ICS8432BKI-51 [IDT]

700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER; 700MHZ , CYRSTAL - TO- 3.3V的差分LVPECL频率合成器
ICS8432BKI-51
型号: ICS8432BKI-51
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
700MHZ , CYRSTAL - TO- 3.3V的差分LVPECL频率合成器

晶体 时钟发生器 微控制器和处理器 外围集成电路
文件: 总20页 (文件大小:315K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL  
LVPECL FREQUENCY SYNTHESIZER  
ICS8432I-51  
GENERAL DESCRIPTION  
FEATURES  
The ICS8432I-51 is a general purpose, dual out-  
Dual differential 3.3V LVPECL outputs  
ICS  
HiPerClockS™  
put Crystal-to-3.3V Differential LVPECL High Fre-  
quency Synthesizer and a member of the  
HiPerClockS™ family of High Performance Clock  
Solutions from IDT. The ICS8432I-51 has a select-  
Selectable crystal oscillator interface or  
LVCMOS/LVTTL TEST_CLK  
Output frequency range: 31.25MHz to 700MHz  
Crystal input frequency range: 12MHz to 25MHz  
VCO range: 250MHz to 700MHz  
able REF_CLK or crystal input. The VCO operates at a fre-  
quency range of 250MHz to 700MHz. The VCO frequency is  
programmed in steps equal to the value of the input reference  
or crystal frequency. The VCO and output frequency can be  
programmed using the serial or parallel interface to the con-  
figuration logic. The low phase noise characteristics of the  
ICS8432I-51 make it an ideal clock source for Gigabit Ethernet,  
Fibre Channel 1 and 2, and Infiniband applications.  
Parallel or serial interface for programming counter and  
output dividers  
RMS period jitter: 3.5ps (maximum)  
Cycle-to-cycle jitter: 40ps (maximum)  
3.3V supply voltage  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
32 31 30 29 28 27 26 25  
VCO_SEL  
XTAL_SEL  
M5  
M6  
M7  
M8  
N0  
N1  
nc  
1
2
3
4
5
6
7
8
XTAL_OUT  
REF_CLK  
XTAL_SEL  
VCCA  
24  
23  
22  
21  
20  
19  
18  
17  
REF_CLK  
0
XTAL1  
1
OSC  
ICS8432I-51  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
XTAL2  
VEE  
PLL  
9
10 11 12 13 14 15 16  
PHASE DETECTOR  
÷1  
÷2  
÷4  
÷8  
MR  
0
1
VCO  
FOUT0  
nFOUT0  
FOUT1  
nFOUT1  
÷ M  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
CONFIGURATION  
INTERFACE  
LOGIC  
Y Package  
Top View  
TEST  
32-Lead VFQFN  
5mm x 5mm x 0.95m package body  
K Package  
M0:M8  
N0:N1  
Top View  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
1
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
FUNCTIONAL DESCRIPTION  
NOTE: The functional description that follows describes opera-  
tion using a 25MHz crystal. Valid PLL loop divider values for dif-  
ferent crystal or input frequencies are defined in the Input  
Frequency Characteristics, Table 5, NOTE 1.  
N output divider to a specific default state that will automatically  
occur during power-up. The TEST output is LOW when operating  
in the parallel input mode. The relationship between the VCO  
frequency, the crystal frequency and the M divider is defined as  
follows: fVCO = fxtal x M  
The ICS8432I-51 features a fully integrated PLL and therefore,  
requires no external components for setting the loop bandwidth.  
A fundamental crystal is used as the input to the on-chip oscilla-  
tor. The output of the oscillator is fed into the phase detector.  
A 25MHz crystal provides a 25MHz phase detector reference  
frequency. The VCO of the PLL operates over a range of 250MHz  
to 700MHz. The output of the M divider is also applied to the  
phase detector.  
The M value and the required values of M0 through M8 are shown  
in Table 3B, Programmable VCO Frequency Function Table.  
