853052AG [IDT]

Clock Driver;
853052AG
型号: 853052AG
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Driver

文件: 总14页 (文件大小:319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL  
2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
ICS853052  
GENERAL DESCRIPTION  
FEATURES  
The ICS853052 is a Dual LVCMOS / LVTTL-to-  
One differential 2.5V, 3.3V or 5V LVPECL output  
Two selectable LVCMOS/LVTTL clock inputs  
Output frequency: TBD  
ICS  
HiPerClockS™  
Differential 2.5V, 3.3V, 5V LVPECL Multiplexer and  
a member of the HiPerClocksfamily of High  
Performance Clocks Solutions from IDT. The  
ICS853052 has two selectable single ended clock  
Additive phase jitter, RMS: 0.06ps (typical)  
Propagation Delay: 370ps (typical)  
inputs.The single ended clock input accepts LVCMOS or LVTTL  
input levels and translates them to 2.5V, 3.3V or 5V LVPECL  
levels. The small outline 8-pin TSSOP or 8-pin SOIC packages  
make this device ideal for applications where space, high  
performance and low power are important.  
2.5V, 3.3V or 5V operating supply voltage  
(operating range 2.375V to 5.5V)  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
nc  
Da  
VCC  
Q
1
2
3
4
8
7
6
5
Db  
SEL  
nQ  
VEE  
Pulldown  
Da  
1
Q
nQ  
ICS853052  
8-Lead TSSOP, 118 mil  
3mm x 3mm x 0.95mm package body  
G Package  
Pulldown  
Db  
0
Top View  
Pulldown  
SEL  
8-Lead SOIC, 150 mil  
3.90mm x 4.90mm x 1.37mm package body  
M Package  
Top View  
The Preliminary Information presented herein represents a product in pre-production.The noted characteristics are based on initial product characterization  
and/or qualification.Integrated DeviceTechnology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.  
IDT/ ICS2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
1
ICS853052AG REV. B OCTOBER 24, 2007  
ICS853052  
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
PRELIMINARY  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
nc  
Type  
Description  
1
Unused  
Input  
No connect.  
2, 3  
Da, Db  
Pulldown LVCMOS / LVTTL clock inputs.  
Select input pin. When HIGH, selects Da input clock.  
4
SEL  
Input  
Pulldown When Low selects Db input clock.  
Single-ended 100H LVPECL interface levels.  
5
6, 7  
8
VEE  
nQ, Q  
VCC  
Power  
Output  
Power  
Negative supply pin.  
Differential output pair. LVPECL interface levels.  
Positive supply pin.  
NOTE: Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Input Capacitance  
Input Pulldown Resistor  
1
pF  
RPULLDOWN  
75  
kΩ  
TABLE 3. CONTROL INPUT FUNCTION TABLE  
Inputs  
SEL  
0
Selected Source  
Db  
Da  
1
IDT/ ICS2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
2
ICS853052AG REV. B OCTOBER 24, 2007  
ICS853052  
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
PRELIMINARY  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCC  
6V (LVPECL mode, VEE = 0)  
-6V (ECL mode, VCC = 0)  
-0.5V to VCC + 0.5 V  
NOTE: Stresses beyond those listed under Absolute Maximum  
Ratings may cause permanent damage to the device. These  
ratings are stress specifications only. Functional operation of  
product at these conditions or any conditions beyond those listed  
in the DC Characteristics or AC Characteristics is not implied.  
Exposure to absolute maximum rating conditions for extended  
periods may affect product reliability.  
Negative Supply Voltage, VEE  
Inputs, VI (LVPECL mode)  
Inputs, VI (ECL mode)  
0.5V to VEE - 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Operating Temperature Range, TA -40°C to +85°C  
Storage Temperature, TSTG -65°C to 150°C  
Package Thermal Impedance, θJA 101.7°C/W (0 m/s) TSSOP  
112.7°C/W (0 lfpm) SOIC  
(Junction-to-Ambient)  
TABLE 4A. DC CHARACTERISTICS, VCC = 2.5V; VEE = 0V  
-40°C  
Typ  
21  
25°C  
Typ  
21  
85°C  
Typ  
21  
Symbol Parameter  
Min  
Units  
Max  
Min  
Max  
Min  
Max  
IEE  
Power Supply Current  
mA  
V
VOH  
VOL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
1.375 1.475  
0.605 0.745  
1.58  
0.88  
1.425  
0.625  
1.495  
0.72  
1.57  
1.495  
0.64  
1.53  
1.565  
0.83  
V
0.815  
0.735  
Input High Voltage,  
Single-Ended  
V
VIH  
1.275  
0.63  
1.56  
1.275  
0.63  
1.56  
1.275  
0.63  
-0.83  
V
VIL  
IIH  
Input Low Voltage, Single-Ended  
Input High Current  
0.965  
200  
0.965  
200  
0.965  
200  
µA  
µA  
IIL  
Input Low Current  
200  
200  
200  
Input and output parameters vary 1:1 with VCC.  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
TABLE 4B. DC CHARACTERISTICS, VCC = 3.3V; VEE = 0V  
-40°C  
Typ  
21  
25°C  
Typ  
21  
85°C  
Typ  
21  
Symbol Parameter  
Min  
Units  
Max  
Min  
Max  
Min  
Max  
IEE  
VOH  
VOL  
VIH  
VIL  
IIH  
Power Supply Current  
mA  
mV  
mV  
mV  
mV  
µA  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage, Single-Ended  
Input Low Voltage, Single-Ended  
Input High Current  
2175  
1405  
2075  
1355  
2275  
1545  
2380  
1680  
2420  
1675  
200  
2225  
1425  
2075  
1355  
2295  
1520  
2370  
1615  
2420  
1675  
200  
2295  
1440  
2075  
1355  
2330  
1535  
2365  
1630  
2420  
1675  
200  
IIL  
Input Low Current  
200  
200  
200  
µA  
Input and output parameters vary 1:1 with VCC.  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
IDT/ ICS2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
3
ICS853052AG REV. B OCTOBER 24, 2007  
ICS853052  
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
PRELIMINARY  
TABLE 4C. DC CHARACTERISTICS, VCC = 5V; VEE = 0V  
-40°C  
Typ  
21  
25°C  
Typ  
21  
85°C  
Typ  
21  
Symbol Parameter  
Units  
Min  
Max  
Min  
Max  
Min  
Max  
IEE  
VOH  
VOL  
VIH  
VIL  
IIH  
Power Supply Current  
