8V89704ANLGI [IDT]

FemtoClock NG Crystal-to-3.3V, 2.5V LVPECL Clock Generator w/Fanout Buffer;
8V89704ANLGI
型号: 8V89704ANLGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FemtoClock NG Crystal-to-3.3V, 2.5V LVPECL Clock Generator w/Fanout Buffer

文件: 总25页 (文件大小:315K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FemtoClock® NG Crystal-to-3.3V, 2.5V LVPECL IDT8V89704I  
Clock Generator w/Fanout Buffer  
DATA SHEET  
General Description  
Features  
The IDT8V89704I is a four output Clock Generator with LVPECL  
outputs. The IDT8V89704I can generate any one of four frequencies  
from a single crystal or reference clock. The four frequencies are  
selected from the Function Table (Table 3) by two frequency  
selection pins. Note the desired programmed frequencies must be  
used with the corresponding crystal as indicated in Table 3.  
Fourth Generation FemtoClock® NG PLL technology  
Ideal for 10G EPON ONU and 1G/10G OLT Line Card  
Four LVPECL outputs  
One Reference LVCMOS clock output  
The CLK, nCLK input pair can accept the following differential  
input levels: LVPECL, LVDS, HCSL  
Excellent phase noise performance is maintained with IDT’s Fourth  
Generation FemtoClock® NG PLL technology.  
RMS phase jitter at 156.25MHz (12kHz - 20MHz): 0.239ps  
(typical)  
Full 2.5V or 3.3V power supply  
-40°C to 85°C ambient operating temperature  
Lead-free (RoHS 6) packaging  
Pin Assignment  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
8
VEE  
VEE  
24  
23  
22  
21  
20  
Q0  
Q2  
nQ0  
nQ2  
VCCO  
Q3  
VCCO  
Q1  
nQ1  
VEE  
nc  
nQ3  
19  
18  
17  
VEE  
FSEL1  
9
10 11 12 13 14 15 16  
IDT8V89704I  
32 Lead VFQFN  
5mm x 5mm x 0.925mm package body  
3.15mm x 3.15mm EPad  
NL Package  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
1
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
Block Diagram  
Pulldown  
REF_OUT  
CLK_SEL  
_
XTAL IN  
Xtal  
Osc.  
25MHz  
Q0, nQ0  
Q1, nQ1  
_
XTAL OUT  
0
1
Phase  
Detector  
+
Charge  
Pump  
PS  
Pulldown  
CLK  
FemtoClock® NG  
÷P  
÷N  
VCO  
nCLK  
/
Pullup  
Pulldown  
Q2 , nQ2  
Q3, nQ3  
÷M  
Pulldown  
Pulldown  
FSEL 0  
FSEL1  
Control  
Logic  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
2
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
Pin Description and Pin Characteristic Tables  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1, 7, 11, 15,  
18, 24, 27, 30  
VEE  
Power  
Negative supply pins.  
2, 3  
4, 21  
5, 6  
8
Q0, nQ0  
VCCO  
Output  
Power  
Differential output pair. LVPECL interface levels.  
Output supply pins.  
Q1, nQ1  
nc  
Output  
Unused  
Differential output pair. LVPECL interface levels.  
No connect.  
9,  
10  
XTAL_IN  
XTAL_OUT  
Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.  
Crystal frequency is selected from Table 3A.  
Input  
Input  
Input  
12  
CLK  
Pulldown  
Non-inverting differential clock input.  
Pullup/  
Pulldown  
13  
nCLK  
Inverting differential clock input. Internal resistor bias to VCC/2.  
FSEL0,  
FSEL1  
14, 17  
Input  
Pulldown  
Frequency select pins. LVCMOS/LVTTL interface levels.  
16, 31  
19, 20  
22, 23  
25, 26  
28  
VCC  
Power  
Output  
Output  
Core supply pins.  
nQ3, Q3  
nQ2, Q2  
RESERVED  
VCCA  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Reserved.  
Power  
Input  
Analog supply pin.  
29  
CLK_SEL  
REF_OUT  
Pulldown  
Input source control pin. LVCMOS/LVTTL interface levels.  
Single-ended reference output. LVCMOS/LVTTL interface levels.  
32  
Output  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
2
CPD  
Power Dissipation Capacitance  
Input Pulldown Resistor  
Input Pullup Resistor  
10  
51  
51  
20  
pF  
RPULLDOWN  
RPULLUP  
ROUT  
k  
k  
Output Impedance  
REF_OUT  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
3
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
