8725AYI-01LFT [IDT]

PLL Based Clock Driver, 8725 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBA, LQFP-32;
8725AYI-01LFT
型号: 8725AYI-01LFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

PLL Based Clock Driver, 8725 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBA, LQFP-32

驱动 逻辑集成电路
文件: 总16页 (文件大小:327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8725I-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
GENERAL DESCRIPTION  
FEATURES  
The ICS8725I-01 is a highly versatile 1:5 Differential-to-  
HSTL Clock Generator. The ICS8725I-01 has a fully  
integrated PLL and can be configured as zero delay buffer,  
multiplier or divider, and has an output frequency range of  
31.25MHz to 630MHz. The reference divider, feedback  
divider and output divider are each programmable, thereby  
allowing for the following output-to-input frequency ratios:  
8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8. The external feedback allows  
the device to achieve “zero delay” between the input clock  
and the output clocks. The PLL_SEL pin can be used to  
bypass the PLL for system test and debug purposes. In  
bypass mode, the reference clock is routed around the PLL  
and into the internal output dividers.  
5 differential HSTL outputs  
Selectable differential CLKx, nCLKx input pairs  
CLKx, nCLKx pairs can accept the following differential  
input levels: LVDS, LVPECL, HSTL, SSTL, HCSL  
Output frequency range: 31.25MHz to 630MHz  
Input frequency range: 31.25MHz to 630MHz  
VCO range: 250MHz to 630MHz  
External feedback for “zero delay” clock regeneration  
with configurable frequencies  
Programmable dividers allow for the following output-to-input  
frequency ratios: 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8  
Static phase offset: 30ps ± 125ps  
Cycle-to-cycle jitter: 35ps (maximum)  
Output skew: 50ps (maximum)  
3.3V core, 1.8V output operating supply  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS5) and lead-free (RoHS 6)  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
PLL_SEL  
Q0  
nQ0  
Q1  
nQ1  
÷1, ÷2, ÷4, ÷8,  
÷16, ÷32,÷64  
32 31 30 29 28 27 26 25  
0
1
CLK0  
nCLK0  
Q2  
nQ2  
0
1
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
SEL0  
SEL1  
VDDO  
Q3  
CLK1  
nCLK1  
Q3  
nQ3  
CLK0  
nQ3  
Q2  
PLL  
nCLK0  
CLK1  
Q4  
nQ4  
ICS8725I-01  
10 11 12 13 14 15 16  
32-Lead LQFP  
CLK_SEL  
nQ2  
Q1  
8:1, 4:1, 2:1, 1:1,  
1:2, 1:4, 1:8  
nCLK1  
CLK_SEL  
FB_IN  
nFB_IN  
nQ1  
VDDO  
MR  
9
SEL0  
SEL1  
SEL2  
SEL3  
MR  
7mm x 7mm x 1.4mm package body  
Y Package  
Top View  
8725AYI-01  
www.idt.com  
REV. A AUGUST 9, 2010  
1
ICS8725I-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1, 2,  
12, 29  
SEL0, SEL1,  
SEL2, SEL3  
Determines output divider values in Table 3.  
LVCMOS/LVTTL interface levels.  
Input Pulldown  
3
4
5
6
CLK0  
nCLK0  
CLK1  
Input Pulldown Non-inverting differential clock input.  
Input Pullup Inverting differential clock input.  
Input Pulldown Non-inverting differential clock input.  
nCLK1  
Input  
Pullup Inverting differential clock input.  
Clock select input. When HIGH, selects CLK1, nCLK1.  
7
CLK_SEL  
MR  
Input Pulldown  
When LOW, selects CLK0, nCLK0. LVCMOS/LVTTL interface levels.  
Active HIGH Master Reset. When logic HIGH, the internal dividers are reset  
causing the true outputs Qx to go low and the inverted outputs nQx to go  
high. When logic LOW, the internal dividers and the outputs are enabled.  
LVCMOS/LVTTL interface levels.  
8
Input Pulldown  
Power  
9, 32  
10  
VDD  
Core supply pins.  
nFB_IN  
FB_IN  
GND  
Input  
Pullup  
Feedback input to phase detector for regenerating clocks with "zero delay".  
11  
Input Pulldown Feedback input to phase detector for regenerating clocks with "zero delay".  
13, 28  
14, 15  
Power  
Output  
Power supply ground.  
nQ0, Q0  
Differential output pair. HSTL interface levels.  
16, 17,  
24, 25  
VDDO  
Power  
Output supply pins.  
18, 19  
20, 21  
22, 23  
26, 27  
30  
nQ1, Q1  
nQ2, Q2  
nQ3, Q3  
nQ4, Q4  
VDDA  
Output  
Output  
Output  
Output  
Power  
Differential output pair. HSTL interface levels.  
Differential output pair. HSTL interface levels.  
Differential output pair. HSTL interface levels.  
Differential output pair. HSTL interface levels.  
Analog supply pin.  
Selects between the PLL and reference clock as the input to the dividers.  
When LOW, selects reference clock. When HIGH, selects PLL.  
LVCMOS/LVTTL interface levels.  
31  
PLL_SEL  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
KΩ  
RPULLDOWN Input Pulldown Resistor  
