8T79S838-08NLGI [IDT]

1-to-8 Differential to Universal Output Fanout Buffer;
8T79S838-08NLGI
型号: 8T79S838-08NLGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

1-to-8 Differential to Universal Output Fanout Buffer

驱动 逻辑集成电路
文件: 总25页 (文件大小:418K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1-to-8 Differential to Universal Output  
Fanout Buffer  
IDT8T79S838-08I  
DATA SHEET  
General Description  
Features  
The IDT8T79S838-08I is a high performance, 1-to-8, differential input  
to universal output fanout buffer. The device is designed for signal  
fanout of high-frequency clock signals in applications requiring output  
frequencies generated simultaneously. The IDT8T79S838-08I is  
optimized for 3.3V and 2.5V supply voltages and a temperature range  
of -40°C to 85°C. The device is packaged in a space-saving 32 lead  
VFQFN package.  
Four banks of two output pairs  
Individual output type control, LVDS or LVPECL, via  
serial interface  
Individual outputs remain enabled while serial loading new   
device configurations  
One differential PCLK, nPCLK input  
PCLK, nPCLK input pair can accept the following differential input  
levels: LVPECL, LVDS levels  
Maximum input frequency: 1.5GHz  
LVCMOS control inputs  
Individual output enable/disable control via serial interface  
2.375V to 3.465V supply voltage operation  
-40°C to 85°C ambient operating temperature  
Lead-free (RoHS 6) packaging  
Pin Assignment  
Block Diagram  
QA0  
nQA0  
VCC  
VCC 25  
VEE 26  
16 VCC  
QA1  
15 VEE  
nQA1  
Pulldown  
PCLK  
IDT8T79S838-08I  
Pullup / Pulldown  
nQA1 27  
QA1 28  
nQA0 29  
QA0 30  
VCC 31  
14 QD0  
13 nQD0  
12 QD1  
11 nQD1  
10 VCC  
nPCLK  
QB0  
32 lead VFQFN  
5mm x 5mm x 0.925mm  
Pad size 3.15mm x 3.15mm  
NL package  
nQB0  
VEE  
VEE  
QB1  
nQB1  
Top View  
QC0  
SDATA 32  
9
PWR_SEL  
nQC0  
Pulldown  
PWR_SEL  
QC1  
nQC1  
VEE  
QD0  
nQD0  
QD1  
nQD1  
Pulldown  
OE  
Output Type and  
Output Enable  
logic  
Pulldown  
Pulldown  
Pulldown  
LE  
SCLK  
SDATA  
MISO  
VEE VEE VEE VEE  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
1
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
Pin Description and Pin Characteristic Tables  
Table 1. Pin Descriptions  
Number  
Name  
SCLK  
MISO  
nc  
Type  
Description  
1
2
3
4
Input  
Output  
Unused  
Input  
Pulldown Serial Control Port Mode Data Input. LVCMOS/LVTTL interface levels.  
Serial Control Port Mode Data Output. LVCMOS/LVTTL interface levels.  
No connect.  
PCLK  
Pulldown Non-inverting differential clock input.  
Pullup /  
5
nPCLK  
Input  
Inverting differential clock input. VCC / 2 by default when left floating.  
Pulldown  
Default output disable. LVCMOS/LVTTL interface levels.   
See Table 3B. OE Truth Table”.  
6
OE  
VCC  
LE  
Input  
Power  
Input  
Pulldown  
7, 10, 16, 25, 31  
8
Power supply voltage pin.  
Serial Control Port Mode Enable. Latches data when the pin gets a high level.  
Pulldown  
Outputs remain enabled when LE is low. LVCMOS/LVTTL interface levels.  
9
PWR_SEL  
nQD1, QD1  
nQD0, QD0  
VEE  
Input  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
Pulldown Power supply selection. See Table 3A. PWR_SEL Truth Table”.  
Differential Bank D output pair.  
11, 12  
13, 14  
15, 26  
17, 18  
19, 20  
21, 22  
23, 24  
27, 28  
29, 30  
32  
Differential Bank D output pair.  
Negative power supply pins.  
nQC1, QC1  
nQC0, QC0  
nQB1, QB1  
nQB0, QB0  
nQA1, QA1  
nQA0, QA0  
SDATA  
Differential Bank C output pair. LVPECL or LVDS interface levels.  
Differential Bank C output pair. LVPECL or LVDS interface levels.  
Differential Bank B output pair. LVPECL or LVDS interface levels.  
Differential Bank B output pair. LVPECL or LVDS interface levels.  
Differential Bank A output pair. LVPECL or LVDS interface levels.  
Differential Bank A output pair. LVPECL or LVDS interface levels.  
Pulldown Serial Control Port Mode Data Input. LVCMOS/LVTTL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2. Pin Characteristics” for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
2
Maximum  
Units  
pF  
Input Capacitance  
Input Pulldown Resistor  
Input Pullup Resistor  
RPULLDOWN  
RPULLUP  
51  
k  
k  
51  
VCC = 3.3V  
VCC = 2.5V  
125  
125  
ROUT  
Output Impedance  
MISO  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
2
©2014 Integrated Device Technology, Inc.  
 
