ADC1212D065HN/C1

更新时间:2024-09-18 18:22:20
品牌:IDT
描述:PROPRIETARY METHOD ADC, PQCC64, 9 X 9 MM, 0.85 MM HEIGHT, PLASTIC, SOT804-3, VQFN-64

ADC1212D065HN/C1 概述

PROPRIETARY METHOD ADC, PQCC64, 9 X 9 MM, 0.85 MM HEIGHT, PLASTIC, SOT804-3, VQFN-64 模数转换器

ADC1212D065HN/C1 规格参数

生命周期:Obsolete零件包装代码:QFN
包装说明:,针数:64
Reach Compliance Code:unknown风险等级:5.57
转换器类型:ADC, PROPRIETARY METHODJESD-30 代码:S-PQCC-N64
端子数量:64输出位码:OFFSET BINARY
封装主体材料:PLASTIC/EPOXY封装形状:SQUARE
封装形式:CHIP CARRIER认证状态:Not Qualified
表面贴装:YES端子形式:NO LEAD
端子位置:QUADBase Number Matches:1

ADC1212D065HN/C1 数据手册

通过下载ADC1212D065HN/C1数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
ADC1212D series  
Dual 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps;  
CMOS or LVDS DDR digital outputs  
Rev. 01 — 6 August 2010  
Preliminary data sheet  
1. General description  
The ADC1212D is a dual channel 12-bit Analog-to-Digital Converter (ADC) optimized for  
high dynamic performances and low power consumption at sample rates up to 125 Msps.  
Pipelined architecture and output error correction ensure the ADC1212D is accurate  
enough to guarantee zero missing codes over the entire operating range. Supplied from a  
single 3 V source, it can handle output logic levels from 1.8 V to 3.3 V in  
Complementary Metal Oxide Semiconductor (CMOS) mode, because of a separate digital  
output supply. It supports the Low Voltage Differential Signalling (LVDS) Double Data Rate  
(DDR) output standard. An integrated Serial Peripheral Interface (SPI) allows the user to  
easily configure the ADC. The device also includes an SPI programmable full-scale to  
allow a flexible input voltage range of 1 V to 2 V (peak-to-peak). With excellent dynamic  
performance from the baseband to input frequencies of 170 MHz or more, the ADC1212D  
is ideal for use in communications, imaging and medical applications.  
2. Features and benefits  
„ SNR, 70.5 dBFS  
„ Input bandwidth, 600 MHz  
„ SFDR, 86 dBc  
„ Power dissipation, 855 mW at 80 Msps  
„ Serial Peripheral Interface (SPI)  
„ Duty cycle stabilizer  
„ Sample rate up to 125 Msps  
„ Clock input divider by 2 for less jitter  
contribution  
„ Single 3 V supply  
„ Fast OuT-of-Range (OTR) detection  
„ INL: ± 0.25 LSB; DNL: ± 0.12 LSB  
„ Flexible input voltage range:  
1 V to 2 V (p-p)  
„ CMOS or LVDS DDR digital outputs  
„ Offset binary, two’s complement, gray  
code  
„ Pin and software compatible with  
„ Power-down and Sleep modes  
ADC1412D series.  
„ HVQFN64 package  
3. Applications  
„ Wireless and wired broadband  
„ Spectral analysis  
communications  
„ Portable instrumentation  
„ Imaging systems  
„ Ultrasound equipment  
„ Software defined radio  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
fs (Msps) Package  
Name  
Description  
Version  
ADC1212D125HN/C1 125  
ADC1212D105HN/C1 105  
ADC1212D080HN/C1 80  
ADC1212D065HN/C1 65  
HVQFN64 plastic thermal enhanced very thin quad flat package;  
SOT804-3  
SOT804-3  
SOT804-3  
SOT804-3  
no leads; 64 terminals; body 9 × 9 × 0.85 mm  
HVQFN64 plastic thermal enhanced very thin quad flat package;  
no leads; 64 terminals; body 9 × 9 × 0.85 mm  
HVQFN64 plastic thermal enhanced very thin quad flat package;  
no leads; 64 terminals; body 9 × 9 × 0.85 mm  
HVQFN64 plastic thermal enhanced very thin quad flat package;  
no leads; 64 terminals; body 9 × 9 × 0.85 mm  
5. Block diagram  
SDIO/ODS  
SCLK/DFS  
CS  
ADC1212D  
ERROR  
CORRECTION AND  
DIGITAL  
SPI INTERFACE  
PROCESSING  
OTRA  
CMOS:  
DA11 to DA0  
or  
LVDS/DDR:  
DA10_DA11_P to DA0_DA1_P,  
DA10_DA11_M to DA0_DA1_M  
INAP  
INAM  
T/H  
INPUT  
STAGE  
ADC CORE  
12-BIT  
PIPELINED  
OUTPUT  
DRIVERS  
CMOS:  
DAV  
CLKP  
CLKM  
CLOCK INPUT  
STAGE AND DUTY  
CYCLE CONTROL  
or  
OUTPUT  
DRIVERS  
LVDS/DDR:  
DAVP  
DAVM  
CMOS:  
DB11 to DB0  
or  
LVDS/DDR:  
DB10_DB11_P to DB0_DB1_P,  
DB10_DB11_M to DB0_DB1_M  
INBP  
INBM  
T/H  
INPUT  
STAGE  
ADC CORE  
12-BIT  
PIPELINED  
OUTPUT  
DRIVERS  
OTRB  
ERROR  
CORRECTION AND  
DIGITAL  
SYSTEM  
REFERENCE AND  
POWER  
CTRL  
PROCESSING  
MANAGEMENT  
REFBT  
REFBB  
VCMB  
SENSE VREF  
REFAB  
REFAT  
VCMA  
005aaa128  
Fig 1. Block diagram  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
2 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
6. Pinning information  
6.1 CMOS outputs selected  
6.1.1 Pinning  
terminal 1  
index area  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
INAP  
INAM  
DA3  
DA2  
DA1  
DA0  
n.c.  
3
AGND  
VCMA  
REFAT  
REFAB  
AGND  
CLKP  
4
5
6
n.c.  
7
DAVP  
DAVM  
n.c.  
8
ADC1212D  
HVQFN64  
9
CLKM  
AGND  
REFBB  
REFBT  
VCMB  
AGND  
INBM  
10  
11  
12  
13  
14  
15  
16  
n.c.  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
INBP  
Transparent top view  
005aaa129  
Fig 2. Pin configuration with CMOS digital outputs selected  
6.1.2 Pin description  
Table 2.  
Symbol  
Pin description (CMOS digital outputs)  
Pin  
1
Type [1]  
Description  
INAP  
I
analog input; channel A  
INAM  
2
I
complementary analog input; channel A  
analog ground  
AGND  
VCMA  
REFAT  
REFAB  
AGND  
CLKP  
3
G
O
O
O
G
I
4
common-mode output voltage; channel A  
top reference; channel A  
bottom reference; channel A  
analog ground  
5
6
7
8
clock input  
CLKM  
AGND  
REFBB  
REFBT  
9
I
complementary clock input  
analog ground  
10  
11  
12  
G
O
O
bottom reference; channel B  
top reference; channel B  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
3 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
Table 2.  
Pin description (CMOS digital outputs) …continued  
Symbol  
VCMB  
AGND  
INBM  
INBP  
VDDA  
VDDA  
SCLK/DFS  
SDIO/ODS  
CS  
Pin  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
Type [1]  
O
G
I
Description  
common-mode output voltage; channel B  
analog ground  
complementary analog input; channel B  
analog input; channel B  
I
P
analog power supply  
P
analog power supply  
I
SPI clock/data format select  
SPI data IO/output data standard  
SPI chip select  
I/O  
I
CTRL  
DECB  
OTRB  
DB11  
DB10  
DB9  
I
control mode select  
O
O
O
O
O
O
O
O
P
regulator decoupling node; channel B  
out-of-range; channel B  
data output bit 11 (Most Significant Bit (MSB)); channel B  
data output bit 10; channel B  
data output bit 9; channel B  
data output bit 8; channel B  
data output bit 7; channel B  
data output bit 6; channel B  
output power supply  
DB8  
DB7  
DB6  
VDDO  
VDDO  
DB5  
P
output power supply  
O
O
O
O
O
O
-
data output bit 5; channel B  
data output bit 4; channel B  
data output bit 3; channel B  
data output bit 2; channel B  
data output bit 1; channel B  
data output bit 0 (Least Significant Bit(LSB)); channel B  
not connected  
DB4  
DB3  
DB2  
DB1  
DB0  
n.c.  
n.c.  
-
not connected  
DAVM  
DAVP  
n.c.  
