854S202AYI-01 [IDT]

Differential Multiplexer, 2 Func, 12 Channel, PQFP48;
854S202AYI-01
型号: 854S202AYI-01
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Differential Multiplexer, 2 Func, 12 Channel, PQFP48

文件: 总17页 (文件大小:449K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12:2, Differential-To-LVDS Multiplexer  
ICS854S202I-01  
DATASHEET  
General Description  
Features  
The ICS854S202I-01 is a 12:2 Differential-to-LVDS Clock Multiplexer  
which can operate up to 3GHz. The ICS854S202I-01 has twelve se-  
lectable differential clock inputs, any of which can be independently  
routed to either of the two LVDS outputs. The CLKx, nCLKx input  
pairs can accept LVPECL, LVDS or CML levels. The fully differential  
architecture and low propagation delay make it ideal for use in clock  
distribution circuits.  
Two differential 2.5V LVDS clock outputs  
Twelve selectable differential clock inputs  
• CLKx, nCLKx pairs can accept the following differential input levels:  
LVPECL, LVDS, CML  
• Maximum output frequency: 3GHz  
• Propagation delay: 1.1ns (maximum)  
• Input skew: 100ps (maximum)  
• Output skew: 50ps (maximum)  
• Part-to-part skew: 250ps (maximum)  
• Additive phase jitter, RMS (12kHz – 20MHz): 0.16ps (typical)  
• Full 2.5V operating supply mode  
• -40°C to 85°C ambient operating temperature  
Pin Assignment  
Block Diagram  
4
Pulldown  
SELA_[3:0]  
Pulldown  
CLK0  
Pullup/Pulldown  
nCLK0  
48 47 46 45 44 43 42 41 40 39 38 37  
Pulldown  
CLK1  
CLK2  
nCLK2  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
CLK9  
Pullup/Pulldown  
nCLK1  
2
nCLK9  
SELB_0  
SELB_1  
SELA_0  
SELA_1  
3
Pulldown  
CLK2  
ICS854S202I-01  
48-Pin LQFP  
7mm x 7mm x 1.4mm  
package body  
Y Package  
4
Pullup/Pulldown  
nCLK2  
V
5
V
DD  
QB  
DD  
QA  
nQA  
Pulldown  
QA  
nQA  
6
CLK3  
Pullup/Pulldown  
7
nQB  
nCLK3  
Pullup  
GND  
8
GND  
OEA  
Pulldown  
CLK4  
SELA_2  
SELA_3  
CLK3  
9
SELB_2  
SELB_3  
CLK8  
nCLK8  
Pullup/Pulldown  
Top View  
nCLK4  
10  
11  
12  
Pulldown  
CLK5  
nCLK3  
Pullup/Pulldown  
13 14 15 16 17 18 19 20 21 22 23 24  
nCLK5  
Pulldown  
CLK6  
Pullup/Pulldown  
nCLK6  
Pulldown  
CLK7  
Pullup/Pulldown  
nCLK7  
Pulldown  
CLK8  
QB  
nQB  
Pullup/Pulldown  
nCLK8  
Pulldown  
Pullup  
CLK9  
OEB  
Pullup/Pulldown  
nCLK9  
Pulldown  
CLK10  
Pullup/Pulldown  
nCLK10  
Pulldown  
CLK11  
Pullup/Pulldown  
nCLK11  
4
Pulldown  
SELB_[3:0]  
ICS854S202AYI-01 REV. A DECEMBER 18, 2012  
1
©2012 Integrated Device Technology, Inc.  
ICS854S202I-01 Data Sheet  
12:2, DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Table 1. Pin Descriptions  
Number  
Name  
CLK2  
Type  
Pulldown  
Description  
Non-inverting differential clock input.  
1
2
Input  
Input  
nCLK2  
Pullup/Pulldown Inverting differential clock input. VDD/2 default when left floating.  
3,  
4,  
9,  
SELA_0,  
SELA_1,  
SELA_2,  
SELA_3  
Clock select pins for Bank A output pair. See Control Input Function  
Pulldown  
Input  
Table. LVCMOS/LVTTL interface levels. See Table 3B.  
10  
5, 18, 32, 43  
6, 7  
VDD  
Power  
Output  
Power supply pins.  
QA, nQA  
Clock outputs. LVDS interface levels.  
8, 15, 22, 29,  
39, 46  
GND  
Power  
Power supply ground.  
11  
12  
CLK3  
nCLK3  
nCLK4  
CLK4  
nCLK5  
CLK5  
VDD  
Input  
Input  
Input  
Input  
Input  
Input  
Power  
Pulldown  
Non-inverting differential clock input.  
