ICS843001BGI-23LF [IDT]

Clock Generator, 650MHz, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-24;
ICS843001BGI-23LF
型号: ICS843001BGI-23LF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 650MHz, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-24

时钟 光电二极管 外围集成电路 晶体
文件: 总18页 (文件大小:328K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
FEMTOCLOCK™ CRYSTAL/LVCMOS-TO-  
3.3V LVPECL/LVCMOS SYNTHESIZER  
ICS843001I-23  
GENERAL DESCRIPTION  
FEATURES  
The ICS843001I-23 is a highly versatile, low phase  
• One 3.3V LVPECL output pair and  
ICS  
noise LVPECL/LVCMOS Synthesizer which can  
generate low jitter reference clocks for a variety of  
communication applications and is a member of  
the HiPerClocksTM family of high performance clock  
solutions from IDT. The dual crystal interface  
one LVCMOS/LVTTL REF_OUT output  
HiPerClockS™  
• Selectable crystal oscillator interfaces  
or LVCMOS/LVTTL single-ended input  
• Crystal and CLK range: 17.5MHz - 29.54MHz  
allows the synthesizer to support up to three communication  
standards in a given application (i.e. SONET with a 19.44MHz  
crystal, 1Gb/10Gb Ethernet and Fibre Channel using a 25MHz  
crystal). The rms phase jitter performance is typically less than  
1ps, thus making the device acceptable for use in demanding  
applications such as OC48 SONET, GbE/10Gb Ethernet  
and SAN applications. The ICS843001I-23 is packaged in  
a small 24-pin TSSOP package.  
• Able to generate GbE/10GbE/12GbE, Fibre Channel  
(1Gb/4Gb/10Gb), PCI-E and SATA from a 25MHz crystal  
• VCO range: 1.12GHz - 1.3GHz  
• Supports the following applications:  
SONET, Ethernet, Fibre Channel, Serial ATA, and HDTV  
• RMS phase jitter @ 622.08MHz (12kHz - 20MHz):  
0.9ps (typical) @ 3.3V  
• Supply modes:  
VCC/VCCO  
3.3V/3.3V  
3.3V/2.5V  
2.5V/2.5V  
• -40°C to 85°C ambient operating temperature  
• Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
BLOCK DIAGRAM  
3
PIN ASSIGNMENT  
N2:N0  
Pulldown  
SEL0  
VCCO_LVCMOS  
1
2
3
4
REF_OUT  
VEE  
OE_REF  
M2  
24  
23  
22  
21  
Pulldown  
SEL1  
N0  
N1  
N2  
N
XTAL_IN0  
000 ÷2  
5
6
7
8
VCCO_LVPECL  
20  
19  
18  
17  
16  
15  
14  
13  
M1  
M0  
MR  
SEL1  
001 ÷4  
Q
nQ  
VEE  
OSC  
00  
01  
11  
010 ÷5  
Q
011 ÷6  
XTAL_OUT0  
XTAL_IN1  
VCCA  
9
SEL0  
10  
01  
00  
nQ  
100 ÷8 (default)  
101 ÷10  
110 ÷12  
111 ÷16  
Phase  
Detector  
10  
11  
12  
CLK  
VCO  
VCC  
XTAL_OUT1  
XTAL_IN0  
XTAL_OUT0  
OSC  
XTAL_IN1  
XTAL_OUT1  
CLK  
M
ICS843001I-23  
24-Lead TSSOP  
4.40mm x 7.8mm x 0.92mm  
package body  
000 ÷44  
10  
11  
Pulldown  
001 ÷45  
010 ÷48  
011 ÷50  
100 ÷51  
G Package  
Top View  
111 ÷64 (default)  
Pulldown  
Pullup  
MR  
3
M2:M0  
REF_OUT  
Pulldown  
OE_REF  
The Preliminary Information presented herein represents a product in pre-production.The noted characteristics are based on initial product characterization  
and/or qualification.Integrated DeviceTechnology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.  
IDT/ ICS3.3V LVPECL/ LVCMOS FREQUENCY SYNTHESIZER  
1
ICS843001BGI-23 REV. B FEBRUARY 19, 2009  
ICS843001I-23  
FEMTOCLOCK™ CRYSTAL/LVCMOS-TO-3.3V LVPECL/LVCMOS SYNTHESIZER  