Function Table  
Table 3A. Control Input Function Table  
Inputs  
Outputs  
CLK_EN  
CLK_SEL  
Selected Source  
Q0  
nQ0  
Q1:Q3  
0
0
CLK  
Disabled; LOW  
Disabled; HIGH  
Disabled; LOW  
XTAL_IN,  
XTAL_OUT  
0
1
1
1
0
1
Disabled; LOW  
Enabled  
Disabled; HIGH  
Enabled  
Disabled; LOW  
Enabled  
CLK  
XTAL_IN,  
XTAL_OUT  
Enabled  
Enabled  
Enabled  
NOTE: After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock or crystal oscillator edge as  
shown in Figure 1.  
NOTE: In the active mode, the state of the outputs are a function of the CLK input as described in Table 3B.  
Enabled  
Disabled  
CLK  
CLK_EN  
nQ0  
Q0:Q3  
Frequency Configuration  
Table 3B. Frequency Configuration Examples  
Output  
Frequency  
(MHz)  
InputFrequency  
Input Clock  
Divider (P)  
Input Clock  
Pre-scale (PS)  
M
N
VCO Frequency  
(MHz)  
FSEL1  
FSEL0  
(MHz)  
Divider Divider  
0
0
125  
25  
1
x2  
40  
16  
2000  
(default) (default)  
0
1
1
1
0
1
156.25  
250  
25  
25  
25  
1
1
1
x2  
x2  
x2  
50  
40  
40  
16  
8
2500  
2000  
2000  
100  
20  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
4
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
3.6V  
Inputs, VI  
XTAL_IN  
Other Input  
0V to 2V  
-0.5V to VCC + 0.5V  
Outputs, VO (LVCMOS)  
-0.5V to VCC + 0.5V  
Outputs, IO (LVPECL)  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, JA  
33.1C/W (0 mps)  
-65C to 150C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VCC = VCCO = 3.3V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
VCC  
Units  
V
VCC  
VCCA  
VCCO  
ICCA  
IEE  
Core Supply Voltage  
Analog Supply Voltage  
Output Supply Voltage  
Analog Supply Current  
Power Supply Current  
VCC – 0.32  
3.135  
3.3  
V
3.3  
3.465  
32  
V
28  
mA  
mA  
183  
204  
Table 4B. Power Supply DC Characteristics, VCC = VCCO = 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
2.375  
Typical  
2.5  
Maximum  
2.625  
VCC  
Units  
V
VCC  
VCCA  
VCCO  
ICCA  
IEE  
Core Supply Voltage  
Analog Supply Voltage  
Output Supply Voltage  
Analog Supply Current  
Power Supply Current  
VCC – 0.15  
2.375  
2.5  
V
2.5  
2.625  
30  
V
26  
mA  
mA  
173  
192  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
5
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
Table 4C. LVCMOS/LVTTL DC Characteristics, VCC = VCCO = 3.3V 5% or 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
VCC = 3.3V  
VCC = 2.5V  
VCC = 3.3V  
VCC = 2.5V  
Minimum  
2
Typical  
Maximum  
VCC + 0.3  
VCC + 0.3  
0.8  
Units  
V
V
V
V
V
Input High  
Voltage  
FSEL[1:0],  
CLK_SEL  
VIH  
1.7  
CLK_SEL  
CLK_SEL  
FSEL[1:0]  
-0.3  
Input Low  
Voltage  
VIL  
-0.3  
0.7  
VCC = 3.3V or 2.5V  
-0.3  
0.5  
Input  
IIH  
FSEL[1:0],  
CLK_SEL  
V
CC = VIN = 3.465V or 2.625V  
150  
µA  
µA  
High Current  
Input  
IIL  
FSEL[1:0],  
CLK_SEL  
VCC = 3.465V or 2.625V, VIN = 0V  
CCO = 3.465V  
-5  
Low Current  
Output  
REF_OUT  
REF_OUT  
V
2.6  
1.8  
V
V
VOH  
High Voltage;  
NOTE 1  
VCCO = 2.625V  
Output  
VOL  
Low Voltage;  
NOTE 1  
REF_OUT  
VCCO = 3.465V or 2.625V  
0.5  
V
NOTE 1: Outputs terminated with 50to VCCO/2. In the Parameter Measurement Information Section, see Output Load Test Circuit Diagrams.  
Table 4D. Differential DC Characteristics, VCC = VCCO = 3.3V 5% or 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Input  
IIH  
CLK, nCLK  
V
CC = VIN = 3.465V or 2.625V  
150  
µA  
High Current  
nCLK  
CLK  
VCC = 3.465V or 2.625V, VIN = 0V  
VCC = 3.465V or 2.625V, VIN = 0V  
-150  
-5  
µA  
µA  
V
Input  
IIL  
Low Current  
VPP  
Peak-to-Peak Voltage  
0.15  
1.3  
Common Mode Input Voltage;  
NOTE 1  
VCMR  
VEE  
VEE – 0.85  
V
NOTE 1: Common mode input voltage is at the cross point.  
Table 4E. LVPECL DC Characteristics, VCC = VCCO = 3.3V 5% or 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCCO – 1.1  
