871002AGI-02 [IDT]

Differential-to-0.7V HCSL Differential PCI EXPRESS™ Jitter Attenuator; 差分至0.7V HCSL差分PCI EXPRESSâ ?? ¢抖动衰减器
871002AGI-02
型号: 871002AGI-02
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Differential-to-0.7V HCSL Differential PCI EXPRESS™ Jitter Attenuator
差分至0.7V HCSL差分PCI EXPRESSâ ?? ¢抖动衰减器

衰减器 PC
文件: 总16页 (文件大小:795K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Differential-to-0.7V HCSL Differential  
PCI EXPRESS™ Jitter Attenuator  
ICS871002I-02  
DATA SHEET  
General Description  
Features  
The ICS871002I-02 is a high performance Jitter  
Attenuator designed for use in PCI Express™systems.  
In some PCI Express systems, such as those found in  
desktop PCs, the PCI Express clocks are generated  
from a low bandwidth, high phase noise PLL frequency  
Two 0.7V HCSL differential output pairs  
One differential clock input  
S
IC  
HiPerClockS™  
CLK, nCLK can accept the following differential input levels:  
LVPECL, LVDS, HSTL, HCSL, SSTL  
Input frequency range: 98MHz to 128MHz  
Output frequency range: 98MHz to 640MHz  
VCO range: 490MHz - 640MHz  
synthesizer. In these systems, a jitter attenuator may be required to  
attenuate high frequency random and deterministic jitter components  
from the PLL synthesizer and from the system board. The  
ICS871002I-02 has two PLL bandwidth modes: 350kHz and  
2200kHz. The 350kHz mode provides the maximum jitter  
attenuation, but it also results in higher PLL tracking time. In this  
mode, the spread spectrum modulation may also be attenuated. The  
2200kHz bandwidth provides the best tracking skew and will pass  
most spread profiles, but the jitter attenuation will not be as good as  
the lower bandwidth modes. The ICS871002I-02 can be set for  
different modes using the F_SELx pins as shown in Table 3C.  
Cycle-to-cycle jitter: 45ps (maximum)  
Two bandwidth modes allow the system designer to make jitter  
attenuation/tracking skew design trade-offs  
Full 3.3V supply mode  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
The ICS871002I-02 uses IDT 3rd Generation FemtoClockTM PLL  
technology to achieve the lowest possible phase noise. The  
device is packaged in a small 20 Lead TSSOP package, making it  
ideal for use in space constrained applications such as PCI Express  
add-in cards.  
PLL Bandwidth (typical) Table  
BW_SEL  
0 = PLL Bandwidth: ~350kHz (default)  
1 = PLL Bandwidth: ~2200kHz  
Block Diagram  
IREF  
Pullup  
OE  
2
Pullup:Pulldown  
F_SEL[1:0]  
Pin Assignment  
Pulldown  
BW_SEL  
nQ0  
IREF  
1
2
20 Q0  
0 = 350kHz  
1 = 2200kHz  
Output Divider  
00 ÷5  
01 ÷4  
10 ÷2 (default)  
11 ÷1  
Q0  
19  
VDD  
FB_OUT  
nFB_OUT  
3
4
18  
17  
Q1  
nQ1  
nQ0  
Pulldown  
CLK  
MR  
BW_SEL  
F_SEL1  
5
6
7
8
9
16 nFB_IN  
Phase  
Detector  
VCO  
15  
14  
13  
FB_IN  
GND  
nCLK  
Pullup  
nCLK  
490 - 640 MHz  
Q1  
VDDA  
F_SEL0  
12 CLK  
11  
OE  
nQ1  
VDD 10  
Pulldown  
Pullup  
FB_IN  
nFB_IN  
ICS871002I-02  
20-Lead TSSOP  
6.5mm x 4.4mm x 0.925mm  
package body  
÷5 (fixed)  
FB_OUT  
nFB_OU  
G Package  
Top View  
Pulldown  
MR  
ICS871002AGI-02 REVISION A APRIL 14, 2010  
1
©2010 Integrated Device Technology, Inc.  
ICS871002I-02 Data Sheet  
PCI EXPRESS™ JITTER ATTENUATOR  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1, 20  
nQ0, nQ0  
Output  
Input  
Differential output pair. HCSL interface levels.  
A fixed precision resistor (475) from this pin to ground provides a reference  
current used for differential current-mode Qx/nQx clock outputs.  
2
IREF  
3,  
4
FB_OUT,  
nFB_OUT  
Output  
Input  
Differential feedback output pair. HCSL interface levels.  
Active HIGH Master Reset. When logic HIGH, the internal dividers are reset  
