85411AMLFT

更新时间:2024-09-18 22:12:44
品牌:IDT
描述:Low Skew, 1-to-2 Different ial-to-LVDS Fanout Buffer

85411AMLFT 概述

Low Skew, 1-to-2 Different ial-to-LVDS Fanout Buffer 时钟缓冲器、驱动器、锁相环 时钟驱动器

85411AMLFT 规格参数

是否无铅: 不含铅是否Rohs认证: 符合
生命周期:Lifetime Buy零件包装代码:SOIC
包装说明:SOIC-8针数:8
Reach Compliance Code:compliantECCN代码:EAR99
HTS代码:8542.39.00.01风险等级:0.88
系列:85411输入调节:DIFFERENTIAL
JESD-30 代码:R-PDSO-G8JESD-609代码:e3
长度:4.9 mm逻辑集成电路类型:LOW SKEW CLOCK DRIVER
湿度敏感等级:1功能数量:1
反相输出次数:端子数量:8
实输出次数:2最高工作温度:70 °C
最低工作温度:封装主体材料:PLASTIC/EPOXY
封装代码:SOP封装等效代码:SOP8,.25
封装形状:RECTANGULAR封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):260电源:3.3 V
Prop。Delay @ Nom-Sup:2.5 ns传播延迟(tpd):2.5 ns
认证状态:Not QualifiedSame Edge Skew-Max(tskwd):0.02 ns
座面最大高度:1.75 mm子类别:Clock Drivers
最大供电电压 (Vsup):3.63 V最小供电电压 (Vsup):2.97 V
标称供电电压 (Vsup):3.3 V表面贴装:YES
温度等级:COMMERCIAL端子面层:Matte Tin (Sn) - annealed
端子形式:GULL WING端子节距:1.27 mm
端子位置:DUAL处于峰值回流温度下的最长时间:30
宽度:3.9 mmBase Number Matches:1