Valid M values for which the PLL will achieve lock for a 25MHz  
reference are defined as 10 M 28. The frequency out is de-  
fined as follows: FOUT = fVCO = fxtal x M  
N
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD is  
LOW. The shift register is loaded by sampling the S_DATA bits  
with the rising edge of S_CLOCK. The contents of the shift reg-ister  
are loaded into the M divider and N output divider when S_LOAD  
transitions from LOW-to-HIGH. The M divide and N output divide  
values are latched on the HIGH-to-LOW transition of S_LOAD. If  
S_LOAD is held HIGH, data at the S_DATA input is passed directly  
to the M divider and N output divider on each ris-ing edge of  
S_CLOCK. The serial mode can be used to program the M and N  
bits and test bits T1 and T0. The internal registers T0 and T1 deter-  
mine the state of the TEST output as follows:  
The phase detector and the M divider force the VCO output fre-  
quency to be M times the reference frequency by adjusting the  
VCO control voltage. Note that for some values of M (either too high  
or too low), the PLL will not achieve lock. The output of the VCO is  
scaled by a divider prior to being sent to each of the LVPECL output  
buffers. The divider provides a 50% output duty cycle.  
The programmable features of the ICS8432I-51 support two in-  
put modes to program the M divider and N output divider. The  
two input operational modes are parallel and serial. Figure 1 shows  
the timing diagram for each mode. In parallel mode, the nP_LOAD  
input is initially LOW. The data on inputs M0 through M8 and N0  
and N1 is passed directly to the M divider and N output divider.  
On the LOW-to-HIGH transition of the nP_LOAD input, the data  
is latched and the M divider remains loaded until the next LOW  
transition on nP_LOAD or until a serial event occurs. As a result,  
the M and N bits can be hardwired to set the M divider and  
T1 T0  
TEST Output  
LOW  
0
0
1
1
0
1
0
1
S_Data, Shift Register Input  
Output of M divider  
CMOS Fout  
S
ERIAL LOADING  
S_CLOCK  
S_DATA  
T1  
T0  
*
NULL  
N1  
N0  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
M0  
t
t
H
S
S_LOAD  
nP_LOAD  
t
S
P
ARALLEL LOADING  
M0:M8, N0:N1  
nP_LOAD  
M, N  
t
t
S
H
S_LOAD  
Time  
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
*NOTE: The NULL timing slot must be observed.  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
2
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Pullup  
Description  
1
M5  
Input  
Input  
M divider inputs. Data latched on LOW-to-HIGH transition  
of nP_LOAD input. LVCMOS / LVTTL interface levels.  
2, 3, 4,  
28, 29,  
30, 31, 32  
M6, M7, M8,  
M0, M1,  
M2, M3, M4  
Pulldown  
Pulldown  
Determines output divider value as defined in Table 3C,  
Function Table. LVCMOS / LVTTL interface levels.  
5, 6  
N0, N1  
Input  
7
nc  
Unused  
Power  
No connect.  
8, 16  
VEE  
Negative supply pins.  
Test output which is ACTIVE in the serial mode of operation. Output  
driven LOW in parallel mode. LVCMOS / LVTTL interface levels.  
9
TEST  
Output  
10  
VCC  
Power  
Output  
Power  
Output  
Core supply pin.  
11, 12  
13  
FOUT1, nFOUT1  
VCCO  
Differential output for the synthesizer. 3.3V LVPECL interface levels.  
Output supply pin.  
14, 15  
FOUT0, nFOUT0  
Differential output for the synthesizer. 3.3V LVPECL interface levels.  
Active High Master Reset. When logic HIGH, the internal dividers  
are reset causing the true outputs FOUTx to go low and the  
17  
MR  
Input  
Pulldown inverted outputs nFOUTx to go high. When logic LOW, the internal  
dividers and the outputs are enabled. Assertion of MR does not  
effect loaded M, N, and T values. LVCMOS / LVTTL interface levels.  
Clocks in serial data present at S_DATA input into the shift register  
on the rising edge of S_CLOCK. LVCMOS / LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge of  
S_CLOCK. LVCMOS / LVTTL interface levels.  
18  
19  
S_CLOCK  
S_DATA  
Input  
Input  
Pulldown  
Pulldown  
Controls transition of data from shift register into the dividers.  
LVCMOS / LVTTL interface levels.  
20  
21  
S_LOAD  
VCCA  
Input  
Pulldown  
Power  
Analog supply pin.  