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
Function Tables  
Table 3A. PWR_SEL Truth Table  
PWR_SEL  
Function  
L (Connect to VEE  
)
2.5V power supply  
3.3V power supply  
H (Connect to VCC  
)
Table 3B. OE Truth Table  
OE  
L (default)  
H
Function  
All outputs disabled (Low/High static mode), regardless of individual OE registers set by Serial Interface.  
Outputs enabled according to individual OE registers set by Serial Interface (see Table 3E. Configuration Table”).  
Output Type Control and Start-up Status  
Two output types are available: LVDS and LVPECL. The part features  
four modes of output type control:  
At startup, the outputs are in static Low/High LVDS mode until the  
part has been configured. Disabled outputs are in static Low/High  
mode. A global hardware Output Enable (OE pin #6) enables or  
disables all outputs at once. The global hardware OE has priority over  
a serial interface configuration.  
Eight LVDS outputs  
Eight LVPECL outputs  
Two LVDS (QAx) + six LVPECL (QBx, QCx, QDx)  
Two LVPECL (QAx) + six LVDS (QBx, QCx, QDx)  
Table 3C. Output Type Control  
Control Bits  
D2  
D1  
Output Configuration  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
LOW  
HIGH  
8 LVDS Outputs  
8 LVPECL Outputs  
2 LVDS (QAx) + 6 LVPECL (QBx, QCx, QDx) Outputs  
2 LVPECL (QAx) + 6 LVDS (QBx, QCx, QDx) Outputs  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
3
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
Serial Interface  
Configuration of the IDT8T79S838I-08 is achieved by writing 10  
configuration bits over serial interface. All 10 bits have to be written in  
sequence.  
After writing the 10 configuration bits, the LE pin must remain at high  
level for outputs to toggle.  
W
6+  
W+,  
W/2  
6&/.  
6'$7$  
'ꢀꢁ  
'ꢂ  
'ꢃ  
'ꢄ  
'ꢀ  
W
6/  
W6  
W+  
W
+(  
/(  
W
'(/$<  
0,62  
'ꢀꢁ  
'ꢂ  
'ꢃ  
'ꢄ  
'ꢀ  
Figure 1. Serial Interface Timing Diagram for Write and Read Access  
Table 3D. Timing AC Characteristics  
Symbol  
tS  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
ns  
Data to Clock Setup Time  
Data to Clock Hold Time  
Clock to LE Hold Time  
Clock High Duration  
Clock Low Duration  
10  
10  
10  
25  
25  
10  
10  
tH  
ns  
tHE  
ns  
tHI  
ns  
tLO  
ns  
tSL  
LE to Clock Setup Time  
LE to SCLK Setup Time  
Clock to MISO Delay Time  
ns  
tSH  
ns  
tDELAY  
10  
ns  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
4
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
Table 3E. Configuration Table  
Bit  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
oed1  
oed0  
oec1  
oec0  
oeb1  
oeb0  
oea1  
oea0  
ot1  
Function  
Output Enable QD1  
Output Enable QD0  
Output Enable QC1  
Output Enable QC0  
Output Enable QB1  
Output Enable QB0  
Output Enable QA1  
Output Enable QA0  
Banks QB, QC, QD Output Type  
Bank QA Output Type  
Truth Table  
Low: Disabled  
High: Enabled  
Low: LVDS  
High: LVPECL  
ot0  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
5
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress  
specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC  
Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
Inputs, VI  
4.6V  
-0.5V to VCC + 0.5V  
-0.5V to VCC + 0.5V  
Outputs, VO (LVCMOS)  
Outputs, IO (LVPECL)  
Continuous Current  
Surge Current  
50mA  
100mA  
Outputs, IO (LVDS)  
Continuos Current  
Surge Current  
10mA  
15mA  
Package Thermal Impedance, JA  
48.9C/W (0 mps)  
-65C to 150C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VCC = 3.3V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
VCC Power Supply Voltage  
IEE  
Test Conditions  
Minimum  
Typical  
3.3  
Maximum  
3.465  
135  
Units  
V
3.135  
Power Supply Current  
Power Supply Current  
D[10:1] = HIGH, LVPECL  
120  
mA  
mA  
ICC  
D[10:3] = HIGH; D[2:1] = LOW, LVDS  
215  
235  
Table 4B. Power Supply DC Characteristics, VCC = 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
VCC Power Supply Voltage  
IEE  
Test Conditions  
Minimum  
Typical  
2.5  
Maximum  
2.625  
125  
Units  
V
2.375  
Power Supply Current  
Power Supply Current  
D[10:1] = HIGH, LVPECL  
114  
mA  
mA  
ICC  
D[10:3] = HIGH; D[2:1] = LOW, LVDS  
210  
230  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
6
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
Table 4C. LVCMOS/LVTTL DC Characteristics, VCC = 3.3V 5% or 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
CC = 3.3V  
VCC = 2.5V  
CC = 3.3V  
Minimum  
2.2  
Typical  
Maximum  
VCC + 0.3  
VCC + 0.3  
0.8  
Units  
V
V
V
V
V
VIH Input High Voltage  
1.7  
V
-0.3  
VIL  
Input Low Voltage  
VCC = 2.5V  
-0.3  
0.7  
OE, LE,  
PWR_SEL,   
SCLK, SDATA  
Input High  
Current  
IIH  
VCC = VIN = 3.465V or 2.625V  
150  
µA  
µA  
OE, LE,  
PWR_SEL,   
SCLK, SDATA  
Input Low  
Current  
IIL  
VCC = 3.465V or 2.625V, VIN = 0V  