KΩ  
8725AYI-01  
www.idt.com  
REV. A AUGUST9, 2010  
2
ICS8725I-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Outputs  
Inputs  
SEL0  
PLL_SEL = 1  
PLL Enable Mode  
Q0:Q4, nQ0:nQ4  
SEL3  
SEL2  
SEL1  
Reference Frequency Range (MHz)*  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
250 - 630  
125 - 315  
÷ 1  
÷ 1  
÷ 1  
÷ 1  
÷ 2  
÷ 2  
÷ 2  
÷ 4  
÷ 4  
÷ 8  
x 2  
x 2  
x 2  
x 4  
x 4  
x 8  
62.5 - 157.5  
31.25 - 78.75  
250 - 630  
125 - 315  
62.5 - 157.5  
250 - 630  
125 - 315  
250 - 630  
125 - 315  
62.5 - 157.5  
31.25 - 78.75  
62.5 - 157.5  
31.25 - 78.75  
31.25 - 78.75  
*NOTE: VCO frequency range for all configurations above is 250MHz to 630MHz.  
TABLE 3B. PLL BYPASS FUNCTION TABLE  
Inputs  
Outputs  
PLL_SEL = 0  
PLL Bypass Mode  
SEL3  
SEL2  
SEL1  
SEL0  
Q0:Q4, nQ0:nQ4  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
÷ 4  
÷ 4  
÷ 4  
÷ 8  
÷ 8  
÷ 8  
÷ 16  
÷ 16  
÷ 32  
÷ 64  
÷ 2  
÷ 2  
÷ 4  
÷ 1  
÷ 2  
÷ 1  
8725AYI-01  
www.idt.com  
REV. A AUGUST 9, 2010  
3
ICS8725I-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
-0.5V to VDD + 0.5V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
DD  
Inputs, V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θ  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
JA  
Storage Temperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = VDDA = 3.3V±5%, VDDO = 1.8V±0.2V, TA = -40°C TO 85°C  
Symbol  
VDD  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Positive Supply Voltage  
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
Output Supply Current  
3.135  
3.135  
1.6  
3.3  
3.3  
1.8  
3.465  
3.465  
2.0  
V
V
VDDA  
VDDO  
IDD  
V
137  
17  
mA  
mA  
mA  
IDDA  
IDDO  
No Load  
0
TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, VDD = VDDA = 3.3V±5%, VDDO = 1.8V±0.2V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VDD + 0.3  
0.8  
V
V
Input Low Voltage  
-0.3  
CLK_SEL, MR, SEL0,  
SEL1, SEL2, SEL3  
VDD = VIN = 3.465V  
150  
5
µA  
µA  
µA  
µA  
V
DDO = 2V  
DD = VIN = 3.465V  
DDO = 2V  
VDD = 3.465V,  
VDDO = 2V, VIN = 0V  
DD = 3.465V,  
VDDO = 2V, VIN = 0V  
IIH  
Input High Current  
V
PLL_SEL  
V
CLK_SEL, MR, SEL0,  
SEL1, SEL2, SEL3  
-5  
IIL  
Input Low Current  
V
PLL_SEL  
-150  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VDD = VDDA = 3.3V±5%, VDDO = 1.8V±0.2V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
VDD = VIN = 3.465V  
VDD = VIN = 3.465V  
VDD = 3.465V, VIN = 0V  
VDD = 3.465V, VIN = 0V  
Minimum Typical Maximum Units  
CLK0, CLK1, FB_IN  
nCLK0, nCLK1, nFB_IN  
CLK0, CLK1, FB_IN  
nCLK0, nCLK1, nFB_IN  
150  
5
µA  
µA  
µA  
µA  
V
Input  
IIH  
High Current  
-5  
Input  
IIL  
Low Current  
-150  
0.15  
0.5  
VPP  
Peak-to-Peak Input Voltage  
1.3  
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VDD - 0.85  
V
NOTE 1: For single ended applications, the maximum input voltage for CLKx, nCLKx is VDD + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
8725AYI-01  
www.idt.com  
REV. A AUGUST9, 2010  
4
ICS8725I-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
TABLE 4D. HSTL DC CHARACTERISTICS, VDD = VDDA = 3.3V±5%, VDDO = 1.8V±0.2V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Output High Voltage;  
NOTE 1  
VOH  
1
1.4  
V
Output Low Voltage;  
NOTE 1  
VOL  
0
40% x (VOH - VOL) + VOL  
0.6  
0.4  
60% x (VOH - VOL) + VOL  
1.1  
V
V
V
VOX  
Output Crossover Voltage  
Peak-to-Peak  
Output Voltage Swing  
VSWING  
NOTE 1: Outputs terminated with 50Ω to ground.  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VDD = VDDA = 3.3V±5%, VDDO = 1.8V±0.2V, TA = -40°C TO 85°C  
Symbol Parameter  
fIN Input Frequency  
Test Conditions  
PLL_SEL = 1  
PLL_SEL = 0  
Minimum Typical Maximum Units  
31.25  
630  
630  
MHz  
MHz  
CLK0, nCLK0,  
CLK1, nCLK1  
TABLE 6. AC CHARACTERISTICS, VDD = VDDA = 3.3V±5%, VDDO = 1.8V±0.2V, TA = -40°C TO 85°C  
Symbol Parameter  
fMAX Output Frequency  
tPD  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
630  
MHz  
PLL_SEL = 0V  
ƒ630MHz  
PLL_SEL = 3.3V  
Propagation Delay; NOTE 1  
3.4  
-95  
3.9  
30  
4.5  
ns  
t(Ø)  
Static Phase Offset; NOTE 2, 5  
Output Skew; NOTE 3, 5  
Cycle-to-Cycle Jitter; NOTE 5, 6  
Phase Jitter; NOTE 4, 5, 6  
PLL Lock Time  
155  
50  
ps  
ps  
ps  
ps  
ms  
ps  
tsk(o)  
tjit(cc)  
tjit(Ø)  
tL  
35  
±50  
1
tR / tF  
Output Rise/Fall Time  
20% to 80%  
300  
700  
tPW  
Output Pulse Width  
tPERIOD/2 - 85 tPERIOD/2 tPERIOD/2 + 85  
ps  
All parameters measured at fMAX unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as the time difference between the input reference clock and the averaged feedback input signal  
