9SQL4958BNDGI8 [IDT]

8-output CK420BQ Derivative;
9SQL4958BNDGI8
型号: 9SQL4958BNDGI8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

8-output CK420BQ Derivative

文件: 总20页 (文件大小:318K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-output CK420BQ Derivative  
9SQL4958  
DATASHEET  
Description  
Features/Benefits  
The 9SQL4958 is a member of IDT's 'Lite' family of server  
clocks. It generates 8 100MHz outputs that exceed the  
requirements of the CK420BQ CPU/SRC clocks. Each output  
has its own OE# pin for clock management and supports 2  
different spread spectrum levels in addition to spread off. It  
also provides a copy of the 25MHz internal XO. The  
9SQL4958 supports PCIe Common Clock (CC) and  
Independent Reference Clock (IR) architectures.  
Direct connection to 85transmission lines; saves 32  
2
resistors and 55mm compared to standard HCSL  
132mW typ. power consumption; eases thermal concerns  
@ 1/10 the power of CK420BQ  
Contains default configuration; SMBus interface not  
required for device operation  
OE# pins; support BLCK power management  
25MHz input frequency; standard crystal frequency  
25MHz REF output; eliminates XO from board  
Recommended Application  
Pin/SMBus selectable 0%, -0.25% or -0.5% spread on  
BLCK outputs; minimize EMI and phase jitter for each  
application  
PCIe Gen1, Gen2, Gen3, Gen4 Server Clock  
Output Features  
BLCK outputs blocked until PLL is locked; clean system  
8 -100MHz Low-power HCSL (LP-HCSL) CPU/SRC pairs  
Integrated terminations for 85Zo  
1 - 3.3V LVCMOS REF output w/Wake-On-LAN (WOL)  
support  
start-up  
Two selectable SMBus addresses; multiple devices can  
easily share an SMBus segment  
Space saving 48-pin 6x6mm VFQFPN; minimal board  
space  
Key Specifications  
BCLK outputs  
Cycle-to-cycle jitter <50ps  
Output-to-output skew <50ps  
PCIe Gen1, Gen2, Gen3, Gen4 CC compliant  
PCIe Gen2, Gen3 IR compliant  
QPI/UPI compliant  
SAS12G compliant (SSC off)  
12k-20M phase jitter <2ps rms (SSC off)  
REF output:  
Phase jitter <200fs rms (SSC off)  
±50ppm frequency accuracy on all clocks  
Block Diagram  
vOE(7:0)#  
8
REF  
XIN/CLKIN_25  
BCLK7  
BCLK6  
X2  
SSC  
BCLK5  
Capable  
BCLK4  
PLL  
vSADR  
BCLK3  
BCLK2  
BCLK1  
BCLK0  
vSS_EN_tri  
^CKPWRGD_PD#  
Control  
Logic  
SDATA_3.3  
SCLK_3.3  
9SQL4958 OCTOBER 28, 2016  
1
©2016 Integrated Device Technology, Inc.  
9SQL4958 DATASHEET  
Pin Configuration  
48 47 46 45 44 43 42 41 40 39 38 37  
vSS_EN_tri 1  
GNDXTAL 2  
XIN/CLKIN_25 3  
X2 4  
36 BCLK5#  
35 BCLK5  
34 vOE4#  
33 BCLK4#  
32 BCLK4  
31 VDDIO  
30 VDDA3.3  
29 GNDA  
VDDXTAL3.3 5  
VDDREF3.3 6  
vSADR/REF3.3 7  
GNDREF 8  
9SQL4958  
connect epad to GND  
GNDDIG 9  
28 vOE3#  
27 BCLK3#  
26 BCLK3  
25 vOE2#  
SCLK_3.3 10  
SDATA_3.3 11  
VDDDIG3.3 12  
13 14 15 16 17 18 19 20 21 22 23 24  
48-pin VFQFPN, 6x6 mm, 0.4mm pitch  
vv prefix indicates internal 60KOhm pull down resistor  
v
^
prefix indicates internal 120KOhm pull down resistor  
prefix indicates internal 120KOhm pull up resistor  
SMBus Address Selection Table  
+
Read/Write Bit  
SADR  
0
1
Address  
1101000  
1101010  
x
x
State of SADR on first application  
of CKPWRGD_PD#  
Power Management Table3  
SMBus  
OE bit  
BCLKx  
REF  
CKPWRGD_PD#  
OEx# Pin  
True O/P  
Low1  
Comp. O/P  
Low1  
Hi-Z2  
Running  
0
1
1
1
X
1
1
0
X
0
Running  
Running  
Disabled1  
Disabled1  
Disabled1  
Disabled1 Disabled4  
1
Running  
X
Notes  
1. The output state is set by B11[1:0] (Low/Low default)  
2. REF is Hi-Z until the 1st assertion of CKPWRGD_PD# high. After this, when  
CKPWRG_PD# is low, REF is disabled unless Byte3[5]=1, in which case REF is  
running..  
3. Input polarities defined at default SMBus values.  
4. See SMBus description for Byte 3, bit 4  
Power Connections  
Pin Number  
Description  
VDD  
VDDIO  
GND  
5
6
2
8
XTAL OSC  
REF Power  
Digital (dirty)  
Power  
12  
9
13,21,31,39, 22,29,40,  
20,38  
30  
BCLK outputs  
PLL Analog  
47  
49  
29  
8-OUTPUT CK420BQ DERIVATIVE  
2
OCTOBER 28, 2016  
9SQL4958 DATASHEET  
Pin Descriptions  
PIN #  
PIN NAME  
TYPE  
DESCRIPTION  
LATCHED Latched select input to select spread spectrum amount at initial power up :  
1
vSS_EN_tri  
IN  
GND  
IN  
OUT  
PWR  
PWR  
LATCHED  
I/O  
1 = -0.5% spread, M = -0.25%, 0 = Spread Off  
GND for XTAL  
Crystal input or Reference Clock input. Nominally 25MHz.  
Crystal output.  
2
3
4
5
6
GNDXTAL  
XIN/CLKIN_25  
X2  
VDDXTAL3.3  
VDDREF3.3  
Power supply for XTAL, nominal 3.3V  
VDD for REF output. nominal 3.3V.  
7
vSADR/REF3.3  
Latch to select SMBus Address/3.3V LVCMOS copy of X1/REFIN pin  
8
9
GNDREF  
GNDDIG  
GND  
GND  
IN  
I/O  
PWR  
PWR  
Ground pin for the REF outputs.  
Ground pin for digital circuitry  
10 SCLK_3.3  
Clock pin of SMBus circuitry, 3.3V tolerant.  
Data pin for SMBus circuitry, 3.3V tolerant.  
3.3V digital power (dirty power)  
Power supply for differential outputs  
Active low input for enabling output 0. This pin has an internal 120kohm pull-  
down.  
11 SDATA_3.3  
12 VDDDIG3.3  
13 VDDIO  
14 vOE0#  
IN  
1 =disable outputs, 0 = enable outputs  
True output of differential BCLK.  
Complement output of differential BCLK.  
Active low input for enabling output 1. This pin has an internal 120kohm pull-  
down.  
15 BCLK0  
16 BCLK0#  
OUT  
OUT  