VCCO – 2.0  
0.6  
Typical  
Maximum  
VCCO – 0.75  
VCCO – 1.6  
1.0  
Units  
VOH  
Output High Voltage; NOTE 1  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs termination with 50to VCCO – 2V.  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
6
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
Table 5. Crystal Characteristics  
Parameter  
Test Conditions  
Minimum  
Typical  
Fundamental  
25  
Maximum  
Units  
Mode of Oscillation  
Frequency  
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
50  
7
pF  
NOTE: Characterized using an 12pF parallel resonant crystal.  
AC Electrical Characteristics  
Table 6. AC Characteristics, VCC = VCCO = 3.3V 5% or 2.5V 5% VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
fDIFF_IN  
Differential Input Frequency  
25  
MHz  
25MHz, REF_OUT, Integration  
Range: 12kHz - 5MHz  
0.215  
0.239  
0.230  
0.190  
0.239  
0.195  
0.215  
0.305  
0.330  
0.320  
0.265  
0.325  
0.260  
0.295  
35  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
%
100MHz, Integration Range: 12kHz  
– 20MHz  
125MHz, Integration Range: 12kHz  
– 20MHz  
RMS Phase Jitter, Random;  
NOTE 1  
125MHz, Integration Range: 10kHz  
– 1MHz  
tjit(Ø)  
156.25MHz, Integration Range:  
12kHz – 20MHz  
156.25MHz, Integration Range:  
10kHz – 1MHz  
250MHz, Integration Range: 12kHz  
– 20MHz  
Output Skew; NOTE 2, 3  
Output Rise/Fall Time  
Output Duty Cycle  
tsk(o)  
tR / tF  
odc  
20% - 80%  
100  
48  
400  
52  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE: Phase Noise Characterized using 25MHz, 12pF resonant crystal.  
NOTE 1: Refer to Phase Noise plot.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential crosspoint.  
NOTE 3: These parameters are guaranteed by characterization. Not tested in production.  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
7
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
Typical Phase Noise at 156.25MHz (12k – 20MHz, 3.3V)  
Offset Frequency (Hz)  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
8
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
Parameter Measurement Information  
2V  
2V  
2V  
2V  
5  
SCOPE  
SCOPE  
V
DD,  
V
V
Qx  
Qx  
DD,  
V
DDO  
V
DDO  
DDA  
V
DDA  
nQx  
nQx  
VEE  
VEE  
-0.5V 0.125V  
-1.3V 0.165V  
3.3V LVPECL Output Load Test Circuit  
2.5V LVPECL Output Load Test Circuit  
1.65V 5%  
1.65V 5%  
1.25V 5%  
1.25V 5%  
5  
SCOPE  
SCOPE  
V
V
V
V
DD,  
DD,  
DDO  
DDO  
VDDA  
VDDA  
Qx  
Qx  
GND  
GND  
-1.65V 5%  
-1.25V 5%  
3.3V LVCMOS Output Load Test Circuit  
2.5V LVCMOS Output Load Test Circuit  
Phase Noise Plot  
V
CC  
nCLK  
VPP  
Cross Points  
CLK  
VCMR  
Offset Frequency  
f1  
f2  
V
EE  
RMS Phase Jitter =  
1
*
Area Under Curve Defined by the Offset Frequency Markers  
2 * * ƒ  
Differential Input Levels  
RMS Phase Jitter  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
9
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
Parameter Measurement Information, continued  
nQ[0:3]  
Q[0:3]  
nQx  
Qx  
tPW  
tPERIOD  
nQy  
tPW  
Qy  
odc =  
x 100%  
tsk(o)  
tPERIOD  
Output Skew  
Output Duty Cycle/Pulse Width/Period  
nQ[0:3]  
80%  
tF  
80%  
tR  
VSWING  
20%  
20%  
Q[0:3]  
LVPECL Output Rise/Fall Time  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
10  
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
Applications Information  
Wiring the Differential Input to Accept Single-Ended Levels  
Figure 1 shows how a differential input can be wired to accept single  
ended levels. The reference voltage V1 = VCC/2 is generated by the  
bias resistors R1 and R2. The bypass capacitor (C1) is used to help  
filter noise on the DC bias. This bias circuit should be located as close  
to the input pin as possible. The ratio of R1 and R2 might need to be  
adjusted to position the V1 in the center of the input voltage swing.  