PRELIMINARY  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
VCCO_CMOS  
N0, N1  
N2  
Type  
Description  
1
2, 3  
4
Power  
Input  
Output supply pin for LVCMOS/LVTTL REF_OUT output.  
Pulldown  
Output divider select pins. See Table 3C.  
LVCMOS/LVTTL interface levels.  
Input  
Pullup  
5
VCCO_LVPECL  
Q, nQ  
VEE  
Power  
Ouput  
Power  
Power  
Power  
Output supply pin for LVPECL output.  
Differential output pair. LVPECL interface levels.  
Negative supply pin.  
6, 7  
8, 23  
9
VCCA  
Analog supply pin.  
10  
VCC  
Core supply pin.  
11  
12  
13  
14  
XTAL_OUT1,  
XTAL_IN1  
XTAL_OUT0,  
XTAL_IN0  
Parallel resonant crystal interface. XTAL_OUT1 is the output,  
XTAL_IN1 is the input.  
Parallel resonant crystal interface. XTAL_OUT0 is the output,  
XTAL_IN0 is the input.  
Input  
Input  
15  
CLK  
Input  
Input  
Pulldown LVCMOS/LVTTL clock input.  
16, 17  
SEL0, SEL1  
Pulldown Input MUX select pins. LVCMOS/LVTTL interface levels.  
Active HIGH Master Reset. When logic HIGH, the internal dividers are  
reset causing the true output Q to go low and the inverted output nQ to  
go high. When logic LOW, the internal dividers and the outputs are  
enabled. LVCMOS/LVTTL interface levels.  
Feedback divider select pins. See Table 3B.  
LVCMOS/LVTTL interface levels.  
18  
MR  
Input  
Input  
Pulldown  
19, 20 , 21 M0, M1, M2  
Pullup  
Reference clock output enable. Default Low. See Table 3E.  
LVCMOS/LVTTL interface levels.  
22  
24  
OE_REF  
Input  
Pulldown  
REF_OUT  
Output  
Reference clock output. LVCMOS/LVTTL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CIN  
Input Capacitance  
4
pF  
Power Dissipation  
Capacitance  
CPD  
pF  
RPULLDOWN Input Pulldown Resistor  
51  
51  
20  
kΩ  
kΩ  
Ω
RPULLUP  
Rout  
Input Pullup Resistor  
Output Impedance  
REF_OUT  
IDT/ ICS3.3V LVPECL/ LVCMOS FREQUENCY SYNTHESIZER  
2
ICS843001BGI-23 REV. B FEBRUARY 19, 2009  
ICS843001I-23  
FEMTOCLOCK™ CRYSTAL/LVCMOS-TO-3.3V LVPECL/LVCMOS SYNTHESIZER  
PRELIMINARY  
TABLE 3A. COMMON CONFIGURATIONS TABLE  
Input  
Feedback  
Divider  
Output Frequency  
(MHz)  
VCO (MHz)  
N Divider Value  
Application  
XTAL Input (MHz)  
27  
24.75  
19.44  
19.44  
19.44  
25  
44  
48  
64  
64  
64  
50  
50  
50  
50  
50  
45  
48  
48  
48  
51  
51  
51  
1188  
1188  
16  
16  
8
74.25  
74.25  
155.52  
622.08  
311.04  
125  
HDTV  
HDTV  
1244.16  
1244.16  
1244.16  
1250  
SONET  
2
SONET  
4
SONET  
10  
8
GigE  
25  
1250  
156.25  
250  
10 GigE  
25  
1250  
5
GigE  
25  
1250  
4
312.5  
625  
XGMII  
25  
1250  
2
10 GigE  
25  
1125  
6
187.5  
100  
12 GigE  
25  
1200  
12  
8
PCI Express  
SATA  
25  
1200  
150  
25  
1200  
16  
12  
8
75  
SATA  
25  
1275  
106.25  
159.375  
212.5  
Fibre Channel  
10 Gig Fibre Channel  
4 Gig Fibre Channel  
25  
1275  
25  
1275  
6
TABLE 3C. PROGRAMMABLE N OUTPUT DIVIDER  
FUNCTION TABLE  
TABLE 3B. PROGRAMMABLE M OUTPUT DIVIDER  
FUNCTION TABLE  
Inputs  
Inputs  
Input Frequency  
M Divider  
Value  
N Divide Value  
N2  
0
N1  
0
N0  
0
M2  
0
M1  
0
M0  
0
Minimum Maximum  
2
4
44  
45  
25.5  
24.9  
23.3  
22.4  
22.0  
17.5  
29.54  
28.88  
27.08  
26.0  
0
0
1
0
0
1
0
1