17 vOE1#  
IN  
1 =disable outputs, 0 = enable outputs  
True output of differential BCLK.  
Complement output of differential BCLK.  
Power supply, nominal 3.3V  
Power supply for differential outputs  
Ground pin.  
True output of differential BCLK.  
Complement output of differential BCLK.  
Active low input for enabling output 2. This pin has an internal 120kohm pull-  
down.  
18 BCLK1  
19 BCLK1#  
20 VDD3.3  
21 VDDIO  
22 GND  
OUT  
OUT  
PWR  
PWR  
GND  
OUT  
OUT  
23 BCLK2  
24 BCLK2#  
25 vOE2#  
IN  
1 =disable outputs, 0 = enable outputs  
True output of differential BCLK.  
Complement output of differential BCLK.  
Active low input for enabling output 3. This pin has an internal 120kohm pull-  
down.  
26 BCLK3  
27 BCLK3#  
OUT  
OUT  
28 vOE3#  
IN  
1 =disable outputs, 0 = enable outputs  
Ground pin for the PLL core.  
3.3V power for the PLL core.  
Power supply for differential outputs  
True output of differential BCLK.  
Complement output of differential BCLK.  
Active low input for enabling output 4. This pin has an internal 120kohm pull-  
down.  
29 GNDA  
GND  
PWR  
PWR  
OUT  
OUT  
30 VDDA3.3  
31 VDDIO  
32 BCLK4  
33 BCLK4#  
34 vOE4#  
IN  
1 =disable outputs, 0 = enable outputs  
True output of differential BCLK.  
Complement output of differential BCLK.  
Active low input for enabling output 5. This pin has an internal 120kohm pull-  
down.  
35 BCLK5  
36 BCLK5#  
OUT  
OUT  
37 vOE5#  
IN  
1 =disable outputs, 0 = enable outputs  
Power supply, nominal 3.3V  
Power supply for differential outputs  
38 VDD3.3  
39 VDDIO  
PWR  
PWR  
OCTOBER 28, 2016  
3
8-OUTPUT CK420BQ DERIVATIVE  
9SQL4958 DATASHEET  
Pin Descriptions, cont.  
PIN #  
40 GND  
41 BCLK6  
42 BCLK6#  
PIN NAME  
TYPE  
GND  
OUT  
OUT  
DESCRIPTION  
Ground pin.  
True output of differential BCLK.  
Complement output of differential BCLK.  
Active low input for enabling output 6. This pin has an internal 120kohm pull-  
down.  
43 vOE6#  
IN  
1 =disable outputs, 0 = enable outputs  
44 BCLK7  
45 BCLK7#  
OUT  
OUT  
True output of differential BCLK.  
Complement output of differential BCLK.  
Active low input for enabling output 7. This pin has an internal 120kohm pull-  
down.  
1 =disable outputs, 0 = enable outputs  
46 vOE7#  
IN  
PWR  
IN  
47 VDDIO  
Power supply for differential outputs  
Input notifies device to sample latched inputs and start up on first high  
assertion. Low enters Power Down Mode, subsequent high assertions exit  
Power Down Mode. This pin has internal 120kohm pull-up resistor.  
Connect to Ground.  
48 ^CKPWRGD_PD#  
49 EPAD  
GND  
Test Loads  
Terminations  
REF Output Test Load  
Zo ()  
85  
Rs ()  
0
100  
7.5  
Zo = 50 ohms  
33  
5pF  
REF Output  
Low-Power Differential Output Test Load  
5 inches  
Rs  
Rs  
Zo=85ohm  
2pF  
2pF  
Note: The device can drive transmission line lengths greater  
than those specified by the PCIe SIG  
Alternate Terminations  
The 9SQL family can easily drive LVPECL, LVDS, and CML logic. See “AN-891 Driving LVPECL, LVDS, and CML Logic with  
IDT's "Universal" Low-Power HCSL Outputs” for details.  
8-OUTPUT CK420BQ DERIVATIVE  
4
OCTOBER 28, 2016  
9SQL4958 DATASHEET  
Absolute Maximum Ratings  
Stresses above the ratings listed below can cause permanent damage to the 9SQL4958. These ratings, which are standard  
values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other  
conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the  
recommended operating temperature range.  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS NOTES  
3.3V Supply Voltage  
VDDxxx  
Applies to all VDD pins  
-0.5  
3.9  
V
1,2  
VDD  
0.5V  
3.9  
150  
125  
+
Input Voltage  
VIN  
-0.5  
V
1, 3  
Input High Voltage, SMBus  
Storage Temperature  
VIHSMB  
Ts  
Tj  
SMBus clock and data pins  
Human Body Model  
V
°C  
°C  
1
1
1
-65  
Junction Temperature  
1
Input ESD protection  
ESD prot  
2500  
V
Notes  
1Guaranteed by design and characterization, not 100% tested in production.  
2 Operation under these conditions is neither implied nor guaranteed.  
3 Not to exceed 4.5V.  
Electrical Characteristics–SMBus Parameters  
TA = TAMB; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS NOTES  
SMBus Input Low Voltage  
SMBus Input High Voltage  
VILSMB  
VIHSMB  
VDDSMB = 3.3V  
VDDSMB = 3.3V  
@ IPULLUP  
0.8  
3.6  
0.4  
V
V
2.1  
SMBus Output Low Voltage VOLSMB  
V
SMBus Sink Current  
Nominal Bus Voltage  
SCLK/SDATA Rise Time  
IPULLUP  
VDDSMB  
tRSMB  
@ VOL  
4
mA  
V
2.7  
3.6  
1000  
300  
(Max VIL - 0.15) to (Min VIH + 0.15)  
(Min VIH + 0.15) to (Max VIL - 0.15)  
ns  
ns  
1
1
SCLK/SDATA Fall Time  
SMBus Operating  
Frequency  
tFSMB  
fSMBMAX  
Maximum SMBus operating frequency  
500  
kHz  
Notes  
1 Guaranteed by design and characterization, not 100% tested in production.  
OCTOBER 28, 2016  
5
8-OUTPUT CK420BQ DERIVATIVE  
9SQL4958 DATASHEET  
Electrical Characteristics–Input/Supply/Common Parameters–Normal Operating  
Conditions  
TA = TAMB; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
PARAMETER  
SYMBOL  
VDDxxx  
VDDIO  
TAMB  
CONDITIONS  
Supply voltage for core, analog and single-ended  
LVCMOS outputs.  
MIN  
TYP  
MAX  
3.465  
3.465  
85  
UNITS NOTES  
Supply Voltage  
3.135  
3.3  
V
V
IO Supply Voltage  
Ambient Operating  
Temperature  
