8624BY [IDT]

PLL Based Clock Driver, 8624 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32;
8624BY
型号: 8624BY
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PLL Based Clock Driver, 8624 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32

驱动 逻辑集成电路
文件: 总19页 (文件大小:262K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Skew, 1-to-5 Differential-to-HSTL  
Zero Delay Buffer  
ICS8624  
DATA SHEET  
Not Recommended for New Designs - 10/22/13  
For replacement device use ICS8725BY-01LF  
NRND  
General Description  
Features  
The ICS8624 is a high performance, 1-to-5  
Fully integrated PLL  
Five differential HSTL output pairs  
Selectable differential CLKx/nCLKx input pairs  
S
IC  
Differential-to-HSTL zero delay buffer and a member  
of the HiPerClockS™ family of High Performance  
Clock Solutions from IDT. The ICS8624 has two  
selectable clock input pairs. The CLK0, nCLK0 and  
HiPerClockS™  
CLKx/nCLKx pairs can accept the following differential  
input levels: LVPECL, LVDS, HSTL, HCSL, SSTL  
CLK1, nCLK1 pair can accept most standard differential input levels.  
The VCO operates at a frequency range of 250MHz to 700MHz.  
Utilizing one of the outputs as feedback to the PLL, output  
frequencies up to 700MHz can be regenerated with zero delay with  
respect to the input. Dual reference clock inputs support redundant  
clock or multiple reference applications.  
Output frequency range: 31.25MHz to 700MHz  
Input frequency range: 31.25MHz to 700MHz  
VCO range: 250MHz to 700MHz  
External feedback for “zero delay” clock regeneration  
Cycle-to-cycle jitter: 25ps (maximum)  
Output skew: 25ps (maximum)  
Static phase offset: 100ps  
3.3V core, 1.8V output operating supply  
0°C to 70°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Block Diagram  
Pin Assignment  
Q0  
nQ0  
PLL_SEL  
Q1  
nQ1  
32 31 30 29 28 27 26 25  
÷4, ÷8  
0
CLK0  
Q2  
nQ2  
1
2
3
4
5
6
7
8
SEL0  
VDDO  
24  
23  
22  
21  
20  
0
1
nCLK0  
1
SEL1  
CLK0  
Q3  
CLK1  
nCLK1  
Q3  
nQ3  
nQ3  
Q2  
PLL  
nCLK0  
CLK1  
Q4  
nQ4  
CLK_SEL  
nQ2  
nCLK1  
CLK_SEL  
MR  
Q1  
19  
18  
17  
FB_IN  
nFB_IN  
nQ1  
VDDO  
9
10 11 12 13 14 15 16  
SEL0  
SEL1  
MR  
ICS8624  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
Y Package  
Top View  
ICS8624BY REVISION F OCTOBER 22, 2013  
1
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
Determines the input and output frequency range noted in Table 3A.   
LVCMOS / LVTTL interface levels.  
1, 2  
SEL0, SEL1  
Input  
Pulldown  
3
4
5
6
CLK0  
nCLK0  
CLK1  
Input  
Input  
Input  
Input  
Pulldown  
Pullup  
Non-inverting differential clock input.  
Inverting differential clock input.  
Non-inverting differential clock input.  
Inverting differential clock input.  
Pulldown  
Pullup  
nCLK1  
Clock select input. When HIGH, selects CLK1, nCLK1. When LOW, selects CLK0,  
nCLK0. LVCMOS/LVTTL interface levels.  
7
CLK_SEL  
MR  
Input  
Pulldown  
Active HIGH Master Reset. When logic HIGH, the internal dividers are reset  
causing the true outputs Qx to go low and the inverted outputs nQx to go high.  
When logic LOW, the internal dividers and the outputs are enabled.   
LVCMOS / LVTTL interface levels.  
8
Input  
Pulldown  
9, 32  
10  
VDD  
Power  
Input  
Core supply pins.  
Inverting differential feedback input to phase detector for regenerating clocks with  
“Zero Delay.”  
nFB_IN  
Pullup  
Non-inverted differential feedback input to phase detector for regenerating clocks  
with “Zero Delay.”  
11  
FB_IN  
Input  
Pulldown  
12, 13,  
28, 29  
GND  