0
5
0
1
0
48  
0
1
1
6
0
1
1
50  
1
0
0
8
(default)  
10  
12  
16  
1
0
0
51  
25.49  
20.31  
1
0
1
1
1
1
64 (default)  
1
1
0
1
1
1
TABLE 3D. BYPASS MODE FUNCTION TABLE  
Inputs  
TABLE 3E. OE_REF OUTPUT FUNCTION TABLE  
Inputs  
Output  
REF_OUT  
Hi-Z  
Reference Input  
PLL Mode  
SEL1 SEL0  
OE_REF  
0
0
1
1
0
1
0
1
XTAL0  
XTAL1  
CLK  
Active  
Active  
Active  
0
1
Active  
CLK  
Bypass  
IDT/ ICS3.3V LVPECL/ LVCMOS FREQUENCY SYNTHESIZER  
3
ICS843001BGI-23 REV. B FEBRUARY 19, 2009  
ICS843001I-23  
FEMTOCLOCK™ CRYSTAL/LVCMOS-TO-3.3V LVPECL/LVCMOS SYNTHESIZER  
PRELIMINARY  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO (LVPECL)  
Continuous Current  
Surge Current  
50mA  
100mA  
Outputs, VO (LVCMOS)  
-0.5V to VCCO_LVCMOS + 0.5V  
Package Thermal Impedance, θ  
82.3°C/W (0 mps)  
-65°C to 150°C  
JA  
Storage Temperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCO_LVPECL, VCCO_LVCMOS = 3.3V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum Typical  
Maximum Units  
Core Supply Voltage  
Analog Supply Voltage  
3.135  
VCC – 0.05  
3.135  
3.3  
3.3  
3.3  
3.3  
105  
5
3.465  
VCC  
V
V
VCCA  
VCCO_LVPECL Output Supply Voltage  
VCCO_LVCMOS Output Supply Voltage  
3.465  
3.465  
V
3.135  
V
IEE  
Power Supply Current  
Analog Supply Current  
Output Supply Current  
mA  
mA  
mA  
ICCA  
ICCO  
5
TABLE 4B. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, VCCO_LVPECL, VCCO_LVCMOS = 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
3.135  
Typical Maximum Units  
Core Supply Voltage  
Analog Supply Voltage  
3.3  
3.3  
2.5  
2.5  
105  
5
3.465  
VCC  
V
V
VCCA  
VCC – 0.05  
2.375  
VCCO_LVPECL Output Supply Voltage  
VCCO_LVCMOS Output Supply Voltage  
2.625  
2.625  
V
2.375  
V
IEE  
Power Supply Current  
Analog Supply Current  
Output Supply Current  
mA  
mA  
mA  
ICCA  
ICCO  
5
TABLE 4C. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCO_LVPECL, VCCO_LVCMOS = 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
2.375  
Typical Maximum Units  
Core Supply Voltage  
Analog Supply Voltage  
2.5  
2.5  
2.5  
2.5  
100  
5
2.625  
VCC  
V
V
VCCA  
VCC – 0.05  
2.375  
VCCO_LVPECL Output Supply Voltage  
VCCO_LVCMOS Output Supply Voltage  
2.625  
2.625  
V
2.375  
V
IEE  
Power Supply Current  
Analog Supply Current  
Output Supply Current  
mA  
mA  
mA  
ICCA  
ICCO  
5
IDT/ ICS3.3V LVPECL/ LVCMOS FREQUENCY SYNTHESIZER  
4
ICS843001BGI-23 REV. B FEBRUARY 19, 2009  
ICS843001I-23  
FEMTOCLOCK™ CRYSTAL/LVCMOS-TO-3.3V LVPECL/LVCMOS SYNTHESIZER  
PRELIMINARY  
TABLE 4D. LVCMOS / LVTTL DC CHARACTERISTICS, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VCC = 3.3V  
2
VCC + 0.3  
VCC + 0.3  
0.8  
V
V
V
V
VIH  
VIL  
Input High Voltage  
V
CC = 2.5V  
1.7  
-0.3  
-0.3  
VCC = 3.3V  
VCC = 2.5V  
Input Low Voltage  
0.7  
VCC = VIN = 3.465V  
CLK, SEL0, SEL1,  
OE_REF, MR, N0, N1  
150  
5
µA  
µA  
µA  
or 2.625V  
VCC = VIN = 3.465V  
Input  
High Current  
IIH  
N2, M0:M2  
or 2.625V  
VCC = 3.465V or 2.625V,  
VIN = 0V  
CLK, SEL0, SEL1,  
OE_REF, MR, N0, N1  
-5  
Input  
Low Current  
IIL  
V
CC = 3.465V or 2.625V,  
IN = 0V  
VCCO_LVCMOS = 3.465V  
CCO_LVCMOS = 2.625V  
N2, M0:M2  
