87421AMIT [IDT]

Low Skew Clock Driver, PDSO8;
87421AMIT
型号: 87421AMIT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, PDSO8

光电二极管
文件: 总14页 (文件大小:255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
÷1/÷2 DIFFERENTIAL-TO-LVDS  
CLOCK GENERATOR  
ICS87421I  
GENERAL DESCRIPTION  
FEATURES  
The ICS87421I is a high performance ÷1/÷2  
• One differential LVDS output  
ICS  
Differential-to-LVDS Clock Generator and a mem-  
ber of the HiPerClockS™ family of High Perfor-  
mance Clock Solutions from IDT. The CLK, nCLK  
pair can accept most standard differential input  
• One differential CLK, nCLK input pair  
HiPerClockS™  
• CLK, nCLK pair can accept the following differential input  
levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL  
levels. The ICS87421I is characterized to operate from a 3.3V  
power supply. Guaranteed part-to-part skew characteristics  
make the ICS87421I ideal for those clock distribution applica-  
tions demanding well defined performance and repeatability.  
• Maximum clock input frequency: 1GHz  
Translates any single ended input signal (LVCMOS, LVTTL,  
GTL) to LVDS levels with resistor bias on nCLK input  
• Part-to-part skew: 500ps (maximum)  
• Propagation delay: 1.7ns (maximum)  
• Additive phase jitter, RMS @ 155.52MHz: 0.17ps (typical)  
• Full 3.3V operating supply  
• -40°C to 85°C ambient operating temperature  
• Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
CLK  
nCLK  
MR  
VDD  
Q
1
2
3
4
8
7
6
5
÷1  
÷2  
0
1
Q
nQ  
CLK  
nCLK  
nQ  
GND  
R
F_SEL  
ICS87421I  
MR  
8-Lead SOIC  
3.90mm x 4.90mm x 1.37mm package body  
M Package  
Top View  
F_SEL  
IDT/ ICSLVDS CLOCK GENERATOR  
1
ICS87421AMI REV. A OCTOBER 3, 2007  
ICS87421I  
÷1/÷2 DIFFERENTIAL-TO-LVDS CLOCK GENERATOR  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
CLK  
Type  
Description  
1
2
Input  
Input  
Pulldown Non-inverting differential clock input.  
nCLK  
Pullup  
Inverting differential clock input.  
Active High Master Reset. When logic HIGH, the internal dividers are  
reset causing the true output (Q) to go low and the inverted output  
(nQ) to go high. When logic LOW, the internal dividers and the output  
are enabled. LVCMOS / LVTTL interface levels. See Table 3.  
Selects divider value for Q, nQ outputs as described in Table 3.  
LVCMOS / LVTTL interface levels.  
3
MR  
Input  
Pulldown  
4
F_SEL  
Input  
Pulldown  
5
6, 7  
8
GND  
Q, nQ  
VDD  
Power  
Output  
Power  
Power supply ground.  
Differential output pair. LVDS interface levels.  
Positive supply pin.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
RPULLDOWN  
51  
51  
TABLE 3. FUNCTION TABLE  
MR  
1
F_SEL  
Divide Value  
X
0
1
Reset: Q output low, nQ output high  
0
÷1  
÷2  
0
CLK  
MR  
Q
FIGURE 1A. ÷1 CONFIGURATION TIMING DIAGRAM  
FIGURE 1B. ÷2 CONFIGURATION TIMING DIAGRAM  
IDT/ ICSLVDS CLOCK GENERATOR  
2
ICS87421AMI REV. A OCTOBER 3, 2007  
ICS87421I  
÷1/÷2 DIFFERENTIAL-TO-LVDS CLOCK GENERATOR  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VDD  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
Inputs, V  
-0.5V to VDD + 0.5 V  
I
Outputs, IO  
Continuous Current  
Surge Current  
10mA  
15mA  
Package Thermal Impedance, θ  
96°C/W (0 mps)  
-65°C to 150°C  
JA  
Storage Temperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VDD  
IDD  
Positive Supply Voltage  
Power Supply Current  
3.135  
3.3  
55  
3.465  
V
mA  
TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
Input High Voltage  
1.37  
-0.3  
VDD + 0.3  
0.7  
V
VIL  
IIH  
Input Low Voltage  
V
Input High Current MR, F_SEL  
Input Low Current MR, F_SEL  
VDD = VIN = 3.465V  
150  
µA  
µA  
IIL  
VDD = 3.465V, VIN = 0V  
-5  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CLK  
V
DD = VIN = 3.465V  
VDD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
150  
5
µA  
µA  
µA  
µA  
V
nCLK  
CLK  
V
-5  
IIL  
Input Low Current  
nCLK  
VDD= 3.465V, VIN = 0V  
-150  
0.15  
VPP  
Peak-to-Peak Input Voltage  
1.3  
Common Mode Input Voltage;  
NOTE 1  
VCMR  
GND + 0.5  
VDD - 0.85  
V
NOTE 1: Common mode voltage is defined as VIH.  
IDT/ ICSLVDS CLOCK GENERATOR  
3
ICS87421AMI REV. A OCTOBER 3, 2007  
ICS87421I  
÷1/÷2 DIFFERENTIAL-TO-LVDS CLOCK GENERATOR  