Pullup/Pulldown Inverting differential clock input. VDD/2 default when left floating.  
Pullup/Pulldown Inverting differential clock input. VDD/2 default when left floating.  
13  
14  
Pulldown  
Non-inverting differential clock input.  
16  
Pullup/Pulldown Inverting differential clock input. VDD/2 default when left floating.  
17  
Pulldown  
Non-inverting differential clock input.  
Positive supply pins.  
18, 43  
Output enable pin. Controls enabling and disabling of QA, nQA  
output pair. LVCMOS/LVTTL interface levels.  
19  
OEA  
Input  
Pullup  
20  
21  
23  
24  
25  
26  
CLK6  
nCLK6  
CLK7  
Input  
Input  
Input  
Input  
Input  
Input  
Pulldown  
Non-inverting differential clock input.  
Pullup/Pulldown Inverting differential clock input. VDD/2 default when left floating.  
Pulldown Non-inverting differential clock input.  
nCLK7  
nCLK8  
CLK8  
Pullup/Pulldown Inverting differential clock input. VDD/2 default when left floating.  
Pullup/Pulldown Inverting differential clock input. VDD/2 default when left floating.  
Pulldown  
Non-inverting differential clock input.  
27,  
28,  
33,  
34  
SELB_3,  
SELB_2,  
SELB_1,  
SELB_0  
Clock select pins for Bank B output pair. See Control Input Function  
Table. LVCMOS/LVTTL interface levels. See Table 3C.  
Input  
Pulldown  
30, 31  
35  
nQB, QB  
nCLK9  
CLK9  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Clock outputs. LVDS interface levels.  
Pullup/Pulldown Inverting differential clock input. VDD/2 default when left floating.  
Pulldown Non-inverting differential clock input.  
Pullup/Pulldown Inverting differential clock input. VDD/2 default when left floating.  
Pulldown Non-inverting differential clock input.  
Pullup/Pulldown Inverting differential clock input. VDD/2 default when left floating.  
36  
37  
nCLK10  
CLK10  
nCLK11  
CLK11  
38  
40  
41  
Pulldown  
Pullup  
Non-inverting differential clock input.  
Output enable pin. Controls enabling and disabling of QB, nQB  
output pair. LVCMOS/LVTTL interface levels.  
42  
44  
OEB  
Input  
Input  
CLK0  
Pulldown  
Non-inverting differential clock input.  
ICS854S202AYI-01 REV. A DECEMBER 18, 2012  
2
©2012 Integrated Device Technology, Inc.  
ICS854S202I-01 Data Sheet  
12:2, DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Number  
45  
Name  
nCLK0  
CLK1  
Type  
Pullup/Pulldown Inverting differential clock input. VDD/2 default when left floating.  
Pulldown Non-inverting differential clock input.  
Pullup/Pulldown Inverting differential clock input. VDD/2 default when left floating.  
Description  
Input  
Input  
Input  
47  
48  
nCLK1  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
2
RPULLUP  
RPULLDOWN  
51  
51  
k  
k  
Table 3A. OEA, OEB Control Input Function Table  
Input  
Output  
OEA, OEB  
QA, nQA, QB, nQB  
Disabled (Logic LOW)  
Active (default)  
0
1
ICS854S202AYI-01 REV. A DECEMBER 18, 2012  
3
©2012 Integrated Device Technology, Inc.  
ICS854S202I-01 Data Sheet  
12:2, DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Table 3B. SEL_A Control Input Function Table  
Control Input  
Input Selected to QA, nQA  
SELA_3  
SELA_2  
SELA_1  
SELA_0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
CLK0, nCLK0 (default)  
CLK1, nCLK1  
CLK2, nCLK2  
CLK3, nCLK3  
CLK4, nCLK4  
CLK5, nCLK5  
CLK6, nCLK6  
CLK7, nCLK7  
CLK8, nCLK8  
CLK9, nCLK9  
CLK10, nCLK10  
CLK11, nCLK11  
Output at logic LOW  
Output at logic LOW  
Output at logic LOW  
Output at logic LOW  