REF_OUT  
REF_OUT  
-150  
µA  
V
2.6  
1.8  
V
V
Output High  
Voltage; NOTE 1  
VOH  
V
VCCO_LVCMOS = 3.465V  
or 2.625V  
Output Low  
Voltage; NOTE 1  
VOL  
0.5  
V
ΔV/ΔT  
Input Edge Rate CLK  
20ꢀ - 80ꢀ  
TBD  
V/ns  
NOTE 1: Output terminated with 50Ω to VCCO _LVCMOS/2. See Parameter Measurement Information Section,  
"Output Load Test Circuit Diagram" diagrams.  
TABLE 4E. LVPECL DC CHARACTERISTICS, VCC = VCCO_LVPECL = 3.3V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCCO_LVPECL - 1.4  
VCCO_LVPECL - 2.0  
0.6  
Typical  
Maximum  
VCCO_LVPECL - 0.9  
VCCO_LVPECL - 1.7  
1.0  
Units  
VOH  
Output High Voltage; NOTE 1  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50Ω to VCCO_LVPECL - 2V.  
TABLE 4F. LVPECL DC CHARACTERISTICS, VCC = 3.3V±±5% o%ꢀ.±V±±5ꢁ%VCCO_LVPECL = 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCCO_LVPECL - 1.4  
VCCO_LVPECL - 2.0  
0.4  
Typical  
Maximum  
VCCO_LVPECL - 0.9  
VCCO_LVPECL - 1.5  
1.0  
Units  
VOH  
Output High Voltage; NOTE 1  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50Ω to VCCO_LVPECL - 2V.  
TABLE 5. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum  
Typical Maximum Units  
Mode of Oscillation  
Fundamental  
MHz  
MHz  
Ω
Frequency  
17.5  
29.54  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
50  
7
pF  
Drive Level  
1
mW  
NOTE: Characterized using an 18pF parallel resonant crystal.  
IDT/ ICS3.3V LVPECL/ LVCMOS FREQUENCY SYNTHESIZER  
5
ICS843001BGI-23 REV. B FEBRUARY 19, 2009  
ICS843001I-23  
FEMTOCLOCK™ CRYSTAL/LVCMOS-TO-3.3V LVPECL/LVCMOS SYNTHESIZER  
PRELIMINARY  
TABLE 6A. AC CHARACTERISTICS, VCC = VCCO_LVPECL, VCCO_LVCMOS = 3.3V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
fOUT Output Frequency  
tPD  
Test Conditions  
Minimum Typical Maximum Units  
56  
650  
MHz  
Propagation  
Delay, NOTE 1  
CLK to  
REF_OUT  
2.5  
0.9  
ns  
RMS Phase Jitter, (Random);  
NOTE 2, 3  
tjit(Ø)  
622.08MHz (12kHz - 20MHz)  
ps  
fVCO  
PLL VCO Lock Range  
Select Time  
1.12  
1.3  
GHz  
ms  
ms  
ps  
tL_SEL  
tL_M  
PLL Lock Time  
Q/nQ  
20ꢀ to 80ꢀ  
20ꢀ to 80ꢀ  
300  
500  
50  
Output  
tR / tF  
odc  
Rise/Fall Time  
REF_OUT  
Q/nQ  
ps  
Output Duty Cycle  
REF_OUT  
50  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established  
when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet  
specifications after thermal equilibrium has been reached under these conditions.  
NOTE 1: Measured from the VCC/2 of the input to VCCO_LVCMOS/2 of the output.  
NOTE 2: Phase jitter measured using a 19.44MHz quartz crystal.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
TABLE 6B. AC CHARACTERISTICS, VCC = 3.3V 5ꢀ, VCCO_LVPECL, VCCO_LVCMOS = 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
fOUT Output Frequency  
tPD  
Test Conditions  
Minimum Typical Maximum Units  
56  
650  
MHz  
Propagation  
Delay, NOTE 1  
CLK to  
REF_OUT  
3.5  
1
ns  
RMS Phase Jitter, (Random);  
NOTE 2, 3  
tjit(Ø)  
622.08MHz (12kHz - 20MHz)  
ps  
fVCO  
PLL VCO Lock Range  
Select Time  
1.12  
1.3  
GHz  
ms  
ms  
ps  
tL_SEL  
tL_M  
PLL Lock Time  
Q/nQ  
20ꢀ to 80ꢀ  
20ꢀ to 80ꢀ  
300  
500  
50  
Output  
tR / tF  
odc  
Rise/Fall Time  