For example, if the input clock swing is 2.5V and VCC = 3.3V, R1 and  
R2 value should be adjusted to set V1 at 1.25V. The values below are  
for when both the single ended swing and VCC are at the same  
voltage. This configuration requires that the sum of the output  
impedance of the driver (Ro) and the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination at  
the input will attenuate the signal in half. This can be done in one of  
two ways. First, R3 and R4 in parallel should equal the transmission  
line impedance. For most 50applications, R3 and R4 can be 100.  
The values of the resistors can be increased to reduce the loading for  
slower and weaker LVCMOS driver. When using single-ended  
signaling, the noise rejection benefits of differential signaling are  
reduced. Even though the differential input can handle full rail  
LVCMOS signaling, it is recommended that the amplitude be  
reduced. The datasheet specifies a lower differential amplitude,  
however this only applies to differential signals. For single-ended  
applications, the swing can be larger, however VIL cannot be less  
than -0.3V and VIH cannot be more than VCC + 0.3V. Though some  
of the recommended components might not be used, the pads  
should be placed in the layout. They can be utilized for debugging  
purposes. The datasheet specifications are characterized and  
guaranteed by using a differential signal.  
Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
11  
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
Overdriving the XTAL Interface  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 2A. The XTAL_OUT pin can be left floating. The  
maximum amplitude of the input signal should not exceed 2V and the  
input edge rate can be as slow as 10ns. This configuration requires  
that the output impedance of the driver (Ro) plus the series  
resistance (Rs) equals the transmission line impedance. In addition,  
matched termination at the crystal input will attenuate the signal in  
half. This can be done in one of two ways. First, R1 and R2 in parallel  
should equal the transmission line impedance. For most 50  
applications, R1 and R2 can be 100. This can also be  
accomplished by removing R1 and making R2 50. By overdriving  
the crystal oscillator, the device will be functional, but note, the device  
performance is guaranteed by using a quartz crystal.  
3.3V  
3.3V  
R1  
100  
C1  
Ro  
~ 7 Ohm  
Zo = 50 Ohm  
XTAL_I N  
RS  
43  
0.1uF  
R2  
Driver_LVCMOS  
100  
XTAL_OU T  
Crystal Input Interf ace  
Figure 2A. General Diagram for LVCMOS Driver to XTAL Input Interface  
VCC=3.3V  
C1  
Zo = 50 Ohm  
XTAL_IN  
0.1uF  
R1  
50  
Zo = 50 Ohm  
XTAL_OUT  
LVPECL  
Cry stal Input Interface  
R2  
50  
R3  
50  
Figure 2B. General Diagram for LVPECL Driver to XTAL Input Interface  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
12  
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
3.3V Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, HCSL and other differential  
signals. Both VSWING and VOH must meet the VPP and VCMR input  
requirements. Figures 3A to 3D show interface examples for the  
CLK/nCLK input driven by the most common driver types. The input  
interfaces suggested here are examples only. If the driver is from  
another vendor, use their termination recommendation. Please  
consult with the vendor of the driver component to confirm the driver  
termination requirements.  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
Differential  
Input  
LVPECL  
nCLK  
R1  
50Ω  
R2  
50Ω  
Differential  
Input  
LVPECL  
R2  
50Ω  
Figure 3A. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
Figure 3B. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50Ω  
*R3  
*R4  
CLK  
CLK  
R1  
100Ω  
nCLK  
nCLK  
Zo = 50Ω  
Differential  
Input  
Receiver  