nQ0, Q0  
VDDO  
Power  
Output  
Power  
Power supply ground.  
14, 15  
Differential output pair. HSTL interface levels.  
Output supply pins.  
16, 17,  
24, 25  
18, 19  
20, 21  
22, 23  
26, 27  
30  
nQ1, Q1  
nQ2, Q2  
nQ3, Q3  
nQ4, Q4  
VDDA  
Output  
Output  
Output  
Output  
Power  
Differential output pair. HSTL interface levels.  
Differential output pair. HSTL interface levels.  
Differential output pair. HSTL interface levels.  
Differential output pair. HSTL interface levels.  
Analog supply pin.  
PLL select. Selects between the PLL and reference clock as the input to the  
dividers. When LOW, selects reference clock. When HIGH, selects PLL.  
LVCMOS/LVTTL interface levels.  
31  
PLL_SEL  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
k  
RPULLDOWN Input Pulldown Resistor  
k  
ICS8624BY REVISION F OCTOBER 22, 2013  
2
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
Function Tables  
Table 3A. Control Input Function Table  
Inputs  
Outputs  
PLL_SEL = 1  
PLL Enable Mode  
SEL1  
SEL0  
Reference Frequency Range (MHz)*  
Q[0:4], nQ[0:4]  
0
0
1
1
0
1
0
1
250 - 700  
125 - 350  
÷1  
÷1  
÷1  
÷1  
62.5 - 175  
31.25 - 87.5  
*NOTE: VCO frequency range for all configurations above is 250MHz to 700MHz.  
Table 3B. PLL Bypass Function Table  
Inputs  
Outputs  
PLL_SEL = 0  
PLL Bypass Mode  
SEL1  
SEL0  
Q[0:4], nQ[0:4]  
0
0
1
1
0
1
0
1
÷4  
÷4  
÷4  
÷8  
ICS8624BY REVISION F OCTOBER 22, 2013  
3
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.   
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond   
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for   
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
Inputs, VI  
4.6V  
-0.5V to VDD + 0.5V  
-0.5V to VDDO + 0.5V  
47.9C/W (0 lfpm)  
-65C to 150C  
Outputs, VO  
Package Thermal Impedance, JA  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VDD = 3.3V 5%, VDDO = 1.5V to 2V, TA = 0°C to 70°C  
Symbol  
VDD  
Parameter  
Test Conditions  
Minimum  
3.135  
3.135  
1.5  
Typical  
3.3  
Maximum  
3.465  
3.465  
2.0  
Units  
V
Core Supply Voltage  
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
Output Supply Current  
VDDA  
VDDO  
IDD  
3.3  
V
1.8  
V
120  
mA  
mA  
mA  
IDDA  
15  
IDDO  
0
Table 4B. LVCMOS/LVTTL DC Characteristics, VDD = 3.3V 5%, VDDO = 1.8V 0.2V, TA = 0°C to 70°C  
Symbol  
VIH  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VDD + 0.3  
0.8  
Units  
Input High Voltage  
Input Low Voltage  
2
V
V
VIL  
-0.3  
CLK_SEL,  
SEL[0:1], MR  
VDD = VIN = 3.465V  
150  
5
µA  
µA  
µA  
µA  
IIH  
Input High Current  
Input Low Current  
PLL_SEL  
VDD = VIN = 3.465V  
CLK_SEL,  
SEL[0:1], MR  
VDD = 3.465V, VIN = 0V  
VDD = 3.465V, VIN = 0V  
-5  
IIL  
PLL_SEL  
-150  
ICS8624BY REVISION F OCTOBER 22, 2013  
4
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
Table 4C. Differential DC Characteristics, VDD = 3.3V 5%, VDDO = 1.8V 0.2V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
µA  
µA  
µA  
µA  
V
FB_IN, CLK0, CLK1  
nFB_IN, nCLK0, nCLK1  
FB_IN, CLK0, CLK1  
nFB_IN, nCLK0, nCLK1  
V
DD = VIN = 3.465V  
VDD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
150  
5
IIH Input High Current  
V
-5  
-150  
0.1  
IIL  
Input Low Current  
VDD = 3.465V, VIN = 0V  
VPP  
Peak-to-Peak Voltage; NOTE 1  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
0.5  
VDD – 0.85  
V
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode input voltage is defined as VIH.  
Table 4D. HSTL DC Characteristics, VDD = 3.3V 5%, VDDO = 1.8V 0.2V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