REF_OUT  
Q/nQ  
ps  
Output Duty Cycle  
REF_OUT  
50  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established  
when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet  
specifications after thermal equilibrium has been reached under these conditions.  
NOTE 1: Measured from the VCC/2 of the input to VCCO_LVCMOS/2 of the output.  
NOTE 2: Phase jitter measured using a 19.44MHz quartz crystal.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
IDT/ ICS3.3V LVPECL/ LVCMOS FREQUENCY SYNTHESIZER  
6
ICS843001BGI-23 REV. B FEBRUARY 19, 2009  
ICS843001I-23  
FEMTOCLOCK™ CRYSTAL/LVCMOS-TO-3.3V LVPECL/LVCMOS SYNTHESIZER  
PRELIMINARY  
TABLE 6C. AC CHARACTERISTICS, VCC = VCCO_LVPECL, VCCO_LVCMOS = 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
fOUT Output Frequency  
tPD  
Test Conditions  
Minimum Typical Maximum Units  
56  
650  
MHz  
Propagation  
Delay, NOTE 1  
CLK to  
REF_OUT  
3
ns  
RMS Phase Jitter, (Random);  
NOTE 2, 3  
tjit(Ø)  
622.08MHz (12kHz - 20MHz)  
1.1  
ps  
fVCO  
PLL VCO Lock Range  
Select Time  
1.12  
1.3  
GHz  
ms  
ms  
ps  
tL_SEL  
tL_M  
PLL Lock Time  
Q/nQ  
20ꢀ to 80ꢀ  
20ꢀ to 80ꢀ  
300  
500  
50  
Output  
tR / tF  
odc  
Rise/Fall Time  
REF_OUT  
Q/nQ  
ps  
Output Duty Cycle  
REF_OUT  
50  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established  
when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet  
specifications after thermal equilibrium has been reached under these conditions.  
NOTE 1: Measured from the VCC/2 of the input to VCCO_LVCMOS/2 of the output.  
NOTE 2: Phase jitter measured using a 19.44MHz quartz crystal.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
IDT/ ICS3.3V LVPECL/ LVCMOS FREQUENCY SYNTHESIZER  
7
ICS843001BGI-23 REV. B FEBRUARY 19, 2009  
ICS843001I-23  
FEMTOCLOCK™ CRYSTAL/LVCMOS-TO-3.3V LVPECL/LVCMOS SYNTHESIZER  
PRELIMINARY  
PARAMETER MEASUREMENT INFORMATION  
1.65V 5ꢀ  
2V  
1.65V 5ꢀ  
2V  
SCOPE  
,
VCC  
SCOPE  
VCCO_LVCMOS  
,
VCC  
VCCO_LVPECL  
Qx  
VCCA  
Qx  
VCCA  
LVCMOS  
GND  
LVPECL  
nQx  
VEE  
-1.65V 5ꢀ  
-1.3V 0.165V  
3.3V LVPECL OUTPUT LOAD AC TEST CIRCUIT  
3.3V LVCMOS OUTPUT LOAD AC TEST CIRCUIT  
2.8V 0.04V  
2V  
2.05V 5ꢀ  
1.25V 5ꢀ  
2.8V 0.04V  
2.05V 5ꢀ  
VCC  
VCC  
SCOPE  
SCOPE  
Qx  
VCCO_LVPECL  
VCCO_LVCMOS  
VCCA  
Qx  
VCCA  
LVCMOS  
GND  
LVPECL  
nQx  
VEE  
-1.25V 5ꢀ  
-0.5V 0.125V  
3.3V CORE/2.5V LVPECL OUTPUT LOAD AC TEST CIRCUIT  
3.3V CORE/2.5V LVCMOS OUTPUT LOAD AC TEST CIRCUIT  
1.25V 5ꢀ  
1.25V 5ꢀ  
2V  
2V  
SCOPE  
,
VCC  
SCOPE  
VCCO_LVCMOS  
,
VCC  
VCCO_LVPECL  
Qx  
VCCA  
Qx  
VCCA  
LVCMOS  
GND  
LVPECL  
nQx  
VEE  
-1.25V 5ꢀ  
-0.5V 0.125V  
2.5V LVPECL OUTPUT LOAD AC TEST CIRCUIT  
2.5V LVCMOS OUTPUT LOAD AC TEST CIRCUIT  
IDT/ ICS3.3V LVPECL/ LVCMOS FREQUENCY SYNTHESIZER  
8
ICS843001BGI-23 REV. B FEBRUARY 19, 2009  
ICS843001I-23  
FEMTOCLOCK™ CRYSTAL/LVCMOS-TO-3.3V LVPECL/LVCMOS SYNTHESIZER  
PRELIMINARY  
Phase Noise Plot  
nQ  
Q
Phase Noise Mask  
tPW  
tPERIOD  
tPW  
Offset Frequency  
f1  
f2  
odc =  
x 100ꢀ  
tPERIOD  
RMS Jitter = Area Under the Masked Phase Noise Plot  
LVPECL OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
RMS PHASE JITTER  