Supply voltage for differential Low Power outputs.  
0.9975 1.05-3.3  
Industrial range  
-40  
25  
°C  
VDDx  
0.3  
+
Input High Voltage  
Input Low Voltage  
VIH  
VIL  
0.75 VDDx  
-0.3  
V
V
Single-ended inputs, except SMBus  
0.25 VDDx  
VDD + 0.3  
Input High Voltage  
Input Mid Voltage  
Input Low Voltage  
VIHtri  
VIMtri  
VILtri  
IIN  
0.75 VDDx  
V
V
Single-ended tri-level inputs ('_tri' suffix)  
0.4 VDDx 0.5 VDDx 0.6 VDDx  
-0.3  
-5  
0.25 VDDx  
5
V
Single-ended inputs, VIN = GND, VIN = VDD  
Single-ended inputs  
IN = 0 V; Inputs with internal pull-up resistors  
uA  
Input Current  
V
IINP  
-50  
50  
uA  
VIN = VDD; Inputs with internal pull-down resistors  
XTAL, or X1 input  
Input Frequency  
Pin Inductance  
Fin  
Lpin  
25  
MHz  
7
5
6
nH  
pF  
pF  
1
1
1
CIN  
Logic Inputs, except DIF_IN  
Output pin capacitance  
1.5  
Capacitance  
COUT  
From VDD Power-Up and after input clock  
stabilization or de-assertion of PD# to 1st clock  
(Triangular Modulation)  
Clk Stabilization  
TSTAB  
0.35  
1.8  
ms  
1,2  
SS Modulation Frequency  
OE# Latency  
fMOD  
30  
1
31.6  
2
33  
3
kHz  
1
DIF start after OE# assertion  
DIF stop after OE# deassertion  
DIF output enable after  
tLATOE#  
clocks  
1,3  
Tdrive_PD#  
tDRVPD  
28  
300  
us  
1,3  
PD# de-assertion  
Tfall  
Trise  
tF  
Fall time of single-ended control inputs  
5
5
ns  
ns  
1,2  
1,2  
tR  
Rise time of single-ended control inputs  
Notes  
1 Guaranteed by design and characterization, not 100% tested in production.  
2 Control input must be monotonic from 20% to 80% of input swing.  
3 Time from deassertion until outputs are >200 mV  
8-OUTPUT CK420BQ DERIVATIVE  
6
OCTOBER 28, 2016  
9SQL4958 DATASHEET  
Electrical Characteristics–BLCK Low-Power HCSL Outputs  
TA = TAMB; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS NOTES  
V/ns  
V/ns  
mV  
Scope averaging on, fast setting  
Scope averaging, slow setting  
Scope averaging off  
2
1
250  
2.7  
1.9  
409  
14  
4
3
550  
140  
2,3  
2,3  
1,4,5  
1,4,9  
Slew rate  
Trf  
Crossing Voltage (abs)  
Crossing Voltage (var)  
Vcross_abs  
-Vcross  
Scope averaging off  
mV  
Δ
ppm  
Avg. Clock Period Accuracy  
-50  
0.0  
+2550  
2,10,13  
TPERIOD_AVG  
ns  
Absolute Period  
Includes jitter and Spread Spectrum Modulation  
9.9491  
10.0  
16  
10.1011  
50  
2,6  
2
TPERIOD_ABS  
tjcyc-cyc  
Jitter, Cycle to cycle  
ps  
Statistical measurement on single-ended signal  
using oscilloscope math function. (Scope  
averaging on)  
Voltage High  
Voltage Low  
VHIGH  
VLOW  
660  
761  
-7  
850  
1
1
mV  
mV  
-150  
150  
Absolute Max Voltage  
Absolute Min Voltage  
Duty Cycle  
Slew rate matching  
Skew, Output to Output  
Vmax  
Vmin  
tDC  
Measurement on single ended signal using  
absolute value. (Scope averaging off)  
819  
-46  
49.2  
6
1150  
1,7,15  
1,8,15  
2
1,14  
2
-300  
45  
55  
20  
50  
%
%
Trf  
Δ
tsk3  
Averaging on, VT = 50%  
35  
ps  
Notes  
1 Measured from single-ended waveform.  
2 Measured from differential waveform.  
3 Measured from -150 mV to +150 mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic  
through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing.  
4 Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-.  
5 Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points  
for this measurement.  
6 Defines as the absolute minimum or maximum instantaneous period. This includes cycle to cycle jitter, relative PPM tolerance, and spread  
spectrum modulation.  
7 Defined as the maximum instantaneous voltage including overshoot.  
8 Defined as the minimum instantaneous voltage including undershoot.  
9 Defined as the total variation of all crossing voltages of Rising REFCLK+ and Falling REFCLK-. This is the maximum allowed variance in  
VCROSS for any particular system.  
10 Refer to Section 4.3.7.1.1 of the PCI Express Base Specification, Revision 3.0 for information regarding PPM considerations.  
11 System board compliance measurements must use the test load. REFCLK+ and REFCLK- are to be measured at the load capacitors CL.  
Single ended probes must be used for measurements requiring single ended measurements. Either single ended probes with math or  
differential probe can be used for differential measurements. Test load CL = 2 pF.  
12  
T
is the time the differential clock must maintain a minimum 150 mV differential voltage after rising/falling edges before it is allowed  
STABLE  
to droop back into the VRB 100 mV differential range.  
13 PPM refers to parts per million and is a DC absolute period accuracy specification. 1 PPM is 1/1,000,000th of 100.000000 MHz exactly or  
100 Hz. For 300 PPM, then we have an error budget of 100 Hz/PPM * 300 PPM = 30 kHz. The period is to be measured with a frequency  
counter with measurement window set to 100 ms or greater. The 300 PPM applies to systems that do not employ Spread Spectrum Clocking,  
or that use common clock source. For systems employing Spread Spectrum Clocking, there is an additional 2,500 PPM nominal shift in  
maximum period resulting from the 0.5% down spread resulting in a maximum average period specification of +2,800 PPM.  
14 Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a 75 mV window centered on the  
median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the  
oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCLK+ should be compared to the Fall Edge Rate of REFCLK-;  
the maximum allowed difference should not exceed 20% of the slowest edge rate.  
15 At default SMBus amplitude settings.  
OCTOBER 28, 2016  
7
8-OUTPUT CK420BQ DERIVATIVE  
9SQL4958 DATASHEET  
Electrical Characteristics–Filtered Phase Jitter Parameters - PCIe Common Clocked  
(CC) Architectures1, 2, 5  
TAMB = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
SPECIFICATION  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS NOTES  
LIMIT  
tjphPCIeG1-CC  
PCIe Gen 1  
PCIe Gen 2 Low Band  
10kHz < f < 1.5MHz  
19  
30  
86  
ps (p-p)  
3
ps  
(rms)  
0.4  
1.2  
0.6  
3
(PLL BW of 5-16MHz, 8-16MHz, CDR = 5MHz)  
PCIe Gen 2 High Band  
1.5MHz < f < Nyquist (50MHz)  
(PLL BW of 5-16MHz, 8-16MHz, CDR = 5MHz)  
PCIe Gen 3  
(PLL BW of 2-4MHz, 2-5MHz, CDR = 10MHz)  
PCIe Gen 4  
(PLL BW of 2-4MHz, 2-5MHz, CDR = 10MHz)  
tjphPCIeG2-CC  
Phase Jitter,  
PLL Mode  
ps  
(rms)  
1.9  
3.1  
ps  
(rms)  
ps  
0.45  
0.45  
1
tjphPCIeG3-CC  
tjphPCIeG4-CC  
0.27  
0.27  
0.5  
(rms)  
Electrical Characteristics–Filtered Phase Jitter Parameters - PCIe Separate  
Reference Independent Spread (SRIS) Architectures1, 5, 6  
TAMB = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
INDUSTRY  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS NOTES  
LIMIT  
tjphPCIeG1-  
ps  
(rms)  
PCIe Gen 1  
n/a  
None  
2, 7  
SRIS  
tjphPCIeG2-  
PCIe Gen 2  
(PLL BW of 16MHz , CDR = 5MHz)  
ps  
2
0.7  
0.5  
n/a  
1.2  
2
(rms)  
SRIS  
tjphPCIeG3-  
Phase Jitter, PLL  
Mode  
PCIe Gen 3  
(PLL BW of 2-4MHz, CDR = 10MHz)  
ps  
2
0.65  
0.7  
(rms)  
SRIS  
tjphPCIeG4-  
PCIe Gen 4  
(PLL BW of 2-4MHz, CDR = 10MHz)  
ps  
(rms)  
None  
2, 7  
SRIS  
Notes on PCIe Filter Phase Jitter Tables  
1 Applies to all differential outputs, guaranteed by design and characterization.  
2 Based on PCIe Base Specification Rev4.0 version 0.7draft. See http://www.pcisig.com for latest specifications.  
3 Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.  
4 Additive jitter for RMS values is calculated by solving for b where [b=sqrt(c 2-a2)], a is rms input jitter and c is rms total jitter.  
5 Driven by 9FGL0841 or equivalent  
6
IR is the new name for Separate Reference Independent Spread (SRIS) and Separate Reference no Spread (SRNS) PCIe clock  
architectures.  
7 According to the PCIe Base Specification Rev4.0 version 0.7 draft, the jitter transfer functions and corresponding jitter limits are not  
defined for the IR clock architecture. Widely accepted industry limits using widely accepted industry filters are used to populate this  
table. There are no accepted filters or limits for IR clock architectures at PCIe Gen1 or Gen4 data rates  
8-OUTPUT CK420BQ DERIVATIVE  
8
OCTOBER 28, 2016  
9SQL4958 DATASHEET  
Electrical Characteristics–Phase Jitter - QPI/UPI, SAS1, 2  
TAMB = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
SPECIFICATION  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS NOTES  
LIMIT  
QPI & UPI  
(100MHz or 133MHz, 4.8Gb/s,  
6.4Gb/s 12UI)  
ps  
(rms)  
0.13  
0.2  
0.5  
Phase Jitter, PLL  
Mode  
tjphQPI_UPI  
QPI & UPI  
(100MHz, 8.0Gb/s, 12UI)  
QPI & UPI  
ps  
(rms)  
ps  
0.10  
0.08  
0.15  
0.12  
0.3  
0.2  
(100MHz, 9.6Gb/s, 12UI)  
(rms)  
?
Phase Jitter,  
SAS12G  
BCLK Outputs  
Notes  
100MHz, SSC Off,  
REF output enabled  
ps  
1,2  
tjphSAS12G  
0.50  
0.55  
1.2  
(rms)  
1 Applies to all differential outputs, guaranteed by design and characterization.  
2 Calculated from Intel-supplied Clock Jitter Tool  
3 For RMS values additive jitter is calculated by solving for b where [b=sqrt(c 2-a2)], a is rms input jitter and c is rms total jitter.  
Electrical Characteristics–12kHz-20MHz Phase Jitter  
TAMB = over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
SPECIFICATION  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS NOTES  
LIMIT  
Phase Jitter,  
12kHz-20MHz  
BCLK Outputs  
100MHz, SSC Off,  
REF output enabled  
ps  
(rms)  
tjph12k-20M  
1.5  
2
n/a  
1
Notes  
1 Applies to all differential outputs, guaranteed by design and characterization.  
Electrical Characteristics–Current Consumption  
TA = TAMB; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS NOTES  
IDDAOP  
VDDA, All outputs active @100MHz  
All other VDD, except VDDA, All outputs active  
@100MHz  
13  
19  
18  
mA  
IDDOP  
26  
mA  
mA  
Operating Supply Current  
IDDIOOP VDDIO, All outputs active @100MHz, Zo=85ohm  
31  
0.9  
6.5  
40  
1.5  
9
IDDAPD  
IDDPD  
VDDA, BCLK outputs off, REF output on  
All other VDD, except VDDA,  
BCLK outputs off, REF output running  
VDDIO, BCLK outputs off, REF output on,  
Zo=85ohm  
mA  
mA  
1
1
Wake-on-LAN Current  
(Power down state and  
Byte 3, bit 5 = '1')  
IDDIOPD  
0.05  
0.1  
mA  
1
IDDAPD  
IDDPD  
VDDA, all outputs off  
0.9  
2.4  
1.5  
3
mA  
mA  
mA  
Powerdown Current  
(Power down state and  
Byte 3, bit 5 = '0')  
All other VDD, except VDDA, all outputs off  
VDDIO, all outputs off, Zo=85ohm  
IDDIOPD  
0.05  
0.1  
Notes  
1 This is the current required to have the REF output running in Wake-on-LAN mode (Byte 3, bit 5 = 1)  
OCTOBER 28, 2016  
9
8-OUTPUT CK420BQ DERIVATIVE  
9SQL4958 DATASHEET  
Electrical Characteristics– REF  
TA = TAMB; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS NOTES  