mA  
mV  
mV  
mV  
mV  
µA  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage, Single-Ended  
Input Low Voltage, Single-Ended  
Input High Current  
3875  
3105  
3775  
3055  
200  
3975  
3245  
4105  
3380  
4120  
3375  
4080  
3125  
3775  
3055  
200  
3925  
3220  
3995  
3315  
4120  
3375  
4070  
3140  
3775  
3055  
200  
3995  
3235  
4065  
3330  
4120  
3375  
200  
IIL  
Input Low Current  
200  
200  
µA  
Input and output parameters vary 1:1 with VCC.  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
TABLE 4D. ECL DC CHARACTERISTICS, VCC = 0V; VEE = -5.5V TO -2.375V  
-40°C  
25°C  
Typ  
21  
85°C  
Typ  
21  
Symbol Parameter  
Units  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
IEE  
VOH  
VOL  
VIH  
VIL  
IIH  
Power Supply Current  
21  
mA  
mV  
mV  
mV  
mV  
µA  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Input High Voltage, Single-Ended  
Input Low Voltage, Single-Ended  
Input High Current  
-1125 -1025  
-920  
-1075 -1005  
-930  
-1005  
-970  
-935  
-1895 -1755 -1620 -1875 -1780 -1685 -1860 -1765 -1670  
-1225  
-1945  
-880  
-1225  
-880  
-1225  
-880  
-1625  
200  
-1625 -1945  
-1625 -1945  
200  
200  
200  
200  
IIL  
Input Low Current  
200  
µA  
Input and output parameters vary 1:1 with VCC.  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
TABLE 5. AC CHARACTERISTICS, VCC = 0V; VEE = -5.5V TO -2.375V OR VCC = 2.375V TO 5.5V; VEE = 0V  
-40°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Max  
Min  
Max  
Min  
Max  
fMAX  
Output Frequency  
TBD  
TBD  
TBD  
GHz  
ps  
Propagation Delay, Low to High;  
NOTE 1  
Propagation Delay, High to Low;  
NOTE 1  
Buffer Additive Phase Jitter,  
RMS; refer to Additive Phase  
Jitter section  
tPLH  
TBD  
TBD  
370  
370  
TBD  
TBD  
tPHL  
ps  
ps  
tjit  
TBD  
0.06  
TBD  
VPP  
Input Voltage Swing (Differential)  
TBD  
TBD  
TBD  
180  
TBD  
TBD  
ps  
ps  
Output  
tR/tF  
20% to 80%  
Rise/Fall Time  
All parameters are measured 1GHz unless otherwise noted.  
NOTE 1: Measured from VCC/2 of the input crossing point to the differential output crossing point.  
IDT/ ICS2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
4
ICS853052AG REV. B OCTOBER 24, 2007  
ICS853052  
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
PRELIMINARY  
ADDITIVE PHASE JITTER  
band to the power in the fundamental. When the required offset  
is specified, the phase noise is called a dBc value, which simply  
means dBm at a specified offset from the fundamental. By  
investigating jitter in the frequency domain, we get a better  
understanding of its effects on the desired application over the  
entire time record of the signal. It is mathematically possible to  
calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the  
fundamental compared to the power of the fundamental is called  
the dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise power  
present in a 1Hz band at a specified offset from the fundamental  
frequency to the power value of the fundamental. This ratio is  
expressed in decibels (dBm) or a ratio of the power in the 1Hz  
0
-10  
-20  
-30  
-40  
Additive Phase Jitter @ 155.52MHz  
(12kHz to 20MHz) = 0.06ps typical  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
100  
1k  
10k  
100k  
1M  
10M  
100M  
-190  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements  
have issues. The primary issue relates to the limitations of the  
equipment. Often the noise floor of the equipment is higher than  
the noise floor of the device. This is illustrated above. The device  
meets the noise floor of what is shown, but can actually be lower.  
The phase noise is dependant on the input source and  
measurement equipment.  
IDT/ ICS2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
5
ICS853052AG REV. B OCTOBER 24, 2007  
ICS853052  
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
PRELIMINARY  
PARAMETER MEASUREMENT INFORMATION  
2V  
SCOPE  
VCC  
Qx  
Da Db  
nQ  
LVPECL  
Q
nQx  
tPD  
VEE  
-3.5V to -0.375V  
OUTPUT LOAD AC TEST CIRCUIT  
PROPAGATION DELAY  
80%  
tF  
80%  
VSWING  
20%  
Clock  
20%  
Outputs  
tR  
OUTPUT RISE/FALL TIME  
IDT/ ICS2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
6
ICS853052AG REV. B OCTOBER 24, 2007  
ICS853052  
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
PRELIMINARY  
APPLICATION INFORMATION  
RECOMMENDATIONS FOR UNUSED INPUT PINS  
INPUTS:  
DX INPUTS  
For applications not requiring the use of a clock input, it can  
be left floating. Though not required, but for additional  
protection, a 1kΩ resistor can be tied from the Dx input to  
ground.  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 1A and Figure 1B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating  
50Ω to V - 2V. For V = 2.5V, the V - 2V is very close to ground  
level. The R3 in Figure 1B can be eliminated and the termination  
is shown in Figure 1C.  
CC  
CC  
CC  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
R1  
250  
R3  
250  
+
-
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 1A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 1B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 1C. 2.5V LVPECL TERMINATION EXAMPLE  
IDT/ ICS2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
7
ICS853052AG REV. B OCTOBER 24, 2007  
ICS853052  
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
PRELIMINARY  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termination  
for LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be  
used to maximize operating frequency and minimize signal dis-  