nQ  
VCCO_LVCMOS  
2
80ꢀ  
tF  
80ꢀ  
tR  
REF_OUT  
VSWING  
20ꢀ  
tPW  
20ꢀ  
tPERIOD  
Q,  
REF_OUT  
tPW  
odc =  
x 100ꢀ  
tPERIOD  
OUTPUT RISE/FALL TIME  
LVCMOS OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
VCC  
2
CLK  
VCCO_LVCMOS  
REF_OUT  
2
t
PD  
PROPAGATION DELAY  
IDT/ ICS3.3V LVPECL/ LVCMOS FREQUENCY SYNTHESIZER  
9
ICS843001BGI-23 REV. B FEBRUARY 19, 2009  
ICS843001I-23  
FEMTOCLOCK™ CRYSTAL/LVCMOS-TO-3.3V LVPECL/LVCMOS SYNTHESIZER  
PRELIMINARY  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter perfor-  
mance, power supply isolation is required. The ICS843001I-23  
provides separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VCC, VCCA, and VCCO_X  
should be individually connected to the power supply  
plane through vias, and 0.01µF bypass capacitors should be used  
for each pin. Figure 1 illustrates this for a generic VCC pin and  
also shows that VCCA requires that an additional10Ω resistor  
3.3V or 2.5V  
VCC  
.01μF  
.01μF  
10Ω  
VCCA  
10μF  
FIGURE 1. POWER SUPPLY FILTERING  
along with a 10µF bypass capacitor be connected to the VCCA pin.  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
LVCMOS OUTPUT  
CRYSTAL INPUTS  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kΩ resistor can be tied  
from XTAL_IN to ground.  
The unused LVCMOS output can be left floating. There should  
be no trace attached.  
LVPECL OUTPUT  
The unused LVPECL output pair can be left floating. We  
recommend that there is no trace attached. Both sides of the  
differential output pair should either be left floating or terminated.  
CLK INPUT  
For applications not requiring the use of a clock input, it can be  
left floating. Though not required, but for additional protection, a  
1kΩ resistor can be tied from the CLK input to ground.  
LVCMOS CONTROL PINS  
All control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
IDT/ ICS3.3V LVPECL/ LVCMOS FREQUENCY SYNTHESIZER  
10  
ICS843001BGI-23 REV. B FEBRUARY 19, 2009  
ICS843001I-23  
FEMTOCLOCK™ CRYSTAL/LVCMOS-TO-3.3V LVPECL/LVCMOS SYNTHESIZER  
PRELIMINARY  
CRYSTAL INPUT INTERFACE  
The ICS843001I-23 has been characterized with 18pF  
parallel resonant crystals. The capacitor values shown in  
Figure 2 below were determined using an 18pF parallel  
resonant crystal and were chosen to minimize the ppm error.  
XTAL_IN  
C1  
22p  
X1  
18pF Parallel Cry stal  
XTAL_OUT  
C2  
22p  
FIGURE 2. CRYSTAL INPUT INTERFACE  
LVCMOS TO XTAL INTERFACE  
series resistance (Rs) equals the transmission line impedance.  
In addition, matched termination at the crystal input will  
attenuate the signal in half. This can be done in one of two  
ways. First, R1 and R2 in parallel should equal the transmission  
line impedance. For most 50Ω applications, R1 and R2 can be  
100Ω. This can also be accomplished by removing R1 and  
making R2 50Ω.  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram  
is shown in Figure 3. The XTAL_OUT pin can be left floating.  
The input edge rate can be as slow as 10ns. For LVCMOS  
signals, it is recommended that the amplitude be reduced from  
full swing to half swing in order to prevent signal interference  
