizer
IDT

844S2416I

HCSL/LVCMOS Frequency Synthesizer
IDT

844S42BKI

Clock Generator, 2592MHz, 8 X 8 MM, 0.925 MM, MO-220, VFQFN-56
IDT

844S42BKILF

Dual Output RF Frequency Synthesizer
IDT

844S42BKILFT

Dual Output RF Frequency Synthesizer
IDT

844S42BKIT

Clock Generator, 2592MHz, 8 X 8 MM, 0.925 MM, MO-220, VFQFN-56
IDT

844S42I

Dual Output RF Frequency Synthesizer
IDT

845

Circular Connector, Steel, Female; Male, Crimp; Solder Terminal, Plug; Receptacle
AMPHENOL

845-.25%-FA1-20PPM-CARDPACK

Fixed Resistor, Wire Wound, 1W, 845ohm, 44V, 0.25% +/-Tol, -20,20ppm/Cel,
VISHAY