O
O
-
data valid output clock, complement  
data valid output clock, true  
not connected  
n.c.  
-
not connected  
DA0  
O
O
O
O
P
data output bit 0 (LSB); channel A  
data output bit 1; channel A  
data output bit 2; channel A  
data output bit 3; channel A  
output power supply  
DA1  
DA2  
DA3  
VDDO  
VDDO  
DA4  
P
output power supply  
O
O
O
O
O
O
data output bit 4; channel A  
data output bit 5; channel A  
data output bit 6; channel A  
data output bit 7; channel A  
data output bit 8; channel A  
data output bit 9; channel A  
DA5  
DA6  
DA7  
DA8  
DA9  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
4 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
Table 2.  
Pin description (CMOS digital outputs) …continued  
Symbol  
DA10  
Pin  
57  
58  
59  
60  
61  
62  
63  
64  
Type [1]  
Description  
O
O
O
O
P
data output bit 10; channel A  
data output bit 11 (MSB); channel A  
out-of-range; channel A  
DA11  
OTRA  
DECA  
VDDA  
SENSE  
VREF  
VDDA  
regulator decoupling node; channel A  
analog power supply  
I
reference programming pin  
voltage reference input/output  
analog power supply  
I/O  
P
[1] P: power supply; G: ground; I: input; O: output; I/O: input/output.  
6.2 LVDS/DDR outputs selected  
6.2.1 Pinning  
terminal 1  
index area  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
INAP  
INAM  
DA2_DA3_M  
DA2_DA3_P  
DA0_DA1_M  
DA0_DA1_P  
n.c.  
3
AGND  
VCMA  
REFAT  
REFAB  
AGND  
CLKP  
4
5
6
n.c.  
7
DAVP  
8
DAVM  
ADC1212D  
HVQFN64  
9
CLKM  
AGND  
REFBB  
REFBT  
VCMB  
AGND  
INBM  
n.c.  
10  
11  
12  
13  
14  
15  
16  
n.c.  
DB0_DB1_P  
DB0_DB1_M  
DB2_DB3_P  
DB2_DB3_M  
DB4_DB5_P  
DB4_DB5_M  
INBP  
Transparent top view  
005aaa130  
Fig 3. Pin configuration with LVDS/DDR digital outputs selected  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
5 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
6.2.2 Pin description  
Table 3.  
Symbol  
Pin description (LVDS/DDR) digital outputs)[1]  
Pin Type [2] Description  
DB10_DB11_M 25  
O
differential output data DB10 and DB11 multiplexed,  
complement  
DB10_DB11_P 26  
O
O
O
O
O
O
O
O
O
O
O
-
differential output data DB10 and DB11 multiplexed, true  
differential output data DB8 and DB9 multiplexed, complement  
differential output data DB8 and DB9 multiplexed, true  
differential output data DB6 and DB7 multiplexed, complement  
differential output data DB6 and DB7 multiplexed, true  
differential output data DB4 and DB5 multiplexed, complement  
differential output data DB4 and DB5 multiplexed, true  
differential output data DB2 and DB3 multiplexed, complement  
differential output data DB2 and DB3 multiplexed, true  
differential output data DB0 and DB1 multiplexed, complement  
differential output data DB0 and DB1 multiplexed, true  
not connected  
DB8_DB9_M  
DB8_DB9_P  
DB6_DB7_M  
DB6_DB7_P  
DB4_DB5_M  
DB4_DB5_P  
DB2_DB3_M  
DB2_DB3_P  
DB0_DB1_M  
DB0_DB1_P  
n.c.  
27  
28  
29  
30  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
51  
52  
53  
54  
55  
56  
n.c.  
-
not connected  
DAVM  
O
O
-
data valid output clock, complement  
DAVP  
data valid output clock, true  
n.c.  
not connected  
n.c.  
-
not connected  
DA0_DA1_P  
DA0_DA1_M  
DA2_DA3_P  
DA2_DA3_M  
DA4_DA5_P  
DA4_DA5_M  
DA6_DA7_P  
DA6_DA7_M  
DA8_DA9_P  
DA8_DA9_M  
O
O
O
O
O
O
O
O
O
O
O
O
differential output data DA0 and DA1 multiplexed, true  
differential output data DA0 and DA1 multiplexed, complement  
differential output data DA2 and DA3 multiplexed, true  
differential output data DA2 and DA3 multiplexed, complement  
differential output data DA4 and DA5 multiplexed, true  
differential output data DA4 and DA5 multiplexed, complement  
differential output data DA6 and DA7 multiplexed, true  
differential output data DA6 and DA7 multiplexed, complement  
differential output data DA8 and DA9 multiplexed, true  
differential output data DA8 and DA9 multiplexed, complement  
differential output data DA10 and DA11 multiplexed, true  
DA10_DA11_P 57  
DA10_DA11_M 58  
differential output data DA10 and DA11 multiplexed,  
complement  
[1] Pins 1 to 24, pin 59 to 64 and pins 31, 32, 49 and 50 are the same for both CMOS and LVDS DDR outputs  
(see Table 2).  
[2] P: power supply; G: ground; I: input; O: output; I/O: input/output.  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
6 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
7. Limiting values  
Table 4.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
VO  
output voltage  
pins DA11 to DA0 and  
0.4  
+3.9  
V
DB11 to DB0 or pins  
DA10_DA11_P to DA0_DA1_P,  
DA10_DA11_M to DA0_DA1_M,  
DB10_DB11_P to DB0_DB1_P  
and  
DB10_DB11_M to DB0_DB1_M  
VDDA  
analog supply  
voltage  
0.4  
+3.9  
V
VDDO  
Tstg  
Tamb  
Tj  
output supply voltage  
storage temperature  
ambient temperature  
junction temperature  
0.4  
55  
40  
-
+3.9  
+125  
+85  
V
°C  
°C  
°C  
125  
8. Thermal characteristics  
Table 5.  
Symbol  
Rth(j-a)  
Thermal characteristics  
Parameter  
Conditions  
Typ  
Unit  
[1]  
[1]  
thermal resistance from junction to ambient  
thermal resistance from junction to case  
15.6  
6.3  
K/W  
K/W  
Rth(j-c)  
[1] Value for six layers board in still air with a minimum of 64 thermal vias.  
9. Static characteristics  
Table 6.  
Symbol  
Supplies  
VDDA  
Static characteristics[1]  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
analog supply voltage  
output supply voltage  
2.85  
1.65  
2.85  
-
3.0  
1.8  
3.0  
400  
20  
3.4  
3.6  
3.6  
-
V
VDDO  
CMOS mode  
V
LVDS DDR mode  
V
IDDA  
IDDO  
analog supply current  
output supply current  
fclk = 125 Msps; fi = 70 MHz  
mA  
mA  
CMOS mode; fclk = 125 Msps;  
fi = 70 MHz  
-
-
LVDS DDR mode:  
-
90  
-
mA  
fclk = 125 Msps; fi = 70 MHz  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
7 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
Table 6.  
Symbol  
P
Static characteristics[1] …continued  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
power dissipation  
ADC1212D125;  
-
1200  
-
mW  
analog supply only  
ADC1212D105;  
analog supply only  
-
-
-
1090  
855  
-
-
-
mW  
mW  
mW  
ADC1212D080;  
analog supply only  
ADC1212D065;  
795  
analog supply only  
Power-down mode  
Sleep mode  
-
-
25  
80  
-
-
mW  
mW  
Clock inputs: pins CLKP and CLKM  
LVPECL  
Vi(clk)dif  
LVDS  
Vi(clk)dif  
SINE  
differential clock input voltage  
peak-to-peak  
peak-to-peak  
peak-to-peak  
-
±1.6  
±0.70  
±3.0  
-
-
-
V
V
V
differential clock input voltage  
differential clock input voltage  
-
Vi(clk)dif  
LVCMOS  
VIL  
±0.8  
LOW-level input voltage  
HIGH-level input voltage  
-
-
-
0.3VDDA  
-
V
V
VIH  
0.7VDDA  
Logic input: pin CTRL  
VIL  
LOW-level input voltage  
-
0
-
V
LOW-medium level  
medium-HIGH level  
-
0.3VDDA  
-
V
-
0.6VDDA  
-
V
VIH  
IIL  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
-
VDDA  
-
V
<tbd>  
10  
-
-
<tbd>  
+10  
μA  
μA  
IIH  
Serial peripheral interface: pins CS, SDIO/ODS, SCLK/DFS  
VIL  
VIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
input capacitance  
0
-
0.3VDDA  
VDDA  
+10  
V
0.7VDDA  
10  
50  
-
-
V
-
μA  
μA  
pF  
IIH  
CI  
-
+50  
4
-
Digital outputs, CMOS mode: pins DA11 to DA0, DB11 to DB0, OTRA, OTRB and DAV  
Output levels, VDDO= 3 V  
VOL  
VOH  
IOL  
LOW-level output voltage  
HIGH-level output voltage  
LOW-level output current  
HIGH-level output current  
output capacitance  
IOL = <tbd>  
OGND  
-
0.2VDDO  
V
IOH = <tbd>  
0.8VDDO  
-
VDDO  
V
3-state; output level = 0 V  
3-state; output level = VDDA  
high impedance; see Table 10  
-
-
-
<tbd>  
<tbd>  
3
-
-
-
μA  
μA  
pF  
IOH  
CO  
Output levels, VDDO = 1.8 V  
VOL  
LOW-level output voltage  
IOL = <tbd>  
OGND  
-
0.2VDDO  
V
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
8 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
Table 6.  