causing the true outputs (Qx, FB_OUT) to go low and the inverted outputs (nQx,  
nFB_OUT) to go high. When logic LOW, the internal dividers and the outputs are  
enabled. LVCMOS/LVTTL interface levels.  
5
MR  
Pulldown  
6
BW_SEL  
Input  
Input  
Pulldown  
PLL Bandwidth select input. 0 = 350kHz, 1 = 2200kHz. See Table 3B.  
7,  
9
F_SEL1,  
F_SEL0  
Pullup  
Pulldown  
Frequency select pins. See Table 3C. LVCMOS/LVTTL interface levels  
8
VDDA  
VDD  
Power  
Power  
Analog supply pin.  
Core supply pins.  
10, 19  
Output enable pin. When HIGH, the outputs are active. When LOW, the outputs are  
in a high impedance state. LVCMOS/LVTTL interface levels. See Table 3A.  
11  
OE  
Input  
Pullup  
12  
13  
CLK  
nCLK  
Input  
Input  
Pulldown  
Pullup  
Non-inverting differential clock input.  
Inverting differential clock input.  
14  
GND  
Power  
Input  
Power supply ground.  
15  
FB_IN  
nFB_IN  
nQ1, Q1  
Pulldown  
Pullup  
Non-inverting differential feedback clock input.  
Inverting differential feedback clock input.  
Differential output pair. HCSL interface levels.  
16  
Input  
17, 18  
Output  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
kΩ  
RPULLDOWN Input Pulldown Resistor  
kΩ  
ICS871002AGI-02 REVISION A APRIL 14, 2010  
2
©2010 Integrated Device Technology, Inc.  
ICS871002I-02 Data Sheet  
PCI EXPRESS™ JITTER ATTENUATOR  
Function Tables  
Table 3A. Output Enable Function Table  
Input  
OE  
Outputs  
FB_OUT, nFB_OUT  
Q[1:0], nQ[1:0]  
High-Impedance  
Enabled  
0
Enabled  
Enabled  
1 (default)  
Table 3B. PLL Bandwidth Control Table  
Input  
BW_SEL  
PLL Bandwidth  
350kHz (default)  
2200kHz  
0
1
Table 3C. F_SELx Function Table  
Input Frequency  
Inputs  
Output Frequency  
(MHz)  
(MHz)  
F_SEL1  
F_SEL0  
Divider  
÷5  
100  
0
0
1
1
0
1
0
1
100  
125  
100  
÷4  
100  
÷2  
250 (default)  
500  
100  
÷1  
ICS871002AGI-02 REVISION A APRIL 14, 2010  
3
©2010 Integrated Device Technology, Inc.  
ICS871002I-02 Data Sheet  
PCI EXPRESS™ JITTER ATTENUATOR  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
Inputs, VI  
4.6V  
-0.5V to VDD + 0.5V  
-0.5V to VDD + 0.5V  
86.7°C/W (0 mps)  
-65°C to 150°C  
Outputs, VO  
Package Thermal Impedance, θJA  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. LVDS Power Supply DC Characteristics, VDD = 3.3V 10%, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
2.97  
Typical  
3.3  
Maximum  
3.63  
VDD  
Units  
V
VDD  
VDDA  
IDD  
Core Supply Voltage  
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
VDD – 0.12  
3.3  
V
75  
mA  
mA  
IDDA  
12  
Table 4B. LVCMOS/LVTTL DC Characteristics, VDD = 3.3V 10%, TA = -40°C to 85°C  
Symbol  
VIH  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
V
Input High Voltage  
Input Low Voltage  
2
VDD + 0.3  
VIL  
-0.3  
0.8  
5
V
OE, F_SEL1  
VDD = VIN = 3.63V  
VDD = VIN = 3.63V  
µA  
IIH  
Input High Current  
Input Low Current  
BW_SEL,  
F_SEL0, MR  
150  
µA  
µA  
µA  
OE, F_SEL1  
VDD = 3.63V, VIN = 0V  
VDD = 3.63V, VIN = 0V  
-150  
-5  
IIL  
BW_SEL,  
F_SEL0, MR  
Table 4C. Differential DC Characteristics, VDD = 3.3V 10%, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
µA  
µA  
µA  
µA  
V
CLK, FB_IN  
VDD = VIN = 3.465V  
150  
5
IIH Input High Current  
nCLK, nFB_IN  
CLK, FB_IN  
VDD = VIN = 3.465V  
V
DD = 3.465V, VIN = 0V  
-5  
-150  
IIL  
Input Low Current  
nCLK, nFB_IN  
VDD = 3.465V, VIN = 0V  
VPP  
Peak-to-Peak Voltage; NOTE 1  
0.15  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
GND + 0.5  
VDD – 0.85  
V
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode input voltage is defined as VIH.  
ICS871002AGI-02 REVISION A APRIL 14, 2010  
4
©2010 Integrated Device Technology, Inc.  
ICS871002I-02 Data Sheet  