-10  
VCC = 3.465V, IOH = -1mA  
VCC = 2.625V, IOH = -1mA  
2.6  
1.8  
V
V
Output High  
Voltage  
VOH  
MISO  
MISO  
Output Low  
Voltage  
VCC = 3.465V or 2.625V,  
IOL = 1mA  
VOL  
0.5  
V
Table 4D. Differential Input DC Characteristics, VCC = 3.3V 5% or 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
PCLK,  
nPCLK  
VCC = VIN = 3.465V or 2.625V  
150  
µA  
PCLK  
V
V
CC = 3.465V or 2.625V, VIN = 0V  
CC = 3.465V or 2.625V, VIN = 0V  
-10  
-150  
0.15  
µA  
µA  
V
IIL  
Input Low Current  
nPCLK  
VPP  
Peak-to-Peak Voltage  
1.3  
Common Mode Input Voltage;  
NOTE 1  
VCMR  
1.0  
VCC – 0.5  
V
NOTE 1: Common mode input voltage is defined at the cross point.  
Table 4E. LVPECL DC Characteristics, VCC = 3.3V 5% or 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCC – 1.3  
VCC – 2.0  
0.6  
Typical  
Maximum  
VCC – 0.75  
VCC – 1.6  
1.0  
Units  
VOH  
Output High Voltage; NOTE 1  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50to VCC – 2V.  
Table 4F. LVDS DC Characteristics, VCC = 3.3V 5% or 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
454  
Units  
mV  
mV  
V
VOD  
Differential Output Voltage  
247  
VOD  
VOS  
VOD Magnitude Change  
Offset Voltage  
50  
1.125  
1.45  
50  
VOS  
VOS Magnitude Change  
mV  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
7
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
AC Electrical Characteristics  
Table 5. AC Characteristics, VCC = 3.3V 5% or 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
PCLK,  
nPCLK  
fIN  
Input Frequency  
1.5  
GHz  
fOUT  
Output Frequency  
Qx, nQx  
LVPECL  
LVDS  
1.5  
650  
650  
80  
GHz  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
%
200  
200  
Propagation Delay;  
NOTE 5  
tPD  
LVPECL  
LVDS  
Output Skew;   
NOTE 1, 2  
tsk(o)  
tsk(b)  
tsk(pp)  
tR / tF  
odc  
80  
LVPECL  
LVDS  
55  
Bank Skew;   
NOTE 1, 3  
55  
LVPECL  
LVDS  
450  
450  
300  
300  
60  
Part-to-Part Skew;  
NOTE 1, 4  
LVPECL  
LVDS  
20% to 80%  
20% to 80%  
50  
50  
40  
40  
Output Rise/Fall  
Time  
LVPECL  
LVDS  
Output Duty Cycle  
60  
%
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential  
crosspoints.  
NOTE 3: Defined as skew within a bank of outputs at the same voltage and with equal load conditions.  
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same frequency, same temperature and  
with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential crosspoints.  
NOTE 5: Measured from the differential input crosspoint to the differential output crosspoint.  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
8
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
Parameter Measurement Information  
2V  
2V  
SCOPE  
V
SCOPE  
CC  
V
Qx  
CC  
Qx  
nQx  
nQx  
VEE  
VEE  
-1.3V 0.165V  
-0.5V 0.125V  
3.3V LVPECL Output Load Test Circuit  
2.5V LVPECL Output Load Test Circuit  
V
V
CC  
CC  
3.3V LVDS Output Load Test Circuit  
2.5V LVDS Output Load Test Circuit  
V
CC  
nPCLK  
PCLK  
nPCLK  
PCLK  
nQX[0:1]  
QX[0:1]  
tPD  
V
EE  
Differential Input Levels  
Propagation Delay  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
9
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
Parameter Measurement Information, continued  
nQXx  
nQx  
QXx  
Qx  
nQXy  
nQy  
QXy  
tsk(b)  
Where X = a single output bank  
Qy  
Output Skew  
Bank Skew  
Part 1  
nQx  
nQX[0:1]  
80%  
80%  
Qx  
VOD  
20%  
Part 2  
nQy  
20%  
QX[0:1]  
tF  
tR  
Qy  
tsk(pp)  
Part-to-Part Skew  
LVDS Output Rise/Fall Time  
nQX[0:1]  
QX[0:1]  
nQX[0:1]  
QX[0:1]  
LVPECL Output Rise/Fall Time  
Output Duty Cycle/Pulse Width/Period  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
10  
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
Parameter Measurement Information, continued  
VCC  
VCC  
out  
out  
DC Input  
LVDS  
LVDS  
DC Input  
100  
out  
VOS/VOS  
out  
ä
Offset Voltage Setup  
Differential Output Voltage Setup  
Applications Information  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
LVCMOS Control Pins  
LVPECL Outputs  
All control pins have internal pulldowns; additional resistance is not  
required but can be added for additional protection. A 1kresistor  
can be used.  
Any unused LVPECL output pairs can be left floating. We  
recommend that there is no trace attached. Both sides of the  
differential output pair should either be left floating or terminated.  
LVDS Outputs  
All unused LVDS output pairs can be either left floating or terminated  
with 100across. If they are left floating, there should be no trace  
attached.  
LVCMOS Outputs  
The unused LVCMOS output can be left floating. There should be no  
trace attached.  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
11  
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
Wiring the Differential Input to Accept Single-Ended Levels  