Symbol  
VOH  
Static characteristics[1] …continued  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
HIGH-level output voltage  
IOH = <tbd>  
0.8VDDO  
-
VDDO  
V
Digital outputs, LVDS DDR mode: pins DA10_DA11_P to DA0_DA1_P, DA10_DA11_M to DA0_DA1_M,  
DB10_DB11_P to DB0_DB1_P, DB10_DB11_M to DB0_DB1_M; DAVP and DAVM  
Output levels, VDDO = 3 V only, RL = 100 Ω  
VO(offset)  
VO(dif)  
CO  
output offset voltage  
differential output voltage  
output capacitance  
output buffer current set to  
3.5 mA  
-
-
-
1.2  
-
-
-
V
output buffer current set to  
3.5 mA  
350  
mV  
pF  
<tbd>  
Analog inputs: pins INAP, INAM, INBP and INBM  
II  
input current  
5  
-
-
+5  
-
μA  
Ω
RI  
input resistance  
<tbd>  
5
CI  
input capacitance  
common-mode input voltage  
input bandwidth  
-
-
pF  
V
VI(cm)  
Bi  
VINAP = VINAM; VINBP = VINBM  
0.9  
-
1.5  
600  
-
2
-
MHz  
V
VI(dif)  
differential input voltage  
peak-to-peak  
1
2
Common mode output voltage: pins VCMA and VCMB  
VO(cm)  
IO(cm)  
common-mode output voltage  
common-mode output current  
-
-
0.5VDDA  
<tbd>  
-
-
V
μA  
I/O reference voltage: pin VREF  
VVREF  
voltage on pin VREF  
output  
input  
-
0.5 to 1  
-
-
V
V
0.5  
1
Accuracy  
INL  
integral non-linearity  
differential non-linearity  
offset error  
1.25  
± 0.25  
± 0.5  
±2  
+5  
LSB  
LSB  
mV  
DNL  
guaranteed no missing codes  
0.95  
+0.95  
Eoffset  
EG  
-
-
-
-
-
-
gain error  
±0.5  
<tbd>  
%FS  
%
MG(CTC)  
channel-to-channel gain  
matching  
Supply  
PSRR  
power supply rejection ratio  
100 mV (p-p) on VDDA  
-
35  
-
dBc  
[1] Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF; minimum and maximum values are across the full  
temperature range Tamb = 40 °C to +85 °C at VDDA = 3 V, VDDO = 1.8 V; VINAP VINAM = 1 dBFS; VINBP VINBM = 1 dBFS; internal  
reference mode; applied to CMOS and LVDS interface; unless otherwise specified.  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
9 of 38  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
10. Dynamic characteristics  
10.1 Dynamic characteristics  
Table 7.  
Characteristics[1]  
Symbol Parameter  
Conditions  
ADC1212D065  
Min Typ  
ADC1212D080  
Max Min Typ  
ADC1212D105  
Max Min Typ  
ADC1212D125  
Max Min Typ  
Unit  
Max  
Analog signal processing  
α2H  
second harmonic level fi = 3 MHz  
fi = 30 MHz  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
87  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
87  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
86  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
88  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
Bits  
86  
86  
86  
87  
fi = 70 MHz  
85  
85  
84  
85  
fi = 170 MHz  
82  
82  
81  
83  
α3H  
third harmonic level  
fi = 3 MHz  
86  
86  
85  
87  
fi = 30 MHz  
fi = 70 MHz  
fi = 170 MHz  
85  
85  
85  
86  
84  
84  
83  
84  
81  
81  
80  
82  
THD  
ENOB  
SNR  
SFDR  
total harmonic distortion fi = 3 MHz  
fi = 30 MHz  
85  
85  
84  
86  
84  
84  
84  
85  
fi = 70 MHz  
83  
83  
82  
83  
fi = 170 MHz  
80  
80  
79  
81  
effective number of bits fi = 3 MHz  
fi = 30 MHz  
11.3  
11.3  
11.2  
11.1  
70.0  
69.5  
69.2  
68.8  
86  
11.3  
11.3  
11.2  
11.1  
69.9  
69.5  
69.2  
68.8  
86  
11.3  
11.3  
11.2  
11.1  
69.8  
69.5  
69.1  
68.7  
85  
11.3  
11.2  
11.2  
11.1  
69.6  
69.4  
69.0  
68.6  
87  
Bits  
fi = 70 MHz  
Bits  
fi = 170 MHz  
Bits  
signal-to-noise ratio  
fi = 3 MHz  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
dBc  
dBc  
dBc  
fi = 30 MHz  
fi = 70 MHz  
fi = 170 MHz  
fi = 3 MHz  
spurious-free dynamic  
range  
fi = 30 MHz  
fi = 70 MHz  
fi = 170 MHz  
85  
85  
85  
86  
84  
84  
83  
84  
81  
81  
80  
82  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 7.  
Characteristics[1] …continued  
Symbol Parameter  
Conditions  
ADC1212D065  
Min Typ  
ADC1212D080  
Max Min Typ  
ADC1212D105  
Max Min Typ  
ADC1212D125  
Max Min Typ  
Unit  
Max  
IMD  
intermodulation  
distortion  
fi = 3 MHz  
-
-
-
-
-
89  
-
-
-
-
-
-
-
-
-
-
89  
88  
87  
85  
100  
-
-
-
-
-
-
-
-
-
-
88  
88  
86  
83  
100  
-
-
-
-
-
-
-
-
-
-
89  
88  
86  
84  
100  
-
-
-
-
-
dBc  
dBc  
dBc  
dBc  
dBc  
fi = 30 MHz  
fi = 70 MHz  
fi = 170 MHz  
fi = 70 MHz  
88  
87  
84  
αct(ch)  
channel crosstalk  
100  
[1] Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF; minimum and maximum values are across the full temperature range Tamb = 40 °C to +85 °C  
at VDDA = 3 V, VDDO = 1.8 V; VINAP VINAM = 1 dBFS; VINBP VINBM = 1 dBFS; internal reference mode; applied to CMOS and LVDS interface; unless otherwise specified.  
10.2 Clock and digital output timing  
Table 8.  
Symbol Parameter  
Clock and digital output timing characteristics[1]  
Conditions ADC1412D065  
Min Typ Max  
ADC1412D080  
Min Typ Max  
ADC1412D105  
Min Typ Max  
ADC1412D125  
Min Typ Max  
Unit  
Clock timing input: pins CLKP and CLKM  
fclk clock frequency  
tlat(data) data latency time  
20  
-
-
65  
-
60  
-
-
80  
-
75  
-
-
105  
-
100  
-
-
125  
-
MHz  
14  
14  
14  
14  
clock  
cycle  
s
δclk  
clock duty cycle  
DCS_EN = 1  
DCS_EN = 0  
30  
45  
-
50  
50  
0.8  
70  
55  
-
30  
45  
-
50  
50  
0.8  
70  
55  
-
30  
45  
-
50  
50  
0.8  
70  
55  
-
30  
45  
-
50  
50  
0.8  
70  
55  
-
%
%
ns  
td(s)  
sampling delay  
time  
twake  
wake-up time  
-
tbd  
-
-
tbd  
-
-
tbd  
-
-
tbd  
-
ns  
CMOS mode timing: pins DA11 to DA0, DB13 to DB0 and DAV  
tPD  
propagation delay DATA  
DAV  
-
3.9  
4.2  
8.6  
4.8  
-
-
-
3.9  
4.2  
7.4  
3.4  
-
-
-
3.9  
4.2  
6.1  
1.8  
-
-
-
3.9  
4.2  
5.7  
1.4  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
-
-
-
-
-
-
tsu  
th  
set-up time  
-
-
-
-
-
-
-
-
hold time  
-
-
-
-
-
-
-
-
[2]  
[2]  
tr  
rise time  
fall time  
DATA  
DAV  
0.5  
0.5  
0.5  
2.4  
2.4  
2.4  
0.5  
0.5  
0.5  
2.4  
2.4  
2.4  
0.5  
0.5  
0.5  
2.4  
2.4  
2.4  
0.5  
0.5  
0.5  
2.4  
2.4  
2.4  
-
-
-
-
tf  
DATA  
-
-
-
-
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 8.  