Table 3C. SEL_B Control Input Function Table  
Control Input  
Input Selected to QB, nQB  
SELB_3  
SELB_2  
SELB_1  
SELB_0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
CLK0, nCLK0 (default)  
CLK1, nCLK1  
CLK2, nCLK2  
CLK3, nCLK3  
CLK4, nCLK4  
CLK5, nCLK5  
CLK6, nCLK6  
CLK7, nCLK7  
CLK8, nCLK8  
CLK9, nCLK9  
CLK10, nCLK10  
CLK11, nCLK11  
Output at logic LOW  
Output at logic LOW  
Output at logic LOW  
Output at logic LOW  
ICS854S202AYI-01 REV. A DECEMBER 18, 2012  
4
©2012 Integrated Device Technology, Inc.  
ICS854S202I-01 Data Sheet  
12:2, DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress  
specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC  
Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
Inputs, VI  
4.6V  
-0.5V to VDD + 0.5V  
Outputs, IO (LVDS)  
Continuous Current  
Surge Current  
10mA  
15mA  
Package Thermal Impedance, JA  
70.2C/W (0 mps)  
-65C to 150C  
Storage Temperature, TSTG  
Table 4A. Power Supply DC Characteristics, VDD = 2.5V 5%, TA = -40°C to 85°C  
Symbol Parameter  
VDD Power Supply Voltage  
IDD Power Supply Current  
Test Conditions  
Minimum  
Typical  
2.5  
Maximum  
2.625  
Units  
V
2.375  
110  
128  
ma  
Table 4B. LVCMOS/LVTTL DC Characteristics, VDD = 2.5V 5%, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
1.7  
Typical  
Maximum  
VDD + 0.3  
0.7  
Units  
VIH  
VIL  
Input High Voltage  
V
V
Input Low Voltage  
-0.3  
SELA_[3:0],  
SELB_[3:0]  
VDD = 2.625V  
VDD = 2.625V  
150  
10  
A  
A  
A  
A  
Input High  
Current  
IIH  
OEA, OEB  
SELA_[3:0,  
SELB_[3:0]  
VDD = 2.625V, VIN = 0V  
VDD = 2.625V, VIN = 0V  
-10  
Input Low  
Current  
IIL  
OEA, OEB  
-150  
Table 4C. Differential DC Characteristics, VDD = 2.5V 5%, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
VDD = VIN = 2.625V  
VDD = 2.625V, VIN = 0V  
Minimum  
Typical  
Maximum  
Units  
Input High  
Current  
CLK[0:11],  
nCLK[0:11]  
IIH  
150  
A  
CLK[0:11]  
-10  
-150  
0.15  
A  
A  
V
Input Low  
Current  
IIL  
nCLK[0:11]  
V
DD = 2.625V, VIN = 0V  
VPP  
Peak-to-Peak Input Voltage; NOTE 1  
1.5  
Common Mode Input Voltage:  
NOTE 1, 2  
VCMR  
GND + 0.5  
VDD – 0.7  
V
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
ICS854S202AYI-01 REV. A DECEMBER 18, 2012  
5
©2012 Integrated Device Technology, Inc.  
ICS854S202I-01 Data Sheet  
12:2, DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Table 4D. LVDS DC Characteristics, VDD = 2.5V 5%, TA = -40°C to 85°C  
Symbol  
VOD  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
mV  
mV  
V
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
247  
454  
50  
VOD  
VOS  
1.2  
1.4  
50  
VOS  
VOS Magnitude Change  
mV  
Table 5. AC Characteristics, VDD = 2.5V 5%, TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
3
Units  
GHz  
ps  
fOUT  
Output Frequency  
fOUT < 2GHz  
450  
550  
450  
550  
660  
700  
660  
700  
25  
1100  
900  
Propagation Delay, Low to High;  
NOTE 1  
tpLH  
tpHL  
f
OUT > 2GHz  
ps  
fOUT < 2GHz  
fOUT > 2GHz  
1100  
900  
ps  
Propagation Delay, High to Low;  
NOTE 1  
ps  
tsk(o)  
tsk(i)  
Output Skew; NOTE 2, 3  
Input Skew; NOTE 3  
50  
ps  
25  
100  
ps  
tsk(pp)  
Part-to-Part Skew; NOTE 3, 4  
250  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter  
section, NOTE 5  
155.52MHz,  
Integration Range:  
12kHz - 20MHz  
tjit  
0.16  
0.215  
ps  
tR / tF  
Output Rise/Fall Time  
Output Duty Cycle; NOTE 6  