VOH  
Output High Voltage; NOTE 1  
1.0  
0
1.4  
0.4  
60  
V
V
VOL  
Output Low Voltage; NOTE 1  
VOX  
Output Crossover Voltage; NOTE 2  
Peak-to-Peak Output Voltage Swing  
40  
0.6  
%
V
VSWING  
1.1  
NOTE 1: Outputs terminated with 50to ground.  
NOTE 2: Defined with respect to output voltage swing at a given condition.  
Table 5. Input Frequency Characteristics, VDD = 3.3V 5%, VDDO = 1.8V 0.2V, TA = 0°C to 70°C  
Symbol  
Parameter  
Test Conditions  
PLL_SEL = 1  
PLL_SEL = 0  
Minimum  
Typical  
Maximum  
700  
Units  
MHz  
MHz  
31.25  
CLK0, nCLK0,  
CLK1, nCLK1  
FIN  
Input Frequency  
700  
ICS8624BY REVISION F OCTOBER 22, 2013  
5
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
AC Electrical Characteristics  
Table 6A. AC Characteristics, VDD = 3.3V 5%, VDDO = 1.8V 0.2V, TA = 0°C to 70°C  
Symbol  
fMAX  
tPD  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
MHz  
ns  
Output Frequency  
700  
Propagation Delay; NOTE 1  
Static Phase Offset; NOTE 2, 5  
Output Skew; NOTE 3, 5  
Cycle-to-Cycle Jitter; NOTE 5, 6  
Phase Jitter; NOTE 4, 5, 6  
PLL Lock Time  
ƒ 700MHz  
3.2  
4.4  
t(Ø)  
PLL_SEL = 3.3V  
-100  
100  
ps  
tsk(o)  
tjit(cc)  
tjit()  
tL  
25  
ps  
25  
ps  
50  
1
ps  
ms  
ps  
tR / tF  
tPW  
Output Rise/Fall Time  
Output Pulse Width  
20% to 80% @ 50MHz  
300  
700  
tcycle/2 - 85  
tcycle/2  
tcycle/2 + 85  
ps  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as the time difference between the input reference clock and the averaged feedback input signal across all conditions, when  
the PLL is locked and the input reference frequency is stable.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential  
cross points.  
NOTE 4: Phase jitter is dependent on the input source used.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 6: Characterized at VCO frequency of 622MHz.  
Table 6B. AC Characteristics, VDD = 3.3V 10%, VDDO = 1.8V 0.2V, TA = 0°C to 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Typical  
Maximum  
Units  
tjit(cc)  
Cycle-to-Cycle Jitter; NOTE 1  
35  
ps  
NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.  
Table 6C. AC Characteristics, VDD = 3.3V 5%, VDDO = 1.5V to 1.6V, TA = 0°C to 70°C  
Symbol  
fMAX  
tPD  
Parameter  
Test Conditions  
Minimum  
Maximum  
Units  
MHz  
ns  
Output Frequency  
700  
Propagation Delay; NOTE 1  
Static Phase Offset; NOTE 2, 5  
Output Skew; NOTE 3, 5  
Cycle-to-Cycle Jitter; NOTE 5, 6  
Phase Jitter; NOTE 4, 5, 6  
PLL Lock Time  
ƒ 700MHz  
3.2  
4.4  
t(Ø)  
PLL_SEL = 3.3V  
-100  
150  
ps  
tsk(o)  
tjit(cc)  
tjit()  
tL  
35  
ps  
25  
ps  
50  
1
ps  
ms  
ps  
tR / tF  
tPW  
Output Rise/Fall Time  
Output Pulse Width  
20% to 80% @ 50MHz  
300  
700  
tcycle/2 - 95  
tcycle/2  
tcycle/2 + 95  
ps  
For NOTES, see Table 6A above.  
ICS8624BY REVISION F OCTOBER 22, 2013  
6
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
Parameter Measurement Information  
3.3V 5%  
1.8V 0.2V  
V
DD  
SCOPE  
Qx  
V
DD,  
V
nCLK0, nCLK1  
DDA  
V
DDO  
VPP  
VCMR  
Cross Points  
HSTL  
CLK0, CLK1  
GND  
nQx  
GND  
0V  
0V  
3.3V Core/1.8V Output Load AC Test Circuit  
Differential Input Level  
nCLK0, nCLK1  
CLK0, CLK1  
nFB_IN  
VOH  
VOL  
nQx  
Qx  
VOH  
VOL  
FB_IN  
nQy  
Qy  
t(Ø)  
tjit(Ø) = t(Ø) – t(Ø) mean= Phase Jitter  
t(Ø) mean = Static Phase Offset  
Where t(Ø) is any random sample, and t(Ø) mean is the average  
of the sampled cycles measured on the controlled edges)  
Phase Jitter and Static Phase Offset  
Output Skew  
nQ[0:4]  
VDDO  