Clock and digital output timing characteristics[1] …continued  
Symbol Parameter  
Conditions  
ADC1412D065  
Min Typ Max  
ADC1412D080  
Min Typ Max  
ADC1412D105  
Min Typ Max  
ADC1412D125  
Min Typ Max  
Unit  
LVDS DDR mode timing: pins DA10_DA11_P to DA0_DA1_P, DA10_DA11_M to DA0_DA1_M, DB10_DB11_P to DB0_DB1_P,  
DB10_DB11_M to DB0_DB1_M; DAVP and DAVM  
tPD  
propagation delay DATA  
DAV  
-
3.9  
4.2  
-
-
3.9  
4.2  
-
-
3.9  
4.2  
-
-
3.9  
-
ns  
ns  
ns  
ns  
ps  
ps  
ps  
ps  
-
-
-
-
-
-
-
4.2  
1.4  
-
tsu  
th  
set-up time  
-
5.1  
-
-
3.5  
-
-
2.1  
-
-
-
hold time  
-
2.0  
-
-
2.0  
-
-
2.0  
-
-
2.0  
-
[3]  
[3]  
tr  
rise time  
DATA  
DAV  
50  
50  
50  
50  
100  
100  
100  
100  
200  
200  
200  
200  
50  
50  
50  
50  
100  
100  
100  
100  
200  
200  
200  
200  
50  
50  
50  
50  
100  
100  
100  
100  
200  
200  
200  
200  
50  
50  
50  
50  
100  
100  
100  
100  
200  
200  
200  
200  
tf  
fall time  
DATA  
DAV  
[1] Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF; minimum and maximum values are across the full temperature range Tamb = 40 °C to 85 °C at  
DDA = 3 V, VDDO = 1.8 V; VINAP VINAM = 1 dBFS; VINBP VINBM = 1 dBFS; unless otherwise specified.  
V
[2] Measured between 20 % to 80 % of VDDO  
.
[3] Rise time measured from 50 mV to +50 mV; fall time measured from +50 mV to 50 mV.  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
N
N + 1  
t
d(s)  
N + 2  
t
clk  
CLKP  
CLKM  
t
PD  
(N 14)  
(N 13)  
(N 12)  
(N 11)  
DATA  
DAV  
t
PD  
t
su  
t
h
t
clk  
005aaa060  
Fig 4. CMOS mode timing  
N
N + 1  
t
d(s)  
N + 2  
t
clk  
CLKP  
CLKM  
t
PD  
(N 14)  
(N 13)  
(N 12)  
(N 11)  
DA _DA  
x
_P/  
x + 1  
DB _DB  
_P  
x
x + 1  
DA /  
DA  
DB  
DA /  
DA  
DB  
DA /  
DA  
DA /  
DA  
DA /  
DA  
x
x+1/  
x
x+1/  
x
x+1/  
DB  
x
x+1/  
DB  
x
x+1/  
DB  
DB  
DB  
DB  
DB  
DB  
x
x+1  
x
x+1  
x
x+1  
x
x+1  
x
x+1  
DA _DA  
_M/  
x + 1  
x
DB _DB  
x
_M  
x + 1  
t
t
t
t
su  
su  
h
h
t
PD  
DAVP  
DAVM  
t
clk  
005aaa114  
Fig 5. LVDS DDR mode timing  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
13 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
10.3 SPI timings  
Table 9.  
Symbol  
Characteristics [1]  
Parameter  
Conditions  
Min Typ  
Max  
Unit  
SPI timings  
tw(SCLK)  
tw(SCLKH)  
tw(SCLKL)  
tsu  
SCLK pulse width  
SCLK HIGH pulse width  
SCLK LOW pulse width  
set-up time  
40  
16  
16  
5
-
-
-
-
-
-
-
-
-
ns  
-
ns  
-
ns  
data to SCLK HIGH  
CS to SCLK HIGH  
data to SCLK HIGH  
CS to SCLK HIGH  
-
ns  
5
-
ns  
th  
hold time  
2
-
ns  
2
-
ns  
fclk(max)  
maximum clock frequency  
-
25  
MHz  
[1] Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF; minimum and maximum  
values are across the full temperature range Tamb = 40 °C to +85 °C at VDDA = 3 V, VDDO = 1.8 V.  
t
t
su  
w(SCLKL)  
t
h
t
h
su  
t
t
w(SCLKH)  
t
w(SCLK)  
CS  
SCLK  
SDIO  
W1  
W0  
A12  
A11  
D2  
D1  
D0  
R/W  
005aaa065  
Fig 6. SPI timing  
11. Application information  
11.1 Device control  
The ADC1212D can be controlled via the Serial Peripheral Interface (SPI control mode) or  
directly via the I/O pins (Pin control mode).  
11.1.1 SPI and Pin control modes  
The device enters Pin control mode at power-up and remains in this mode as long as pin  
CS is held HIGH. In Pin control mode, the SPI pins SDIO, CS and SCLK are used as  
static control pins.  
SPI control mode is enabled by forcing pin CS LOW. Once SPI control mode has been  
enabled, the device remains in this mode. The transition from Pin control mode to SPI  
control mode is illustrated in Figure 7.  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
14 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
CS  
SCLK/DFS  
SDIO/ODS  
Pin control mode  
SPI control mode  
Data format  
offset binary  
Data format  
two's complement  
LVDS DDR  
R/W  
W1  
W0  
A12  
CMOS  
005aaa039  
Fig 7. Control mode selection.  
When the device enters SPI control mode, the output data standard and data format are  
determined by the level on pin SDIO as soon as a transition is triggered by a falling edge  
on CS.  
11.1.2 Operating mode selection  
The active ADC1212D operating mode (Power-up, Power-down or Sleep) can be selected  
via the SPI interface (see Table 21) or by using pin CTRL in Pin control mode, as  
described in Table 10.  
Table 10. Operating mode selection via pin CTRL  
Pin CTRL  
0
Operating mode  
Power-down  
Sleep  
Output high-Z  
yes  
yes  
yes  
no  
0.3VDDA  
0.6VDDA  
VDDA  
Power-up  
Power-up  
11.1.3 Selecting the output data standard  
The output data standard (CMOS or LVDS DDR) can be selected via the SPI interface  
(see Table 24) or by using pin ODS in Pin control mode. LVDS DDR is selected when  
ODS is HIGH, otherwise CMOS is selected.  
11.1.4 Selecting the output data format  
The output data format can be selected via the SPI interface (offset binary,  
two’s complement or gray code; see Table 24) or by using pin DFS in Pin control mode  
(offset binary or two’s complement). Offset binary is selected when DFS is LOW. When  
DFS is HIGH, two’s complement is selected.  
11.2 Analog inputs  
11.2.1 Input stage  
The analog input of the ADC1212D supports a differential or a single-ended input drive.  
Optimal performance is achieved using differential inputs with the common-mode input  
voltage (VI(cm)) on pins INAP, INAM, INBP and INBM set to 0.5VDDA  
.
The full-scale analog input voltage range is configurable between 1 V (p-p) and 2 V (p-p)  
via a programmable internal reference (see Section 11.3 and Table 23).  
The equivalent circuit of the sample and hold input stage, including ElectroStatic  
Discharge (ESD) protection and circuit and package parasitics, is shown in Figure 8.  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
15 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
Package  
ESD  
Parasitics  
Switch  
R
= 14 Ω  
on  
4 pF  
INAP/INBP  
INAM/INBM  
Sampling  
capacitor  
internal  
clock  
Switch  
on  
R
= 14 Ω  
4 pF  
Sampling  
capacitor  
internal  
clock  
005aaa092  
Fig 8. Input sampling circuit  
The sample phase occurs when the internal clock (derived from the clock signal on pin  
CLKP/CLKM) is HIGH. The voltage is then held on the sampling capacitors. When the  
clock signal goes LOW, the stage enters the hold phase and the voltage information is  
transmitted to the ADC core.  
11.2.2 Anti-kickback circuitry  
Anti-kickback circuitry (RC filter in Figure 9 is needed to counteract the effects of charge  
injection generated by the sampling capacitance.  