PCI EXPRESS™ JITTER ATTENUATOR  
Table 5. 0.7V HCSL Differential AC Characteristics, VDD = 3.3V 10%, TA = -40°C to 85°C  
Symbol  
fMAX  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
640  
Units  
MHz  
ps  
Output Frequency  
Cycle-to-Cycle Jitter; NOTE 1  
98  
tjit(cc)  
PLL Mode  
45  
Absolute Max. Output Voltage;  
NOTE 2, 3  
VMAX  
1150  
mV  
Absolute Min. Output Voltage;  
NOTE 2, 4  
VMIN  
-300  
-100  
200  
mV  
mV  
mV  
VRB  
Ringback Voltage; NOTE 5, 6  
100  
550  
Absolute Crossing Voltage;  
NOTE 2, 7, 8  
VCROSS  
Total Variation of VCROSS over  
all edges; NOTE 2, 7, 9  
VCROSS  
140  
mV  
tR / tF  
odc  
Output Rise/Fall Time  
measured between -150mV to +150mV  
0.6  
48  
4.75  
52  
V/ns  
%
Output Duty Cycle; NOTE 10  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE: All parameters measured at f 250MHz unless noted otherwise.  
NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 2: Measurement taken from single ended waveform.  
NOTE 3: Defined as the maximum instantaneous voltage including overshoot. See Parameter Measurement Information Section.  
NOTE 4: Defined as the minimum instantaneous voltage including undershoot. See Parameter Measurement Information Section.  
NOTE 5: Measurement taken from differential waveform.  
NOTE 6:TSTABLE is the time the differential clock must maintain a minimum 150mV differential voltage after rising/falling edges before it is  
allowed to drop back into the VRB 100mV differential range.  
NOTE 7: Measured at crossing point where the instantaneous voltage value of the rising edge of Q equals the falling edge of nQ.  
NOTE 8: Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing  
points for this measurement.  
NOTE 9: Defined as the total variation of all crossing voltages of rising Q and falling nQ, This is the maximum allowed variance in Vcross for  
any particular system.  
NOTE 10: Input duty cycle must be 50%.  
ICS871002AGI-02 REVISION A APRIL 14, 2010  
5
©2010 Integrated Device Technology, Inc.  
ICS871002I-02 Data Sheet  
PCI EXPRESS™ JITTER ATTENUATOR  
Parameter Measurement Information  
3.3V 10%  
3.3V 10%  
3.3V 10%  
3.3V 10%  
SCOPE  
50Ω  
V
Measurement  
DD  
50Ω  
50Ω  
V
33Ω  
33Ω  
Point  
DD  
V
DDA  
V
DDA  
HCSL  
49.9Ω  
49.9Ω  
2pF  
HCSL  
50Ω  
Measurement  
Point  
IREF  
IREF  
GND  
0V  
475Ω  
GND  
0V  
2pF  
475Ω  
This load condition is used for IDD and tjit(cc) measurements.  
3.3V HCSL Output Load AC Test Circuit  
3.3V HCSL Output Load AC Test Circuit  
V
nQ[0:1],  
DD  
nFB_OUT  
nCLK,  
Q[0:1],  
nFB_IN  
FB_OUT  
VPP  
VCMR  
Cross Points  
tcycle n  
tcycle n+1  
CLK,  
FB_IN  
tjit(cc) = tcycle n – tcycle n+1  
|
|
1000 Cycles  
GND  
Differential Input Level  
Cycle-to-Cycle Jitter  
T
STABLE  
Clock Period (Differential)  
V
RB  
Positive Duty  
Cycle (Differential)  
Negative Duty  
Cycle (Differential)  
+150mV  
RB = +100mV  
0.0V  
V
VRB = -100mV  
-150mV  
0.0V  
Q - nQ  
V
RB  
Q - nQ  
T
STABLE  
Differential Measurement Points for Duty Cycle/Period  
Differential Measurement Points for Ringback  
ICS871002AGI-02 REVISION A APRIL 14, 2010  
6
©2010 Integrated Device Technology, Inc.  
ICS871002I-02 Data Sheet  
PCI EXPRESS™ JITTER ATTENUATOR  
Parameter Measurement Information, continued  
V
MAX = 1.15V  
nQ  
nQ  
VCROSS_MAX = 550mV  
VCROSS_DELTA = 140mV  
V
CROSS_MIN = 250mV  
Q
Q
V
MIN = -0.30V  
Single-ended Measurement Points for Absolute Cross  
Point and Swing  
Single-ended Measurement Points for Delta Cross Point  
Rise Edge Rate  
Fall Edge Rate  
+150mV  
0.0V  
-150mV  
Q - nQ  
Output Rise/Fall Time  
ICS871002AGI-02 REVISION A APRIL 14, 2010  
7
©2010 Integrated Device Technology, Inc.  
ICS871002I-02 Data Sheet  
PCI EXPRESS™ JITTER ATTENUATOR  