nQ[0:4]  
Q[0:4]  
VDDO  
2
VDDO  
2
2
Q[0:4]  
Pulse Width  
tcycle n  
tcycle n+1  
tPERIOD  
tjit(cc) = tcycle n – tcycle n+1  
|
|
1000 Cycles  
Cycle-to-Cycle Jitter  
Output Pulse Width/Period  
ICS8624BY REVISION F OCTOBER 22, 2013  
7
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
Parameter Measurement Information, continued  
nCLK0,  
nCLK1  
nQ[0:4]  
Q[0:4]  
80%  
tF  
80%  
tR  
CLK0,  
CLK1  
VOX  
20%  
VSWING  
20%  
nQ[0:4]  
Q[0:4]  
tPD  
Propagation Delay  
Output Rise/Fall Time  
Application Information  
Power Supply Filtering Technique  
To achieve optimum jitter performance, power supply isolation is  
required. To achieve optimum jitter performance, power supply  
isolation is required. The ICS8624 provides separate power supplies  
to isolate any high switching noise from the outputs to the internal  
PLL. VDD, VDDA and VDDO should be individually connected to the  
power supply plane through vias, and 0.01µF bypass capacitors  
should be used for each pin. Figure 1 illustrates this for a generic VDD  
pin and also shows that VDDA requires that an additional 10resistor  
along with a 10F bypass capacitor be connected to the VDDA pin.  
3.3V  
VDD  
.01µF  
.01µF  
10Ω  
VDDA  
10µF  
Figure 1. Power Supply Filtering  
ICS8624BY REVISION F OCTOBER 22, 2013  
8
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
Recommendations for Unused Input and Output Pins  
Outputs:  
Inputs:  
LVCMOS Control Pins  
HSTL Outputs  
All control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
All unused HSTL outputs can be left floating. We recommend that  
there is no trace attached. Both sides of the differential output pair  
should either be left floating or terminated.  
CLK/nCLK Inputs  
For applications not requiring the use of the differential input, both  
CLK and nCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to ground.  
Wiring the Differential Input to Accept Single Ended Levels  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VDD/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the  
center of the input voltage swing. For example, if the input clock swing  
is only 2.5V and VDD = 3.3V, V_REF should be 1.25V and R2/R1 =  
0.609.  
VDD  
R1  
1K  
CLK_IN  
CLKx  
V_REF  
nCLKx  
C1  
0.1uF  
R2  
1K  
Figure 2. Single-Ended Signal Driving Differential Input  
ICS8624BY REVISION F OCTOBER 22, 2013  
9
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and  
other differential signals. Both signals must meet the VPP and VCMR  
input requirements. Figures 3A to 3F show interface examples for the  
HiPerClockS CLK/nCLK input driven by the most common driver  
types. The input interfaces suggested here are examples only.  
Please consult with the vendor of the driver component to confirm the  
driver termination requirements. For example, in Figure 3A, the input  
termination applies for IDT HiPerClockS open emitter LVHSTL  
drivers. If you are using an LVHSTL driver from another vendor, use  
their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
Zo = 50Ω  
Differential  
Input  
nCLK  
LVPECL  
Differential  
Input  
R1  
50Ω  
R2  
50Ω  
LVHSTL  
R1  
50Ω  
R2  
50Ω  
IDT  
LVHSTL Driver  
R2  
50Ω  
Figure 3A. HiPerClockS CLK/nCLK Input  
Driven by an IDT Open Emitter   
HiPerClockS LVHSTL Driver  
Figure 3B. HiPerClockS CLK/nCLK Input   
Driven by a 3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50Ω  
CLK  
CLK  
R1  
100Ω  
nCLK  
nCLK  
Zo = 50Ω  
Differential  
Input  
LVPECL  
Receiver  
LVDS  
Figure 3C. HiPerClockS CLK/nCLK Input  
