85211AMI [IDT]

Clock Driver, PDSO8;
85211AMI
型号: 85211AMI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Driver, PDSO8

光电二极管
文件: 总14页 (文件大小:362K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-  
LVHSTL FANOUT BUFFER  
ICS85211I  
FEATURES  
GENERAL DESCRIPTION  
Two differential LVHSTL compatible outputs  
One differential CLK, nCLK input pair  
The ICS85211I is a low skew, high performance 1-to-2  
Differential-to-LVHSTL Fanout Buffer . The CLK, nCLK pair  
can accept most standard differential input levels.The  
ICS85211I is characterized to operate from a 3.3V power  
supply. Guaranteed output and part-to-part skew  
characteristics make the ICS85211I ideal for those clock  
distribution applications demanding well defined  
performance and repeatability. For optimal performance,  
terminate all outputs.  
CLK, nCLK pair can accept the following differential  
input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
Maximum output frequency: 700MHz  
Translates any single-ended input signal to LVHSTL  
levels with resistor bias on nCLK input  
Output skew: 30ps (maximum)  
Part-to-part skew: 250ps (maximum)  
Propagation delay: 1ns (maximum)  
Output duty cycle: 49% - 51% up to 266.6MHz  
VOH = 1.2V (maximum)  
3.3V operating supply  
-40°C to 85°C ambient operating temperature  
Available in both standard and lead-free RoHS compliant  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
Q1  
VDD  
1
2
3
4
8
7
6
5
Q0  
nQ0  
CLK  
nCLK  
GND  
CLK  
nCLK  
Q1  
nQ1  
nQ1  
ICS85211I  
8-Lead SOIC  
3.90mm x 4.90mm x 1.37mm package body  
M Package  
Top View  
IDT/ ICS1-TO-2 LVHSTL FANOUT BUFFER  
1
ICS85211I REV D JULY 26, 2010  
ICS85211I  
LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Q0, nQ0  
Q1, nQ1  
GND  
Type  
Description  
1, 2  
3, 4  
5
Output  
Output  
Power  
Input  
Differential output pair. LVHSTL interface levels.  
Differential output pair. LVHSTL interface levels.  
Power supply ground.  
6
nCLK  
CLK  
VDD/2  
Inverting differential clock input. VDD/2 default when left floating.  
7
Input  
Pulldown Non-inverting differential clock input.  
Positive supply pin.  
8
VDD  
Power  
NOTE: Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical  
Maximum Units  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
RPULLDOWN  
51  
51  
TABLE 3. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
Q0, Q1 nQ0, nQ1  
Input to Output Mode  
Polarity  
CLK  
nCLK  
0
0
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
Differential to Differential  
Differential to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Non Inverting  
Non Inverting  
Non Inverting  
Non Inverting  
Inverting  
1
1
0
Biased; NOTE 1  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
Inverting  
NOTE 1: Please refer to the Application Information section, "Wiring the Differential Input to Accept Single Ended Levels".  
IDT/ ICS1-TO-2 LVHSTL FANOUT BUFFER  
2
ICS85211I REV D JULY 26, 2010  
ICS85211I  
LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VDD  
Inputs, VDD  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
-0.5V to VDD + 0.5 V  
-0.5V to VDD + 0.5V  
Outputs, VDD  
Package Thermal Impedance, θJA 112.7°C/W (0 lfpm)  
Storage Temperature, TSTG -65°C to 150°C  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = 3.3V ± 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VDD  
IDD  
Power Supply Voltage  
Power Supply Current  
3.135  
3.3  
3.465  
50  
V
mA  
TABLE 4B. DIFFERENTIAL DC CHARACTERISTICS, VDD = 3.3V ± 5%, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
nCLK  
CLK  
V
DD = VIN = 3.465V  
DD = VIN = 3.465V  
150  
150  
µA  
µA  
µA  
µA  
V
IIH  
Input High Current  
V
nCLK  
CLK  
V
V
DD = 3.465V, VIN = 0V  
DD = 3.465V, VIN = 0V  
-150  
-5  
IIL  
Input Low Current  
VPP  
Peak-to-Peak Input Voltage  
0.15  
0.5  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VDD - 0.85  
V
NOTE 1: For single ended applications the maximum input voltage for CLK and nCLK is VDD + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
TABLE 4C. LVHSTL DC CHARACTERISTICS, VDD = 3.3V ± 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
1.0  
0
1.2  
0.4  
1.2  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
0.6  
0.9  
NOTE 1: All outputs must be terminated with 50Ω to ground.  
TABLE 5. AC CHARACTERISTICS, VDD = 3.3V ± 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
fMAX  
Output Frequency  
700  
1.0  
30  
MHz  
ns  
ps  
ps  
ps  
%
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
Part-to-Part Skew; NOTE 3, 4  
Output Rise/Fall Time  
ƒ600MHz  
0.7  
tsk(o)  
tsk(pp)  
tR / tF  
250  
600  
53  