The RC filter is also used to filter noise from the signal before it reaches the sampling  
stage. The value of the capacitor should be chosen to maximize noise attenuation without  
degrading the settling time excessively.  
R
INAP/INBP  
C
R
INAM/INBM  
005aaa093  
Fig 9. Anti-kickback circuit  
The component values are determined by the input frequency and should be selected so  
as not to affect the input bandwidth.  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
16 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
Table 11. RC coupling versus input frequency, typical values  
Input frequency  
R
C
3 MHz  
25 Ω  
12 Ω  
12 Ω  
12 pF  
8 pF  
8 pF  
70 MHz  
170 MHz  
11.2.3 Transformer  
The configuration of the transformer circuit is determined by the input frequency. The  
configuration shown in Figure 10 would be suitable for a baseband application.  
ADT1-1WT  
100 nF  
25 Ω  
INAP/INBP  
100 nF  
Analog  
input  
25 Ω  
12 pF  
25 Ω  
100 nF  
25 Ω  
100 nF  
INAM/INBM  
VCMA/VCMB  
100 nF  
100 nF  
005aaa094  
Fig 10. Single transformer configuration suitable for baseband applications  
The configuration shown in Figure 11 is recommended for high frequency applications. In  
both cases, the choice of transformer is a compromise between cost and performance.  
ADT1-1WT  
ADT1-1WT  
12 Ω  
12 Ω  
INAP/INBP  
100 nF  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
Analog  
input  
8.2 pF  
INAM/INBM  
100 nF  
VCMA/VCMB  
100 nF  
100 nF  
005aaa095  
Fig 11. Dual transformer configuration suitable for high intermediate frequency  
application  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
17 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
11.3 System reference and power management  
11.3.1 Internal/external references  
The ADC1212D has a stable and accurate built-in internal reference voltage to adjust the  
ADC full-scale. This reference voltage can be set internally via SPI or with pin VREF and  
SENSE (programmable in 1 dB steps between 0 dB and 6 dB via control bits INTREF  
when bit INTREF_EN = logic 1; see Table 23). See Figure 13 to Figure 16. The equivalent  
reference circuit is shown in Figure 12. External reference is also possible by providing a  
voltage on pin VREF as described in Figure 15.  
REFAT/  
REFBT  
REFERENCE  
AMP  
REFAB/  
REFBB  
VREF  
EXT_ref  
BANDGAP  
REFERENCE  
EXT_ref  
BUFFER  
ADC CORE  
SENSE  
SELECTION  
LOGIC  
005aaa164  
Fig 12. Reference equivalent schematic  
If bit INTREF_EN is set to logic 0, the reference voltage is determined either internally or  
externally as detailed in Table 12.  
Table 12. Reference selection  
Selection  
SPI bit  
SENSE pin  
VREF pin  
Full-scale (p-p)  
INTREF_EN  
internal  
(Figure 13)  
0
0
0
1
AGND  
330 pF capacitor to  
AGND  
2 V  
internal  
(Figure 14)  
pin VREF connected to pin SENSE and 1 V  
via a 330 pF capacitor to AGND  
external  
(Figure 15)  
VDDA  
external voltage between 1 V to 2 V  
0.5 V and 1 V[1]  
internal via SPI  
(Figure 16)  
pin VREF connected to pin SENSE and 1 V to 2 V  
via 330 pF capacitor to AGND  
[1] The voltage on pin VREF is doubled internally to generate the internal reference voltage.  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
18 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
Figure 13 to Figure 16 illustrate how to connect the SENSE and VREF pins to select the  
required reference voltage source.  
VREF  
VREF  
330  
pF  
330 pF  
REFERENCE  
EQUIVALENT  
SCHEMATIC  
REFERENCE  
EQUIVALENT  
SCHEMATIC  
SENSE  
SENSE  
005aaa116  
005aaa117  
Fig 13. Internal reference, 2 V (p-p) full-scale  
Fig 14. Internal reference, 1 V (p-p) full-scale  
VREF  
VREF  
330 pF  
0.1 μF  
V
REFERENCE  
EQUIVALENT  
SCHEMATIC  
REFERENCE  
EQUIVALENT  
SCHEMATIC  
SENSE  
SENSE  
VDDA  
005aaa119  
005aaa118  
Fig 15. External reference, 1 V (p-p) to 2 V (p-p)  
full-scale  
Fig 16. Internal reference via SPI, 1 V (p-p) to 2 V (p-p)  
full-scale  
11.3.2 Reference gain control  
The reference gain is programmable between 0 dB to 6 dB in 1 dB steps via the SPI (see  
Table 23). The corresponding full-scale input voltage range varies between 2 V (p-p) and  
1 V (p-p), as shown in Table 13.  
Table 13. Reference SPI gain control  
INTREF  
000  
Gain  
Full-scale (p-p)  
2 V  
0 dB  
001  
1 dB  
2 dB  
3 dB  
4 dB  
5 dB  
6 dB  
reserved  
1.78 V  
1.59 V  
1.42 V  
1.26 V  
1.12 V  
1 V  
010  
011  
100  
101  
110  
111  
x
11.3.3 Common-mode output voltage (VO(cm)  
)
A 0.1 μF filter capacitor should be connected between pin VCMA/VCMB and ground to  
ensure a low-noise common-mode output voltage. When AC-coupled, pin VCMA/VCMB  
can then be used to set the common-mode reference for the analog inputs, for instance  
via a transformer middle point.  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
19 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
Package  
ESD  
Parasitics  
COMMON MODE  
REFERENCE  
VCMA/VCMB  
1.5 V  
0.1 μF  
ADC CORE  
005aaa099  
Fig 17. Equivalent schematic of the common-mode reference circuit  
11.3.4 Biasing  
The common-mode input voltage (VI(cm)) on pins INAP/INBP and INAM/INBM should be  
set externally to 0.5VDDA for optimal performance and should always be between 0.9 V  
and 2 V.  
11.4 Clock input  
11.4.1 Drive modes  
The ADC1212D can be driven differentially (SINE, LVPECL or LVDS) with little or no  
degradation on dynamic performance. It can also be driven by a single-ended Low  
Voltage Complementary Metal Oxide Semiconductor (LVCMOS) signal connected to pin  
CLKP (pin CLKM should be connected to ground via a capacitor) or CLKM (pin CLKP  
should be connected to ground via a capacitor).  
CLKP  
CLKM  
LVCMOS  
clock input  
CLKP  
CLKM  
LVCMOS  
clock input  
005aaa174  
005aaa053  
a. Rising edge LVCMOS  
b. Falling edge LVCMOS  
Fig 18. LVCMOS single-ended clock input  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
20 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
CLKP  
CLKM  
Sine  
clock input  
CLKP  
CLKM  
Sine  
clock input  
005aaa173  
005aaa054  
a. Sine clock input  
b. Sine clock input (with transformer)  
CLKP  
CLKP  
LVPECL  
clock input  
LVDS  
clock input  
CLKM  
CLKM  
005aaa055  
005aaa172  
c. LVDS clock input  
d. LVPECL clock input  
Fig 19. Differential clock input  
11.4.2 Equivalent input circuit  
The equivalent circuit of the input clock buffer is shown in Figure 20. The common-mode  
voltage of the differential input stage is set via internal 5 kΩ resistors.  
Package  
ESD  
Parasitics  
CLKP  
CLKM  
V
cm(clk)  
SE_SEL SE_SEL  
5 kΩ  
5 kΩ  
005aaa056  
Vcm(clk) = common-mode voltage of the differential input stage  
Fig 20. Equivalent input circuit  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
21 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
Single-ended or differential clock inputs can be selected via the SPI interface  
(see Table 22). If single-ended is enabled, the input pin (CLKM or CLKP) is selected via  
control bit SE_SEL.  
If single-ended is implemented without setting bit SE_SEL to the appropriate value, the  
unused pin should be connected to ground via a capacitor.  
11.4.3 Duty cycle stabilizer  
The duty cycle stabilizer can improve the overall performances of the ADC by  
compensating the duty cycle of the input clock signal. When the duty cycle stabilizer is  
active (bit DCS_EN = logic 1; see Table 22), the circuit can handle signals with duty cycles  
of between 30 % and 70 % (typical). When the duty cycle stabilizer is disabled  
(DCS_EN = logic 0), the input clock signal should have a duty cycle of between 45 % and  
55 %.  
11.4.4 Clock input divider  
The ADC1212D contains an input clock divider that divides the incoming clock by a factor  
of 2 (when bit CLKDIV = logic 1; see Table 22). This feature allows the user to deliver a  
higher clock frequency with better jitter performance, leading to a better SNR result once  
acquisition has been performed.  