Figure 3D. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
Driven by a 3.3V LVDS Driver  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120Ω  
120Ω  
*R3  
Zo = 60Ω  
Zo = 60Ω  
CLK  
CLK  
nCLK  
nCLK  
Differential  
Input  
Differential  
Input  
*R4  
SSTL  
HCSL  
R1  
R2  
120Ω  
120Ω  
Figure 3E. HiPerClockS CLK/nCLK Input  
Figure 3F. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V HCSL Driver  
Driven by a 2.5V SSTL Driver  
ICS8624BY REVISION F OCTOBER 22, 2013  
10  
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
Schematic Example  
The schematic of the ICS8624 layout example is shown in Figure 4A.  
The ICS8624 recommended PCB board layout for this example is  
shown in Figure 4B. This layout example is used as a general  
guideline. The layout in the actual system will depend on the selected  
component types, the density of the components, the density of the  
traces, and the stack up of the P.C. board.  
VDD  
SP = Spare (i.e. not installed)  
R7  
VDD  
VDDA  
RU2  
SP  
RU3  
1K  
RU4  
1K  
RU5  
SP  
10  
C11  
0.01u  
VDD=3.3V  
C16  
10u  
VDDO=1.8V  
CLK_SEL  
PLL_SEL  
SEL0  
SEL1  
Zo = 50 Ohm  
Zo = 50 Ohm  
155.5 MHz  
DIV_SEL[1:0] = 01  
+
-
VDDO  
RD2  
1K  
RD3  
SP  
RD4  
SP  
RD5  
1K  
LVHSTL_input  
VDD  
U1  
R4A  
50  
R4B  
50  
3.3V  
(155.5 MHz)  
Zo = 50 Ohm  
SEL0  
SEL1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
SEL0  
SEL1  
VDDO  
Q3  
nQ3  
Q2  
nQ2  
Q1  
nQ1  
VDDO  
CLK0  
nCLK0  
CLK1  
nCLK2  
CLK_SEL  
MR  
Bypass capacitor located near the power pins  
Zo = 50 Ohm  
CLK_SEL  
VDD  
(U1-9)  
(U1-32)  
3.3V PECL Driver  
C1  
0.1uF  
C6  
0.1uF  
R8  
50  
R9  
50  
8624  
VDDO  
R10  
50  
(U1-16)  
(U1-17)  
(U1-24)  
(U1-25)  
R2B  
50  
R2A  
50  
C2  
0.1uF  
C4  
0.1uF  
C5  
0.1uF  
C7  
0.1uF  
Figure 4A. ICS8624 HSTL Zero Delay Buffer Schematic Example  
ICS8624BY REVISION F OCTOBER 22, 2013  
11  
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
The following component footprints are used in this layout example:  
All the resistors and capacitors are size 0603.  
location. While routing the traces, the clock signal traces should be  
routed first and should be locked prior to routing other signal traces.  
• The differential 50output traces should have same length.  
Power and Grounding  
Place the decoupling capacitors C1, C6, C2, C4, and C5, as close as  
possible to the power pins. If space allows, placement of the  
decoupling capacitor on the component side is preferred. This can  
reduce unwanted inductance between the decoupling capacitor and  
the power pin caused by the via.  
• Avoid sharp angles on the clock trace. Sharp angle turns  
cause the characteristic impedance to change on the  
transmission lines.  
• Keep the clock traces on the same layer. Whenever possible,  
avoid placing vias on the clock traces. Placement of vias on  
the traces can affect the trace characteristic impedance and  
hence degrade signal integrity.  
Maximize the power and ground pad sizes and number of vias  
capacitors. This can reduce the inductance between the power and  
ground planes and the component power and ground pins.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace widths  
between the differential clock trace and the other signal trace.  
The RC filter consisting of R7, C11, and C16 should be placed as  
close to the VDDA pin as possible.  
Clock Traces and Termination  
Poor signal integrity can degrade the system performance or cause  
system failure. In synchronous high-speed digital systems, the clock  