tortion. Figures 2A and 2B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts  
may exist and it would be recommended that the board design-  
ers simulate to guarantee compatibility across all printed circuit  
and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
TERMINATION FOR 5V LVPECL OUTPUT  
This section shows examples of 5V LVPECL output termination.  
Figure 3A shows standard termination for 5V LVPECL. The  
termination requires matched load of 50Ω resistors pull down to  
V
- 2V = 3V at the receiver. Figure 3B shows Thevenin  
CC  
equivalence of Figure 3A. In actual application where the 3V DC  
power supply is not available, this approached is normally used.  
5V  
5V  
5V  
5V  
R3  
84  
R4  
84  
PECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
+
-
PECL  
PECL  
R1  
125  
R2  
125  
R1  
50  
R2  
50  
3V  
FIGURE 3A. STANDARD 5V LVPECL OUTPUT TERMINATION  
FIGURE 3B. 5V LVPECL OUTPUT TERMINATION EXAMPLE  
ICS853052AG REV. B OCTOBER 24, 2007  
IDT/ ICS2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
8
ICS853052  
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
PRELIMINARY  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS853052.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853052 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 5.5V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core) = V  
* I  
= 5.5V * 21mA = 115.5mW  
EE_MAX  
MAX  
CC_MAX  
Power (outputs) = 30.94mW/Loaded Output pair  
MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air  
flow and a multi-layer board, the appropriate value is 112.7°C/W per Table 6B below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.146W * 112.7°C/W = 101.52°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6A. THERMAL RESISTANCE θ FOR 8-PIN TSSOP, FORCED CONVECTION  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
101.7°C/W  
90.5°C/W  
89.8°C/W  
TABLE 6B. THERMAL RESISTANCE θ FOR 8-PIN SOIC, FORCED CONVECTION  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
IDT/ ICS2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
9
ICS853052AG REV. B OCTOBER 24, 2007  
ICS853052  
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
PRELIMINARY  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 4.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
Figure 4. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a  
termination voltage of V - 2V.  
CC  
For logic high, V = V  
= V  
– 0.935V  
CC_MAX  
OUT  
OH_MAX  
)
= 0.935V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, V = V  
= V  
– 1.67V  
CC_MAX  
OUT  
OL_MAX  
)
(V  
- V  
= 1.67V  
CC_MAX  
OL_MAX  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V ) =  
OH_MAX  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
_MAX  
CC  
OH_MAX  
CC _MAX  
L
L
[(2V - 0.935V)/50Ω] * 0.935V = 19.92mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
_MAX  
CC  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.67V)/50Ω] * 1.67V = 11.02mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW  
IDT/ ICS2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
10  
ICS853052AG REV. B OCTOBER 24, 2007  
ICS853052  
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
PRELIMINARY  
RELIABILITY INFORMATION  
TABLE 7A. θ VS. AIR FLOW TABLE FOR 8 LEAD TSSOP  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
101.7°C/W  
90.5°C/W  
89.8°C/W  
TABLE 7B. θ VS. AIR FLOW TABLE FOR 8 LEAD SOIC  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS853052 is: 110  
Pin compatible with MC100EP58  
IDT/ ICS2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
11  
ICS853052AG REV. B OCTOBER 24, 2007  
ICS853052  
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
PRELIMINARY  
PACKAGE OUTLINE - G SUFFIX FOR 8 LEAD TSSOP  
PACKAGE OUTLINE - M SUFFIX FOR 8 LEAD SOIC  
TABLE 8A. PACKAGE DIMENSIONS  
TABLE 8B. PACKAGE DIMENSIONS  
Millimeters  
Millimeters  
SYMBOL  
SYMBOL  
MINIMUN  
MAXIMUM  
Minimum  
Maximum  
N
A
A1  
B
C
D
E
e
8
N
A
8
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
--  
1.10  
0.15  
0.97  
0.38  
0.23  
A1  
A2  
b
0
0.79  
0.22  
0.08  
c
D
3.00 BASIC  
4.90 BASIC  
3.00 BASIC  
0.65 BASIC  
1.95 BASIC  
1.27 BASIC  
E
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
E1  
e
L
e1  
L
α
0.40  
0°  
0.80  
8°  
Reference Document:JEDEC Publication 95, MS-012  
α
aaa  
--  
0.10  
Reference Document:JEDEC Publication 95, MO-187  
IDT/ ICS2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
12  
ICS853052AG REV. B OCTOBER 24, 2007  
ICS853052  
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
PRELIMINARY  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS853052AG  
Marking  
052A  
Package  
8 lead TSSOP  
Shipping Packaging  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS853052AGT  
ICS853052AGLF  
ICS853052AGLFT  
ICS853052AM  
052A  
8 lead TSSOP  
2500 tape & reel  
tube  
52AL  
8 lead "Lead-Free" TSSOP  
8 lead "Lead-Free" TSSOP  
8 lead SOIC  
52AL  
2500 tape & reel  
tube  
853052A  
853052A  
TBD  
ICS853052AMT  
ICS853052AMLF  
ICS853052AMLFT  
8 lead SOIC  
2500 tape & reel  
tube  
8 lead "Lead-Free" SOIC  
8 lead "Lead-Free" SOIC  
TBD  
2500 tape & reel  
Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICS2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
13  
ICS853052AG REV. B OCTOBER 24, 2007  
ICS853052  
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER  
PRELIMINARY  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
#20-03 Wisma Atria  
England  
+408 284 8200 (outside U.S.)  
Singapore 238877  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
+65 6 887 5505  
© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