11.5 Digital outputs  
11.5.1 Digital output buffers: CMOS mode  
The digital output buffers can be configured as CMOS by setting bit LVDS_CMOS to  
logic 0 (see Table 24).  
Each digital output has a dedicated output buffer. The equivalent circuit of the CMOS  
digital output buffer is shown in Figure 21. The buffer is powered by a separate  
OGND/VDDO to ensure 1.8 V to 3.3 V compatibility and is isolated from the ADC core.  
Each buffer can be loaded by a maximum of 10 pF.  
VDDO  
Parasitics  
ESD  
Package  
50 Ω  
Dx  
LOGIC  
DRIVER  
OGND  
005aaa057  
Fig 21. CMOS digital output buffer  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
22 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
The output resistance is 50 Ω and is the combination of the an internal resistor and the  
equivalent output resistance of the buffer. There is no need for an external damping  
resistor. The drive strength of both DATA and DAV buffers can be programmed via the SPI  
in order to adjust the rise and fall times of the output digital signals (see Table 31).  
11.5.2 Digital output buffers: LVDS DDR mode  
The digital output buffers can be configured as LVDS DDR by setting bit LVDS_CMOS to  
logic 1 (see Table 24).  
VDDO  
3.5 mA  
typ  
+
DAn_DAn + 1_P; DBn_DBn + 1_P  
DAn_DAn + 1_M; DBn_DBn + 1_M  
RECEIVER  
100 Ω  
+
OGND  
005aaa112  
Fig 22. LVDS DDR digital output buffer - externally terminated  
Each output should be terminated externally with a 100 Ω resistor (typical) at the receiver  
side (Figure 22) or internally via SPI control bits LVDS_INT_TER (see Figure 23 and  
Table 33).  
VDDO  
3.5 mA  
typ  
+
DAn_DAn + 1_P; DBn_DBn + 1_P  
DAn_DAn + 1_M; DBn_DBn + 1_M  
RECEIVER  
100 Ω  
100 Ω  
+
OGND  
005aaa113  
Fig 23. LVDS DDR digital output buffer - internally terminated  
The default LVDS DDR output buffer current is set to 3.5 mA. It can be programmed via  
the SPI (bits DAVI and DATAI; see Table 32) in order to adjust the output logic voltage  
levels.  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
23 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
Table 14. LVDS DDR output register 2  
LVDS_INT_TER[2:0]  
Resistor value  
000  
001  
010  
011  
100  
101  
110  
111  
no internal termination  
300 Ω  
180 Ω  
110 Ω  
150 Ω  
100 Ω  
81 Ω  
60 Ω  
11.5.3 DAta Valid (DAV) output clock  
A data valid output clock signal (DAV) is provided that can be used to capture the data  
delivered by the ADC1212D. Detailed timing diagrams for CMOS and LVDS DDR modes  
are provided in Figure 4 and Figure 5 respectively. In LVDS DDR mode, it is highly  
recommended to shift ahead the DAV by 1 ns (bits DAVPHASE[2:0] = 0b100;  
see Table 25).  
11.5.4 OuT-of-Range (OTR)  
An out-of-range signal is provided on pin OTRA for ADC channel A and on pin OTRB for  
ADC channel B. The latency of OTRA/OTRB is fourteen clock cycles. The OTR response  
can be speeded up by enabling Fast OTR (bit FASTOTR = logic 1; see Table 30). In this  
mode, the latency of OTRA/OTRB is reduced to only four clock cycles. The Fast OTR  
detection threshold (below full-scale) can be programmed via bits FASTOTR_DET.  
Table 15. Fast OTR register  
FASTOTR_DET[2:0]  
Detection level  
20.56 dB  
16.12 dB  
11.02 dB  
7.82 dB  
000  
001  
010  
011  
100  
101  
110  
111  
5.49 dB  
3.66 dB  
2.14 dB  
0.86 dB  
11.5.5 Digital offset  
By default, the ADC1212D delivers output code that corresponds to the analog input.  
However, it is possible to add a digital offset to the output code via the SPI  
(bits DIG_OFFSET; see Table 26).  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
24 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
11.5.6 Test patterns  
For test purposes, the ADC1212D can be configured to transmit one of a number of  
predefined test patterns (via bits TESTPAT_SEL; see Table 27). A custom test pattern can  
be defined by the user (TESTPAT_USER; see Table 28 and Table 29) and is selected  
when TESTPAT_SEL = 101. The selected test pattern is transmitted regardless of the  
analog input.  
11.5.7 Output codes versus input voltage  
Table 16. Output codes  
VINAP VINAM/ Offset binary  
VINBP VINBM  
Two’s complement  
OTRA/OTRB  
pin  
< 1  
0000 0000 0000  
0000 0000 0000  
0000 0000 0001  
0000 0000 0010  
0000 0000 0011  
0000 0000 0100  
....  
1000 0000 0000  
1000 0000 0000  
1000 0000 0001  
1000 0000 0010  
1000 0000 0011  
1000 0000 0100  
....  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1.0000000  
0.9995117  
0.9990234  
0.9985352  
0.9980469  
....  
0.0009766  
0.0004883  
+0.0000000  
+0.0004883  
+0.0009766  
....  
0111 1111 1110  
0111 1111 1111  
1000 0000 0000  
1000 0000 0001  
1000 0000 0010  
....  
1111 1111 1110  
1111 1111 1111  
0000 0000 0000  
0000 0000 0001  
0000 0000 0010  
....  
+0.9980469  
+0.9985352  
+0.9990234  
+0.9995117  
+1  
1111 1111 1011  
1111 1111 1100  
1111 1111 1101  
1111 1111 1110  
1111 1111 1111  
1111 1111 1111  
0111 1111 1011  
0111 1111 1100  
0111 1111 1101  
0111 1111 1110  
0111 1111 1111  
0111 1111 1111  
> +1  
11.6 Serial Peripheral Interface (SPI)  
11.6.1 Register description  
The ADC1212D serial interface is a synchronous serial communications port that allows  
for easy interfacing with many commonly used microprocessors. It provides access to the  
registers that control the operation of the chip.  
This interface is configured as a 3-wire type (SDIO as bidirectional pin).  
Pin SCLK is the serial clock input and CS is the chip select pin.  
Each read/write operation is initiated by a LOW level on CS. A minimum of three bytes is  
transmitted (two instruction bytes and at least one data byte). The number of data bytes is  
determined by the value of bits W1 and W2 (see Table 18).  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
25 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
Table 17. Instruction bytes for the SPI  
MSB  
LSB  
Bit  
7
6
5
4
3
2
1
0
Description  
R/W[1]  
A7  
W1[2]  
W0[2]  
A12  
A4  
A11  
A3  
A10  
A2  
A9  
A1  
A8  
A0  
A6  
A5  
[1] Bit R/W indicates whether it is a read (logic 1) or a write (logic 0) operation.  
[2] Bits W1 and W0 indicate the number of bytes to be transferred after the instruction byte (see Table 18).  
Table 18. Number of data bytes to be transferred after the instruction bytes  
W1  
0
W0  
0
Number of bytes transmitted  
1 byte  
0
1
2 bytes  
1
0
3 bytes  
1
1
4 bytes or more  
Bits A12 to A0 indicate the address of the register being accessed. In the case of a  
multiple byte transfer, this address is the first register to be accessed. An address counter  
is increased to access subsequent addresses.  
The steps for a data transfer:  
1. A falling edge on CS in combination with a rising edge on SCLK determine the start of  
communications.  
2. The first phase is the transfer of the 2-byte instruction.  
3. The second phase is the transfer of the data which can vary in length but is always a  
multiple of 8 bits. The MSB is always sent first (for instruction and data bytes).  
4. A rising edge on CS indicates the end of data transmission.  
CS  
SCLK  
SDIO  
W1 W0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
R/W  
Instruction bytes  
Register N (data)  
Register N + 1 (data)  
005aaa062  
Fig 24. SPI mode timing  
11.6.2 Default modes at start-up  
During circuit initialization it does not matter which output data standard has been  
selected. At power-up, the device enters Pin control mode.  
A falling edge on CS triggers a transition to SPI control mode. When the ADC1212D  
enters SPI control mode, the output data standard (CMOS/LVDS DDR) is determined by  
the level on pin SDIO (see Figure 25). Once in SPI control mode, the output data standard  
can be changed via bit LVDS_CMOS in Table 24.  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
26 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
When the ADC1212D enters SPI control mode, the output data format (two’s complement  
or offset binary) is determined by the level on pin SCLK (gray code can only be selected  
via the SPI). Once in SPI control mode, the output data format can be changed via bit  
DATA_FORMAT in Table 24.  