HCSL  
LVDS  
Figure 3C. CLK/nCLK Input Driven by a  
3.3V HCSL Driver  
Figure 3D. CLK/nCLK Input Driven by a 3.3V LVDS Driver  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
13  
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
2.5V Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, HCSL and other differential  
signals. Both VSWING and VOH must meet the VPP and VCMR input  
requirements. Figures 4A to 4D show interface examples for the  
CLK/nCLK input driven by the most common driver types. The input  
interfaces suggested here are examples only. If the driver is from  
another vendor, use their termination recommendation. Please  
consult with the vendor of the driver component to confirm the driver  
termination requirements.  
2.5V  
2.5V  
2.5V  
2.5V  
2.5V  
R3  
R4  
Zo = 50  
250  
250  
CLK  
Zo = 50  
Zo = 50  
CLK  
Zo = 50  
nCLK  
Differential  
Input  
LVPECL  
nCLK  
R1  
50  
R2  
50  
Differential  
Input  
LVPECL  
R1  
R2  
62.5  
62.5  
R3  
18  
Figure 4A. CLK/nCLK Input Driven by a  
2.5V LVPECL Driver  
Figure 4B. CLK/nCLK Input Driven by a  
2.5V LVPECL Driver  
2.5V  
2.5V  
2.5V  
2.5V  
Zo = 50  
Zo = 50  
*R3  
*R4  
33  
33  
CLK  
CLK  
R1  
100  
Zo = 50  
nCLK  
nCLK  
Zo = 50  
Differential  
Input  
Differential  
Input  
HCSL  
R1  
50  
R2  
50  
LVDS  
*Optional R3 and R4 can be 0  
Figure 4C. CLK/nCLK Input Driven by a  
2.5V HCSL Driver  
Figure 4D. CLK/nCLK Input Driven by a 2.5V LVDS Driver  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
14  
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
LVCMOS Control Pins  
LVPECL Outputs  
All control pins have internal pulldowns; additional resistance is not  
required but can be added for additional protection. A 1kresistor  
can be used.  
All unused LVPECL outputs can be left floating. We recommend that  
there is no trace attached. Both sides of the differential output pair  
should either be left floating or terminated.  
LVCMOS Outputs  
CLK/nCLK Inputs  
The unused LVCMOS output can be left floating. There should be no  
trace attached.  
For applications not requiring the use of the differential input, both  
CLK and nCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to ground.  
Crystal Inputs  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kresistor can be tied from  
XTAL_IN to ground.  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be used  
to maximize operating frequency and minimize signal distortion.  
Figures 5A and 5B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and clock  
component process variations.  
The differential outputs are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50  
3.3V  
R3  
R4  
125  
125  
3.3V  
3.3V  
Z
Z
o = 50  
+
_
LVPECL  
Input  
o = 50  
R1  
84  
R2  
84  
Figure 5A. 3.3V LVPECL Output Termination  
Figure 5B. 3.3V LVPECL Output Termination  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
15  
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
Termination for 2.5V LVPECL Outputs  
Figure 6A and Figure 6B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating 50  
to VCCO – 2V. For VCCO = 2.5V, the VCCO – 2V is very close to ground  
level. The R3 in Figure 6B can be eliminated and the termination is  
shown in Figure 6C.  
2.5V  
VCCO = 2.5V  
2.5V  
2.5V  
VCCO = 2.5V  
R1  
R3  
50  
250  
250  
+
50  
50  
+
50  
2.5V LVPECL Driver  
R1  
50  
R2  
50  
2.5V LVPECL Driver  
R2  
62.5  
R4  
62.5  
R3  
18  
Figure 6A. 2.5V LVPECL Driver Termination Example  
Figure 6B. 2.5V LVPECL Driver Termination Example  
2.5V  
VCCO = 2.5V  
50  
+
50  
2.5V LVPECL Driver  
R1  
50  
R2  
50  
Figure 6C. 2.5V LVPECL Driver Termination Example  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
16  
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
VFQFN EPAD Thermal Release Path  