signal is less tolerant to poor signal integrity than other signals. Any  
ringing on the rising or falling edge or excessive ring back can cause  
system failure. The shape of the trace and the trace delay might be  
restricted by the available space on the board and the component  
• Make sure no other signal traces are routed between the  
clock trace pair.  
The matching termination resistors should be located as close to the  
receiver input pins as possible.  
GND  
R7  
C16 C11  
C7  
VDDO  
VDD  
C6  
C5  
U1  
Pin 1  
VDDA  
VIA  
50 Ohm  
Traces  
C4  
C1  
C2  
Figure 4B. PCB Board Layout for ICS8624  
ICS8624BY REVISION F OCTOBER 22, 2013  
12  
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS8624.   
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8624 is the sum of the core power plus the power dissipated in the load(s).   
The following is the power dissipation for VDD = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VDD_MAX * (IDD_MAX + IDDA_MAX)= 3.465V * (120mA + 15mA) = 467.775mW  
Power (outputs)MAX = 32.8mW/Loaded Output pair  
If all outputs are loaded, the total power is 5 * 32.8mW = 164mW  
Total Power_MAX (3.465V, with all outputs switching) = 467.775mW + 164mW = 631.775mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The  
maximum recommended junction temperature for HiPerClockS devices is 125°C. Limiting the internal transistor junction temperature, Tj, to  
125°C ensures that the bond wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 47.9°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.632W * 47.9°C/W = 100.3°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 7. Thermal Resistance JA for 32 Lead LQFP, Forced Convection  
JA vs. Air Flow  
Linear Feet per Minute  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
47.9°C/W  
42.1°C/W  
39.4°C/W  
ICS8624BY REVISION F OCTOBER 22, 2013  
13  
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
3. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the HSTL output pairs.  
HSTL output driver circuit and termination are shown in Figure 5.  
VDDO  
Q1  
VOUT  
RL  
50Ω  
Figure 5. HSTL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load.  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = (VOH_MAX /RL) * (VDDO_MAX – VOH_MAX  
)
Pd_L = (VOL_MAX/RL) * (VDDO_MAX – VOL_MAX  
)
Pd_H = (1V/50) * (2V – 1V) = 20mW  
Pd_L = (0.4V/50) * (2V – 0.4V) = 12.8mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 32.8mW  
ICS8624BY REVISION F OCTOBER 22, 2013  
14  
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
Reliability Information  
Table 8. JA vs. Air Flow Table for a 32 Lead LQFP  
JA vs. Air Flow  
Linear Feet per Minute  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
47.9°C/W  
42.1°C/W  
39.4°C/W  
Transistor Count  
The transistor count for ICS8624 is: 1565  
ICS8624BY REVISION F OCTOBER 22, 2013  
15  
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
Package Outline and Dimensions  
Package Outline - Y Suffix for 32 Lead LQFP  
Table 9. Package Dimensions for 32 Lead LQFP  
JEDEC Variation: BBA  
All Dimensions in Millimeters  
Symbol  
Minimum  
Nominal  
Maximum  
N
32  
A
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
0.05  
1.35  
0.30  
0.09  
A2  
1.40  
0.37  
b
c
D & E  
D1 & E1  
D2 & E2  
e
9.00 Basic  
7.00 Basic  
5.60 Ref.  
0.80 Basic  
0.60  
L
0.45  
0°  
0.75  
7°  
ccc  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
ICS8624BY REVISION F OCTOBER 22, 2013  
16  
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
Ordering Information  