Figure 2 shows how a differential input can be wired to accept single  
ended levels. The reference voltage V1= VCC/2 is generated by the  
bias resistors R1 and R2. The bypass capacitor (C1) is used to help  
filter noise on the DC bias. This bias circuit should be located as close  
to the input pin as possible. The ratio of R1 and R2 might need to be  
adjusted to position the V1in the center of the input voltage swing. For  
example, if the input clock swing is 2.5V and VCC = 3.3V, R1 and R2  
value should be adjusted to set V1 at 1.25V. The values below are for  
when both the single ended swing and VCC are at the same voltage.  
This configuration requires that the sum of the output impedance of  
the driver (Ro) and the series resistance (Rs) equals the transmission  
line impedance. In addition, matched termination at the input will at-  
tenuate the signal in half. This can be done in one of two ways. First,  
R3 and R4 in parallel should equal the transmission line impedance.  
For most 50applications, R3 and R4 can be 100. The values of  
the resistors can be increased to reduce the loading for slower and  
weaker LVCMOS driver. When using single-ended signaling, the  
noise rejection benefits of differential signaling are reduced. Even  
though the differential input can handle full rail LVCMOS signaling, it  
is recommended that the amplitude be reduced. The datasheet spec-  
ifies a lower differential amplitude, however this only applies to differ-  
ential signals. For single-ended applications, the swing can be larger,  
however VIL cannot be less than -0.3V and VIH cannot be more than  
VCC + 0.3V. Though some of the recommended components might  
not be used, the pads should be placed in the layout. They can be uti-  
lized for debugging purposes. The datasheet specifications are char-  
acterized and guaranteed by using a differential signal.  
VCC  
VC C  
VCC  
VCC  
R3  
100  
R1  
1K  
Ro  
RS  
Zo = 50 Ohm  
+
Receiv er  
Driver  
V1  
R4  
-
100  
R2  
1K  
Ro +Rs = Zo  
C1  
0.1uF  
Figure 2. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
12  
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
3.3V LVPECL Clock Input Interface  
The PCLK /nPCLK accepts LVPECL, LVDS and other differential sig-  
nals. Both VSWING and VOH must meet the VPP and VCMR input re-  
quirements. Figures 3A to 3C show interface examples for the PCLK/  
nPCLK input driven by the most common driver types. The input in-  
terfaces suggested here are examples only. If the driver is from an-  
other vendor, use their termination recommendation. Please consult  
with the vendor of the driver component to confirm the driver termi-  
nation requirements.  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125Ω  
Zo = 50Ω  
Zo = 50Ω  
PCLK  
nPCLK  
LVPECL  
Input  
LVPECL  
R1  
84Ω  
R2  
84Ω  
Figure 3A. PCLK/nPCLK Input Driven by a  
3.3V LVPECL Driver  
Figure 3B. PCLK/nPCLK Input Driven by a  
3.3V LVPECL Driver with AC Couple  
3.3V  
3.3V  
Zo = 50  
PCLK  
R1  
100  
nPCLK  
Zo = 50  
LVPECL  
Input  
LVDS  
Figure 3C. PCLK/nPCLK Input Driven by a  
3.3V LVDS Driver  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
13  
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
2.5V LVPECL Clock Input Interface  
The PCLK /nPCLK accepts LVPECL, LVDS and other differential sig-  
nals. Both VSWING and VOH must meet the VPP and VCMR input re-  
quirements. Figures 4A to 4C show interface examples for the PCLK/  
nPCLK input driven by the most common driver types. The input in-  
terfaces suggested here are examples only. If the driver is from an-  
other vendor, use their termination recommendation. Please consult  
with the vendor of the driver component to confirm the driver termi-  
nation requirements.  
2.5V  
2.5V  
2.5V  
PCLK  
nPCLK  
LVPECL  
LVPECL  
Input  
Figure 4A. PCLK/nPCLK Input Driven by a   
2.5V LVPECL Driver  
Figure 4B. PCLK/nPCLK Input Driven by a  
2.5V LVPECL Driver with AC Couple  
PCLK  
nPCLK  
Figure 4C. PCLK/nPCLK Input Driven by a  
2.5V LVDS Driver  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
14  
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
LVDS Driver Termination  
For a general LVDS interface, the recommended value for the  
termination impedance (ZT) is between 90and 132. The actual  
value should be selected to match the differential impedance (Z0) of  
your transmission line. A typical point-to-point LVDS design uses a  
100parallel resistor at the receiver and a 100differential  
transmission-line environment. In order to avoid any  
standard termination schematic as shown in Figure 5A can be used  
with either type of output structure. Figure 5B, which can also be  
used with both output types, is an optional termination with center tap  
capacitance to help filter common mode noise. The capacitor value  
