854054AGLF [IDT]

Multiplexer, 854054 Series, 1-Func, 4 Line Input, 1 Line Output, Complementary Output, PDSO16, 4.40 X 5 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-16;
854054AGLF
型号: 854054AGLF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Multiplexer, 854054 Series, 1-Func, 4 Line Input, 1 Line Output, Complementary Output, PDSO16, 4.40 X 5 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-16

光电二极管 逻辑集成电路
文件: 总13页 (文件大小:246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS854054  
4:1  
DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS854054 is a 4:1 Differential-to-LVDS Clock High speed 4:1 differential multiplexer  
ICS  
HiPerClockS™  
Multiplexer which can operate up to 2.8GHz and  
is a member of the HiPerClockSfamily of High  
Performance Clock Solutions from ICS. The  
ICS854054 has 4 selectable differential clock  
One differential LVDS output  
Four selectable differential clock inputs  
PCLKx, nPCLKx pairs can accept the following  
differential input levels: LVPECL, LVDS, CML, SSTL  
inputs. The PCLK, nPCLK input pairs can accept LVPECL,  
LVDS, CML or SSTL levels. The fully differential architec-  
ture and low propagation delay make it ideal for use in clock  
distribution circuits. The select pins have internal pulldown  
resistors. The SEL1 pin is the most significant bit and the  
binary number applied to the select pins will select the same  
numbered data input (i.e., 00 selects PCLK0, nPCLK0).  
Maximum output frequency: 2.8GHz  
Translates any single ended input signal to  
LVDS levels with resistor bias on nPCLKx input  
Part-to-part skew: 375ps (maximum)  
Propagation delay: 700ps (maximum)  
Supply voltage range: 3.135V to 3.465V  
-40°C to 85°C ambient operating temperature  
Available in both standard and lead-free RoHS compliant  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
1
2
3
4
5
6
7
8
PCLK0  
nPCLK0  
PCLK1  
nPCLK1  
VDD  
SEL0  
SEL1  
GND  
16  
15  
14  
13  
12  
11  
10  
9
VDD  
Q
nQ  
GND  
nPCLK3  
PCLK3  
nPCLK2  
PCLK2  
PCLK0  
nPCLK0  
(default)  
00  
01  
10  
PCLK1  
nPCLK1  
Q
nQ  
PCLK2  
nPCLK2  
ICS854054  
16-LeadTSSOP  
PCLK3  
nPCLK3  
4.4mm x 5.0mm x 0.92mm package body  
G Package  
11  
TopView  
SEL0  
SEL1  
854054AG  
www.icst.com/products/hiperclocks.html  
REV.A MARCH 29, 2006  
1
ICS854054  
4:1  
DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Pulldown  
Description  
1
PCLK0  
Input  
Input  
Input  
Input  
Non-inverting differential clock input.  
Inverting differential clock input.  
VDD/2 default when left floating.  
2
3
4
nPCLK0  
PCLK1  
Pullup/Pulldown  
Pulldown  
Non-inverting differential clock input.  
Inverting differential clock input.  
VDD/2 default when left floating.  
nPCLK1  
Pullup/Pulldown  
5, 16  
6, 7  
8, 13  
9
VDD  
SEL0, SEL1  
GND  
Power  
Input  
Positive supply pins.  
Pulldown  
Clock select input pins. LVCMOS/LVTTL interface levels.  
Power supply ground.  
Power  
Input  
PCLK2  
Pulldown  
Pullup/Pulldown  
Pulldown  
Non-inverting differential clock input.  
Inverting differential clock input.  
VDD/2 default when left floating.  
10  
11  
nPCLK2  
PCLK3  
Input  
Input  
Non-inverting differential clock input.  
Inverting differential clock input.  
VDD/2 default when left floating.  
12  
nPCLK3  
nQ0, Q0  
Input  
Pullup/Pulldown  
14, 15  
Output  
Differential output pair. LVDS interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
RPULLDOWN Pulldown Resistor  
75  
50  
kΩ  
kΩ  
RVDD/2  
Pullup/Pulldown Resistors  
TABLE 3. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
SEL1  
SEL0  
Q
nQ  
0
0
1
1
0
1
0
1
PCLK0  
PCLK1  
PCLK2  
PCLK3  
nPCLK0  
nPCLK1  
nPCLK2  
nPCLK3  
854054AG  
www.icst.com/products/hiperclocks.html  
REV.A MARCH 29, 2006  
2
ICS854054  
4:1  
DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
5.5V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
DD  
Inputs, V  
-0.5V to VDD + 0.5 V  
I
Outputs, IO  
Continuous Current  
10mA  
15mA  
Surge Current  
PackageThermal Impedance, θ  
89°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VDD  
IDD  
Positive Supply Voltage  
Power Supply Current  
3.135  
3.3  
3.465  
90  
V
mA  
TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VIH  
VIL  
IIH  
Input High Voltage  
2
VDD + 0.3  
0.8  
V
V
Input Low Voltage  