85411AMLFT 数据手册

通过下载85411AMLFT数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
Low Skew, 1-to-2 Differential-to-LVDS  
Fanout Buffer  
85411  
Data Sheet  
GENERAL DESCRIPTION  
FEATURES  
Two differential LVDS outputs  
The 85411 is a low skew, high performance 1-to-2 Differential-  
to-LVDS Fanout Buffer and a member of the family of High  
Performance Clock Solutions from IDT. The CLK, nCLK pair  
can accept most standard differential input levels.The 85411 is  
characterized to operate from a 3.3V power supply. Guaranteed  
output and part-to-part skew characteristics make the 85411 ideal  
for those clock distribution applications demanding well defined  
performance and repeatability.  
One differential CLK, nCLK clock input  
CLK, nCLK pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL  
Maximum output frequency: 650MHz  
Translates any single ended input signal to  
LVDS levels with resistor bias on nCLK input  
Output skew: 20ps (maximum)  
Part-to-part skew: 250ps (maximum)  
Additive phase jitter, RMS: 0.05ps (typical)  
Propagation delay: 2.5 ns (maximum)  
3.3V operating supply  
0°C to 70°C ambient operating temperature  
Available in lead free (RoHS 6) package  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
Q0  
nQ0  
Q1  
VDD  
1
2
3
4
8
7
6
5
Pullup  
CLK  
Pulldown  
nCLK  
CLK  
nCLK  
GND  
Q1  
nQ1  
nQ1  
85411  
8-Lead SOIC  
3.90mm x 4.90mm x 1.37mm package body  
M Package  
Top View  
©2016 Integrated Device Technology, Inc  
1
Revision C January 20, 2016  
85411 Data Sheet  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Q0, nQ0  
Q1, nQ1  
GND  
Type  
Description  
1, 2  
3, 4  
5
Output  
Output  
Power  
Input  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
Power supply ground.  
6
nCLK  
Pulldown Inverting differential clock input.  
7
CLK  
Input  
Pullup Non-inverting differential clock input.  
Positive supply pin.  
8
V
Power  
DD  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
C
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
kΩ  
kΩ  
IN  
R
51  
51  
PULLUP  
R
PULLDOWN  
©2016 Integrated Device Technology, Inc  
2
Revision C January 20, 2016  
85411 Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
DD  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional  
operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
Inputs, V  
-0.5V to V + 0.5V  
I
DD  
Outputs, I  
Continuous Current  
Surge Current  
O
10mA  
15mA  
Package Thermal Impedance, θ  
112.7°C/W (0 lfpm)  
-65°C to 150°C  
JA  
Storage Temperature, T  
STG  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, V = 3.3V 10ꢀ, TA = 0°C TO 70°C  
DD  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
V
I
Positive Supply Voltage  
Power Supply Current  
2.97  
3.3  
3.63  
50  
V
DD  
mA  
DD  
TABLE 3B. DIFFERENTIAL DC CHARACTERISTICS, V = 3.3V 10ꢀ, TA = 0°C TO 70°C  
DD  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CLK  
V
V
= V = 3.63V  
5
µA  
µA  
µA  
µA  
V
DD  
IN  
I
Input High Current  
IH  
IL  
nCLK  
CLK  
= V = 3.63V  
150  
DD  
IN  
V
= 3.63, V = 0V  
-150  
-5  
DD  
IN  
I
Input Low Current  
nCLK  
V
= 3.63V, V = 0V  
DD  
IN  
V
V
Peak-to-Peak Input Voltage; NOTE 1  
0.15  
0.5  
1.3  
PP  
Common Mode Input Voltage; NOTE 1, 2  
V
- 0.85  
V
CMR  
DD  
NOTE 1: V should not be less than -0.3V.  
NOTE 2: Common mode voltage is defined as V .  
IL  
IH  
TABLE 3C. LVDS DC CHARACTERISTICS, V = 3.3V 10ꢀ, TA = 0°C TO 70°C  
DD  
Symbol Parameter  
Differential Output Voltage  
Test Conditions  
Minimum  
Typical Maximum Units  
V
247  
325  
0
454  
50  
mV  
mV  
V
OD  
V  
VOD Magnitude Change  
Offset Voltage  
OD  
V
1.325  
-20  
1.45  
5
1.575  
50  
OS  
V  
VOS Magnitude Change  
Power Off Leakage  
mV  
µA  
mA  
mA  
OS  
I
I
I
1
+20  
-5  
OFF  
Differential Output Short Circuit Current  
Output Short Circuit Current  
-3.5  
-3.5  
OSD  
-5  
OS  
©2016 Integrated Device Technology, Inc  
3
Revision C January 20, 2016  
85411 Data Sheet  
TABLE 4. AC CHARACTERISTICS, V = 3.3V 10ꢀ TA = 0°C TO 70°C  
DD  
Symbol Parameter  
Test Conditions  
Minimum  
Typical Maximum Units  
f
Output Frequency  
650  
2.5  
20  
MHz  
ns  
MAX  
t
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
1.5  
PD  
tsk(o)  
ps  
tsk(pp)  
Part-to-Part Skew; NOTE 3, 4  
250  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter Section  
tjit  
(12kHz to 20MHz)  
0.05  
ps  
t / t  
Output Rise/Fall Time  
20ꢀ to 80ꢀ @ 50MHz  
> 500MHz  
150  
47  
350  
53  
ps  
R
F
odc  
Output Duty Cycle  
500MHz  
48  
52  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established  
when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet  
specifications after thermal equilibrium has been reached under these conditions.  
All parameters measured at ƒ 650MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
©2016 Integrated Device Technology, Inc  
4
Revision C January 20, 2016  
85411 Data Sheet  
ADDITIVE PHASE JITTER  
(dBm) or a ratio of the power in the 1Hz band to the power in the  
fundamental.When the required offset is specified, the phase noise  
is called a dBc value, which simply means dBm at a specified offset  
from the fundamental.By investigating jitter in the frequency domain,  
we get a better understanding of its effects on the desired application  
over the entire time record of the signal.It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the fundamental  
compared to the power of the fundamental is called the dBc Phase  
Noise. This value is normally expressed using a Phase noise plot  
and is most often the specified plot in many applications. Phase  
noise is defined as the ratio of the noise power present in a 1Hz  
band at a specified offset from the fundamental frequency to the  
power value of the fundamental.This ratio is expressed in decibels  
0
-10  
-20  
-30  
-40  
-50  
Input/Output Additive Phase Jit-  
ter @ 200MHz (12kHz to 20MHz)  
= 0.05ps typical  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
100  
1k  
10k  
100k  
1M  
10M  
100M  
500M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements has  
issues relating to the limitations of the equipment. Often the noise  
floor of the equipment is higher than the noise floor of the device.  
This is illustrated above. The device meets the noise floor of what  
is shown, but can actually be lower.The phase noise is dependent  
on the input source and measurement equipment.  
©2016 Integrated Device Technology, Inc  
5
Revision C January 20, 2016  
85411 Data Sheet  
PARAMETER MEASUREMENT INFORMATION  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
PART-TO-PART SKEW  
OUTPUT SKEW  
PROPAGATION DELAY  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
DIFFERENTIAL OUTPUT VOLTAGE SETUP  
©2016 Integrated Device Technology, Inc  
6
Revision C January 20, 2016  
85411 Data Sheet  
PARAMETER MEASUREMENT INFORMATION, CONTINUED  
