85314AGI-11 [IDT]

Low Skew Clock Driver, 85314 Series, 5 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20;
85314AGI-11
型号: 85314AGI-11
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 85314 Series, 5 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20

驱动 光电二极管 逻辑集成电路
文件: 总19页 (文件大小:842K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Skew, 1-to-5 Differential-to-2.5V, 3.3V  
LVPECL Fanout Buffer  
ICS85314I-11  
DATA SHEET  
General Description  
Features  
The ICS85314I-11 is a low skew, high performance  
1-to-5 Differential-to-2.5V/3.3V LVPECL fanout buffer.  
The ICS85314I-11 has two selectable differential clock  
inputs. The CLK0, nCLK0 and CLK1, nCLK1 pairs can  
accept most standard differential input levels. The  
Five differential 2.5V/3.3V LVPECL outputs  
Selectable differential CLKx, nCLKx inputs  
S
IC  
HiPerClockS™  
CLK0, nCLK0 and CLK1, nCLK1 pairs can accept the following  
differential input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL  
Maximum output frequency: 700MHz  
clock enable is internally synchronized to eliminate runt clock pulses  
on the outputs during asynchronous assertion/deassertion of the  
clock enable pin.  
Translates any single-ended input signal to 3.3V  
LVPECL levels with resistor bias on nCLK input  
Output skew: 30ps (maximum)  
Guaranteed output and part-to-part skew characteristics make the  
ICS85314I-11 ideal for those applications demanding well defined  
performance and repeatability.  
Propagation delay: 1.8ns (maximum)  
RMS phase jitter @ 155.52MHz (12kHz - 20MHz):  
0.05ps (typical)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 3.8V, VEE = 0V  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Block Diagram  
Pin Assignment  
Pulldown  
nCLK_EN  
Q0  
nQ0  
Q1  
1
2
20  
19  
VCC  
nCLK_EN  
D
Q
3
4
18  
17  
VCC  
nCLK1  
CK  
nQ1  
Q2  
nQ2  
Q3  
5
6
7
16 CLK1  
Pulldown  
CLK0  
nCLK0  
Pullup  
0
1
15  
14  
13  
RESERVED  
nCLK0  
Q0  
Pulldown  
Pullup  
nQ0  
CLK1  
nCLK1  
CLK0  
nQ3  
8
Q4  
nQ4  
9
10  
12 CLK_SEL  
11  
VEE  
Q1  
nQ1  
ICS85314I-11  
Q2  
Pulldown  
nQ2  
CLK_SEL  
20-Lead TSSOP  
6.5mm x 4.4mm x 0.92mm package body  
G Package  
Q3  
nQ3  
Top View  
Q4  
nQ4  
ICS85314I-11  
20-Lead SOIC  
7.5mm x 12.8mm x 2.3mm package body  
M Package  
Top View  
ICS85314AGI-11 REVISION E MAY 4, 2010  
1
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
Table 1. Pin Descriptions  
Number  
1, 2  
Name  
Type  
Description  
Q0, nQ0  
Q1, nQ1  
Q2, nQ2  
Q3, nQ3  
Output  
Output  
Output  
Output  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
3, 4  
5, 6  
7, 8  
9, 10  
11  
Q4, nQ4  
VEE  
Output  
Power  
Differential output pair. LVPECL interface levels.  
Negative supply pin.  
Clock select input. When HIGH, selects CLK1, nCLK1 inputs. When LOW,  
selects CLK0, nCLK0 inputs. LVTTL / LVCMOS interface levels.  
12  
CLK_SEL  
Input  
Pulldown  
13  
14  
CLK0  
nCLK0  
RESERVED  
CLK1  
Input  
Input  
Pulldown  
Pullup  
Non-inverting differential clock input.  
Inverting differential clock input.  
Reserved pin.  
15  
Reserve  
Input  
16  
Pulldown  
Pullup  
Non-inverting differential clock input.  
Inverting differential clock input.  
Positive supply pins.  
17  
nCLK1  
VCC  
Input  
18, 20  
Power  
Synchronizing clock enable. When LOW, clock outputs follow clock input. When  
HIGH, Q outputs are forced low, nQ outputs are forced high.  
LVTTL / LVCMOS interface levels.  
19  
nCLK_EN  
Input  
Pulldown  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
k  
RPULLDOWN Input Pulldown Resistor  
kΩ  
ICS85314AGI-11 REVISION E MAY 4, 2010  
2
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
Function Tables  
Table 3A. Control Input Function Table  
Inputs  
Outputs  