MUX Isolation  
20% to 80%  
50  
40  
110  
50  
250  
60  
ps  
%
odc  
MUXISOLATION  
fOUT < 1.2GHz  
75  
dB  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range. NOTE that phase noise may increase  
slightly with higher operating temperature. However, they will remain in spec as long as the maximum transistor junction temperature is not  
violated. The device will meet specifications after thermal equilibrium has been reached under these conditions.  
NOTE 1: Measured from the differential input cross point to the differential output cross point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential output  
cross point.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 4: Defined as skew between outputs on different devices operating a the same supply voltage, same frequency, same temperature and  
with equal load conditions. Using the same type of input on each device, measured at the differential output cross point.  
NOTE 5: Driving only one input clock.  
NOTE 6: The output duty cycle will depend on the input duty cycle.  
ICS854S202AYI-01 REV. A DECEMBER 18, 2012  
6
©2012 Integrated Device Technology, Inc.  
ICS854S202I-01 Data Sheet  
12:2, DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Additive Phase Jitter  
The spectral purity in a band at a specific offset from the fundamental  
compared to the power of the fundamental is called the dBc Phase  
Noise. This value is normally expressed using a Phase noise plot and  
is most often the specified plot in many applications. Phase noise is  
defined as the ratio of the noise power present in a 1Hz band at a  
specified offset from the fundamental frequency to the power value of  
the fundamental. This ratio is expressed in decibels (dBm) or a ratio  
of the power in the 1Hz band to the power in the fundamental. When  
the required offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the fundamental.  
By investigating jitter in the frequency domain, we get a better  
understanding of its effects on the desired application over the entire  
time record of the signal. It is mathematically possible to calculate an  
expected bit error rate given a phase noise plot.  
Offset From Carrier Frequency (Hz)  
As with most timing specifications, phase noise measurements have  
issues. The primary issue relates to the limitations of the equipment.  
Often the noise floor of the equipment is higher than the noise floor  
of the device. This is illustrated above. The device meets the noise  
floor of what is shown, but can actually be lower. The phase noise is  
dependent on the input source and measurement equipment.  
Used the Rhode & Schwartz SMA100 as the input source.  
ICS854S202AYI-01 REV. A DECEMBER 18, 2012  
7
©2012 Integrated Device Technology, Inc.  
ICS854S202I-01 Data Sheet  
12:2, DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Parameter Measurement Information  
VDD  
SCOPE  
Qx  
nCLK[0:11]  
CLK[0:11]  
2.5V 5%  
VDD  
POWER SUPPLY  
VPP  
VCMR  
Cross Points  
+
Float GND –  
nQx  
GND  
2.5V Output Load Test Circuit  
Differential Input Level  
nCLKx  
CLKx  
Part 1  
nQx  
nQA  
QA  
Qx  
Part 2  
nQy  
tPD1  
Qy  
tsk(pp)  
nCLKy  
CLKy  
nQB  
Part-to-Part Skew  
QB  
tPD2  
nQx  
Qx  
tsk(i) = |tPD1 - tPD2  
|
Input Skew  
nQy  
Qy  
tsk(o)  
Output Skew  
ICS854S202AYI-01 REV. A DECEMBER 18, 2012  
8
©2012 Integrated Device Technology, Inc.  
ICS854S202I-01 Data Sheet  