Long Accuracy  
Clock period  
ppm  
Tperiod  
VIH  
see Tperiod min-max values  
25 MHz output  
0
40  
ppm  
ns  
1,2  
2
Output High Voltage  
IOH = -2mA  
0.8xVDDREF  
V
0.2xVDDRE  
Output Low Voltage  
VIL  
IOL = 2mA  
V
F
Rise/Fall Slew Rate  
Rise/Fall Slew Rate  
Rise/Fall Slew Rate  
Rise/Fall Slew Rate  
Duty Cycle  
trf1  
trf1  
Byte 3 = 1F, VOH = VDD-0.45V, VOL = 0.45V  
Byte 3 = 5F, VOH = VDD-0.45V, VOL = 0.45V  
Byte 3 = 9F, VOH = VDD-0.45V, VOL = 0.45V  
Byte 3 = DF, VOH = VDD-0.45V, VOL = 0.45V  
VT = VDD/2 V  
0.5  
0.9  
1.3  
1.7  
45  
0.8  
1.4  
2.0  
2.6  
49.8  
0
1.1  
V/ns  
V/ns  
V/ns  
V/ns  
%
1
1.9  
2.7  
3.5  
55  
1,3  
1
trf1  
trf1  
1
dt1X  
1,4  
1,5  
1,4  
1,4  
1,4  
1,4  
1,4  
Duty Cycle Distortion  
Jitter, cycle to cycle  
Noise floor  
dtcd  
VT = VDD/2 V  
-1  
0
%
tjcyc-cyc  
tjdBc1k  
tjdBc10k  
tjphREF  
tjphREF  
VT = VDD/2 V  
70  
250  
-137  
-140  
0.2  
2
ps  
1kHz offset  
dBc  
Noise floor  
10kHz offset to Nyquist  
dBc  
Jitter, phase  
12kHz to 5MHz, SSC Off  
0.13  
1.5  
ps (rms)  
ps (rms)  
Jitter, phase  
12kHz to 5MHz, SSC On  
Notes  
1Guaranteed by design and characterization, not 100% tested in production.  
2 All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is trimmed to 25.00 MHz  
3 Default SMBus Value  
4 When driven by a crystal.  
5 When driven by an external oscillator via the X1 pin, X2 should be floating.  
8-OUTPUT CK420BQ DERIVATIVE  
10  
OCTOBER 28, 2016  
9SQL4958 DATASHEET  
General SMBus Serial Interface Information  
How to Write  
How to Read  
Controller (host) sends a start bit  
Controller (host) sends the write address  
IDT clock will acknowledge  
Controller (host) will send a start bit  
Controller (host) sends the write address  
IDT clock will acknowledge  
Controller (host) sends the beginning byte location = N  
IDT clock will acknowledge  
Controller (host) sends the beginning byte location = N  
IDT clock will acknowledge  
Controller (host) sends the byte count = X  
IDT clock will acknowledge  
Controller (host) will send a separate start bit  
Controller (host) sends the read address  
IDT clock will acknowledge  
Controller (host) starts sending Byte N through Byte  
N+X-1  
IDT clock will send the data byte count = X  
IDT clock sends Byte N+X-1  
IDT clock will acknowledge each byte one at a time  
Controller (host) sends a Stop bit  
IDT clock sends Byte 0 through Byte X (if X was  
(H)  
written to Byte 8)  
Controller (host) will need to acknowledge each byte  
Controller (host) will send a not acknowledge bit  
Controller (host) will send a stop bit  
Index Block Write Operation  
Index Block Read Operation  
Controller (Host)  
starT bit  
Slave Address  
IDT (Slave/Receiver)  
Controller (Host)  
starT bit  
IDT (Slave/Receiver)  
T
T
Slave Address  
WR  
WRite  
WR  
WRite  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
Beginning Byte = N  
Data Byte Count = X  
Beginning Byte N  
Beginning Byte = N  
RT  
Repeat starT  
Slave Address  
ReaD  
RD  
ACK  
O
O
O
O
O
O
Data Byte Count=X  
Beginning Byte N  
ACK  
ACK  
Byte N + X - 1  
ACK  
O
O
O
P
stoP bit  
O
O
O
Note: SMBus Read/Write Address is Latched on SADR  
pin.  
Byte N + X - 1  
N
P
Not acknowledge  
stoP bit  
OCTOBER 28, 2016  
11  
8-OUTPUT CK420BQ DERIVATIVE  
9SQL4958 DATASHEET  
SMBus Table: Output Enable Register 1  
Byte 0  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
Output Enable  
Output Enable  
Output Enable  
Output Enable  
Output Enable  
Output Enable  
Output Enable  
Output Enable  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
Default  
BCLK OE7  
BCLK OE6  
BCLK OE5  
BCLK OE4  
BCLK OE3  
BCLK OE2  
BCLK OE1  
BCLK OE0  
Pin Control  
Pin Control  
Pin Control  
Pin Control  
Pin Control  
Pin Control  
Pin Control  
Pin Control  
1
1
1
1
1
1
1
1
See B11[1:0]  
1. A low on these bits will overide the OE# pin and force the differential output to the state indicated by B11[1:0] (Low/Low default)  
SMBus Table: SS Readback and Control Register  
Byte 1  
Bit 7  
Bit 6  
Name  
SSENRB1  
SSENRB1  
Control Function  
SS Enable Readback Bit1  
SS Enable Readback Bit0  
Type  
R
R
0
1
Default  
Latch  
Latch  
00' for SS_EN_tri = 0, '01' for SS_EN_tri  
= 'M', '11 for SS_EN_tri = '1'  
Values in B1[4:3]  
SS control locked  
SSEN_SWCNTRL  
Enable SW control of SS  
RW  
0
Bit 5  
control SS amount.  
RW1  
RW1  
SSENSW1  
SSENSW0  
SS Enable Software Ctl Bit1  
SS Enable Software Ctl Bit0  
Reserved  
00' = SS Off, '01' = -0.25% SS,  
'10' = Reserved, '11'= -0.5% SS  
0
Bit 4  
0
X
1
0
Bit 3  
Bit 2  
Bit 1  
Bit 0  
AMPLITUDE 1  
AMPLITUDE 0  
RW  
RW  
00 = 0.6V  
01= 0.68V  
11 = 0.85V  
Controls Output Amplitude  
10 = 0.75V  
1. Spread must be selected OFF or ON with the hardware latch pin. These bits should not be used to turn spread ON or OFF after  
power up. These bits can be used to change the spread amount, and B1[5] must be set to a 1 for these bits to have any effect on  
the part. If These bits are used to turn spread OFF or ON, the system will need to be reset.  
SMBus Table: BCLK Slew Rate Control Register  
Byte 2  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
Default  
SLEWRATESEL BCLK7  
SLEWRATESEL BCLK6  
SLEWRATESEL BCLK5  
SLEWRATESEL BCLK4  
SLEWRATESEL BCLK3  