Application Information  
Power Supply Filtering Technique  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter performance,  
power supply isolation is required. The ICS871002I-02 provides  
separate power supplies to isolate any high switching noise from the  
outputs to the internal PLL. VDD and VDDA should be individually  
connected to the power supply plane through vias, and 0.01µF  
bypass capacitors should be used for each pin. Figure 1 illustrates  
this for a generic VDD pin and also shows that VDDA requires that an  
additional 10resistor along with a 10µF bypass capacitor be  
connected to the VDDA pin.  
3.3V  
VDD  
.01µF  
10Ω  
VDDA  
.01µF  
10µF  
Figure 1. Power Supply Filtering  
Wiring the Differential Input to Accept Single-Ended Levels  
Figure 2 shows how a differential input can be wired to accept single  
ended levels. The reference voltage VREF = VDD/2 is generated by  
the bias resistors R1 and R2. The bypass capacitor (C1) is used to  
help filter noise on the DC bias. This bias circuit should be located as  
close to the input pin as possible. The ratio of R1 and R2 might need  
to be adjusted to position the VREF in the center of the input voltage  
swing. For example, if the input clock swing is 2.5V and VDD = 3.3V,  
R1 and R2 value should be adjusted to set VREF at 1.25V. The values  
below are for when both the single ended swing and VDD are at the  
same voltage. This configuration requires that the sum of the output  
impedance of the driver (Ro) and the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination at  
the input will attenuate the signal in half. This can be done in one of  
two ways. First, R3 and R4 in parallel should equal the transmission  
line impedance. For most 50applications, R3 and R4 can be 100.  
The values of the resistors can be increased to reduce the loading for  
slower and weaker LVCMOS driver. When using single-ended  
signaling, the noise rejection benefits of differential signaling are  
reduced. Even though the differential input can handle full rail  
LVCMOS signaling, it is recommended that the amplitude be  
reduced. The datasheet specifies a lower differential amplitude,  
however this only applies to differential signals. For single-ended  
applications, the swing can be larger, however VIL cannot be less  
than -0.3V and VIH cannot be more than VDD + 0.3V. Though some  
of the recommended components might not be used, the pads  
should be placed in the layout. They can be utilized for debugging  
purposes. The datasheet specifications are characterized and  
guaranteed by using a differential signal.  
Figure 2. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels  
ICS871002AGI-02 REVISION A APRIL 14, 2010  
8
©2010 Integrated Device Technology, Inc.  
ICS871002I-02 Data Sheet  
PCI EXPRESS™ JITTER ATTENUATOR  
Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, HSTL, SSTL, HCSL and  
other differential signals. The differential signal must meet the VPP  
and VCMR input requirements. Figures 3A to 3F show interface  
examples for the CLK/nCLK input driven by the most common driver  
types. The input interfaces suggested here are examples only.  
Please consult with the vendor of the driver component to confirm the  
driver termination requirements. For example, in Figure 3A, the input  
termination applies for IDT open emitter HSTL drivers. If you are  
using an HSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
Zo = 50Ω  
Differential  
Input  
nCLK  
LVPECL  
Differential  
Input  
R1  
50Ω  
R2  
50Ω  
HSTL  
R1  
50Ω  
R2  
50Ω  
IDT  
HSTL Driver  
R2  
50Ω  
3A. CLK/nCLK Input Driven by an  
IDT Open Emitter HSTL Driver  
Figure 3B. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