nCLK_EN  
CLK_SEL  
Selected Source  
CLK0, nCLK0  
CLK1, nCLK1  
CLK0, nCLK0  
CLK1, nCLK1  
Q[0:4]  
Enabled  
nQ[0:4]  
Enabled  
0
0
1
1
0
1
0
1
Enabled  
Enabled  
Disabled; LOW  
Disabled; LOW  
Disabled; HIGH  
Disabled; HIGH  
After nCLK_EN switches, the clock outputs are disabled or enabled following a falling input clock edge as shown in Figure 1. In the  
active mode, the state of the outputs are a function of the CLK0, nCLK0 and CLK1, nCLK1 inputs as described in Table 3B.  
Enabled  
Disabled  
nCLK[0:1]  
CLK[0:1]  
nCLK_EN  
nQ[0:4]  
Q[0:4]  
Figure 1. nCLK_EN Timing Diagram  
Table 3B. Clock Input Function Table  
Inputs  
Outputs  
CLK0 or CLK1  
nCLK0 or nCLK1  
Q[0:4]  
LOW  
nQ[0:4]  
HIGH  
Input to Output Mode  
Differential-to-Differential  
Differential-to-Differential  
Polarity  
0
1
1
0
Non-Inverting  
Non-Inverting  
HIGH  
LOW  
ICS85314AGI-11 REVISION E MAY 4, 2010  
3
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
Inputs, VI  
4.6V  
-0.5V to VCC + 0.5V  
Outputs, IO  
Continuos Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA  
20 Lead SOIC  
20 Lead TSSOP  
46.2°C/W (0 lfpm)  
73.2°C/W (0 lfpm)  
Storage Temperature, TSTG  
-65°C to 150°C  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VCC = 2.375V to 3.8V; VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
VCC Positive Supply Voltage  
IEE Power Supply Current  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
V
2.375  
3.3  
3.8  
80  
mA  
Table 4B. LVCMOS/LVTTL DC Characteristics, VCC = 2.375V to 3.8V; VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VCC + 0.3  
0.8  
Units  
V
VIH  
VIL  
IIH  
Input High Voltage  
2
Input Low Voltage  
Input High Current  
Input Low Current  
-0.3  
V
nCLK_EN, CLK_SEL  
nCLK_EN, CLK_SEL  
VCC = VIN = 3.8V  
150  
µA  
µA  
IIL  
VCC = 3.8V, VIN = 0V  
-5  
Table 4C. Differential DC Characteristics, VCC = 2.375V to 3.8V; VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
VCC = VIN = 3.8V  
VCC = VIN = 3.8V  
VCC = 3.8V, VIN = 0V  
Minimum  
Typical  
Maximum  
Units  
µA  
µA  
µA  
µA  
V
CLK0, CLK1  
nCLK0, nCLK1  
CLK0, CLK1  
nCLK0, nCLK1  
150  
5
Input  
IIH  
High Current  
-5  
Input  
IIL  
Low Current  
VCC = 3.8V, VIN = 0V  
-150  
0.15  
0.5  
VPP  
Peak-to-Peak Voltage; NOTE 1  
1.3  
VCMR  
Common Mode Range; NOTE 1, 2  
VCC – 0.85  
V
NOTE 1: VIL should not be less than -0.3V  
NOTE 2: Common mode voltage is defined as VIH.  
ICS85314AGI-11 REVISION E MAY 4, 2010  
4
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
Table 4D. LVPECL DC Characteristics, VCC = 2.375V to 3.8V; VEE = 0V, TA = -40°C to 85°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCC – 1.4  
VCC – 2.0  
0.6  
Typical  
Maximum  
VCC – 0.9  
VCC – 1.7  
1.0  
Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs termination with 50to VCC – 2V.  
AC Electrical Characteristics  
Table 5. AC Characteristics, VCC = 2.375V to 3.8V; VEE = 0V, TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
fMAX  
Output Frequency  
700  
MHz  
Propagation Delay, Low to High;  
NOTE 1  
tpLH  
ƒ 700MHz  
1.0  
1.4  
1.8  
30  
ns  
ps  
ps  
tsk(o)  
tjit(θ)  
Output Skew; NOTE 2, 3  
RMS Phase Jitter (Random);  
NOTE 4  
155.52MHz,  
Integration Range: 12kHz - 20MHz  
0.05  
tsk(pp)  
tS  
Part-to-Part Skew; NOTE 3, 5  
Setup Time  
350  
ps  
ps  
ps  
ps  
%
nCLK_EN to CLK  
nCLK_EN to CLK  
20% to 80%  
50  
50  
tH  
Hold Time  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle Skew  
200  
45  
700  
55  
ƒ 700MHz  
NOTE: All parameters measured at ƒmax unless otherwise noted.  
NOTE: The cycle-to-cycle jitter on the input will equal the jitter on the output. The part does not add jitter.  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 4: Refer to Phase Noise Plot.  