SLEWRATESEL BCLK2  
SLEWRATESEL BCLK1  
SLEWRATESEL BCLK0  
Adjust Slew Rate of BCLK7  
Adjust Slew Rate of BCLK6  
Adjust Slew Rate of BCLK5  
Adjust Slew Rate of BCLK4  
Adjust Slew Rate of BCLK3  
Adjust Slew Rate of BCLK2  
Adjust Slew Rate of BCLK1  
Adjust Slew Rate of BCLK0  
Slow Setting  
Slow Setting  
Slow Setting  
Slow Setting  
Slow Setting  
Slow Setting  
Slow Setting  
Slow Setting  
Fast Setting  
Fast Setting  
Fast Setting  
Fast Setting  
Fast Setting  
Fast Setting  
Fast Setting  
Fast Setting  
1
1
1
1
1
1
1
1
Note: See "Low-Power HCSL Outputs" table for slew rates.  
SMBus Table: Nominal Vhigh Amplitude Control/ REF Control Register  
Byte 3  
Bit 7  
Bit 6  
Name  
Control Function  
Type  
RW  
RW  
0
1
01 =Slow  
11 = Fastest  
REF runs in Power  
Down  
Default  
00 = Slowest  
10 = Fast  
REF disabled in  
Power Down  
Disabled1  
0
1
REF  
Slew Rate Control  
REF Power Down Function Wake-on-Lan Enable for REF  
REF OE REF Output Enable  
Reserved  
RW  
RW  
0
Bit 5  
Enabled  
1
X
X
X
X
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
Reserved  
Reserved  
1. The disabled state depends on Byte11[1:0]. '00' = Low, '01'=HiZ, '10'=Low, '11'=HIgh  
Byte 4 is Reserved  
8-OUTPUT CK420BQ DERIVATIVE  
12  
OCTOBER 28, 2016  
9SQL4958 DATASHEET  
SMBus Table: Revision and Vendor ID Register  
Byte 5  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
RID3  
RID2  
RID1  
RID0  
VID3  
VID2  
VID1  
VID0  
Control Function  
Type  
R
R
R
R
R
R
R
R
0
1
Default  
0
0
0
1
0
0
0
1
Revision ID  
B rev = 0001  
0001 = IDT  
VENDOR ID  
SMBus Table: Device Type/Device ID  
Byte 6  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
Type  
R
R
R
R
R
R
R
R
0
1
Default  
Device Type1  
Device Type0  
Device ID5  
Device ID4  
Device ID3  
Device ID2  
Device ID1  
Device ID0  
0
0
0
0
1
0
0
0
Device Type  
00 = 9SQL49xx  
Device ID  
001000 binary or 08 hex  
SMBus Table: Byte Count Register  
Byte 7  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
Type  
0
1
Default  
Reserved  
Reserved  
Reserved  
X
X
X
0
1
0
0
0
BC4  
BC3  
BC2  
BC1  
BC0  
RW  
RW Writing to this register will configure how  
RW many bytes will be read back, default is  
RW  
RW  
Byte Count Programming  
= 8 bytes.  
Bytes 8 and 9 are Reserved.  
SMBus Table: PLL MN Enable, PD_Restore  
Byte 10  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
PLL M/N En  
Control Function  
M/N Programming Enable  
Type  
0
1
Default  
RW M/N Prog. Disabled M/N Prog. Enabled  
RW Clear Config in PD Keep Config in PD  
0
1
Power-Down (PD) Restore Restore Default Config. In PD  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
X
X
X
X
X
X
Reserved  
SMBus Table: Stop State Control  
Byte 11  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
Reserved  
Type  
0
1
Default  
X
X
X
X
X
X
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
STP[1]  
STP[0]  
True/Complement BCLK Output RW  
Disable State RW  
00 = Low/Low  
01 = HiZ/HiZ  
10 = High/Low  
11 = Low/High  
0
OCTOBER 28, 2016  
13  
8-OUTPUT CK420BQ DERIVATIVE  
9SQL4958 DATASHEET  
SMBus Table: Impedance Control  
Byte 12  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
BCLK3 Zo  
BCLK3 Zo  
BCLK2 Zo  
BCLK2 Zo  
BCLK1 Zo  
BCLK1 Zo  
BCLK0 Zo  
BCLK0 Zo  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
Default  
BCLK3_imp[1]  
BCLK3_imp[0]  
BCLK2_imp[1]  
BCLK2_imp[0]  
BCLK1_imp[1]  
BCLK1_imp[0]  
BCLK0_imp[1]  
BCLK0_imp[0]  
00=33 ohm Zo  
01=85 ohm Zo  
00=33 ohm Zo  
01=85 ohm Zo  
00=33 ohm Zo  
01=85 ohm Zo  
00=33 ohm Zo  
01=85 ohm Zo  
10=100 ohm Zo  
11 = Reserved  
10=100 ohm Zo  
11 = Reserved  
10=100 ohm Zo  
11 = Reserved  
10=100 ohm Zo  
11 = Reserved  
see Note  
SMBus Table: Impedance Control  
Byte 13  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
BCLK7 Zo  
BCLK7 Zo  
BCLK6 Zo  
BCLK6 Zo  
BCLK5 Zo  
BCLK5 Zo  
BCLK4 Zo  
BCLK4 Zo  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
Default  
BCLK7_imp[1]  
BCLK7_imp[0]  
BCLK6_imp[1]  
BCLK6_imp[0]  
BCLK5_imp[1]  
BCLK5_imp[0]  
BCLK4_imp[1]  
BCLK4_imp[0]  
00=33 ohm Zo  
01=85 ohm Zo  
00=33 ohm Zo  
01=85 ohm Zo  
00=33 ohm Zo  
01=85 ohm Zo  
00=33 ohm Zo  
01=85 ohm Zo  
10=100 ohm Zo  
11 = Reserved  
10=100 ohm Zo  
11 = Reserved  
10=100 ohm Zo  
11 = Reserved  
10=100 ohm Zo  
11 = Reserved  
see Note  
SMBus Table: Pull-up Pull-down Control  
Byte 14  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
OE3 Pull-up(PuP)/  
Pull-down(Pdwn) control  
OE2 Pull-up(PuP)/  
Pull-down(Pdwn) control  
OE1 Pull-up(PuP)/  
Pull-down(Pdwn) control  
OE0 Pull-up(PuP)/  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
Default  
OE3_pu/pd[1]  
OE3_pu/pd[0]  
OE2_pu/pd[1]  
OE2_pu/pd[0]  
OE1_pu/pd[1]  
OE1_pu/pd[0]  
OE0_pu/pd[1]  
OE0_pu/pd[0]  
00=None  
01=Pdwn  
00=None  
01=Pdwn  
00=None  
01=Pdwn  
00=None  
01=Pdwn  
10=Pup  
11 = Pup+Pdwn  
10=Pup  
11 = Pup+Pdwn  
10=Pup  
11 = Pup+Pdwn  
10=Pup  
0
1
0
1
0
1
0
1
Pull-down(Pdwn) control  
11 = Pup+Pdwn  
SMBus Table: Pull-up Pull-down Control  
Byte 15  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
OE7 Pull-up(PuP)/  
Pull-down(Pdwn) control  
OE6 Pull-up(PuP)/  
Pull-down(Pdwn) control  
OE5 Pull-up(PuP)/  
Pull-down(Pdwn) control  
OE4 Pull-up(PuP)/  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
Default  