across alll conditions, when the PLL is locked and the input reference frequency is stable.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at output differential cross points.  
NOTE 4: Phase jitter is dependent on the input source used.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 6: Characterized at VCO frequency of 622MHz.  
8725AYI-01  
www.idt.com  
REV. A AUGUST 9, 2010  
5
ICS8725I-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
PARAMETER MEASUREMENT INFORMATION  
1.8V ± 0.2V  
3.3V ± 5%  
VDD  
,
SCOPE  
VDD  
VDDA  
Qx  
nCLK0,  
nCLK1  
VDDO  
VPP  
VCMR  
Cross Points  
HSTL  
CLK0,  
CLK1  
GND  
nQx  
GND  
0V  
3.3V CORE/1.8V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQ0:nQ4  
Q0:Q4  
nQx  
nQ  
tcycle n  
tcycle n+1  
nQy  
Qy  
tjit(cc) = tcycle n –tcycle n+1  
tsk(o)  
1000 Cycles  
CYCLE-TO-CYCLE JITTER  
OUTPUT SKEW  
nCLK0,  
VOH  
VOL  
nCLK1  
CLK0,  
CLK1  
80%  
tF  
80%  
tR  
VOH  
VOL  
nFB_IN  
VOD  
Clock  
Outputs  
FB_IN  
20%  
20%  
t(Ø)  
tjit(Ø) = t(Ø) — t(Ø) mean = Phase Jitter  
t(Ø) mean = Static Phase Offset  
(where t(Ø) is any random sample, and t(Ø) mean is the average  
of the sampled cycles measured on controlled edges)  
OUTPUT RISE/FALL TIME  
PHASE JITTER AND STATIC PHASE OFFSET  
nCLK0,  
nCLK1  
nQ0:nQ4  
Q0:Q4  
CLK0,  
CLK1  
Pulse Width  
tPERIOD  
nQ0:nQ4  
Q0:Q4  
tPW  
odc =  
tPD  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
PROPAGATION DELAY  
8725AYI-01  
www.idt.com  
REV. A AUGUST9, 2010  
6
ICS8725I-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, HSTL, SSTL, HCSL examples only. Please consult with the vendor of the driver  
and other differential signals. Both VSWING and VOH must meet component to confirm the driver termination requirements. For  
the VPP and VCMR input requirements. Figures 3A to 3D show example in Figure 3A, the input termination applies for HSTL  
interface examples for the CLK/nCLK input driven by the most drivers. If you are using an HSTL driver from another vendor,  
common driver types. The input interfaces suggested here are use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 3A. CLK/NCLK INPUT DRIVEN BY  
HSTL DRIVER  
FIGURE 3B. CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
R4  
125  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 3C. CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 3D. CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
8725AYI-01  
www.idt.com  
REV. A AUGUST9, 2010  
8
ICS8725I-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
LAYOUT GUIDELINE  
The schematic of the ICS8725I-01 layout example is shown in depend on the selected component types, the density of the  
Figure 4A. The ICS8725I-01 recommended PCB board layout components, the density of the traces, and the stacking of the  
for this example is shown in Figure 4B. This layout example is P.C. board.  
used as a general guideline. The layout in the actual system will  
VDD  
SP = Space (i.e. not intstalled)  
R7  
VDD  
VDDA  
RU2  
SP  
RU3  
1K  
RU4  
1K  
RU5  
SP  
RU6  
1K  
RU7  
SP  
10  
C11  
0.01u  
CLK_SEL  
PLL_SEL  
SEL0  
C16  
10u  
SEL1  
SEL2  
SEL3  
Zo = 50 Ohm  
Zo = 50 Ohm  
(155.5 MHz)  
+
-
RD2  
1K  
RD3  
SP  
RD4  
SP  
RD5  
1K  
RD6  
SP  
RD7  
1K  
VDD  
VDDO  
LVHSTL_input  
U1  
3.3V  
R4A  
50  
R4B  
50  
(155.5 MHz)  
SEL0  
SEL1  
Zo = 50 Ohm  
1
24  
23  
22  
21  
20  
19  
18  
17  
SEL0  
SEL1  
VDDO  
2
3
4
5
6
7
8
Q3  
nQ3  
Q2  
nQ2  
Q1  
nQ1  
VDDO  
CLK0  
nCLK0  
CLK1  
nCLK1  
CLK_SEL  
MR  
Zo = 50 Ohm  
CLK_SEL  
3.3V PECL Driver  
VDD=3.3V  
R8  
50  
R9  
50  
VDDO=1.8V  
8725_01  
SEL[3:0] = 0101,  
Divide by 2  
R10  
50  
SEL2  
R2B  
50  
R2A  
50  
Bypass capacitors located near the power pins  
VDD  
VDDO  
(U1-9)  
(U1-32)  
(U1-16)  
(U1-17)  
(U1-24)  
(U1-25)  
C1  
0.1uF  
C6  
0.1uF  
C2  
0.1uF  
C4  
0.1uF  
C5  
0.1uF  
C7  
0.1uF  
FIGURE 4A. ICS8725I-01 HSTL ZERO DELAY BUFFER SCHEMATIC EXAMPLE  
8725AYI-01  
www.idt.com  
REV. A AUGUST 9, 2010  
9
ICS8725I-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
The following component footprints are used in this layout  
example:  
trace delay might be restricted by the available space on the board  
and the component location. While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
• The differential 50Ω output traces should have same  
Place the decoupling capacitors C1, C6, C2, C4, and C5, as  
close as possible to the power pins. If space allows, placement  
of the decoupling capacitor on the component side is preferred.  