TABLE 4D. LVDS DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VOD  
Differential Output Voltage  
350  
470  
540  
50  
mV  
mV  
V
Δ VOD  
VOS  
VOD Magnitude Change  
Offset Voltage  
1.1  
1.25  
1.4  
50  
Δ VOS  
VOS Magnitude Change  
mV  
TABLE 5. AC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions  
Minimum Typical Maximum Units  
fCLK  
Clock Input Frequency  
1
GHz  
Propagation Delay;  
NOTE 1  
tPD  
CLK to Q (Dif)  
1.0  
1.7  
500  
ns  
tsk(pp)  
tJIT  
Part-to-Part Skew; NOTE 2, 3  
ps  
Additive Phase Noise, RMS;  
refer to Additive Phase Jitter Section  
155.52MHz, Integration  
Range: 12kHz – 20MHz  
0.17  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
150  
43  
500  
57  
ps  
f
IN < 500MHz  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
IDT/ ICSLVDS CLOCK GENERATOR  
4
ICS87421AMI REV. A OCTOBER 3, 2007  
ICS87421I  
÷1/÷2 DIFFERENTIAL-TO-LVDS CLOCK GENERATOR  
ADDITIVE PHASE JITTER  
band to the power in the fundamental. When the required offset  
is specified, the phase noise is called a dBc value, which simply  
means dBm at a specified offset from the fundamental. By  
investigating jitter in the frequency domain, we get a better  
understanding of its effects on the desired application over the  
entire time record of the signal. It is mathematically possible to  
calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the  
fundamental compared to the power of the fundamental is called  
the dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications.Phase noise is defined as the ratio of the noise power  
present in a 1Hz band at a specified offset from the fundamental  
frequency to the power value of the fundamental. This ratio is  
expressed in decibels (dBm) or a ratio of the power in the 1Hz  
Additive Phase Jitter @  
155.52MHz (12kHz to 20MHz) = 0.17ps typical  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements  
have issues. The primary issue relates to the limitations of the  
equipment. Often the noise floor of the equipment is higher than  
the noise floor of the device. This is illustrated above. The device  
meets the noise floor of what is shown, but can actually be lower.  
The phase noise is dependant on the input source and  
measurement equipment.  
IDT/ ICSLVDS CLOCK GENERATOR  
5
ICS87421AMI REV. A OCTOBER 3, 2007  
ICS87421I  
÷1/÷2 DIFFERENTIAL-TO-LVDS CLOCK GENERATOR  
PARAMETER MEASUREMENT INFORMATION  
VDD  
3.3V  
SCOPE  
nCLK  
CLK  
Qx  
VDD  
3.3V 5ꢀ  
VPP  
VCMR  
Cross Points  
POWER SUPPLY  
+
Float GND –  
LVDS  
nQx  
GND  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
PART 1  
nQx  
nCLK  
CLK  
Qx  
PART 2  
nQy  
nQ  
Q
Qy  
tPD  
tsk(pp)  
PART-TO-PART SKEW  
PROPAGATION DELAY  
nQ  
80ꢀ  
tF  
80ꢀ  
Q
VSWING  
20ꢀ  
tPW  
tPERIOD  
Clock  
20ꢀ  
Outputs  
tR  
tPW  
tPERIOD  
odc =  
x 100ꢀ  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
VDD  
VDD  
out  
out  
DC Input  
LVDS  
LVDS  
DC Input  
100  
V
OD/Δ VOD  
out  
VOS/Δ VOS  
out  
OFFSET VOLTAGE SETUP  
DIFFERENTIAL OUTPUT VOLTAGE SETUP  
IDT/ ICSLVDS CLOCK GENERATOR  
6
ICS87421AMI REV. A OCTOBER 3, 2007  
ICS87421I  
÷1/÷2 DIFFERENTIAL-TO-LVDS CLOCK GENERATOR  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = V /2 is  
generated by the bias resistors R1, R2 and C1. This bias DcDircuit  
should be located as close as possible to the input pin. The ratio  
of R1 and R2 might need to be adjusted to position the V_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V and V = 3.3V, V_REF should be 1.25V  
DD  
and R2/R1 = 0.609.  
VDD  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLK  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
RECOMMENDATIONS FOR UNUSED INPUT PINS  
INPUTS:  
LVCMOS CONTROL PINS  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
IDT/ ICSLVDS CLOCK GENERATOR  
7
ICS87421AMI REV. A OCTOBER 3, 2007  
ICS87421I  
÷1/÷2 DIFFERENTIAL-TO-LVDS CLOCK GENERATOR  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both VSWING and VOH must meet the  
VPP and VCMR input requirements. Figures 3A to 3F show interface  
examples for the HiPerClockS CLK/nCLK input driven by the most  
common driver types. The input interfaces suggested here are  
examples only. Please consult with the vendor of the driver  