with the power rail and to reduce noise. This configuration  
requires that the output impedance of the driver (Ro) plus the  
VDD  
VDD  
R1  
.1uf  
Ro  
Rs  
Zo = 50  
XTAL_IN  
R2  
Zo = Ro + Rs  
XTAL_OUT  
FIGURE 3. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE  
IDT/ ICS3.3V LVPECL/ LVCMOS FREQUENCY SYNTHESIZER  
11  
ICS843001BGI-23 REV. B FEBRUARY 19, 2009  
ICS843001I-23  
FEMTOCLOCK™ CRYSTAL/LVCMOS-TO-3.3V LVPECL/LVCMOS SYNTHESIZER  
PRELIMINARY  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termination  
for LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
drive 50Ω transmission lines. Matched impedance techniques  
should be used to maximize operating frequency and minimize  
signal distortion. Figures 4A and 4B show two different layouts  
which are recommended only as guidelines. Other suitable  
clock layouts may exist and it would be recommended that the  
board designers simulate to guarantee compatibility across all  
printed circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, termi-  
nating resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 4A. LVPECL OUTPUT TERMINATION  
FIGURE 4B. LVPECL OUTPUT TERMINATION  
IDT/ ICS3.3V LVPECL/ LVCMOS FREQUENCY SYNTHESIZER  
12  
ICS843001BGI-23 REV. B FEBRUARY 19, 2009  
ICS843001I-23  
FEMTOCLOCK™ CRYSTAL/LVCMOS-TO-3.3V LVPECL/LVCMOS SYNTHESIZER  
PRELIMINARY  
TERMINATION FOR 2.5V LVPECL OUTPUTS  
Figure 5A and Figure 5B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating  
50Ω to V - 2V. For V = 2.5V, the V - 2V is very close to ground  
level. The R3 in Figure 5B can be eliminated and the termination  
is shown in Figure 5C.  
CC  
CC  
CC  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
R1  
R3  
250  
250  
+
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 5A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 5B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 5C. 2.5V LVPECL TERMINATION EXAMPLE  
IDT/ ICS3.3V LVPECL/ LVCMOS FREQUENCY SYNTHESIZER  
13  
ICS843001BGI-23 REV. B FEBRUARY 19, 2009  
ICS843001I-23  
FEMTOCLOCK™ CRYSTAL/LVCMOS-TO-3.3V LVPECL/LVCMOS SYNTHESIZER  
PRELIMINARY  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS843001I-23.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS843001I-23 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core) = V  
* I  
= 3.465V * 105mA = 363.8mW  
EE_MAX  
MAX  
CC_MAX  
Power (outputs) = 30mW/Loaded Output pair  
MAX  
Total Power  
(3.465V, with all outputs switching) = 363.8mW + 30mW = 393.8mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air  
flow and a multi-layer board, the appropriate value is 82.3°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.394W * 82.3°C/W = 117.4°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (multi-layer).  
TABLE 7. THERMAL RESISTANCE θ FOR 24-PIN TSSOP, FORCED CONVECTION  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
82.3°C/W  
78.0°C/W  
75.9°C/W  
IDT/ ICS3.3V LVPECL/ LVCMOS FREQUENCY SYNTHESIZER  
14  
ICS843001BGI-23 REV. B FEBRUARY 19, 2009  
ICS843001I-23  
FEMTOCLOCK™ CRYSTAL/LVCMOS-TO-3.3V LVPECL/LVCMOS SYNTHESIZER  
PRELIMINARY  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6  
VCCO  
Q1  