This can reduce unwanted inductance between the decoupling  
capacitor and the power pin caused by the via.  
length.  
• Avoid sharp angles on the clock trace. Sharp angle  
turns cause the characteristic impedance to change on  
the transmission lines.  
• Keep the clock traces on the same layer. Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
Maximize the power and ground pad sizes and number of vias  
capacitors. This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
• To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the VDDA pin as possible.  
CLOCK TRACES AND TERMINATION  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
• Make sure no other signal traces are routed between the  
clock trace pair.  
• The matching termination resistors should be located as  
close to the receiver input pins as possible.  
GND  
R7  
C16 C11  
C7  
VDDO  
C6  
C5  
VDD  
U1  
Pin 1  
VDDA  
VIA  
50 Ohm  
Traces  
C4  
C1  
C2  
FIGURE 4B. PCB BOARD LAYOUT FOR ICS8725I-01  
8725AYI-01  
www.idt.com  
REV. A AUGUST9, 2010  
10  
ICS8725I-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8725I-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8725I-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VDD_MAX * (IDD_MAX + IDDA_MAX) = 3.465V * (137mA + 17mA) = 499mW  
Power (outputs)MAX = 32.8mW/Loaded Output pair  
If all outputs are loaded, the total power is 5 * 32.8mW = 164mW  
Total Power_MAX (3.465V, with all outputs switching) = 499mW + 164mW = 663mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for the devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.663W * 42.1°C/W = 113°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
Table 7. Thermal Resistance θJA for 32-pin LQFP, Forced Convection  
θJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
8725AYI-01  
www.idt.com  
REV. A AUGUST 9, 2010  
11  
ICS8725I-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
HSTL output driver circuit and termination are shown in Figure 5.  
VDD  
Q1  
VOUT  
RL  
50Ω  
FIGURE 5. HSTL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load.  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = (V  
Pd_L = (V  
/R ) * (V  
- V  
- V  
)
)
OH_MIN  
L
DD_MAX  
OH_MIN  
/R ) * (V  
OL_MAX  
L
DD_MAX  
OL_MAX  
Pd_H = (1V/50Ω) * (2V - 1V) = 20mW  
Pd_L = (0.4V/50Ω) * (2V - 0.4V) = 12.8mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 32.8mW  
8725AYI-01  
www.idt.com  
REV. A AUGUST9, 2010  
12  
ICS8725I-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
RELIABILITY INFORMATION  
TABLE 8. θJAVS. AIR FLOW TABLE  
θJA by Velocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8725I-01 is: 2969  
8725AYI-01  
www.idt.com  
REV. A AUGUST 9, 2010  
13  
ICS8725I-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
PACKAGE OUTLINE - Y SUFFIX  
TABLE 9. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
8725AYI-01  
www.idt.com  
REV. A AUGUST9, 2010  
14  
ICS8725I-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
8725AYI-01  
Marking  
Package  
Shipping Packaging  
tray  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS8725AYI-01  
ICS8725AYI-01  
ICS8725AI01L  
ICS8725AI01L  
32 Lead LQFP  
8725AYI-01T  
8725AYI-01  
32 Lead LQFP  
1000 Tape and Reel  
tray  
32 Lead-Free LQFP  
32 Lead-Free LQFP  
8725AYI-01T  
1000 Tape and Reel  
NOTE: Parts that are ordered with an ""LF"" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Inc. (IDT) assumes no responsibility for either its use or for infringement of  
any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial  
applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves  
the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
8725AYI-01  
www.idt.com  
REV. A AUGUST 9, 2010  
15  
ICS8725I-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Date  
A
T10  
15  
Ordering Information - Added Lead-Free marking  
12/19/07  
Updated datasheet's header/footer with IDT from ICS.  
Removed ICS prefix from Part/Order Number column.  
Added Contact Page.  
A
T10  
15  
17  
8/9/10  
8725AYI-01  
www.idt.com  
REV. A AUGUST9, 2010  
16  
ICS8725I-01  
1:5 DIFFERENTIAL-TO-HSTL  
ZERO DELAY CLOCK GENERATOR  
We’ve Got Your Timing Solution.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
netcom@idt.com  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
© 2010 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks of Integrated Device Technology, Inc.  
Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of  
their respective owners.  
Printed in USA  
8725AYI-01  
www.idt.com  
REV. A AUGUST 9, 2010  
17  