NOTE 5: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and  
with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
ICS85314AGI-11 REVISION E MAY 4, 2010  
5
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
Typical Phase Noise at 155.52MHz  
0
155.52MHz  
RMS Phase Jitter (Random)  
12kHz to 20MHz = 0.05ps (typical)  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
Raw Phase Noise Data  
-160  
-170  
-180  
-190  
Offset Frequency (Hz)  
ICS85314AGI-11 REVISION E MAY 4, 2010  
6
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
Parameter Measurement Information  
2V  
V
CC  
SCOPE  
nCLK[0:1]  
Qx  
VCC  
VPP  
VCMR  
Cross Points  
CLK[0:1]  
LVPECL  
nQx  
V
EE  
VEE  
-1.8V to -0.375V  
LVPECL Output Load AC Test Circuit  
Differential Input Level  
Part 1  
nQx  
nQx  
nQx  
nQx  
Part 2  
nQy  
nQy  
nQy  
nQy  
tsk(pp)  
tsk(o)  
Output Skew  
Part-to-Part Skew  
Phase Noise Plot  
nCLK[0:1]  
CLK[0:1]  
nQ[0:4]  
Q[0:4]  
tPD  
Offset Frequency  
f1  
f2  
Propagation Delay  
RMS Phase Jitter  
ICS85314AGI-11 REVISION E MAY 4, 2010  
7
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
Parameter Measurement Information  
nCLK[0:1]  
CLK[0:1]  
nQ[0:4]  
80%  
tF  
80%  
tR  
VSWING  
20%  
20%  
nCLK_EN  
Q[0:4]  
tSET-UP  
tHOLD  
Setup & Hold Time  
Output Rise/Fall Time  
nQ[0:4]  
Q[0:4]  
tPW  
tPERIOD  
tPW  
odc =  
x 100%  
tPERIOD  
Output Duty Cycle  
ICS85314AGI-11 REVISION E MAY 4, 2010  
8
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
Application Information  
Wiring the Differential Input to Accept Single-Ended Levels  
Figure 2 shows how a differential input can be wired to accept single  
ended levels. The reference voltage VREF = VCC/2 is generated by  
the bias resistors R1 and R2. The bypass capacitor (C1) is used to  
help filter noise on the DC bias. This bias circuit should be located as  
close to the input pin as possible. The ratio of R1 and R2 might need  
to be adjusted to position the VREF in the center of the input voltage  
swing. For example, if the input clock swing is 2.5V and VCC = 3.3V,  
R1 and R2 value should be adjusted to set VREF at 1.25V. The values  
below are for when both the single ended swing and VCC are at the  
same voltage. This configuration requires that the sum of the output  
impedance of the driver (Ro) and the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination at  
the input will attenuate the signal in half. This can be done in one of  
two ways. First, R3 and R4 in parallel should equal the transmission  
line impedance. For most 50applications, R3 and R4 can be 100.  
The values of the resistors can be increased to reduce the loading for  
slower and weaker LVCMOS driver. When using single-ended  
signaling, the noise rejection benefits of differential signaling are  
reduced. Even though the differential input can handle full rail  
LVCMOS signaling, it is recommended that the amplitude be  
reduced. The datasheet specifies a lower differential amplitude,  
however this only applies to differential signals. For single-ended  
applications, the swing can be larger, however VIL cannot be less  
than -0.3V and VIH cannot be more than Vcc + 0.3V. Though some of  
the recommended components might not be used, the pads should  
be placed in the layout. They can be utilized for debugging purposes.  
The datasheet specifications are characterized and guaranteed by  
using a differential signal.  
Figure 2. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels  
Recommendations for Unused Input and Output Pins  
Outputs:  
Inputs:  
LVPECL Outputs  
All unused LVPECL outputs can be left floating. We recommend that  
there is no trace attached. Both sides of the differential output pair  
should either be left floating or terminated.  