In order to maximize both the removal of heat from the package and  
the electrical performance, a land pattern must be incorporated on  
the Printed Circuit Board (PCB) within the footprint of the package  
corresponding to the exposed metal pad or exposed heat slug on the  
package, as shown in Figure 7. The solderable area on the PCB, as  
defined by the solder mask, should be at least the same size/shape  
as the exposed pad/slug area on the package to maximize the  
thermal/electrical performance. Sufficient clearance should be  
designed on the PCB between the outer edges of the land pattern  
and the inner edges of pad pattern for the leads to avoid any shorts.  
and dependent upon the package power dissipation as well as  
electrical conductivity requirements. Thus, thermal and electrical  
analysis and/or testing are recommended to determine the minimum  
number needed. Maximum thermal and electrical performance is  
achieved when an array of vias is incorporated in the land pattern. It  
is recommended to use as many vias connected to ground as  
possible. It is also recommended that the via diameter should be 12  
to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is  
desirable to avoid any solder wicking inside the via during the  
soldering process which may result in voids in solder between the  
exposed pad/slug and the thermal land. Precautions should be taken  
to eliminate any solder voids between the exposed heat slug and the  
land pattern. Note: These recommendations are to be used as a  
guideline only. For further information, please refer to the Application  
Note on the Surface Mount Assembly of Amkor’s Thermally/  
Electrically Enhance Leadframe Base Package, Amkor Technology.  
While the land pattern on the PCB provides a means of heat transfer  
and electrical grounding from the package to the board through a  
solder joint, thermal vias are necessary to effectively conduct from  
the surface of the PCB to the ground plane(s). The land pattern must  
be connected to ground through these vias. The vias act as “heat  
pipes”. The number of vias (i.e. “heat pipes”) are application specific  
SOLDER  
SOLDER  
PIN  
PIN  
EXPOSED HEAT SLUG  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
Figure 7. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
17  
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
Schematic Example  
Figure 8 (next page) is an IDT8V89704I application example  
schematic. schematic focuses on functional connections and is not  
configuration specific. Refer to the pin description and functional  
tables in the datasheet to ensure that the logic control inputs are  
properly set.  
The schematic indicates components that are to be placed close to  
the IDT8V89704I. Specifically the 0.1uF VCC, VCCA and VCCO  
bypass capacitors, the 180 ohm Q3, nQ3 LVPECL bias resistors R11  
and R12 and the REF_OUT LVCMOS source termination resistor R1.  
Similarly the 25MHz crystal and its associated load capacitors should  
also be close to the device.  
In this example the device is operated at VCC= VCCA = VCCO = 3.3V  
rather than 2.5V. The CLK, nCLK inputs are provided by a 3.3V  
LVPECL driver and depicted with a Y-termination rather than the  
standard four resistor VCC - 2V Thevinin termination for reasons of  
minimum termination power and layout simplicity. Three examples of  
LVPECL terminations are shown for the outputs to demonstrate  
mixing of PECL termination design options. For further options and a  
more detailed discussion of LVPECL terminations, consult the IDT  
application note “Termination – LVPECL.  
In order to achieve the best possible filtering, it is recommended that  
the placement of the filter components be on the device side of the  
PCB as close to the power pins as possible. The 0.1uF capacitors in  