VOUT  
RL  
50  
VCCO - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V - 2V.  
CCO  
For logic high, V = V  
= V  
– 0.9V  
OUT  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
CCO  
L
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
_MAX  
CCO  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT/ ICS3.3V LVPECL/ LVCMOS FREQUENCY SYNTHESIZER  
15  
ICS843001BGI-23 REV. B FEBRUARY 19, 2009  
ICS843001I-23  
FEMTOCLOCK™ CRYSTAL/LVCMOS-TO-3.3V LVPECL/LVCMOS SYNTHESIZER  
PRELIMINARY  
RELIABILITY INFORMATION  
TABLE 8. θ VS. AIR FLOW TABLE FOR 24 LEAD TSSOP  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
82.3°C/W  
78.0°C/W  
75.9°C/W  
TRANSISTOR COUNT  
The transistor count for ICS843001I-23 is: 4165  
PACKAGE OUTLINE AND DIMENSIONS  
PACKAGE OUTLINE - G SUFFIX FOR 24 LEAD TSSOP  
TABLE 9. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Minimum  
Maximum  
N
A
24  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
7.90  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
7.70  
c
D
E
6.40 BASIC  
E1  
e
4.30  
4.50  
0.65 BASIC  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
IDT/ ICS3.3V LVPECL/ LVCMOS FREQUENCY SYNTHESIZER  
16  
ICS843001BGI-23 REV. B FEBRUARY 19, 2009  
ICS843001I-23  
FEMTOCLOCK™ CRYSTAL/LVCMOS-TO-3.3V LVPECL/LVCMOS SYNTHESIZER  
PRELIMINARY  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
843001BGI-23  
Marking  
Package  
Shipping Packaging  
tube  
Temperature  
ICS843001BI23  
ICS843001BI23  
ICS43001BI23L  
ICS43001BI23L  
24 Lead TSSOP  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
843001BGI-23T  
843001BGI-23LF  
843001BGI-23LFT  
24 Lead TSSOP  
2500 tape & reel  
tube  
24 Lead "Lead-Free" TSSOP  
24 Lead "Lead-Free" TSSOP  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICS3.3V LVPECL/ LVCMOS FREQUENCY SYNTHESIZER  
17  
ICS843001BGI-23 REV. B FEBRUARY 19, 2009  
ICS843001I-23  
FEMTOCLOCKS™ CRYSTAL/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
PRELIMINARY  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
For Tech Support  
netcom@idt.com  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
+480-763-2056  
www.IDT.com/go/contactIDT  
United States  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
© 2009 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

ICS843001BGI-23T

Clock Generator, 650MHz, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, MO-153, TSSOP-24
IDT

ICS843001BGILF

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001BGILFT

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001BGIT

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001BI

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001BKI

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001BKILF

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001BKILFT

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001BKIT

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001I-22

FEMTOCLOCKS? CRYSTAL/LVCMOS-TO-3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843001I-23

FEMTOCLOCKS⑩ CRYSTAL-TO-3.3V LVPECL/LVCMOS FREQUENCY SYNTHESIZER
ICSI

ICS843001I-23

FemtoClock® Crystal/LVCMOS-to-LVPECL/ LVCMOS Frequency Synthesizer
IDT