CLK/nCLK Inputs  
For applications not requiring the use of the differential input, both  
CLK and nCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to ground.  
Control Pins  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
ICS85314AGI-11 REVISION E MAY 4, 2010  
9
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and  
other differential signals. Both VSWING and VOH must meet the VPP and  
VCMR input requirements. Figures 3A to 3F show interface examples  
for the CLK/nCLK input driven by the most common driver types. The  
input interfaces suggested here are examples only. Please consult  
with the vendor of the driver component to confirm the driver  
termination requirements. For example in Figure 3A, the input  
termination applies for IDT LVHSTL drivers. If you are using an  
LVHSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50  
CLK  
Zo = 50Ω  
CLK  
Zo = 50Ω  
nCLK  
Zo = 50Ω  
Differential  
Input  
LVPECL  
nCLK  
R1  
50Ω  
R2  
50Ω  
Differential  
Input  
LVHSTL  
R1  
50Ω  
R2  
50Ω  
IDT  
LVHSTL Driver  
R2  
50Ω  
Figure 3B. CLK/nCLK Input  
Figure 3A. CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
Driven by an IDT LVHSTL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125Ω  
R4  
125Ω  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100  
nCLK  
nCLK  
Zo = 50Ω  
Differential  
Input  
Receiver  
LVPECL  
LVDS  
R1  
R2  
84Ω  
84Ω  
Figure 3C. CLK/nCLK Input  
Figure 3D. CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
Driven by a 3.3V LVDS Driver  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120Ω  
120Ω  
Zo = 50Ω  
Zo = 60Ω  
Zo = 60Ω  
*R3  
*R4  
33Ω  
33Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
nCLK  
Differential  
Input  
Differential  
Input  
SSTL  
HCSL  
R1  
50Ω  
R2  
50Ω  
R1  
120Ω  
R2  
120Ω  
*Optional – R3 and R4 can be 0Ω  
Figure 3E. CLK/nCLK Input  
Driven by a 3.3V HCSL Driver  
Figure 3F. CLK/nCLK Input Driven by a 2.5V SSTL Driver  
ICS85314AGI-11 REVISION E MAY 4, 2010  
10  
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be used  
to maximize operating frequency and minimize signal distortion.  
Figures 4A and 4B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and clock  
component process variations.  
The differential outputs are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
R3  
R4  
3.3V  
125  
125Ω  
3.3V  
3.3V  
Z
o = 50Ω  
3.3V  
Z
o = 50Ω  
+
_
+
_
Input  
LVPECL  
Zo = 50Ω  
LVPECL  
Input  
Zo = 50Ω  
R1  
R2  
R1  
84Ω  
R2  
84Ω  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
* Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
Figure 4A. 3.3V LVPECL Output Termination  
Figure 4B. 3.3V LVPECL Output Termination  
ICS85314AGI-11 REVISION E MAY 4, 2010  
11  
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
Termination for 2.5V LVPECL Outputs  
Figure 5A and Figure 5B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating  
50to VCC – 2V. For VCC = 2.5V, the VCC – 2V is very close to  
ground level. The R3 in Figure 5B can be eliminated and the  
termination is shown in Figure 5C.  
2.5V  
VCC = 2.5V  
2.5V  
2.5V  
VCC = 2.5V  
50Ω  
R1  
R3  
250Ω  
250Ω  
+
50Ω  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
R2  
50Ω  
50Ω  
2.5V LVPECL Driver  
R2  
R4  
62.5Ω  
62.5Ω  
R3  
18Ω  
Figure 5A. 2.5V LVPECL Driver Termination Example  
Figure 5B. 2.5V LVPECL Driver Termination Example  
2.5V  
VCC = 2.5V  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
R2  
50Ω  
50Ω  
Figure 5C. 2.5V LVPECL Driver Termination Example  
ICS85314AGI-11 REVISION E MAY 4, 2010  
12  
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS85314I-11.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85314I-11 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.8V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.8V * 80mA = 304mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 5 * 30mW = 150mW  