R4  
3.3V  
125Ω  
125Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100  
Zo = 50Ω  
nCLK  
nCLK  
Zo = 50Ω  
Differential  
Input  
LVPECL  
Receiver  
LVDS  
R1  
R2  
84Ω  
84Ω  
Figure 3C. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
Figure 3D. CLK/nCLK Input Driven by a 3.3V LVDS Driver  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120Ω  
120Ω  
Zo = 50Ω  
*R3  
*R4  
33Ω  
33Ω  
Zo = 60Ω  
Zo = 60Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
nCLK  
Differential  
Input  
Differential  
Input  
SSTL  
HCSL  
R1  
50Ω  
R2  
50Ω  
R1  
120Ω  
R2  
120Ω  
*Optional – R3 and R4 can be 0Ω  
Figure 3E. CLK/nCLK Input Driven by a  
3.3V HCSL Driver  
Figure 3F. CLK/nCLK Input Driven by a 2.5V SSTL Driver  
ICS871002AGI-02 REVISION A APRIL 14, 2010  
9
©2010 Integrated Device Technology, Inc.  
ICS871002I-02 Data Sheet  
PCI EXPRESS™ JITTER ATTENUATOR  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
LVCMOS Control Pins  
Differential Outputs  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
All unused differential outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
Recommended Termination  
Figure 4A is the recommended termination for applications which  
require the receiver and driver to be on a separate PCB. All traces  
should be 50impedance.  
Figure 4A. Recommended Termination  
Figure 4B is the recommended termination for applications which  
require a point to point connection and contain the driver and receiver  
on the same PCB. All traces should all be 50impedance.  
Figure 4B. Recommended Termination  
ICS871002AGI-02 REVISION A APRIL 14, 2010  
10  
©2010 Integrated Device Technology, Inc.  
ICS871002I-02 Data Sheet  
PCI EXPRESS™ JITTER ATTENUATOR  
Schematic Layout  
Figure 5 shows an example of ICS871002I-02 application schematic.  
In this example, the device is operated at VDD= 3.3V. The decoupling  
capacitors should be located as close as possible to the power pin.  
The input is driven by a 3.3V LVPECL driver. Two examples of HCSL  
termination are shown in this schematic.  
Logic Control Input Examples  
Set Logic  
Input to  
'1'  
Set Logic  
Input to  
'0'  
VDD  
VDD  
RU1  
1K  
RU2  
Not Install  
To Logic  
Input  
To Logic  
Input  
pins  
VDD=3.3V  
pins  
RD1  
RD2  
1K  
Not Install  
R1  
R2  
33  
33  
Q0  
Zo = 50  
Zo = 50  
+
-
nQ0  
VDD  
FB_IN  
R3  
nFB_IN  
475  
R4  
50  
R5  
50  
U1  
Recommended for  
PCI Express Add-In  
Card  
R7  
50  
R8  
50  
C1  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
.1uf  
nQ0  
Q0  
VDD  
Q1  
2
3
IREF  
FB_IN  
FB_OUT  
4
nFB_IN  
MR  
nFB_OUT  
MR  
nQ1  
5
FB_IN  
nFB_IN  
FB_IN  
GND  
nCLK  
CLK  
6
BW_SEL  
F_SEL1  
nFB_IN  
VDD  
BW_SEL  
F_SEL1  
VDDA  
7
R6  
VDDA  
8
10  
9
F_SEL0  
F_SEL0  
VDD  
10  
OE  
C3  
VDD  
HCSL Termination  
OE  
C2  
10u  
0.1u  
C4  
.1uf  
Q1  
Zo = 50  
Zo = 50  
+
-
nQ1  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
R9  
50  
R10  
50  
nCLK  
Recommended for PCI  
Express Point-to-Point  
Connection  
LVPECL Driver  
R11  
50  
R12  
50  
R13  
50  
Figure 5. ICS871002I-02 Schematic Layout  
ICS871002AGI-02 REVISION A APRIL 14, 2010  
11  
©2010 Integrated Device Technology, Inc.  
ICS871002I-02 Data Sheet  
PCI EXPRESS™ JITTER ATTENUATOR  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS871002I-02.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS71002I-02 is the sum of the core power plus the analog power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 10% = 3.63V, which gives worst case results.  
Power (core)MAX = VDD_MAX * (IDD_MAX + IDDA_MAX) = 3.63V * (75mA + 12mA) = 315.81mW  
Power (outputs)MAX = 46.8mW/Loaded Output Pair  
If all outputs are loaded, the total power is 3 * 46.8mW = 140.4mW  