Selects between crystal or test inputs as the PLL reference source.  
22  
XTAL_SEL  
Input  
Pullup  
Selects XTAL inputs when HIGH. Selects REF_CLK when LOW.  
LVCMOS / LVTTL interface levels.  
23  
REF_CLK  
Input  
Input  
Pulldown Reference clock input. LVCMOS / LVTTL interface levels.  
24,  
25  
XTAL_OUT,  
XTAL_IN  
Crystal oscillator interface. XTAL_IN is the input.  
XTAL_OUT is the output.  
Parallel load input. Determines when data present at M8:M0 is  
Pulldown loaded into M divider, and when data present at N1:N0 sets the  
N output divider value. LVCMOS / LVTTL interface levels.  
26  
nP_LOAD  
Input  
Determines whether synthesizer is in PLL or bypass mode.  
LVCMOS / LVTTL interface levels.  
27  
VCO_SEL  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CIN  
Input Capacitance  
Input Pullup Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
3
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
MR nP_LOAD  
M
N
S_LOAD S_CLOCK S_DATA  
H
X
X
X
X
X
X
Reset. Forces outputs LOW.  
Data on M and N inputs passed directly to the M  
divider and N output divider. TEST output forced LOW.  
L
L
Data Data  
Data Data  
X
X
X
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the  
M divider and N output divider.  
L
L
L
L
L
X
L
X
H
H
X
X
X
X
Data  
Data  
L
L
L
H
H
H
X
X
X
X
X
X
L
L
X
Data  
X
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE  
256  
M8  
0
128  
M7  
0
64  
M6  
0
32  
M5  
0
16  
M4  
0
8
M3  
1
4
M2  
0
2
M1  
1
1
M0  
0
VCO Frequency  
(MHz)  
M Divide  
250  
275  
10  
11  
0
0
0
0
0
1
0
1
1
650  
675  
700  
26  
27  
28  
0
0
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
1
0
0
0
0
1
1
1
0
0
NOTE 1: These M divide values and the resulting frequencies correspond to crystal or TEST_CLK input frequency  
of 25MHz.  
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Inputs  
Output Frequency (MHz)  
N Divider Value  
N1  
0
N0  
0
Minimum  
Maximum  
700  
1
2
4
8
250  
125  
0
1
350  
1
0
62.5  
31.25  
175  
1
1
87.5  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
4
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCC  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
Inputs, V  
-0.5V to VCC + 0.5 V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θ  
32 Lead LQFP  
32 Lead VFQFN  
JA  
47.9°C/W (0 lfpm)  
41.07°C/W (0 lfpm)  
Storage Temperature, T  
-65°C to 150°C  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCO = 3.3V 5%, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.135  
VCC – 0.15  
3.135  
3.3  
3.3  
3.3  
3.465  
3.465  
3.465  
145  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
V
mA  
mA  
ICCA  
15  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCO = 3.3V 5%, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VCO_SEL, XTAL_SEL, MR,  
S_LOAD, nP_LOAD, N0:N1,  
S_DATA, S_CLOCK, M0:M8  
2
VCC + 0.3  
VCC + 0.3  
0.8  
V
V
Input  
VIH  
High Voltage  
REF_CLK  
2
VCO_SEL, XTAL_SEL, MR,  
S_LOAD, nP_LOAD, N0:N1,  
S_DATA, S_CLOCK, M0:M8  
-0.3  
-0.3  
V
Input  
VIL  
Low Voltage  
REF_CLK  
1.3  
V
M0-M4, M6-M8, N0, N1, MR,  
S_CLOCK, REF_CLK,  
S_DATA, S_LOAD, nP_LOAD  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
150  
µA  
Input  
IIH  
High Current  
M5, XTAL_SEL, VCO_SEL  
5
µA  
µA  
M0-M4, M6-M8, N0, N1, MR,  
S_CLOCK, REF_CLK,  
S_DATA, S_LOAD, nP_LOAD  
V
CC = 3.465V,  
VIN = 0V  
-5  
Input  
IIL  
Low Current  
VCC = 3.465V,  
VIN = 0V  
M5, XTAL_SEL, VCO_SEL  
TEST; NOTE 1  
-150  
2.6  
µA  
V
Output  
VOH  
High Voltage  
Output  
VOL  
TEST; NOTE 1  
0.5  
V
Low Voltage  
NOTE 1: Outputs terminated with 50Ω to VCCO/2.  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
5
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = VCCO = 3.3V 5%, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.6  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50 Ω to VCCO - 2V. See "Parameter Measurement Information" section,  
figure "3.3V Output Load Test Circuit".  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCO = 3.3V 5%, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
REF_CLK; NOTE 1  
12  
25  
25  
50  
MHz  
MHz  
MHz  
XTAL_IN, XTAL_OUT;  
NOTE 1  
fIN  
Input Frequency  
12  
S_CLOCK  
NOTE 1: For the input crystal and REF_CLK frequency range, the M value must be set for the VCO to operate within the  
250MHz to 700MHz range. Using the minimum input frequency of 12MHz, valid values of M are 21 M 58. Using the  
maximum frequency of 25MHz, valid values of M are 10 M 28.  