each power pin filter must be placed on the device side. If space is  
limited, the other components can be on the opposite side of the  
PCB. Power supply filter recommendations are a general guideline to  
be used for reducing external noise from coupling into the devices.  
The VCC and VCCO filters start to attenuate noise at approximately  
10kHz. If a specific frequency noise component is known, such as  
switching power supplies frequencies, it is recommended that  
component values be adjusted and if required, additional filtering be  
added. Additionally, good general design practices for power plane  
voltage stability suggests adding bulk capacitance in the local area of  
all devices.  
As with any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter performance,  
power supply isolation is required. The IDT8V89704i provides  
separate power supply pins to isolate any high switching noise from  
coupling into the internal PLL.  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
18  
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
U1  
17  
R1  
33  
Z o = 50  
F SE L1  
F SE L0  
32  
FSE L1  
FSE L0  
REF _OUT  
LVCMOS Receiver  
14  
3. 3 V  
29  
C LK _SEL  
CLK _SE L  
8
nc  
RE SE RVED  
RE SE RVED  
25  
R7  
R8  
26  
13 3  
133  
Z o = 50 Ohm  
9
XT A L _I N  
+
25MHz(12pf )  
10  
2
3
Q0_P  
Q0_N  
XT A L _O U T  
Q0  
nQ0  
X1  
Z o = 50 Ohm  
-
C18  
9pF  
C23  
9pF  
5
6
Q1_P  
Q1_N  
Q1  
nQ1  
R9  
82.5  
R10  
82. 5  
+3. 3V PE CL Rec eiv er  
Zo = 50 Ohm  
Zo = 50 Ohm  
R3 50  
R4 50  
12  
13  
23  
22  
Q2_P  
Q2_N  
CLK  
Q2  
nQ2  
nC L K  
20  
19  
Q3_P  
Q3_N  
Q3  
nQ3  
PE CL Driver  
R5  
50  
R11  
180  
R12  
180  
16  
V CC_16  
VCC  
C15  
0. 1uF  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
31  
28  
VCC_38  
C10  
VCC  
1
7
11  
15  
18  
24  
27  
30  
V EE  
V EE  
V EE  
V EE  
V EE  
V EE  
V EE  
-
0. 1uF  
V CCA  
VCC A  
R13  
50  
R14  
50  
+3.3V P ECL Receiv er  
C7  
0. 1uF  
V EE  
4
21  
VCC O  
VCC O  
V CCO  
33  
R15  
50  
ePAD  
C17  
C9  
0. 1uF  
0.1uF  
2. 5V  
3. 3V  
FB 1  
C11 Zo = 50 Ohm  
0. 1u  
1
2
V CC_16  
IN  
50  
BLM18BB 221SN1  
C14  
C6  
0.1uF  
10uF  
C12 Zo = 50 Ohm  
0. 1u  
50  
IN  
3. 3V  
FB 2  
Optional AC Term ination  
for 2. 5V CML Receiver  
1
2
VCC_38  
CML Receiv er  
BLM18BB 221SN1  
C16  
C19  
0.1uF  
10uF  
For o ther DC an d AC ter min ation option s co ns ult th e IDT A pplications No te  
"Te rmination - LV PECL"  
R16  
10  
Logic Control Input E xamples  
V CCA  
Set Logic  
Input to '1'  
Set Logic  
Input to '0'  
C8  
10uF  
V CC  
VC C  
3. 3V  
RU1  
1K  
RU2  
Not Inst al l  
FB3  
1
2
V CCO  
To Logic  
Input  
pins  
To Logic  
Input  
pins  
B LM18B B221SN1  
C21  
10uF  
C22  
0.1uF  
RD1  
RD2  
1K  
Not Install  
Figure 8. IDT8V89704I Schematic Layout  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
19  
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
Power Considerations  
This section provides information on power dissipation and junction temperature for the IDT8V89704I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the IDT8V89704I is the sum of the core power plus the power dissipated due to the load.  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated due to the load.  
Power (core)MAX = VCC_ MAX * IEE_MAX = 3.465V * 204mA = 706.86mW  
Power (LVPECL outputs)MAX = 31.55mW/Loaded Output pair  
Power (LVPECL output) = 4 * 31.55mW = 126.2mW  
LVCMOS Output  
Output Impedance ROUT Power Dissipation due to Loading 50to VCCO/2  
Output Current IOUT = VCCO_MAX / [2 * (50+ ROUT)] = 3.465V / [2 * (50+ 20)] = 24.75mA  
Power Dissipation on the ROUT per LVCMOS output  
Power (ROUT) = ROUT * (IOUT)2 = 20* (24.75mA)2 = 12.251mW  
Dynamic Power Dissipation at 25MHz  
Power (25MHz) = CPD * Frequency * (VCCO)2 = 10pF * 25MHz * (3.465V)2 = 3mW  