Total Power_MAX (3.63V, with all outputs switching) = 315.81mW + 140.4mW = 456.21mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 86.7°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.456W * 86.7°C/W = 124.6°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 6. Thermal Resistance θJA for 20 Lead TSSOP, Forced Convection  
θJA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
86.7°C/W  
82.4°C/W  
80.2°C/W  
ICS871002AGI-02 REVISION A APRIL 14, 2010  
12  
©2010 Integrated Device Technology, Inc.  
ICS871002I-02 Data Sheet  
PCI EXPRESS™ JITTER ATTENUATOR  
The purpose of this section is to calculate power dissipation on the IC per HCSL output pair.  
HCSL output driver circuit and termination are shown in Figure 6.  
VDD  
IOUT = 17mA  
VOUT  
RREF  
=
4751%  
RL  
50Ω  
IC  
Figure 6. HCSL Driver Circuit and Termination  
HCSL is a current steering output which sources a maximum of 17mA of current per output. To calculate worst case on-chip power dissipation,  
use the following equations which assume a 50load to ground.  
The highest power dissipation occurs when VDD MAX.  
_
Power = (VDD_MAX – VOUT) * IOUT  
,
since VOUT – IOUT * RL  
= (VDD_MAX – IOUT * RL) * IOUT  
= (3.6V – 17mA * 50) * 17mA  
Total Power Dissipation per output pair = 46.8mW  
ICS871002AGI-02 REVISION A APRIL 14, 2010  
13  
©2010 Integrated Device Technology, Inc.  
ICS871002I-02 Data Sheet  
PCI EXPRESS™ JITTER ATTENUATOR  
Reliability Information  
Table 7. θJA vs. Air Flow Table for a 20 Lead TSSOP  
θJA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
86.7°C/W  
82.4°C/W  
80.2°C/W  
Transistor Count  
The transistor count for ICS871002I-02 is: 1,704  
Package Outline and Package Dimensions  
Package Outline - G Suffix for 20 Lead TSSOP  
Table 8 Package Dimensions  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
20  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 Basic  
E1  
e
4.30  
4.50  
0.65 Basic  
L
0.45  
0°  
0.75  
8°  
α
aaa  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
ICS871002AGI-02 REVISION A APRIL 14, 2010  
14  
©2010 Integrated Device Technology, Inc.  
ICS871002I-02 Data Sheet  
PCI EXPRESS™ JITTER ATTENUATOR  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
871002AGI-02  
871002AGI-02T  
871002AGI-02LF  
871002AGI-02LFT  
Marking  
Package  
20 Lead TSSOP  
20 Lead TSSOP  
Shipping Packaging  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS71002AI02  
ICS71002AI02  
ICS1002AI02L  
ICS1002AI02L  
Tube  
2500 Tape & Reel  
Tube  
“Lead-Free” 20 Lead TSSOP  
“Lead-Free” 20 Lead TSSOP  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without  
additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support  
devices or critical medical instruments.  
ICS871002AGI-02 REVISION A APRIL 14, 2010  
15  
©2010 Integrated Device Technology, Inc.  
ICS871002I-02 Data Sheet  
PCI EXPRESS™ JITTER ATTENUATOR  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
San Jose, California 95138  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2010. All rights reserved.  

相关型号:

871002AGI-02LF

Differential-to-0.7V HCSL Differential PCI EXPRESS™ Jitter Attenuator
IDT

871002AGI-02LFT

Differential-to-0.7V HCSL Differential PCI EXPRESS™ Jitter Attenuator
IDT

871002AGI-02T

Differential-to-0.7V HCSL Differential PCI EXPRESS™ Jitter Attenuator
IDT

87106-001

Stacked MLCC (SM)
KYOCERA AVX

87106-002

Stacked MLCC (SM)
KYOCERA AVX

87106-003

Stacked MLCC (SM)
KYOCERA AVX

87106-004

Stacked MLCC (SM)
KYOCERA AVX

87106-005

Stacked MLCC (SM)
KYOCERA AVX

87106-006

Stacked MLCC (SM)
KYOCERA AVX

87106-007

Stacked MLCC (SM)
KYOCERA AVX

87106-008

Stacked MLCC (SM)
KYOCERA AVX

87106-009

Stacked MLCC (SM)
KYOCERA AVX