12:2, DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Parameter Measurement Information, continued  
nQA, nQB  
nQA, nQB  
QA, QB  
80%  
tF  
80%  
tR  
tPW  
VOD  
20%  
tPERIOD  
20%  
QA, QB  
tPW  
odc =  
x 100%  
tPERIOD  
Output Duty Cycle/Pulse Width  
Output Rise/Fall Time  
Spectrum of Output Signal Q  
MUX selects active  
input clock signal  
A0  
A1  
nCLK[0:11]  
CLK[0:11]  
MUX_ISOL = A0 – A1  
nQA, nQB  
MUX selects static input  
QA, QB  
tpLH  
tpHL  
ƒ
Frequency  
(fundamental)  
Propagation Delay  
MUX Isolation  
VDD  
VDD  
out  
out  
out  
out  
DC Input  
DC Input  
LVDS  
LVDS  
VOS/Δ VOS  
VOS/Δ VOS  
ä
ä
Differential Output Voltage Setup  
Offset Voltage Setup  
ICS854S202AYI-01 REV. A DECEMBER 18, 2012  
9
©2012 Integrated Device Technology, Inc.  
ICS854S202I-01 Data Sheet  
12:2, DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Applications Information  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
CLK/nCLK Inputs  
LVDS Outputs  
For applications requiring only one differential input, the unused CLK  
and nCLK input can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK pin to  
ground.  
All unused LVDS output pairs can be either left floating or terminated  
with 100across. If they are left floating, there should be no trace  
attached  
LVCMOS Control Pins  
All control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
Wiring the Differential Input to Accept Single-Ended Levels  
Figure 1 shows how a differential input can be wired to accept single  
ended levels. The reference voltage V1= VDD/2 is generated by the  
bias resistors R1 and R2. The bypass capacitor (C1) is used to help  
filter noise on the DC bias. This bias circuit should be located as close  
to the input pin as possible. The ratio of R1 and R2 might need to be  
adjusted to position the V1in the center of the input voltage swing. For  
example, if the input clock swing is 2.5V and VDD = 2.5V, R1 and R2  
value should be adjusted to set V1 at 1.25V. The values below are for  
when both the single ended swing and VDD are at the same voltage.  
This configuration requires that the sum of the output impedance of  
the driver (Ro) and the series resistance (Rs) equals the transmission  
line impedance. In addition, matched termination at the input will  
attenuate the signal in half. This can be done in one of two ways.  
First, R3 and R4 in parallel should equal the transmission line  
impedance. For most 50applications, R3 and R4 can be 100. The  
values of the resistors can be increased to reduce the loading for  
slower and weaker LVCMOS driver. When using single-ended  
signaling, the noise rejection benefits of differential signaling are  
reduced. Even though the differential input can handle full rail  
LVCMOS signaling, it is recommended that the amplitude be  
reduced. The datasheet specifies a lower differential amplitude,  
however this only applies to differential signals. For single-ended  
applications, the swing can be larger, however VIL cannot be less  
than -0.3V and VIH cannot be more than VDD + 0.3V. Though some  
of the recommended components might not be used, the pads  
should be placed in the layout. They can be utilized for debugging  
purposes. The datasheet specifications are characterized and  
guaranteed by using a differential signal.  
Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels  
ICS854S202AYI-01 REV. A DECEMBER 18, 2012  
10  