Total Power Dissipation  
Total Power  
= Power (core) + Power (LVPECL) + Power (ROUT) + Power (25MHz)  
= 706.86mW + 126.2mW + 12.251mW + 3mW = 848.31mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 65.7°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 848W * 33.1°C/W = 113.1.°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 7. Thermal Resistance JA for 32 Lead VFQFN, Forced Convection  
JA by Velocity  
Meters per Second  
0
1
3
Multi-Layer PCB, JEDEC Standard Test Boards  
33.1°C/W  
28.1°C/W  
25.4°C/W  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
20  
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
3. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the LVPECL output pair.  
LVPECL output driver circuit and termination are shown in Figure 8.  
VCCO  
Q1  
VOUT  
RL  
50Ω  
VCCO - 2V  
Figure 9. LVPECL Driver Circuit and Termination  
To calculate power dissipation due to the load, use the following equations which assume a 50load, and a termination voltage of VCC – 2V.  
For logic high, VOUT = VOH_MAX = VCCO_MAX – 0.75V  
(VCCO_MAX – VOH_MAX) = 0.75V  
For logic low, VOUT = VOL_MAX = VCCO_MAX – 1.6V  
(VCCO_MAX – VOL_MAX) = 1.6V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX– (VCCO_MAX– 2V))/RL] * (VCCO_MAX– VOH_MAX) = [(2V – (VCCO_MAX – VOH_MAX))/RL] * (VCCO_MAX– VOH_MAX) =  
[(2V – 0.75V)/50] * 0.75V = 18.75mW  
Pd_L = [(VOL_MAX – (VCCO_MAX– 2V))/RL] * (VCCO_MAX– VOL_MAX) = [(2V – (VCCO_MAX – VOL_MAX))/RL] * (VCCO_MAX– VOL_MAX) =  
[(2V – 1.6V)/50] * 1.6V = 12.80mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 31.55mW  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
21  
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
Reliability Information  
Table 8. JA vs. Air Flow Table for a 32 Lead VFQFN  
JA vs. Air Flow  
Meters per Second  
0
1
3
Multi-Layer PCB, JEDEC Standard Test Boards  
33.1°C/W  
28.1°C/W  
25.4°C/W  
Transistor Count  
The transistor count for IDT8V89704I is: 26,859.  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
22  
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
32 Lead VFQFN Package Outline and Dimensions  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
23  
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
8V89704ANLGI  
8V89704ANLGI8  
Marking  
IDT8V89704ANLGI  
IDT8V89704ANLGI  
Package  
“Lead-Free” 32 Lead VFQFN  
“Lead-Free” 32 Lead VFQFN  
Shipping Packaging  
Tray  
Temperature  
-40C to 85C  
-40C to 85C  
Tape & Reel  
IDT8V89704ANLGI REVISION A APRIL 3, 2013  
24  
©2013 Integrated Device Technology, Inc.  
IDT8V89704I Data Sheet  
FEMTOCLOCK® NG CRYSTAL-TO-3.3V, 2.5V LVPECL CLOCK GENERATOR  
We’ve Got Your Timing Solution  
6024 Silver Creek Valley Road Sales  
Technical Support  
netcom@idt.com  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
San Jose, California 95138  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to signifi-  
cantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2013. All rights reserved.  

相关型号:

8V89704ANLGI8

FemtoClock NG Crystal-to-3.3V, 2.5V LVPECL Clock Generator w/Fanout Buffer
IDT

8V97051

Low Power Wideband Fractional RF Synthesizer / PLL
IDT

8V97051L

Low Power Wideband Fractional RF Synthesizer / PLL
IDT

8V97051LNLGI

Low Power Wideband Fractional RF Synthesizer / PLL
IDT

8V97051LNLGI/W

Low Power Wideband Fractional RF Synthesizer / PLL
IDT

8V97051LNLGI8

Low Power Wideband Fractional RF Synthesizer / PLL
IDT

8V97051L_18

Low Power Wideband Fract ional RF Synthesizer / PLL
IDT

8V97051NLGI

Low Power Wideband Fractional RF Synthesizer / PLL
IDT

8V97051NLGI/W

Low Power Wideband Fractional RF Synthesizer / PLL
IDT

8V97051NLGI8

Low Power Wideband Fractional RF Synthesizer / PLL
IDT

8V97051_16

Low Power Wideband Fractional RF Synthesizer / PLL
IDT

8V97051_17

Low Power Wideband Fractional RF Synthesizer / PLL
IDT