component to confirm the driver termination requirements. For  
example in Figure 3A, the input termination applies for IDT  
HiPerClockS open emitter LVHSTL drivers. If you are using an  
LVHSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
LVPECL  
Input  
nCLK  
HiPerClockS  
LVHSTL  
Input  
R1  
50  
R2  
50  
ICS  
R1  
50  
R2  
50  
HiPerClockS  
LVHSTL Driver  
R3  
50  
FIGURE 3A. HIPERCLOCKS CLK/nCLK INPUT  
DRIVEN BY AN IDT OPEN EMITTER  
FIGURE 3B. HIPERCLOCKS CLK/nCLK INPUT  
DRIVEN BY A 3.3V LVPECL DRIVER  
HIPERCLOCKS LVHSTL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 3C. HIPERCLOCKS CLK/nCLK INPUT  
DRIVEN BY A 3.3V LVPECL DRIVER  
FIGURE 3D. HIPERCLOCKS CLK/nCLK INPUT  
DRIVEN BY A 3.3V LVDS DRIVER  
2.5V  
2.5V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120  
120  
Zo = 50Ω  
Zo = 50Ω  
*R3  
*R4  
33  
33  
Zo = 60Ω  
Zo = 60Ω  
CLK  
CLK  
nCLK  
nCLK  
HiPerClockS  
HiPerClockS  
Input  
SSTL  
HCSL  
R1  
50  
R2  
50  
R1  
120  
R2  
120  
*Optional – R3 and R4 can be 0Ω  
FIGURE 3F. HIPERCLOCKS CLK/nCLK INPUT  
DRIVEN BY A 2.5V SSTL DRIVER  
FIGURE 3E. HIPERCLOCKS CLK/nCLK INPUT  
DRIVEN BY A 3.3V HCSL DRIVER  
IDT/ ICSLVDS CLOCK GENERATOR  
8
ICS87421AMI REV. A OCTOBER 3, 2007  
ICS87421I  
÷1/÷2 DIFFERENTIAL-TO-LVDS CLOCK GENERATOR  
LVDS DRIVER TERMINATION  
input. For a multiple LVDS outputs buffer, if only partial outputs  
are used, it is recommended to terminate the unused outputs.  
A general LVDS interface is shown in Figure 4. In a 100Ω  
differential transmission line environment, LVDS drivers require  
a matched load termination of 100Ω across near the receiver  
3.3V  
50Ω  
3.3V  
LVDS Driver  
+
R1  
100Ω  
50Ω  
100Ω Differential Transmission Line  
FIGURE 4. TYPICAL LVDS DRIVER TERMINATION  
IDT/ ICSLVDS CLOCK GENERATOR  
9
ICS87421AMI REV. A OCTOBER 3, 2007  
ICS87421I  
÷1/÷2 DIFFERENTIAL-TO-LVDS CLOCK GENERATOR  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS87421I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS87421I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
DD  
Power_ = V  
* I  
= 3.465V * 55mA = 198.58mW  
DD_MAX  
MAX  
DD_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air  
flow and a multi-layer board, the appropriate value is 96°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.199W * 96°C/W = 104.1°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and  
the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θ FOR 8-PIN SOIC, FORCED CONVECTION  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
96°C/W  
87°C/W  
82°C/W  
IDT/ ICSLVDS CLOCK GENERATOR  
10  
ICS87421AMI REV. A OCTOBER 3, 2007  
ICS87421I  
÷1/÷2 DIFFERENTIAL-TO-LVDS CLOCK GENERATOR  
RELIABILITY INFORMATION  
TABLE 7. θ VS. AIR FLOW TABLE FOR 8 LEAD SOIC  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
96°C/W  
87°C/W  
82°C/W  
TRANSISTOR COUNT  
The transistor count for ICS87421I is: 417  
IDT/ ICSLVDS CLOCK GENERATOR  
11  
ICS87421AMI REV. A OCTOBER 3, 2007  
ICS87421I  
÷1/÷2 DIFFERENTIAL-TO-LVDS CLOCK GENERATOR  
PACKAGE OUTLINE - M SUFFIX FOR 8 LEAD SOIC  
TABLE 8. PACKAGE DIMENSIONS  
Millimeters  
MINIMUN MAXIMUM  
SYMBOL  
N
A
A1  
B
C
D
E
e
8
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
1.27 BASIC  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
L
α
Reference Document:JEDEC Publication 95, MS-012  
IDT/ ICSLVDS CLOCK GENERATOR  
12  
ICS87421AMI REV. A OCTOBER 3, 2007  
ICS87421I  
÷1/÷2 DIFFERENTIAL-TO-LVDS CLOCK GENERATOR  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS87421AMI  
Marking  
87421AMI  
87421AMI  
87421AIL  
87421AIL  
Package  
8 lead SOIC  
Shipping Packaging  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS87421AMI  
8 lead SOIC  
2500 tape & reel  
tube  
ICS87421AMILF  
ICS87421AMIFT  
8 lead "Lead-Free" SOIC  
8 lead "Lead-Free" SOIC  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICSLVDS CLOCK GENERATOR  
13  
ICS87421AMI REV. A OCTOBER 3, 2007  
ICS87421I  
÷1/÷2 DIFFERENTIAL-TO-LVDS CLOCK GENERATOR  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
#20-03 Wisma Atria  
England  
+408 284 8200 (outside U.S.)  
Singapore 238877  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
+65 6 887 5505  
© 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