Total Power_MAX (3.6V, with all outputs switching) = 304mW + 150mW = 454mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and it directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a moderate air  
flow or 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W per Table 6B below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.454W * 66.6°C/W = 115°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 6A. Thermal Resistance θJA for 20 Lead SOIC, Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
46.2°C/W  
65.7°C/W  
39.7°C/W  
57.5°C/W  
36.8°C/W  
NOTE: Most modern PCB design use multi-layered boards. The data in the second row pertains to most designs.  
Table 6B. Thermal Resistance θJA for 20 Lead TSSOP, Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
98.0°C/W  
66.6°C/W  
88.0°C/W  
63.5°C/W  
NOTE: Most modern PCB design use multi-layered boards. The data in the second row pertains to most designs.  
ICS85314AGI-11 REVISION E MAY 4, 2010  
13  
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
3. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the LVPECL output pairs.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCC  
Q1  
VOUT  
RL  
50Ω  
VCC - 2V  
Figure 6. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage of  
VCC – 2V.  
For logic high, VOUT = VOH_MAX = VCC_MAX – 0.9V  
(VCC_MAX – VOH_MAX) = 0.9V  
For logic low, VOUT = VOL_MAX = VCC_MAX 1.7V  
(VCC_MAX – VOL_MAX) = 1.7V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOH_MAX) = [(2V – (VCC_MAX – VOH_MAX))/RL] * (VCC_MAX – VOH_MAX) =  
[(2V – 0.9V)/50] * 0.9V = 19.8mW  
Pd_L = [(VOL_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOL_MAX) = [(2V – (VCC_MAX – VOL_MAX))/RL] * (VCC_MAX – VOL_MAX) =  
[(2V – 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
ICS85314AGI-11 REVISION E MAY 4, 2010  
14  
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
Reliability Information  
Table 7A. θJA vs. Air Flow Table for a 20 Lead SOIC, Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
46.2°C/W  
65.7°C/W  
39.7°C/W  
57.5°C/W  
36.8°C/W  
NOTE: Most modern PCB design use multi-layered boards. The data in the second row pertains to most designs.  
Table 7B. θJA vs. Air Flow Table for a 20 Lead TSSOP, Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
98.0°C/W  
66.6°C/W  
88.0°C/W  
63.5°C/W  
NOTE: Most modern PCB design use multi-layered boards. The data in the second row pertains to most designs.  
Transistor Count  
The transistor count for ICS85314I-11 is: 674  
ICS85314AGI-11 REVISION E MAY 4, 2010  
15  
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
Package Outlines and Package Dimensions  
Package Outline - G Suffix for 20 Lead TSSOP  
Package Outline - M Suffix for 20 Lead SOIC  
Table 8A. Package Dimensions  
All Dimensions in Millimeters  
Table 8B. Package Dimensions for 20 Lead SOIC  
300 Millimeters  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
Symbol  
Minimum  
Maximum  
N
A
20  
N
A
A1  
A2  
B
C
D
E
20  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
2.65  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
0.10  
2.05  
0.33  
0.18  
12.60  
7.40  
2.55  
0.51  
0.32  
13.00  
7.60  
c
D
E
6.40 Basic  
E1  
e
4.30  
4.50  
e
1.27 Basic  
0.65 Basic  
H
h
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
7°  
L
0.45  
0°  
0.75  
8°  
α
L
aaa  
0.10  
α
Reference Document: JEDEC Publication 95, MO-153  
Reference Document: JEDEC Publication 95, MS-013, MS-119  
ICS85314AGI-11 REVISION E MAY 4, 2010  
16  
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
85314AGI-11  
Marking  
ICS85314AI11  