20% to 80%  
200  
47  
odc  
Output Duty Cycle  
ƒ266.6MHz  
49  
51  
%
All parameters measured at 600MHz unless noted otherwise.  
The cycle-to-cycle jitter on the input will equal the jitter on the output. The part does not add jitter.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load  
conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
IDT/ ICS1-TO-2 LVHSTL FANOUT BUFFER  
3
ICS85211I REV D JULY 26, 2010  
ICS85211I  
LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION  
3.3V±5%  
VDD  
VDD  
SCOPE  
Qx  
nCLK  
CLK  
LVHSTL  
VPP  
VCMR  
Cross Points  
nQx  
GND  
GND  
0V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
Qx  
Qx  
PART 1  
nQx  
Qy  
nQy  
PART 2  
nQy  
Qy  
tsk(pp)  
tsk(o)  
OUTPUT SKEW  
PART-TO-PART SKEW  
nCLK  
CLK  
80%  
tF  
80%  
VSWING  
20%  
Clock  
20%  
nQ0, nQ1  
Outputs  
tR  
Q0, Q1  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
nQ0, nQ1  
Q0, Q1  
tPW  
tPERIOD  
tPW  
odc =  
x 100%  
tPERIOD  
OUTPUT DUTY CYCLE PULSE WIDTH/PERIOD  
IDT/ ICS1-TO-2 LVHSTL FANOUT BUFFER  
4
ICS85211I REV D JULY 26, 2010  
ICS85211I  
LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = V /2 is  
generated by the bias resistors R1, R2 and C1. This bias DcDircuit  
should be located as close as possible to the input pin. The ratio  
of R1 and R2 might need to be adjusted to position the V_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V and V = 3.3V, V_REF should be 1.25V  
DD  
and R2/R1 = 0.609.  
VDD  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLK  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
RECOMMENDATIONS FOR UNUSED OUTPUT PINS  
OUTPUTS:  
LVHSTL OUTPUT  
All unused LVHSTL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
IDT/ ICS1-TO-2 LVHSTL FANOUT BUFFER  
5
ICS85211I REV D JULY 26, 2010  
ICS85211I  
LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
CLOCK INPUT INTERFACE  
The CLK /nCLK accepts differential input signals of both V  
driver components to confirm the driver termination requirement.  
For example in Figure 2A, the input termination applies for  
LVHSTL drivers. If you are using an LVHSTL driver from another  
vendor, use their termination recommendation.  
SWING  
and V to meet the V and V input requirements. Figures 2A to  
2D shOoHw interface exPaPmples CfMoRr the ICS85211I clock input driven  
by most common driver types. The input interfaces suggested  
here are examples only. Please consult with the vendor of the  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
LVPECL  
Input  
nCLK  
HiPerClockS  
LVHSTL  
Input  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 2A. ICS85211I CLK/NCLK INPUT DRIVEN BY  
LVHSTL DRIVER  
FIGURE 2B. ICS85211I CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER (INTERFACE 1)  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
R4  
3.3V  
125  
125  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
nCLK  
HiPerClockS  
Input  
nCLK  
HiPerClockS  
Input  
LVPECL  
R5  
100-200  
R6  
100-200  
R1  
84  
R2  
84  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 2C. ICS85211I CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER (INTERFACE 2)  
FIGURE 2D. ICS85211I CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
IDT/ ICS1-TO-2 LVHSTL FANOUT BUFFER  
6
ICS85211I REV D JULY 26, 2010  
ICS85211I  
LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
SCHEMATIC EXAMPLE  
Figure 3 shows a schematic example of ICS85211I. In this  
example, the input is driven by an ICS LVHSTL driver. The  
decoupling capacitors should be physically located near the  
power pin. For ICS85211I, the unused outputs need to be  
terminated.  
Zo = 50 Ohm  
1.8V  
-
U1  
Zo = 50 Ohm  
Zo = 50 Ohm  
5
6
7
8
4
3
2
1
Zo = 50 Ohm  
GND  
nCLK  
CLK  
nQ1  
Q1  
nQ0  
Q0  
+
VDD  
R1  
50  
R2  
50  
LVHSTL Input  
VDD=3.3V  
LVHSTL  
ICS  
ICS85211  
R6  
50  
R5  
50  
C1  
0.1u  
HiPerClockS  
LVHSTL Driv er  
Unused  
Output  
Need To  
Be  
R3  
50  
R4  
50  
Terminated  
FIGURE 3. ICS85211I LVHSTL BUFFER SCHEMATIC EXAMPLE  
IDT/ ICS1-TO-2 LVHSTL FANOUT BUFFER  
7
ICS85211I REV D JULY 26, 2010  
ICS85211I  
LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS85211I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85211I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5% = 3.465V, which gives worst case results.  
DD  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core) = V  
* I  
= 3.465V * 50mA = 173.3mW  
DD_MAX  
MAX  
DD_MAX  
Power (outputs) = 78.88mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 2 * 78.88mW = 157.8mW  
Total Power  