87427-0212

4.20mm (.165") Mini-Fit Jr.™ Header, Right Angle, High Temperature, with Flange, 2 Circuits
MOLEX

87427-0242

4.20mm (.165") Mini-Fit Jr. Header, Vertical, High Temperature, without Flange, 2 Circuits
MOLEX

87427-0243

4.20mm (.165) Mini-Fit Jr.™ Header, Vertical, High Temperature, without Flange, 2 Circuits, Tin (Sn) over Copper (Cu) Plating, Glow Wire Compatible
MOLEX

87427-0248

Rectangular Power Connector, 2 Contact(s), Male, Solder Terminal, Receptacle
MOLEX

87427-0252

Rectangular Power Connector, 2 Contact(s), Male, Solder Terminal, Receptacle
MOLEX

87427-0262

Board Connector, 2 Contact(s), 2 Row(s), Male, Right Angle, 0.165 inch Pitch, Solder Terminal, Polarized Lck, Beige Insulator, Receptacle
MOLEX

87427-0402

4.20mm (.165") Mini-Fit Jr. Header, Right Angle, High Temperature, without Flange, 4 Circuits
MOLEX

87427-0412

4.20mm (.165") Mini-Fit Jr.™ Header, Right Angle, High Temperature, with Flange, 4Circuits, Tin (Sn) over Nickel (Ni) Plating, Glow Wire Compatible
MOLEX

87427-0413

Rectangular Power Connector, 4 Contact(s), Male, Solder Terminal, Receptacle, LEAD FREE
MOLEX

87427-0442

4.20mm (.165") Mini-Fit Jr. Header, Vertical, High Temperature, without Flange, 4 Circuits
MOLEX

87427-0444

Rectangular Power Connector, 4 Contact(s), Male, Solder Terminal,
MOLEX

87427-0448

Rectangular Power Connector, 4 Contact(s), Male, Solder Terminal, Receptacle,
MOLEX