TABLE 6. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
12  
25  
70  
7
MHz  
Ω
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
pF  
1
mW  
TABLE 7. AC CHARACTERISTICS, VCC = VCCO = 3.3V 5%, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
MHz  
ps  
FOUT  
Output Frequency  
31.25  
700  
40  
tjit(cc)  
tjit(per)  
tsk(o)  
tR / tF  
Cycle-to-Cycle Jitter; NOTE 1, 3  
Period Jitter, RMS; NOTE 1  
Output Skew; NOTE 2, 3  
Output Rise/Fall Time  
fVCO > 350MHz  
3.5  
35  
ps  
ps  
20% to 80%  
200  
700  
ps  
M, N to nP_LOAD  
5
ns  
tS  
Setup Time S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
ns  
5
ns  
M, N to nP_LOAD  
5
ns  
tH  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
ns  
5
48  
ns  
odc  
tPW  
Output Duty Cycle  
Output Pulse Width  
PLL Lock Time  
N > 1  
N = 1  
52  
%
tPERIOD/2 - 150  
tPERIOD/2 + 150  
1
ps  
tLOCK  
ms  
See Parameter Measurement Information section.  
NOTE 1: Jitter performance using XTAL inputs.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
6
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
PARAMETER MEASUREMENT INFORMATION  
2V  
2V  
nFOUTx  
SCOPE  
FOUTx  
VCC  
,
Qx  
VCCO  
VCCA  
nFOUTy  
FOUTy  
LVPECL  
nQx  
tsk(o)  
VEE  
VEE  
-1.3V 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
OUTPUT SKEW  
VOH  
nFOUTx  
FOUTx  
VREF  
tcycle n+1  
tcycle n+1  
tcycle n  
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
tjit(cc) = tcycle n – tcycle n+1  
1000 Cycles  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
PERIOD JITTER  
CYCLE-TO-CYCLE JITTER  
nFOUTx  
80%  
tF  
80%  
FOUTx  
VSWING  
20%  
tPW  
Clock  
20%  
tPERIOD  
Outputs  
tR  
tPW  
odc =  
x 100%  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
OUTPUT RISE/FALL TIME  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
7
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
APPLICATION INFORMATION  
STORAGE AREA NETWORKS  
A variety of technologies are used for interconnection of the  
elements within a SAN. The tables below lists the common  
frequencies used as well as the settings for the ICS8432I-51 to  
generate the appropriate frequency.  