should be approximately 50pF. If using a non-standard termination, it  
is recommended to contact IDT and confirm if the output structure is  
current source or voltage source type. In addition, since these  
outputs are LVDS compatible, the input receiver’s amplitude and  
common-mode input range should be verified for compatibility with  
the output.  
transmission-line reflection issues, the components should be  
surface mounted and must be placed as close to the receiver as  
possible. IDT offers a full line of LVDS compliant devices with two  
types of output structures: current source and voltage source. The  
ZO ZT  
LVDS  
Receiver  
LVDS  
Driver  
ZT  
Figure 5A. Standard Termination  
ZT  
ZO ZT  
LVDS  
Driver  
LVDS  
Receiver  
2
ZT  
2
C
Figure 5B. Optional Termination  
LVDS Termination  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
15  
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are recom-  
mended only as guidelines.  
functionality. These outputs are designed to drive 50transmission  
lines. Matched impedance techniques should be used to maximize  
operating frequency and minimize signal distortion. Figures 6A and  
6B show two different layouts which are recommended only as guide-  
lines. Other suitable clock layouts may exist and it would be recom-  
mended that the board designers simulate to guarantee compatibility  
across all printed circuit and clock component process variations.  
The differential outputs are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs. Therefore, terminating resis-  
tors (DC current path to ground) or current sources must be used for  
3.3V  
R3  
125  
R4  
125  
3.3V  
3.3V  
Z
o = 50  
+
_
LVPECL  
Input  
Zo = 50  
R1  
84  
R2  
84  
Figure 6A. 3.3V LVPECL Output Termination  
Figure 6B. 3.3V LVPECL Output Termination  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
16  
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
Termination for 2.5V LVPECL Outputs  
Figure 7A and Figure 7B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating 50  
to VCC – 2V. For VCC = 2.5V, the VCC – 2V is very close to ground  
level. The R3 in Figure 7B can be eliminated and the termination is  
shown in Figure 7C.  
2.5V  
VCC = 2.5V  
2.5V  
2.5V  
VCC = 2.5V  
50Ω  
R1  
250Ω  
R3  
250Ω  
+
50Ω  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
50Ω  
R2  
50Ω  
2.5V LVPECL Driver  
R2  
62.5Ω  
R4  
62.5Ω  
R3  
18Ω  
Figure 7A. 2.5V LVPECL Driver Termination Example  
Figure 7B. 2.5V LVPECL Driver Termination Example  
2.5V  
VCC = 2.5V  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
50Ω  
R2  
50Ω  
Figure 7C. 2.5V LVPECL Driver Termination Example  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
17  
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
VFQFN EPAD Thermal Release Path  
In order to maximize both the removal of heat from the package and  
the electrical performance, a land pattern must be incorporated on  
the Printed Circuit Board (PCB) within the footprint of the package  
corresponding to the exposed metal pad or exposed heat slug on the  
package, as shown in Figure 8. The solderable area on the PCB, as  
defined by the solder mask, should be at least the same size/shape  
as the exposed pad/slug area on the package to maximize the ther-  
mal/electrical performance. Sufficient clearance should be designed  
on the PCB between the outer edges of the land pattern and the inner  
edges of pad pattern for the leads to avoid any shorts.  
pendent upon the package power dissipation as well as electrical  
conductivity requirements. Thus, thermal and electrical analysis  
and/or testing are recommended to determine the minimum number  
needed. Maximum thermal and electrical performance is achieved  
when an array of vias is incorporated in the land pattern. It is recom-  
mended to use as many vias connected to ground as possible. It is  
also recommended that the via diameter should be 12 to 13mils (0.30  
to 0.33mm) with 1oz copper via barrel plating. This is desirable to  
avoid any solder wicking inside the via during the soldering process  
which may result in voids in solder between the exposed pad/slug  
and the thermal land. Precautions should be taken to eliminate any  
solder voids between the exposed heat slug and the land pattern.  
Note: These recommendations are to be used as a guideline only.  
For further information, please refer to the Application Note on the  
Surface Mount Assembly of Amkor’s Thermally/ Electrically Enhance  
Leadframe Base Package, Amkor Technology.  
While the land pattern on the PCB provides a means of heat transfer  
and electrical grounding from the package to the board through a sol-  
der joint, thermal vias are necessary to effectively conduct from the  
surface of the PCB to the ground plane(s). The land pattern must be  