OE7_pu/pd[1]  
OE7_pu/pd0]  
OE6_pu/pd[1]  
OE6_pu/pd[0]  
OE5_pu/pd[1]  
OE5_pu/pd[0]  
OE4_pu/pd[1]  
OE4_pu/pd[0]  
00=None  
01=Pdwn  
00=None  
01=Pdwn  
00=None  
01=Pdwn  
00=None  
01=Pdwn  
10=Pup  
11 = Pup+Pdwn  
10=Pup  
11 = Pup+Pdwn  
10=Pup  
11 = Pup+Pdwn  
10=Pup  
0
1
0
1
0
1
0
1
Pull-down(Pdwn) control  
11 = Pup+Pdwn  
SMBus Table: Pull-up Pull-down Control  
Byte 16  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
Type  
0
1
Default  
Reserved  
X
X
X
X
X
X
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CKPWRGD_PD_pu/pd[1] CKPWRGD_PD Pull-up(PuP)/ RW  
CKPWRGD_PD_pu/pd[0] Pull-down(Pdwn) control RW  
00=None  
01=Pdwn  
10=Pup  
11 = Pup+Pdwn  
0
Bytes 17 is Reserved  
8-OUTPUT CK420BQ DERIVATIVE  
14  
OCTOBER 28, 2016  
9SQL4958 DATASHEET  
SMBus Table: Polarity Control  
Byte 18  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Control Function  
Sets OE7 polarity  
Sets OE6 polarity  
Sets OE5 polarity  
Sets OE4 polarity  
Sets OE3 polarity  
Sets OE2 polarity  
Sets OE1 polarity  
Sets OE0 polarity  
Type  
0
1
Default  
OE7_polarity  
OE6_polarity  
OE5_polarity  
OE4_polarity  
OE3_polarity  
OE2_polarity  
OE1_polarity  
OE0_polarity  
RW Enabled when Low Enabled when High  
RW Enabled when Low Enabled when High  
RW Enabled when Low Enabled when High  
RW Enabled when Low Enabled when High  
RW Enabled when Low Enabled when High  
RW Enabled when Low Enabled when High  
RW Enabled when Low Enabled when High  
RW Enabled when Low Enabled when High  
0
0
0
0
0
0
0
0
SMBus Table: Polarity Control  
Byte 19  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Name  
Control Function  
Type  
0
1
Default  
Reserved  
X
X
X
X
X
X
X
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Determines  
CKPWRGD_PD polarity  
Power Down when Power Down when  
Low High  
CKPWRGD_PD  
RW  
0
Bit 0  
OCTOBER 28, 2016  
15  
8-OUTPUT CK420BQ DERIVATIVE  
9SQL4958 DATASHEET  
Recommended Crystal Characteristics (3225 package)  
PARAMETER  
VALUE  
UNITS  
NOTES  
Frequency  
Resonance Mode  
25  
MHz  
-
1
1
1
Fundamental  
Frequency Tolerance @ 25°C  
Frequency Stability, ref @ 25°C Over  
Operating Temperature Range  
Temperature Range (commerical)  
Temperature Range (industrial)  
Equivalent Series Resistance (ESR)  
Shunt Capacitance (CO)  
20  
±
PPM Max  
20  
±
PPM Max  
1
C
°
C
°
0~70  
-40~85  
50  
1
1
1
1
Max  
7
pF Max  
Load Capacitance (CL)  
Drive Level  
8
0.3  
±5  
pF Max  
mW Max  
PPM Max  
1
1
1
Aging per year  
Marking Diagram  
IDT9SQL4  
958BNDGI  
YYWW$  
LOT  
Notes:  
1. “YYWW” is the last two digits of the year and week that the part was assembled.  
2. “$” denotes the mark code.  
3. “I” denotes industrial temperature range device.  
4. “LOT” is the lot sequence number.  
Thermal Characteristics  
PARAMETER  
SYMBOL  
CONDITIONS  
Junction to Case  
PKG  
TYP.  
33  
UNITS  
NOTES  
C/W  
°
°
1
1
1
1
1
1
θJC  
θJb  
θJA0  
θJA1  
θJA3  
θJA5  
C/W  
Junction to Base  
2.1  
37  
C/W  
Junction to Air, still air  
Junction to Air, 1 m/s air flow  
Junction to Air, 3 m/s air flow  
Junction to Air, 5 m/s air flow  
°
°
°
°
Thermal Resistance  
NDG48  
C/W  
C/W  
C/W  
30  
27  
26  
1ePad soldered to board  
8-OUTPUT CK420BQ DERIVATIVE  
16  
OCTOBER 28, 2016  
9SQL4958 DATASHEET  
Package Outline and Dimensions (NDG48)  
OCTOBER 28, 2016  
17  
8-OUTPUT CK420BQ DERIVATIVE  
9SQL4958 DATASHEET  
Package Outline and Dimensions (NDG48), cont.  
8-OUTPUT CK420BQ DERIVATIVE  
18  
OCTOBER 28, 2016  
9SQL4958 DATASHEET  
Ordering Information  
Part / Order Number Shipping Packaging  
Package  
Temperature  
9SQL4958BNDGI  
9SQL4958BNDGI8  
Trays  
Tape and Reel  
48-pin VFQFPN -40 to +85° C  
48-pin VFQFPN -40 to +85° C  
“G” suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
“B” is the device revision designator (will not correlate with the datasheet revision).  
Revision History  
Rev.  
Issue Date Intiator Description  
1. Updated electrical tables per PCIe Base Spec 4.0v7 of Oct. 2016  
Page #  
to add PCIe Gen4 CC and PCIe Gen2-3 IR to the data sheet.  
2. Separated PCIe and QPI/UPI, SAS electrical tables  
3. Updated front page text for clarity  
4. Added note about hardware latching Spread Spectrum versus  
software control of on/off to Byte 1.  
A
10/28/2016  
RDW  
Various  
5. Updated block diagram for formatting, and test loads  
6. Removed IDT Crystal Part numbers from DS.  
7. Changed pin name of DIF outputs to BCLK to better indicate  
usage  
OCTOBER 28, 2016  
19  
8-OUTPUT CK420BQ DERIVATIVE  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138 USA  
www.idt.com  
Sales  
Tech Support  
www.idt.com/go/support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.idt.com/go/sales  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in  
this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined  
in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether  
express or implied, including, but not limited to, the suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This  
document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably  
expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected  
names, logos and designs, are the property of IDT or their respective third party owners.  
Copyright ©2016 Integrated Device Technology, Inc.. All rights reserved.  