CS  
SCLK  
(Data fo  
rmat)  
SDIO  
(CMOS LVDS DDR)  
Offset binary, LVDS DDR  
default mode at start-up  
005aaa063  
Fig 25. Default mode at start-up: SCLK LOW = offset binary; SDIO HIGH = LVDS DDR  
CS  
SCLK  
(Data fo  
rmat)  
SDIO  
(CMOS LVDS DDR)  
two's complement, CMOS  
default mode at start-up  
005aaa064  
Fig 26. Default mode at start-up: SCLK HIGH = two’s complement; SDIO LOW = CMOS  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
27 of 38  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
11.6.3 Register allocation map  
Table 19. Register allocation map  
Addr  
(Hex)  
Register name  
R/W  
Bit definition  
Default  
(Bin)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCA  
0003  
0005  
Channel index  
R/W  
R/W  
RESERVED[5:0]  
ADCB  
1111 1111  
Reset and  
operating mode  
SW_  
RST  
RESERVED[2:0]  
-
-
-
OP_MODE[1:0]  
0000  
0000  
0006  
0008  
0011  
Clock  
R/W  
-
-
-
-
-
-
-
-
-
-
SE_SEL  
DIFF_SE  
INTREF_EN  
OUTBUF  
DAVINV  
CLKDIV DCS_EN  
0000  
0001  
Internal reference R/W  
-
INTREF[2:0]  
0000  
0000  
Output data  
standard.  
R/W  
LVDS_  
CMOS  
OUTBUS_SWAP  
DATA_FORMAT[1:0]  
0000  
0000  
0012  
0013  
Output clock  
Offset  
R/W  
R/W  
-
-
-
-
-
DAVPHASE[2:0]  
0000 1110  
DIG_OFFSET[5:0]  
0000  
0000  
0014  
0015  
0016  
0017  
Test pattern 1  
Test pattern 2  
Test pattern 3  
Fast OTR  
R/W  
R/W  
R/W  
R/W  
R/W  
-
-
-
-
-
-
TESTPAT_SEL[2:0]  
0000  
0000  
TESTPAT_USER[11:4]  
0000  
0000  
TESTPAT_USER[3:0]  
-
-
-
-
0000  
0000  
-
-
-
-
FASTOTR  
FASTOTR_DET[2:0]  
0000  
0000  
0020  
0021  
CMOS output  
-
-
-
-
-
DAV_DRV[1:0]  
DATA_DRV[1:0]  
DATAI[1:0]  
0000 1110  
LVDS DDR O/P 1 R/W  
RESERVED  
DAVI[1:0]  
RESERVED  
0000  
0000  
0022  
LVDS DDR O/P 2 R/W  
-
-
-
-
BIT_BYTE_WISE  
LVDS_INT_TER[2:0]  
0000  
0000  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
Table 20. Channel index control register (address 0003h) bit description  
Default values are highlighted.  
Bit  
7 to 2  
1
Symbol  
Access  
Value  
111111 reserved  
next SPI command for ADC B  
ADC B not selected  
Description  
RESERVED[5:0]  
ADCB  
R/W  
0
1
ADC B selected  
0
ADCA  
R/W  
next SPI command for ADC A  
ADC A not selected  
ADC A selected  
0
1
Table 21. Reset and operating mode control register (address 0005h) bit description  
Default values are highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7
SW_RST  
R/W  
reset digital section  
no reset  
0
1
performs a reset on SPI registers  
reserved  
6 to 4  
3 to 2  
1 to 0  
RESERVED[2:0]  
000  
00  
-
not used  
OP_MODE[1:0]  
R/W  
operating mode  
normal (Power-up)  
Power-down  
00  
01  
10  
11  
Sleep  
normal (Power-up)  
Table 22. Clock control register (address 0006h) bit description  
Default values are highlighted.  
Bit  
7 to 5  
4
Symbol  
-
Access  
Value  
Description  
000  
not used  
SE_SEL  
R/W  
single-ended clock input pin select  
0
CLKM  
1
CLKP  
3
DIFF_SE  
R/W  
differential/single-ended clock input select  
0
1
0
fully differential  
single-ended  
reserved  
2
1
RESERVED  
CLKDIV  
R/W  
R/W  
clock input divide by 2  
disabled  
0
1
enabled  
0
DCS_EN  
duty cycle stabilizer  
disabled  
0
1
enabled  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
29 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
Table 23. Internal reference control register (address 0008h) bit description  
Default values are highlighted.  
Bit  
7 to 4  
3
Symbol  
Access  
Value  
Description  
-
0000  
not used  
INTREF_EN  
R/W  
programmable internal reference enable  
disable  
0
1
active  
2 to 0  
INTREF[2:0]  
R/W  
programmable internal reference  
0 dB (FS = 2 V)  
000  
001  
010  
011  
100  
101  
110  
111  
1 dB (FS = 1.78 V)  
2 dB (FS = 1.59 V)  
3 dB (FS = 1.42 V)  
4 dB (FS = 1.26 V)  
5 dB (FS = 1.12 V)  
6 dB (FS = 1 V)  
reserved  
Table 24. Output data standard control register (address 0011h) bit description  
Default values are highlighted.  
Bit  
7 to 5  
4
Symbol  
Access  
Value  
Description  
-
000  
not used  
LVDS_CMOS  
R/W  
output data standard: LVDS DDR or CMOS  
CMOS  
0
1
LVDS DDR  
3
2
OUTBUF  
R/W  
R/W  
output buffers enable  
output enabled  
0
1
output disabled (high Z)  
output bus swap  
no swapping  
OUTBUS_SWAP  
0
1
output bus is swapped (MSB becomes LSB and  
vice versa)  
1 to 0  
DATA_FORMAT[1:0]  
R/W  
output data format  
offset binary  
00  
01  
10  
11  
two’s complement  
gray code  
offset binary  
Table 25. Output clock register (address 0012h) bit description  
Default values are highlighted.  
Bit  
7 to 4  
3
Symbol  
-
Access  
Value  
Description  
0000  
not used  
DAVINV  
R/W  
output clock data valid (DAV) polarity  
0
normal  
1
inverted  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
30 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
Table 25. Output clock register (address 0012h) bit description …continued  
Default values are highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
2 to 0  
DAVPHASE[2:0]  
R/W  
DAV phase select  
000  
001  
010  
011  
100  
101  
110  
111  
output clock shifted (ahead) by 3 ns  
output clock shifted (ahead) by 2.5 ns  
output clock shifted (ahead) by 2 ns  
output clock shifted (ahead) by 1.5 ns  
output clock shifted (ahead) by 1 ns  
output clock shifted (ahead) by 0.5 ns  
default value as defined in timing section  
output clock shifted (delayed) by 0.5 ns  
Table 26. Offset register (address 0013h) bit description  
Default values are highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 6  
5 to 0  
-
00  
not used  
DIG_OFFSET[5:0]  
R/W  
digital offset adjustment  
011111  
...  
+31 LSB  
...  
000000  
...  
0
...  
100000  
32 LSB  
Table 27. Test pattern register 1 (address 0014h) bit description  
Default values are highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 3  
2 to 0  
-
00000  
not used  
TESTPAT_SEL[2:0]  
R/W  
digital test pattern select  
000  
001  
010  
011  
100  
101  
110  
111  
off  
mid scale  
FS  
+FS  
toggle ‘1111..1111’/’0000..0000’  
custom test pattern  
‘0101..0101’  
‘1010..1010.’  
Table 28. Test pattern register 2 (address 0015h) bit description  
Default values are highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0  
TESTPAT_USER[11:4]  
R/W  
0000  
0000  
custom digital test pattern (bits 11 to 4)  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
31 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
Table 29. Test pattern register 3 (address 0016h) bit description  
Default values are highlighted.  
Bit  
Symbol  
Access  
Value  
0000  
0000  
Description  
7 to 4  
3 to 0  
TESTPAT_USER[3:0]  
-
R/W  
custom digital test pattern (bits 3 to 0)  
not used  
Table 30. Fast OTR register (address 0017h) bit description  
Default values are highlighted.  
Bit  
7 to 4  
3
Symbol  
-
Access  
Value  
Description  
not used  
0000  
FASTOTR  
R/W  
fast OuT-of-Range (OTR) detection  
disabled  
0
1
enabled  
2 to 0  
FASTOTR_DET[2:0]  
R/W  
set fast OTR detect level  
20.56 dB  
000  
001  
010  
011  
100  
101  
110  
111  
16.12 dB  
11.02 dB  
7.82 dB  
5.49 dB  
3.66 dB  
2.14 dB  
0.86 dB  
Table 31. CMOS output register (address 0020h) bit description  
Default values are highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
7 to 4  
3 to 2  
-
0000  
not used  
DAV_DRV[1:0]  
R/W  
drive strength for DAV CMOS output buffer  
00  
01  
10  
11  
low  
medium  
high  
very high  
1 to 0  
DATA_DRV[1:0]  
R/W  
drive strength for DATA CMOS output buffer  
00  
01  
10  
11  
low  
medium  
high  
very high  
Table 32. LVDS DDR output register 1 (address 0021h) bit description  
Default values are highlighted.  