connected to ground through these vias. The vias act as “heat pipes”.  
The number of vias (i.e. “heat pipes”) are application specific and de-  
SOLDER  
SOLDER  
PIN  
PIN  
EXPOSED HEAT SLUG  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
Figure 8. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
18  
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
3.3V LVDS Power Considerations  
This section provides information on power dissipation and junction temperature for the IDT8T79S838-08I. Equations and example calculations  
are also provided.  
1. Power Dissipation.  
The total power dissipation for the IDT8T79S838-08I is the sum of the core power plus the power dissipated due to the load.   
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
Power (core)MAX = VCC_MAX * ICC_MAX = 3.465V * 235mA = 814.3mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 48.9°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.814W * 48.9°C/W = 124.8°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 6. Thermal Resistance JA for 32-lead VFQFN Package  
JA by Velocity  
Meters per Second  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
48.9°C/W  
42°C/W  
39.4°C/W  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
19  
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
3.3V LVPECL Power Considerations  
This section provides information on power dissipation and junction temperature for the IDT8T79S838-08I, for all outputs that are configured  
to LVPECL. Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the IDT8T79S838-08I is the sum of the core power plus the power dissipated due to loading.   
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated due to loading.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 135mA = 467.8mW  
Power (outputs)MAX = 31.55mW/Loaded Output pair  
If all outputs are loaded, the total power is 8 * 31.55mW = 252.4mW  
Total Power_MAX (3.465V, with all outputs switching) = 467.8mW + 252.4mW = 720.2mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no airflow and  
a multi-layer board, the appropriate value is 48.9°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.720W * 48.9°C/W = 120.2°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 7. Thermal Resistance JA for 32-lead VFQFN Package  
JA by Velocity  
Meters per Second  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
48.9°C/W  
42°C/W  
39.4°C/W  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
20  
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
3. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the LVPECL output pairs.  
LVPECL output driver circuit and termination are shown in Figure 9.  
VCC  
Q1  
VOUT  
RL  
VCC - 2V  
Figure 9. LVPECL Driver Circuit and Termination  
To calculate power dissipation per output pair due to loading, use the following equations which assume a 50load, and a termination voltage  
of VCC – 2V.  
For logic high, VOUT = VOH_MAX = VCC_MAX – 0.75V  
(VCC_MAX – VOH_MAX) = 0.75V  
For logic low, VOUT = VOL_MAX = VCC_MAX – 1.6V  
(VCC_MAX – VOL_MAX) = 1.6V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX– (VCC_MAX – 2V))/RL] * (VCC_MAX – VOH_MAX) = [(2V – (VCC_MAX – VOH_MAX))/RL] * (VCC_MAX– VOH_MAX) =  
[(2V – 0.75V)/50] * 0.75V = 18.75mW  
Pd_L = [(VOL_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOL_MAX) = [(2V – (VCC_MAX – VOL_MAX))/RL] * (VCC_MAX – VOL_MAX) =  
[(2V – 1.6V)/50] * 1.6V = 12.80mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 31.55mW  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
21  
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
Reliability Information  
Table 8. JA vs. Air Flow Table for a 32-lead VFQFN Package  
JA vs. Air Flow  
Meters per Second  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
48.9°C/W  
42.0°C/W  
39.4°C/W  
Transistor Count  
The transistor count for IDT8T79S838-08I is: 2618  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
22  
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
32 Lead VFQFN Package Outline and Package Dimensions  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
23  
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
Marking  
Package  
Shipping Packaging  
Tray  
Temperature  
-40C to 85C  
-40C to 85C  
8T79S838-08NLGI  
8T79S838-08NLGI8  
IDT8T79S838-08NLGI  
IDT8T79S838-08NLGI  
“Lead-Free” 32 Lead VFQFN  
“Lead-Free” 32 Lead VFQFN  
Tape & Reel  
IDT8T79S838-08NLGI REVISION A JANUARY 29, 2014  
24  
©2014 Integrated Device Technology, Inc.  
IDT8T79S838-08I Data Sheet  
1-to-8 Differential to Universal Output Fanout Buffer  
We’ve Got Your Timing Solution  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
San Jose, California 95138  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to signifi-  
cantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2014. All rights reserved.  