(3.465V, with all outputs switching) = 173.3mW + 157.8mW = 311.1mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability  
of the device. The maximum recommended junction temperature for the devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used.  
Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W per  
Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.311W * 103.3°C/W = 117.1°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air  
flow, and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θ FOR 8-PIN SOIC, FORCED CONVECTION  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
IDT/ ICS1-TO-2 LVHSTL FANOUT BUFFER  
8
ICS85211I REV D JULY 26, 2010  
ICS85211I  
LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVHSTL output driver circuit and termination are shown in Figure 4.  
VDD  
Q1  
VOUT  
RL  
50Ω  
FIGURE 4. LVHSTL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load.  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = (V  
Pd_L = (V  
/R ) * (V  
- V  
)
OH_MAX  
OH_MAX  
DD_MAX  
L
/R ) * (V  
- V  
)
OL_MAX  
DD_MAX  
OL_MAX  
L
Pd_H = (1.2V/50Ω) * (3.465V - 1.2V) = 54.36mW  
Pd_L = (0.4V/50Ω) * (3.465V - 0.4V) = 24.52mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 78.88mW  
IDT/ ICS1-TO-2 LVHSTL FANOUT BUFFER  
9
ICS85211I REV D JULY 26, 2010  
ICS85211I  
LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
RELIABILITY INFORMATION  
TABLE 7. θ VS. AIR FLOW TABLE FOR 8 LEAD SOIC  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS85211I is: 411  
IDT/ ICS1-TO-2 LVHSTL FANOUT BUFFER  
10  
ICS85211I REV D JULY 26, 2010  
ICS85211I  
LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
PACKAGE OUTLINE - M SUFFIX FOR 8 LEAD SOIC  
TABLE 8. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
MINIMUN  
MAXIMUM  
N
A
A1  
B
C
D
E
e
8
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
1.27 BASIC  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS-012  
IDT/ ICS1-TO-2 LVHSTL FANOUT BUFFER  
11  
ICS85211I REV D JULY 26, 2010  
ICS85211I  
LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
I85211AMI  
Marking  
85211AMI  
85211AMI  
85211AIL  
85211AIL  
Package  
Shipping Packaging  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
8 lead SOIC  
8 lead SOIC  
8 lead SOIC  
8 lead SOIC  
85211AMIT  
2500 tape & reel  
tube  
85211AMILF  
85211AMILFT  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS  
complaint.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Inc. (IDT) assumes no responsibility for either its use or for infringement of  
any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial  
applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves  
the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICS1-TO-2 LVHSTL FANOUT BUFFER  
12  
ICS85211I REV D JULY 26, 2010  
ICS85211I  
LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Date  
T4A  
3
7
Power Supply table, changed maximum IDD spec to 50mA from 40mA.  
B
4/8/03  
Power Considerations, changed IDD_MAX to 50mA from 40mA and recalculated  
equations.  
1
2
5
Features Section - added lead-free bullet.  
T2  
T9  
T9  
Pin Characteristics - changed CIN 4pF max. to 4pF typical.  
Added Recommendations for Unused Output Pins.  
Ordering Information Table - added lead-free part number, marking and note.  
Updated datasheet's header/footer with IDT from ICS.  
Removed ICS prefix from Part/Order Number column.  
Added Contact Page.  
C
D
7/12/06  
7/26/10  
12  
12  
14  
IDT/ ICS1-TO-2 LVHSTL FANOUT BUFFER  
13  
ICS85211I REV D JULY 26, 2010  
ICS85211I  
LOW SKEW, 1-TO-2 DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
#20-03 Wisma Atria  
England  
+408 284 8200 (outside U.S.)  
Singapore 238877  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
+65 6 887 5505  
© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

85211AMI-01

Clock Driver, 85211 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, MS-012, SOIC-8
IDT

85211AMI-01T

Clock Driver, 85211 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, MS-012, SOIC-8
IDT

85211AMI-03LF

Clock Driver, 85211 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, ROHS COMPLIANT, MS-012, SOIC-8
IDT

85211AMI-03LFT

Clock Driver, 85211 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, ROHS COMPLIANT, MS-012, SOIC-8
IDT

85211AMI-03T

Low Skew Clock Driver, PDSO8
IDT

85211AMILF

SOIC-8, Tube
IDT

85211AMILFT

SOIC-8, Reel
IDT

85211AMIT

Low Skew Clock Driver, 85211 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, MS-012, SOIC-8
IDT

85211BMI-03LF

Low Skew Clock Driver, PDSO8
IDT

85211BMI-03LFT

Low Skew Clock Driver, PDSO8
IDT

85211BMI-03T

Clock Driver, PDSO8
IDT

852140-1

ANVIL, RIGHT (DUAL)
TE