Table 8. Common SANs Application Frequencies  
Reference Frequency to SERDES  
Crystal Frequency  
Interconnect Technology  
Gigabit Ethernet  
Fibre Channel  
Clock Rate  
(MHz)  
(MHz)  
1.25 GHz  
125, 250, 156.25  
25, 19.53125  
FC1 1.0625 GHz  
FC2 2.1250 GHz  
106.25, 53.125, 132.8125  
125, 250  
16.6015625, 25  
25  
Infiniband  
2.5 GHz  
Table 9. Configuration Details for SANs Applications  
ICS8432I-51  
ICS8432I-51  
M & N Settings  
Interconnect  
Technology  
Crystal Frequency  
(MHz)  
Output Frequency  
to SERDES  
(MHz)  
M8 M7 M6 M5 M4 M3 M2 M1 M0 N1 N0  
25  
125  
250  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
1
1
0
1
1
0
1
1
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
1
0
1
1
1
1
1
1
0
0
1
0
0
1
0
0
0
1
25  
Gigabit Ethernet  
25  
156.25  
156.25  
53.125  
106.25  
132.8125  
125  
19.53125  
25  
Fiber Channel 1  
Fiber Channel 2  
Infiniband  
25  
16.6015625  
25  
25  
250  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS8432I-51 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VCC, VCCA, and VCCO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin.To achieve optimum jitter performance, power  
supply isolation is required. Figure 2 illustrates how  
a 10Ω resistor along with a 10μF and a 0.01μF bypass  
capacitor should be connected to each VCCA pin.  
3.3V  
VCC  
.01μF  
10Ω  
VCCA  
.01μF  
10 μF  
FIGURE 2. POWER SUPPLY FILTERING  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
8
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
CRYSTAL INPUT INTERFACE  
The ICS8432I-51 has been characterized with 18pF parallel  
resonant crystals. The capacitor values, C1 and C2, shown in  
Figure 3 below were determined using a 25MHz, 18pF parallel  
resonant crystal and were chosen to minimize the ppm error. The  
optimum C1 and C2 values can be slightly adjusted for different  
board layouts.  
XTAL_OUT  
XTAL_IN  
C1  
22p  
X1  
18pF Parallel Crystal  
C2  
22p  
FIGURE 3. CRYSTAL INPUt INTERFACE  
LVCMOS TO XTAL INTERFACE  
impedance of the driver (Ro) plus the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination  
at the crystal input will attenuate the signal in half. This can be  
done in one of two ways. First, R1 and R2 in parallel should equal  
the transmission line impedance. For most 50Ω applications, R1  
and R2 can be 100Ω.This can also be accomplished by removing  
R1 and making R2 50Ω.  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 4. The XTAL_OUT pin can be left floating. The  
input edge rate can be as slow as 10ns. For LVCMOS inputs, it is  
recommended that the amplitude be reduced from full swing to  
half swing in order to prevent signal interference with the power  
rail and to reduce noise.This configuration requires that the output  
VDD  
VDD  
R1  
.1uf  
Ro  
Rs  
Zo = 50  
XTAL_IN  
R2  
Zo = Ro + Rs  
XTAL_OUT  
FIGURE 4. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
9
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
CRYSTAL INPUTS  
OUTPUTS:  
LVPECL OUTPUTS  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kΩ resistor can be tied  
from XTAL_IN to ground.  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
REF_CLK INPUT  
For applications not requiring the use of the test clock, it can be  
left floating. Though not required, but for additional protection, a  
1kΩ resistor can be tied from the REF_CLK to ground.  
LVCMOS CONTROL PINS  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termination  
for LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
drive 50Ω transmission lines. Matched impedance techniques  
should be used to maximize operating frequency and minimize  
signal distortion. Figures 5A and 5B show two different layouts  
which are recommended only as guidelines. Other suitable clock  
layouts may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUTx and nFOUTx are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, termi-  
nating resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 5A. LVPECL OUTPUT TERMINATION  
FIGURE 5B. LVPECL OUTPUT TERMINATION  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
10  
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
VFQFN EPADTHERMAL RELEASE PATH  
In order to maximize both the removal of heat from the package  
and the electrical performance, a land pattern must be  
incorporated on the Printed Circuit Board (PCB) within the footprint  
of the package corresponding to the exposed metal pad or  
exposed heat slug on the package, as shown in Figure 6. The  
solderable area on the PCB, as defined by the solder mask, should  
be at least the same size/shape as the exposed pad/slug area on  
the package to maximize the thermal/electrical performance.  