OFFSET VOLTAGE SETUP  
POWER OFF LEAKAGE SETUP  
OUTPUT SHORT CIRCUIT CURRENT SETUP  
DIFFERENTIAL OUTPUT SHORT CIRCUIT CURRENT SETUP  
©2016 Integrated Device Technology, Inc  
7
Revision C January 20, 2016  
85411 Data Sheet  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
of R1 and R2 might need to be adjusted to position the V_REF in  
the center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and V = 3.3V, V_REF should be 1.25V and R2/  
Figure 1 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = V /2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio  
DD  
DD  
R1 = 0.609.  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
RECOMMENDATIONS FOR UNUSED OUTPUT PINS  
OUTPUTS:  
LVDS  
All unused LVDS output pairs can be either left floating or  
terminated with 100across. If they are left floating, there  
should be no trace attached.  
©2016 Integrated Device Technology, Inc  
8
Revision C January 20, 2016  
85411 Data Sheet  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both signals must meet the VPP and  
Please consult with the vendor of the driver component to confirm  
the driver termination requirements. For example in Figure 2A, the  
input termination applies for IDT HiPerClockS LVHSTL drivers. If  
you are using an LVHSTL driver from another vendor, use their  
termination recommendation.  
VCMR input requirements. Figures 2A to 2E show interface examples  
for the HiPerClockS CLK/nCLK input driven by the most common  
driver types.The input interfaces suggested here are examples only.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
LVHSTL Driver  
R1  
50  
R2  
50  
R3  
50  
FIGURE 2A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
IDT HIPERCLOCKS LVHSTL DRIVER  
FIGURE 2B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
R3  
125  
R4  
125  
Zo = 50 Ohm  
Zo = 50 Ohm  
LVDS_Driver  
CLK  
CLK  
R1  
100  
nCLK  
nCLK  
Receiver  
HiPerClockS  
Input  
LVPECL  
Zo = 50 Ohm  
R1  
84  
R2  
84  
FIGURE 2C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 2D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
R4  
125  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 2E. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
©2016 Integrated Device Technology, Inc  
9
Revision C January 20, 2016  
85411 Data Sheet  
LVDS DRIVER TERMINATION  
A general LVDS interface is shown in Figure 3. In a 100Ω  
differential transmission line environment, LVDS drivers  
require a matched load termination of 100across near  
the receiver input. For a multiple LVDS outputs buffer, if only  
partial outputs are used, it is recommended to terminate  
the unused outputs.  
FIGURE 3. TYPICAL LVDS DRIVER TERMINATION  
©2016 Integrated Device Technology, Inc  
10  
Revision C January 20, 2016  
85411 Data Sheet  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the 85411.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the 85411 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 10ꢀ = 3.63V, which gives worst case results.  
DD  
Power (core) = V  
* I  
= 3.63V * 50mA = 181.5mW  
DD_MAX  
MAX  
DD_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + T  
A
Tj = Junction Temperature  
θ
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
= Ambient Temperature  
T
A
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W per Table 5 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.182W * 103.3°C/W = 88.8°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the  
type of board (multi-layer).  
TABLE 5. THERMAL RESISTANCE θJA FOR 8-LEAD SOIC, FORCED CONVECTION  
θJA by Velocity (Linear Feet per Minute)  
0
153.3°C/W  
200  
128.5°C/W  
500  
115.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
112.7°C/W  
103.3°C/W  
97.1°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
©2016 Integrated Device Technology, Inc  
11  
Revision C January 20, 2016  
85411 Data Sheet  
RELIABILITY INFORMATION  
TABLE 6. θ VS. AIR FLOW TABLE FOR 8 LEAD SOIC  
JA  
θJA by Velocity (Linear Feet per Minute)  
0
153.3°C/W  
200  
128.5°C/W  
500  
115.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
112.7°C/W  
103.3°C/W  
97.1°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for 85411 is: 636  
PACKAGE OUTLINE & DIMENSIONS  
PACKAGE OUTLINE - M SUFFIX FOR 8 LEAD SOIC  
TABLE 7. PACKAGE DIMENSIONS  
SYMBOL  
MINIMUN  
Millimeters  
MAXIMUM  
N
A
A1  
B
C
D
E
e
8
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
1.27 BASIC  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS-012  
©2016 Integrated Device Technology, Inc  
12  
Revision C January 20, 2016  
85411 Data Sheet  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
85411AMLF  
Marking  
85411ALF  
85411ALF  
Package  
Shipping Packaging  
Tray  
Temperature  
8 lead “Lead Free” SOIC  
8 lead “Lead Free” SOIC  
0°C to +70°C  
0°C to +70°C  
85411AMLFT  
Tape and Reel  
©2016 Integrated Device Technology, Inc  
13  
Revision C January 20, 2016  
85411 Data Sheet  
REVISION HISTORY SHEET  
Description of Change  
Rev  
B
Table  
T4  
Page  
Date  
6/9/04  
6/16/04  
1
4
5
Features - added Additive Phase Jitter bullet.  
AC Characteristics table - added tjit row.  
Added Additive Phase Jitter Application Note  
B
T7  
12  
Ordering Information Table - added Lead Free Part Number.  
Changed V from 5ꢀ to 10ꢀ throughout datasheet.  
LVDS DC Characteristics Table - changed V range from  
DD  
T3C  
3
OD  
200mV min./360mV max. to 247mV min./454mV max.  
Changed V from 40mV max. to 50mV max.  
OD  
C
9/19/06  
Changed V from 1.125mV min./1.375mV max. to 1.325mV min./1.575mV max.  
Changed V from 25mV max. to 50mV max.  
OS  
OS  
8
11  
Added Recommendations for Unused Output Pins.  
Added Power Considerations.  
C
C
T8  
14  
3
Ordering Information Table - corrected lead-free marking.  
LVDS DC Characteristics Table - deleted V & V rows.  
1/17/07  
1/20/09  
T3C  
OH  
OL  
Removed ICS from part numbers where needed.  
1
1
13  
General Description - Deleted the ICS chip and removed HiPerClockS.  
Features - removed reference to leaded part numbers.  
Ordering Information - removed quantity for tape and reel. Deleted LF note below  
the table.  
C
1/20/16  
T8  
Updated header and footer.  
©2016 Integrated Device Technology, Inc  
14  
Revision C January 20, 2016  
85411 Data Sheet  
Tech Support  
www.idt.com/go/support  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138 USA  
www.IDT.com  
Sales  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and  
operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided  
without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringe-  
ment of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expect-  
ed to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or  
their respective third party owners.  
For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary.  
Copyright ©2016 Integrated Device Technology, Inc. All rights reserved.  