Input High Current  
Input Low Current  
-0.3  
VDD = VIN = 3.465V  
150  
µA  
µA  
IIL  
VDD = 3.465V, VIN = 0V  
-10  
TABLE 4C. LVPECL DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VDD = VIN = 3.465V  
VDD = VIN = 3.465V  
VDD = 3.465V, VIN = 0V  
VDD = 3.465V, VIN = 0V  
Minimum  
Typical Maximum Units  
PCLK0:PCLK3  
nPCLK0:nPCLK3  
PCLK0:PCLK3  
nPCLK0:nPCLK3  
150  
150  
µA  
µA  
µA  
µA  
V
-10  
-150  
0.15  
1.2  
IIL  
Input Low Current  
VPP  
Peak-to-Peak Input Voltage  
1.2  
VDD  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for PCLKx or nPCLKx is VDD + 0.3V.  
854054AG  
www.icst.com/products/hiperclocks.html  
REV.A MARCH 29, 2006  
3
ICS854054  
4:1  
DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4D. LVDS DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions  
Minimum Typical Maximum Units  
VOD  
Differential Output Voltage  
250  
450  
525  
50  
mV  
mV  
V
Δ VOD  
VOS  
VOD Magnitude Change  
Offset Voltage  
1.125  
1.25  
1.375  
50  
Δ VOS  
VOS Magnitude Change  
mV  
TABLE 5. AC CHARACTERISTICS, VDD = 3.135V TO 3.465V, TA = -40°C TO 85°C  
Symbol  
fMAX  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Output Frequency  
Propagation Delay; NOTE 1  
2.8  
GHz  
ps  
tPD  
325  
700  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter  
Section  
155.52 MHz,  
(12kHz - 20MHz)  
tjit  
0.195  
ps  
tsk(pp)  
tsk(i)  
Part-to-Part Skew; NOTE 2, 3  
Input Skew  
375  
90  
ps  
ps  
ps  
tR / tF  
Output Rise/Fall Time  
20ꢀ to 80ꢀ  
50  
250  
155.52MHz,  
Input Peak-to-Peak = 800mV  
MUXISOLATION MUX Isolation  
-50  
dB  
All parameters measured up to 1.5MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 3: This parameter is defined according with JEDEC Standard 65.  
854054AG  
www.icst.com/products/hiperclocks.html  
REV.A MARCH 29, 2006  
4
ICS854054  
4:1  
DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
-10  
-20  
-30  
-40  
Additive Phase Jitter, RMS  
@ 155.52MHz (12kHz - 20MHz) = <0.195ps typical  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
854054AG  
www.icst.com/products/hiperclocks.html  
REV.A MARCH 29, 2006  
5
ICS854054  
4:1  
DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
VDD  
SCOPE  
Qx  
nPCLK0:3  
PCLK0:3  
3.3V 5ꢀ  
Power Supply  
Float GND  
VPP  
VCMR  
Cross Points  
LVDS  
+
-
nQx  
GND  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nPCLK0:3  
nQx  
PART 1  
Qx  
PCLK0:3  
nQ0  
nQy  
PART 2  
Qy  
Q0  
tPD  
tsk(pp)  
PROPAGATION DELAY  
PART-TO-PART SKEW  
nPCLK0  
PCLK0  
nPCLK1  
PCLK1  
80ꢀ  
tF  
80ꢀ  
VOD  
Clock  
20ꢀ  
20ꢀ  
Outputs  
nQ  
tR  
Q
tPD2  
tPD1  
tsk(i)  
tsk(i) = |tPD1 - tPD2  
|
INPUT SKEW  
OUTPUT RISE/FALL TIME  
VDD  
out  
out  
VDD  
DC Input  
LVDS  
out  
LVDS  
DC Input  
100  
V
OD/Δ VOD  
VOS/Δ VOS  
out  
DIFFERENTIAL OUTPUT VOLTAGE  
OFFSET VOLTAGE  
854054AG  
www.icst.com/products/hiperclocks.html  
REV.A MARCH 29, 2006  
6
ICS854054  
4:1  
DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept of R1 and R2 might need to be adjusted to position theV_REF in  
single ended levels. The reference voltage V_REF = VDD/2 is the center of the input voltage swing. For example, if the input  
generated by the bias resistors R1, R2 and C1.This bias circuit clock swing is only 2.5V andVDD= 3.3V, V_REF should be 1.25V  
should be located as close as possible to the input pin.The ratio and R2/R1 = 0.609.  
VDD  
R1  
1K  
Single Ended Clock Input  
PCLK  
V_REF  
nPCLK  
C1  
0.1u  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
RECOMMENDATIONS FOR UNUSED INPUT PINS  
INPUTS:  
PCLK/nPCLK INPUT:  
For applications not requiring the use of a differential input, both  
the PCLK and nPCLK pins can be left floating. Though not  
required, but for additional protection, a 1kΩ resister can be tied  
from PCLK to ground.  
SELECT PINS:  
All select pins have internal pull-ups and pull-downs;  
additional resistance is not required but can be added for  
additional protection. A 1kΩ resister can be used.  
854054AG  
www.icst.com/products/hiperclocks.html  
REV.A MARCH 29, 2006  
7
ICS854054  
4:1  
DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
LVPECL CLOCK INPUT INTERFACE  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other gested here are examples only. If the driver is from another  