©2012 Integrated Device Technology, Inc.  
ICS854S202I-01 Data Sheet  
12:2, DIFFERENTIAL-TO-LVDS MULTIPLEXER  
2.5V Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, CML and other differential  
signals. Both differential signals must meet the VPP and VCMR input  
requirements. Figures 2A to 2E show interface examples for the  
IN/nIN input with built-in 50terminations driven by the most  
common driver types. The input interfaces suggested here are  
examples only. If the driver is from another vendor, use their  
termination recommendation. Please consult with the vendor of the  
driver component to confirm the driver termination requirements.  
2.5V  
2.5V  
2.5V  
2.5V  
2.5V  
R3  
R4  
Zo = 50  
250  
250  
CLK  
Zo = 50  
Zo = 50  
CLK  
Zo = 50  
nCLK  
Differential  
LVPECL  
nCLK  
Input  
R1  
R2  
Differential  
Input  
50  
50  
LVPECL  
R1  
R2  
62.5  
62.5  
R3  
18  
Figure 2A. CLK/nCLK Input Driven by a  
Figure 2B. CLK/nCLK Input Driven by a   
2.5V LVPECL Driver  
2.5V LVPECL Driver  
2.5V  
2.5V  
2.5V  
2.5V  
Zo = 50  
Zo = 50Ω  
CLK  
CLK  
R1  
R1  
100  
100Ω  
nCLK  
nCLK  
Zo = 50  
Zo = 50Ω  
Differential  
Input  
Differential  
Input  
LVDS  
CML Built-In Pullup  
Figure 2C. CLK/nCLK Input Driven by a   
2.5V LVDS Driver  
Figure 2D. CLK/nCLK Input Driven by a  
Built-In Pullup CML Driver  
2.5V  
2.5V  
2.5V  
R1  
R2  
50Ω  
50Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
nCLK  
Differential  
Input  
CML  
Figure 2E. CLK/nCLK Input Driven by an  
IDT Open Collector CML Driver  
ICS854S202AYI-01 REV. A DECEMBER 18, 2012  
11  
©2012 Integrated Device Technology, Inc.  
ICS854S202I-01 Data Sheet  
12:2, DIFFERENTIAL-TO-LVDS MULTIPLEXER  
LVDS Driver Termination  
For a general LVDS interface, the recommended value for the  
termination impedance (ZT) is between 90and 132. The actual  
value should be selected to match the differential impedance (Z0) of  
your transmission line. A typical point-to-point LVDS design uses a  
100parallel resistor at the receiver and a 100differential  
transmission-line environment. In order to avoid any  
transmission-line reflection issues, the components should be  
surface mounted and must be placed as close to the receiver as  
possible. IDT offers a full line of LVDS compliant devices with two  
types of output structures: current source and voltage source. The  
standard termination schematic as shown in Figure 3A can be used  
with either type of output structure. Figure 3B, which can also be  
used with both output types, is an optional termination with center tap  
capacitance to help filter common mode noise. The capacitor value  
should be approximately 50pF. If using a non-standard termination, it  
is recommended to contact IDT and confirm if the output structure is  
current source or voltage source type. In addition, since these  
outputs are LVDS compatible, the input receiver’s amplitude and  
common-mode input range should be verified for compatibility with  
the output.  
ZO ZT  
LVDS  
Driver  
LVDS  
Receiver  
ZT  
Figure 3A. Standard Termination  
ZT  
ZO ZT  
LVDS  
Driver  
LVDS  
Receiver  
2
ZT  
2
C
Figure 3B. Optional Termination  
LVDS Termination  
ICS854S202AYI-01 REV. A DECEMBER 18, 2012  
12  
©2012 Integrated Device Technology, Inc.  
ICS854S202I-01 Data Sheet  
12:2, DIFFERENTIAL-TO-LVDS MULTIPLEXER  
LVDS Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS854S202I-01.   