85411AMLFT 替代型号

型号 制造商 描述 替代类型 文档
85411AMILF IDT Low Skew, 1-to-2 Different ial-to-LVDS Fanout Buffer 类似代替
85411AMILFT IDT Low Skew, 1-to-2 Different ial-to-LVDS Fanout Buffer 类似代替

85411AMLFT 相关器件

型号 制造商 描述 价格 文档
85411AMT IDT Low Skew Clock Driver, 85411 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, MS-012, SOIC-8 获取价格
85411I IDT Low Skew, 1-to-2 Different ial-to-LVDS Fanout Buffer 获取价格
85412-72 MOLEX Strip Terminal Block 获取价格
85413 MOLEX Strip Terminal Block 获取价格
85413-10A MOLEX Strip Terminal Block 获取价格
85413-72 MOLEX Strip Terminal Block 获取价格
85414 MOLEX Strip Terminal Block, 15A, 2.5mm2, 1 Row(s), 1 Deck(s) 获取价格
85414-10A MOLEX Strip Terminal Block 获取价格
85414-72 MOLEX Strip Terminal Block, 15A, 1.5mm2, 1 Row(s), 1 Deck(s) 获取价格
85415-10A MOLEX Strip Terminal Block 获取价格

85411AMLFT 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    5
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    8
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6