Bit  
7 to 6  
5
Symbol  
Access  
Value  
00  
Description  
not used  
-
RESERVED  
0
reserved  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
32 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
Table 32. LVDS DDR output register 1 (address 0021h) bit description …continued  
Default values are highlighted.  
Bit  
Symbol  
Access  
Value  
Description  
4 to 3  
DAVI[1:0]  
R/W  
LVDS current for DAV LVDS buffer  
00  
01  
10  
11  
0
3.5 mA  
4.5 mA  
1.25 mA  
2.5 mA  
2
RESERVED  
DATAI[1:0]  
reserved  
1 to 0  
R/W  
LVDS current for DATA LVDS buffer  
00  
01  
10  
11  
3.5 mA  
4.5 mA  
1.25 mA  
2.5 mA  
Table 33. LVDS DDR output register 2 (address 0022h) bit description  
Default values are highlighted.  
Bit  
7 to 4  
3
Symbol  
Access  
Value  
Description  
-
0000  
not used  
BIT_BYTE_WISE  
R/W  
DDR mode for LVDS output  
0
bit wise (even data bits output on DAV rising  
edge / odd data bits output on DAV falling edge)  
1
byte wise (MSB data bits output on DAV rising  
edge / LSB data bits output on DAV falling edge)  
2 to 0  
LVDS_INT_TER[2:0]  
R/W  
internal termination for LVDS buffer (DAV and  
DATA)  
000  
001  
010  
011  
100  
101  
110  
111  
no internal termination  
300 Ω  
180 Ω  
110 Ω  
150 Ω  
100 Ω  
81 Ω  
60 Ω  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
33 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
12. Package outline  
HVQFN64: plastic thermal enhanced very thin quad flat package; no leads;  
64 terminals; body 9 x 9 x 0.85 mm  
SOT804-3  
D
B
A
terminal 1  
index area  
A
1
E
A
c
detail X  
e
1
1/2 e  
C
v
w
C
C
A
B
e
b
L
y
1
y
C
17  
32  
33  
16  
e
E
h
e
2
1/2 e  
1
48  
terminal 1  
index area  
64  
49  
X
D
h
0
2.5  
5 mm  
scale  
Dimensions  
Unit  
(1)  
(1)  
E
A
A
1
b
c
D
D
h
E
h
e
e
e
2
L
v
w
y
y
1
1
max 1.00 0.05 0.30  
9.1 7.25 9.1 7.25  
0.5  
mm nom 0.85 0.02 0.21 0.2 9.0 7.10 9.0 7.10 0.5 7.5 7.5 0.4 0.1 0.05 0.05 0.1  
min 0.80 0.00 0.18 8.9 6.95 8.9 6.95 0.3  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
sot804-3_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
- - -  
JEDEC  
- - -  
JEITA  
- - -  
09-02-24  
10-08-06  
SOT804-3  
Fig 27. Package outline SOT804-3 (HVQFN64)  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
34 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
13. Revision history  
Table 34. Revision history  
Document ID  
Release date  
Data sheet status  
Change Supersedes  
notice  
ADC1212D_SER v.1  
20100806  
Preliminary data sheet -  
-
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
35 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
14. Legal information  
14.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of an NXP Semiconductors product can reasonably be expected  
14.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
14.3 Disclaimers  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
36 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
14.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
15. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
ADC1212D_SER  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 6 August 2010  
37 of 38  
ADC1212D series  
NXP Semiconductors  
CMOS or LVDS DDR digital outputs  
16. Contents  
1
2
3
4
5
General description. . . . . . . . . . . . . . . . . . . . . . 1  
11.5.7  
11.6  
11.6.1  
11.6.2  
11.6.3  
Output codes versus input voltage. . . . . . . . . 25  
Serial Peripheral Interface (SPI) . . . . . . . . . . 25  
Register description . . . . . . . . . . . . . . . . . . . . 25  
Default modes at start-up. . . . . . . . . . . . . . . . 26  
Register allocation map . . . . . . . . . . . . . . . . . 28  
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
12  
13  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 34  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 35  
6
6.1  
6.1.1  
6.1.2  
6.2  
6.2.1  
6.2.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
CMOS outputs selected . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3  
LVDS/DDR outputs selected. . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
14  
Legal information . . . . . . . . . . . . . . . . . . . . . . 36  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 36  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
14.1  
14.2  
14.3  
14.4  
15  
16  
Contact information . . . . . . . . . . . . . . . . . . . . 37  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7
8
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal characteristics . . . . . . . . . . . . . . . . . . 7  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 7  
10  
Dynamic characteristics . . . . . . . . . . . . . . . . . 10  
Dynamic characteristics . . . . . . . . . . . . . . . . . 10  
Clock and digital output timing . . . . . . . . . . . . 11  
SPI timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
10.1  
10.2  
10.3  
11  
11.1  
Application information. . . . . . . . . . . . . . . . . . 14  
Device control. . . . . . . . . . . . . . . . . . . . . . . . . 14  
SPI and Pin control modes. . . . . . . . . . . . . . . 14  
Operating mode selection. . . . . . . . . . . . . . . . 15  
Selecting the output data standard. . . . . . . . . 15  
Selecting the output data format. . . . . . . . . . . 15  
Analog inputs . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Anti-kickback circuitry . . . . . . . . . . . . . . . . . . . 16  
Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
System reference and power management . . 18  
Internal/external references . . . . . . . . . . . . . . 18  
Reference gain control . . . . . . . . . . . . . . . . . . 19  
Common-mode output voltage (VO(cm)) . . . . . 19  
Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Drive modes . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Equivalent input circuit . . . . . . . . . . . . . . . . . . 21  
Duty cycle stabilizer . . . . . . . . . . . . . . . . . . . . 22  
Clock input divider . . . . . . . . . . . . . . . . . . . . . 22  
Digital outputs. . . . . . . . . . . . . . . . . . . . . . . . . 22  
Digital output buffers: CMOS mode . . . . . . . . 22  
Digital output buffers: LVDS DDR mode. . . . . 23  
DAta Valid (DAV) output clock . . . . . . . . . . . . 24  
OuT-of-Range (OTR) . . . . . . . . . . . . . . . . . . . 24  
Digital offset . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Test patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
11.1.1  
11.1.2  
11.1.3  
11.1.4  
11.2  
11.2.1  
11.2.2  
11.2.3  
11.3  
11.3.1  
11.3.2  
11.3.3  
11.3.4  
11.4  
11.4.1  
11.4.2  
11.4.3  
11.4.4  
11.5  
11.5.1  
11.5.2  
11.5.3  
11.5.4  
11.5.5  
11.5.6  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2010.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 6 August 2010  
Document identifier: ADC1212D_SER  

ADC1212D065HN/C1 相关器件

型号 制造商 描述 价格 文档
ADC1212D080HN NXP Dual 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps; CMOS or LVDS DDR digital outputs 获取价格
ADC1212D080HN-C1 IDT Dual 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps; CMOS or LVDS DDR digital outputs 获取价格
ADC1212D080HN/C1 NXP PROPRIETARY METHOD ADC, PQCC64, 9 X 9 MM, 0.85 MM HEIGHT, PLASTIC, SOT804-3, VQFN-64 获取价格
ADC1212D105HN NXP Dual 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps; CMOS or LVDS DDR digital outputs 获取价格
ADC1212D105HN-C1 IDT Dual 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps; CMOS or LVDS DDR digital outputs 获取价格
ADC1212D105HN/C1 IDT PROPRIETARY METHOD ADC, PQCC64, 9 X 9 MM, 0.85 MM HEIGHT, PLASTIC, SOT804-3, VQFN-64 获取价格
ADC1212D125HN NXP Dual 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps; CMOS or LVDS DDR digital outputs 获取价格
ADC1212D125HN-C1 IDT Dual 12-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps; CMOS or LVDS DDR digital outputs 获取价格
ADC1212D125HN/C1 IDT PROPRIETARY METHOD ADC, PQCC64, 9 X 9 MM, 0.85 MM HEIGHT, PLASTIC, SOT804-3, VQFN-64 获取价格
ADC12130 NSC Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold 获取价格

ADC1212D065HN/C1 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6