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS854S202I-01 is the sum of the core power plus the output power dissipated due to the load.   
The following is the power dissipation for VDD = 2.5V + 5% = 2.625V, which gives worst case results.  
PowerMAX = VDD_MAX * IDD_MAX = 2.6255V * 128mA = 336mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 70.2°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.336W * 70.2°C/W = 108.6°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 6. Thermal Resistance JA for 48 Lead LQFP, Forced Convection  
JA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
70.2°C/W  
60.4°C/W  
56.9°C/W  
ICS854S202AYI-01 REV. A DECEMBER 18, 2012  
13  
©2012 Integrated Device Technology, Inc.  
ICS854S202I-01 Data Sheet  
12:2, DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Reliability Information  
Table 7. JA vs. Air Flow Table for a 48 Lead LQFP,  
JA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
70.2°C/W  
60.4°C/W  
56.9°C/W  
Transistor Count  
The transistor count for ICS854S202I-01 is: 8,537  
ICS854S202AYI-01 REV. A DECEMBER 18, 2012  
14  
©2012 Integrated Device Technology, Inc.  
ICS854S202I-01 Data Sheet  
12:2, DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Package Outline and Package Dimensions  
Package Outline - Y Suffix for 48 Lead LQFP  
Table 8. Package Dimensions for 48 Lead LQFP  
JEDEC Variation: BBC - HD  
All Dimensions in Millimeters  
Symbol  
Minimum  
Nominal  
Maximum  
N
48  
A
1.60  
0.15  
1.45  
0.27  
0.20  
A1  
0.05  
1.35  
0.17  
0.09  
0.10  
1.40  
0.22  
A2  
b
c
D & E  
D1 & E1  
D2 & E2  
e
9.00 Basic  
7.00 Basic  
5.50 Ref.  
0.5 Basic  
0.60  
L
0.45  
0°  
0.75  
7°  
ccc  
0.08  
Reference Document: JEDEC Publication 95, MS-026  
ICS854S202AYI-01 REV. A DECEMBER 18, 2012  
15  
©2012 Integrated Device Technology, Inc.  
ICS854S202I-01 Data Sheet  
12:2, DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
854S202AYI-01LF  
854S202AYI-01LFT  
Marking  
ICSS202AI01L  
ICSS202AI01L  
Package  
“Lead-Free” 48 Lead LQFP  
“Lead-Free” 48 Lead LQFP  
Shipping Packaging  
Tray  
Temperature  
-40C to 85C  
-40C to 85C  
Tape & Reel  
ICS854S202AYI-01 REV. A DECEMBER 18, 2012  
16  
©2012 Integrated Device Technology, Inc.  
ICS854S202I-01 Data Sheet  
12:2, DIFFERENTIAL-TO-LVDS MULTIPLEXER  
We’ve Got Your Timing Solution  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
San Jose, California 95138  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to signifi-  
cantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2012. All rights reserved.  

相关型号:

854S202AYI-01T

Differential Multiplexer, 2 Func, 12 Channel, PQFP48
IDT

854S202AYIFT

Low Skew Clock Driver, 854S Series, 4 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026BBC-HD, LQFP-48
IDT

854S202AYILFT

TQFP-48, Reel
IDT

854S202AYIT

Clock Driver
IDT

854S204BGILF

Low Skew, Dual, Programmable 1-to-2 Differential-to-LVDS, LVPECL Fanout Buffer
IDT

854S204BGILFT

Low Skew, Dual, Programmable 1-to-2 Differential-to-LVDS, LVPECL Fanout Buffer
IDT

854S54AKI-01LF

Dual 2:1, 1:2 Differential-to-LVDS Multiplexer
IDT

854S54AKI-01LFT

Dual 2:1, 1:2 Differential-to-LVDS Multiplexer
IDT

854S54AKI-02LF

Dual 2:1, 1:2 Differential-to-LVDS Multiplexer
IDT

854S54AKI-02LFT

Dual 2:1, 1:2 Differential-to-LVDS Multiplexer
IDT

854S712

1:2 Fanout Buffer with Pre-Emphasis
IDT

854S712AKILF

1:2 Fanout Buffer with Pre-Emphasis
IDT