differential signals. Both VSWING and VOH must meet the VPP vendor, use their termination recommendation. Please con-  
and VCMR input requirements. Figures 2A to 2E show inter- sult with the vendor of the driver component to confirm the  
face examples for the HiPerClockS PCLK/nPCLK input driven driver termination requirements.  
by the most common driver types. The input interfaces sug-  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
3.3V  
R3  
120  
R4  
120  
R1  
50  
R2  
50  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
nPCLK  
HiPerClockS  
nPCLK  
PCLK/nPCLK  
HiPerClockS  
PCLK/nPCLK  
R1  
120  
R2  
120  
FIGURE 2A. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
FIGURE 2B. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN SSTL IN DRIVER  
BY A CML DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 2C. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
FIGURE 2D. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
84  
R4  
84  
C1  
C2  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
FIGURE 2E. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
854054AG  
www.icst.com/products/hiperclocks.html  
REV.A MARCH 29, 2006  
8
ICS854054  
4:1  
DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
LVDS DRIVER TERMINATION  
A general LVDS interface is shown in Figure 3. In a 100Ω receiver input. For a multiple LVDS outputs buffer, if only par-  
differential transmission line environment, LVDS drivers re- tial outputs are used, it is recommended to terminate the un-  
used outputs.  
quire a matched load termination of 100Ω across near the  
3.3V  
3.3V  
LVDS_Driver  
+
-
R1  
100  
100 Ohm Differiential Transmission Line  
FIGURE 3. TYPICAL LVDS DRIVERTERMINATION  
854054AG  
www.icst.com/products/hiperclocks.html  
REV.A MARCH 29, 2006  
9
ICS854054  
4:1  
DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS854054.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS854054 is the sum of the core power.  
The following is the power dissipation for VDD = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
Power (core)MAX = VDD_MAX * IDD_MAX = 3.465V * 90mA = 311.85mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of  
the device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
qJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used.  
Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 81.8°C/W per  
Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.312W * 81.8°C/W = 110.5°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air  
flow, and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 16-LEADTSSOP, FORCED CONVECTION  
θ
JA by Velocity (Linear Feet per Minute)  
0
200  
118.2°C/W  
500  
106.8°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
137.1°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
89.0°C/W  
81.8°C/W  
78.1°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
854054AG  
www.icst.com/products/hiperclocks.html  
REV.A MARCH 29, 2006  
10  
ICS854054  
4:1  
DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOWT ABLE FOR 16 LEAD TSSOP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
118.2°C/W  
81.8°C/W  
500  
106.8°C/W  
78.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
137.1°C/W  
89.0°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS854054 is: 361  
854054AG  
www.icst.com/products/hiperclocks.html  
REV.A MARCH 29, 2006  
11  
ICS854054  
4:1  
DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - G SUFFIX FOR 16 LEAD TSSOP  
TABLE 8. PACKAGE DIMENSIONS  
Millimeters  
Minimum Maximum  
SYMBOL  
N
A
16  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
5.10  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
4.90  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
854054AG  
www.icst.com/products/hiperclocks.html  
REV.A MARCH 29, 2006  
12  
ICS854054  
4:1  
DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS854054AG  
Marking  
854054AG  
854054AG  
TBD  
Package  
Shipping Packaging Temperature  
16 Lead TSSOP  
16 Lead TSSOP  
16 Lead TSSOP  
16 Lead TSSOP  
tube  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS854054AGT  
ICS854054AGLF  
ICS854054AGLFT  
2500 tape & reel  
tube  
TBD  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
854054AG  
www.icst.com/products/hiperclocks.html  
REV.A MARCH 29, 2006  
13  