ICS85314AI11  
ICS5314AI11L  
ICS5314AI11L  
Package  
20 lead TSSOP  
20 lead TSSOP  
Shipping Packaging  
Tube  
2500 Tape & Reel  
Tube  
2500 Tape & Reel  
Tube  
1000 Tape & Reel  
Tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
85314AGI-11T  
85314AGI-11LF  
85314AGI-11LFT  
85314AMI-11  
85314AMI-11T  
85314AMI-11LF  
85314AMI-11LFT  
“Lead-Free” 20 Lead TSSOP  
“Lead-Free” 20 Lead TSSOP  
20 Lead SOIC  
20 Lead SOIC  
“Lead-Free” 20 Lead SOIC  
“Lead-Free” 20 Lead SOIC  
ICS85314AI-11  
ICS85314AI-11  
ICS85314AMI-11LF  
ICS85314AMI-11LF  
1000 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without  
additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support  
devices or critical medical instruments.  
ICS85314AGI-11 REVISION E MAY 4, 2010  
17  
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
T1  
2
Pin Description Table - Pin 14 & 17, nCLKx, deleted partial description and added Pullup in  
the “Type” column.  
T2  
2
4
7
8
Pin Characteristics Table - CIN changed 4pF max. to 4pF typical.  
AMR - corrected Output rating.  
Added Wiring the Differential Input to Accept Single Ended Levels section.  
Added Differential Clock Input Interface section.  
A
6/11/03  
1
5
6
8
9
Added Phase Noise bullet in Features section.  
AC Characteristics Table - added RMS Phase Jitter.  
Added Phase Jitter Plot.  
Updated Termination for 3.3V LVPECL Output diagrams.  
Added Termination for 2.5V LVPECL Output section.  
T5  
B
8/11/04  
1
2
16  
Features section - added Lead-Free bullet.  
Pin Description Table - corrected CLK_SEL description.  
Ordering Information Table - added ""Lead-Free"" part number for TSSOP package.  
B
C
D
T1  
T9  
3/22/05  
5/24/05  
9/23/05  
1
5
Features section - changed Part-to-Part Skew from 250ps max. to 350ps max.  
AC Characteristics table - changed Part-to-Part Skew from 250ps max. to 350ps max.  
T5  
T4D  
5
8
LVPECL DC Characteristics Table - changed VOH max from VCC - 1.0V to VCC - 0.9V.  
Application Information Section - added Recommendations for Unused Input and Output  
Pins.  
T4C  
T5  
4
5
Differential DC Characteristics Table - corrected typo in IIH row, nCLKx to 5uA from 150uA.  
Added thermal note to AC Characteristics Table.  
E
E
9
17  
Updated “Wiring the Differential Input to Accept Single-ended Levels” section.  
Ordering Information Table - added LF marking for SOIC package.  
Converted datasheet format.  
4/16/10  
5/4/10  
T9  
T9  
17  
Ordering Information Table - corrected package in the Package Column.  
ICS85314AGI-11 REVISION E MAY 4, 2010  
18  
©2010 Integrated Device Technology, Inc.  
ICS85314I-11 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-2.5V, 3.3V LVPECL FANOUT BUFFER  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
San Jose, California 95138  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2009. All rights reserved.  

相关型号:

85314AGI-11LF

LVPECL Fanout Buffer
IDT

85314AGI-11LFT

LVPECL Fanout Buffer
IDT

85314AM-01T

Low Skew Clock Driver, PDSO20
IDT

85314AMI-11

Low Skew Clock Driver, 85314 Series, 5 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, MS-013, MO-119, SOIC-20
IDT

85314AMI-11LF

LVPECL Fanout Buffer
IDT

85314AMI-11LFT

LVPECL Fanout Buffer
IDT

85314BGI-01

Low Skew Clock Driver, 85314 Series, 5 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

85314BGI-01LF

Differential-to-2.5V/3.3V LVPECL Fanout Buffer
IDT

85314BGI-01LFT

Differential-to-2.5V/3.3V LVPECL Fanout Buffer
IDT

85314BGI-01T

Low Skew Clock Driver, 85314 Series, 5 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

85314BMI-01

Low Skew Clock Driver, 85314 Series, 5 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, MS-013, MO-119, SOIC-20
IDT

85314BMI-01LF

Differential-to-2.5V/3.3V LVPECL Fanout Buffer
IDT