853052AGLFT

Multiplexer, 85305 Series, 1-Func, 2 Line Input, 1 Line Output, Complementary Output, PDSO8, 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-187, TSSOP-8
IDT

853052AGT

Clock Driver
IDT

853052AMLFT

Multiplexer, 85305 Series, 1-Func, 2 Line Input, 1 Line Output, Complementary Output, PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, ROHS COMPLIANT, MS-012, SOIC-8
IDT

853052AMT

Clock Driver
IDT

853054AG

4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER
ICSI

853054AG

Multiplexer And Demux/Decoder, PDSO16
IDT

853054AGLF

Multiplexer, 853054 Series, 1-Func, 4 Line Input, 1 Line Output, Complementary Output, PDSO16, 4.40 X 5 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-16
IDT

853054AGLFT

Multiplexer, 853054 Series, 1-Func, 4 Line Input, 1 Line Output, Complementary Output, PDSO16, 4.40 X 5 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-16
IDT

853054AGT

Multiplexer And Demux/Decoder, PDSO16
IDT

853054AL

4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER
ICSI

853058AG

Multiplexer, 853058 Series, 1-Func, 8 Line Input, 1 Line Output, Complementary Output, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, MS-153, TSSOP-24
IDT

853058AGLFT

Multiplexer, 853058 Series, 1-Func, 8 Line Input, 1 Line Output, Complementary Output, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MS-153, TSSOP-24
IDT