Table 10. Ordering Information  
Part/Order Number  
8624BY  
8624BYT  
8624BYLF  
8624BYLFT  
Marking  
ICS8624BY  
ICS8624BY  
ICS8624BYLF  
ICS8624BYLF  
Package  
32 Lead LQFP  
32 Lead LQFP  
Shipping Packaging  
Tray  
1000 Tape & Reel  
Tray  
Temperature  
0C to 70C  
0C to 70C  
0C to 70C  
0C to 70C  
“Lead-Free” 32 Lead LQFP  
“Lead-Free” 32 Lead LQFP  
1000 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product  
for use in life support devices or critical medical instruments.  
ICS8624BY REVISION F OCTOBER 22, 2013  
17  
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
8
Switched labels on Figure 8, odc & tPERIOD diagram.  
A
10/30/01  
10/31/01  
8/13/02  
10  
Revised label on Figure 11 to read ICS8624 LVHSTL... from ICS8634 LVDS...  
A
1
Revised Block Diagram.  
7 - 8  
Updated Phase Jitter Diagram and Output Rise & Fall Time Diagram.  
Revised Figures 3A & 3B.  
A
11 - 12  
T1  
2
4
Pin Description table - revised MR & VDD descriptions.  
T4A  
Power Supply table - revised VDD parameter description to correspond with the Pin  
Description table.  
B
C
2/12/03  
2/19/04  
T4C  
4
9
Differential DC Charc. table - changed VPP limit from 0.15V minimum to 0.1V minimum.  
Revised Single Ended Signal diagram.  
Updated format.  
T2  
3
4
5
5
Pin Characteristics Table - changed CIN 4pF max. to 4pF typical.  
Absolute Maximum Ratings - updated Output rating.  
T4D  
T6B  
HSTL DC Characteristics Table - changed VOX to 40% min. - 60% max. and added note.  
Added Table 6B AC Characteristics Table with VDD = VDDA = 3.3V 10%.  
Changed LVHSTL to HSTL throughout the data sheet.  
8
Added Differential Clock Input Interface section.  
C
D
6/15/04  
6/27/05  
T10  
T6A  
14  
Added ""Lead Free"" part number to Ordering Information table.  
5
AC Characteristics Table -adjusted TPD spec from 3.4ns Min. to 3.2ns Min. and deleted  
the typical spec.  
T10  
T4A  
14  
4
Ordering Information Table - added Lead-Free note.  
Power Supply DC Characteristics Table - changed VDDO min. from 1.6V to 1.5V. Updated  
Table Header to match change.  
T4C  
T6A  
T6C  
5
6
Differential DC Characteristics Table - updated NOTES 1 & 2.  
Added Thermal note.  
6
Added 1.5V to 1.6V AC Characteristics Table.  
E
F
10/6/09  
9
Added Recommendations for Unused Input & Output Pins section.  
Updated Differential Clock Input Interface section.  
Power Considerations - updated Power Dissipation calculation.  
Ordering Information Table - deleted “ICS” prefix from Part/Order Number column.  
Converted datasheet format.  
10  
13  
17  
T10  
1
Added NRND - Not Recommended for New Designs  
10/22/13  
ICS8624BY REVISION F OCTOBER 22, 2013  
18  
©2013 Integrated Device Technology, Inc.  
ICS8624 Data Sheet  
LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
San Jose, California 95138  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2013. All rights reserved.  

相关型号:

8624BYI

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER
IDT

8624BYILF

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER
IDT

8624BYILFT

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER
IDT

8624BYIT

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-HSTL ZERO DELAY BUFFER
IDT

8624BYLF

TQFP-32, Tray
IDT

8624BYLFT

TQFP-32, Reel
IDT

8624BYT

PLL Based Clock Driver, 8624 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32
IDT

8625-10B

CHOKE Power Chokes
FILTRAN

8625-10C

CHOKE Power Chokes
FILTRAN

8625-10D

CHOKE Power Chokes
FILTRAN

8625-12B

CHOKE Power Chokes
FILTRAN

8625-12C

CHOKE Power Chokes
FILTRAN