相关型号:

8725AYI-01T

PLL Based Clock Driver, 8725 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32
IDT

8725BY-01

PLL Based Clock Driver, 5V Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32
IDT

87263-0400

Board Connector, 4 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle
MOLEX

87263-0403

2.00mm (.079) Pitch Milli-Grid™ Receptacle, Surface Mount, Bottom Entry, 0.38μm (15μ) Gold (Au) Selective, 4 Circuits, with Pick-and-Place Cap, Tube, Leadfree
MOLEX

87263-0404

Board Connector, 4 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle
MOLEX

87263-0406

Board Connector, 4 Contact(s), 2 Row(s), Female, Straight, 0.079 inch Pitch, Surface Mount Terminal, Locking, Receptacle
MOLEX

87263-0409

Board Connector, 4 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle
MOLEX

87263-0423

2.00mm (.079") Pitch Milli-Grid Receptacle, Surface Mount, Bottom Entry, 0.38um (15u") Gold (Au) Selective
MOLEX

87263-0424

Board Connector, 4 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle
MOLEX

87263-0425

2.00mm (.079) Pitch Milli-Grid™ Receptacle, Surface Mount, Bottom Entry, 0.76μm (30μ) Gold (Au) Selective, 4 Circuits, without Pick-and-Place Cap, Tube, Leadfree
MOLEX

87263-0426

Board Connector, 4 Contact(s), 2 Row(s), Female, Straight, 0.079 inch Pitch, Surface Mount Terminal, Locking, Receptacle,
MOLEX

87263-0430

Board Connector, 4 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle
MOLEX