相关型号:

854054AGLFT

Multiplexer, 854054 Series, 1-Func, 4 Line Input, 1 Line Output, Complementary Output, PDSO16, 4.40 X 5 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-16
IDT

854054AGT

Differential Multiplexer, 1 Func, 4 Channel, CMOS, PDSO16
IDT

854057AG

Clock Driver, PDSO20
IDT

854057AGLF

Low Skew Clock Driver, 854057 Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 X 6.50 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

854057AGLFT

Low Skew Clock Driver, 854057 Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 X 6.50 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

854057AGT

Clock Driver, PDSO20
IDT

854058AG

Multiplexer, 854058 Series, 1-Func, 8 Line Input, 1 Line Output, Complementary Output, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, MS-153, TSSOP-24
IDT

854058AGLF

Multiplexer, 1-Func, 8 Line Input, 1 Line Output, Complementary Output, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, MS-153, TSSOP-24
IDT

854058AGLFT

Multiplexer, 1-Func, 8 Line Input, 1 Line Output, Complementary Output, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, MS-153, TSSOP-24
IDT

854058AGT

Multiplexer, 854058 Series, 1-Func, 8 Line Input, 1 Line Output, Complementary Output, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, MS-153, TSSOP-24
IDT

85406-10MM

Strip Terminal Block, 15A, 2.5mm2, 1 Row(s), 1 Deck(s)
MOLEX

85406-72

Strip Terminal Block, 15A, 1.5mm2, 1 Row(s), 1 Deck(s)
MOLEX