相关型号:

9T04021A1000BAHF3

RES SMD 100 OHM 0.1% 1/16W 0402
YAGEO

9T04021A1000CAHF3

RES SMD 100 OHM 0.25% 1/16W 0402
YAGEO

9T04021A1000CBHF3

RES SMD 100 OHM 0.25% 1/16W 0402
YAGEO

9T04021A1000DAHF3

RES SMD 100 OHM 0.5% 1/16W 0402
YAGEO

9T04021A1000FBHF3

RES SMD 100 OHM 1% 1/16W 0402
YAGEO

9T04021A1001BAHF3

RES SMD 1K OHM 0.1% 1/16W 0402
YAGEO

9T04021A1001CAHF3

RES SMD 1K OHM 0.25% 1/16W 0402
YAGEO

9T04021A1001CBHF3

RES SMD 1K OHM 0.25% 1/16W 0402
YAGEO

9T04021A1001DAHF3

RES SMD 1K OHM 0.5% 1/16W 0402
YAGEO

9T04021A1001FBAFP

Fixed Resistor, Thin Film, 0.063W, 1000ohm, 50V, 1% +/-Tol, -50,50ppm/Cel, 0402,
YAGEO

9T04021A1001FBHF3

RES SMD 1K OHM 1% 1/16W 0402
YAGEO

9T04021A1002BAHF3

RES SMD 10K OHM 0.1% 1/16W 0402
YAGEO