相关型号:

8T79S838-08NLGI8

1-to-8 Differential to Universal Output Fanout Buffer
IDT

8T95

High Speed Hex 3-State Buffers/Inverters
ETC

8T95/BEBJC

Bus Driver, 1-Func, 6-Bit, True Output, TTL, CDIP16
MOTOROLA

8T96

High Speed Hex 3-State Buffers/Inverters
ETC

8T96/BEAJC

Bus Driver, 1-Func, 6-Bit, Inverted Output, TTL, CDIP16
MOTOROLA

8T96/BEBJC

Bus Driver, 1-Func, 6-Bit, Inverted Output, TTL, CDIP16
MOTOROLA

8T97

High Speed Hex 3-State Buffers/Inverters
ETC

8T98

High Speed Hex 3-State Buffers/Inverters
ETC

8T98/BEAJC

Bus Driver, 2-Func, 6-Bit, Inverted Output, TTL, CDIP16
MOTOROLA

8TA00835PA

Circular Connector, 6 Contact(s), Aluminum Alloy, Male, Crimp Terminal, Receptacle
AMPHENOL

8TA00835PD

Circular Connector, 6 Contact(s), Aluminum Alloy, Male, Crimp Terminal, Receptacle
AMPHENOL

8TA00835PN

Circular Connector, 6 Contact(s), Aluminum Alloy, Male, Crimp Terminal, Receptacle
AMPHENOL