Sufficient clearance should be designed on the PCB between the  
outer edges of the land pattern and the inner edges of pad pattern  
for the leads to avoid any shorts.  
are application specific and dependent upon the package power  
dissipation as well as electrical conductivity requirements. Thus,  
thermal and electrical analysis and/or testing are recommended  
to determine the minimum number needed. Maximum thermal  
and electrical performance is achieved when an array of vias is  
incorporated in the land pattern. It is recommended to use as  
many vias connected to ground as possible. It is also  
recommended that the via diameter should be 12 to 13mils (0.30  
to 0.33mm) with 1oz copper via barrel plating. This is desirable to  
avoid any solder wicking inside the via during the soldering process  
which may result in voids in solder between the exposed pad/  
slug and the thermal land. Precautions should be taken to  
eliminate any solder voids between the exposed heat slug and  
the land pattern. Note: These recommendations are to be used  
as a guideline only. For further information, refer to the Application  
Note on the Surface Mount Assembly of Amkor’s Thermally/  
Electrically Enhance Leadfame Base Package, Amkor Technology.  
While the land pattern on the PCB provides a means of heat  
transfer and electrical grounding from the package to the board  
through a solder joint, thermal vias are necessary to effectively  
conduct from the surface of the PCB to the ground plane(s). The  
land pattern must be connected to ground through these vias.  
The vias act as “heat pipes”.The number of vias (i.e. “heat pipes”)  
SOLDER  
SOLDER  
PIN  
PIN  
EXPOSED HEAT SLUG  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
FIGURE 6. P.C.ASSEMBLY FOR EXPOSED PAD THERMAL RELEASE PATH –SIDE VIEW (DRAWING NOT TO SCALE)  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
11  
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
LAYOUT GUIDELINE  
The schematic of the ICS8432I-51 layout example used in this  
layout guideline is shown in Figure 7A. The ICS8432I-51  
recommended PCB board layout for this example is shown in  
Figure 7B. This layout example is used as a general guideline.  
The layout in the actual system will depend on the selected  
component types, the density of the components, the density of  
the traces, and the stack up of the P.C. board.  
C1  
C2  
X1  
U1  
VCC  
R7  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
M5  
M6  
M7  
M8  
N0  
N1  
nc  
X_OUT  
REF_CLK  
nXTAL_SEL  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
REF_IN  
XTAL_SEL  
10  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
C11  
C16  
10u  
0.01u  
VEE  
ICS8432I-51  
VCC  
VCC  
R1  
R3  
125  
125  
Zo = 50 Ohm  
C14  
0.1u  
C15  
0.1u  
TL1  
+
-
Zo = 50 Ohm  
TL2  
VCC=3.3V  
R2  
84  
R4  
84  
FIGURE 7A. SCHEMATIC OF RECOMMENDED LAYOUT  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
12  
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
The following component footprints are used in this layout  
• The differential 50Ω output traces should have the  
same length.  
example:  
• Avoid sharp angles on the clock trace. Sharp angle  
turns cause the characteristic impedance to change on  
the transmission lines.  
All the resistors and capacitors are size 0603.  
• Keep the clock traces on the same layer. Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
• Make sure no other signal traces are routed between the  
clock trace pair.  
• The matching termination resistors should be located as  
close to the receiver input pins as possible.  
POWER AND GROUNDING  
Place the decoupling capacitors C14 and C15, as close as  
possible to the power pins. If space allows, placement of the  
decoupling capacitor on the component side is preferred. This  
can reduce unwanted inductance between the decoupling  
capacitor and the power pin caused by the via.  
Maximize the power and ground pad sizes and number of vias  
capacitors. This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the V pin as possible.  
CCA  
CLOCK TRACES AND TERMINATION  
CRYSTAL  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
trace delay might be restricted by the available space on the board  
and the component location. While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
The crystal X1 should be located as close as possible to the pins  
24 (XTAL_OUT) and 25 (XTAL_IN). The trace length between the  
X1 and U1 should be kept to a minimum to avoid unwanted  
parasitic inductance and capacitance. Other signal traces should  
not be routed near the crystal traces.  
GND  
C1  
C2  
VCC  
X1  
VIA  
U1  
PIN 1  
C16  
VCCA  
C11  
R7  
Close to the input  
pins of the  
receiver  
R1  
R3  
R2  
R4  
C15  
TL1  
C14  
TL1N  
TL1, TL21N are 50 Ohm  
traces and equal length  
FIGURE 7B. PCB BOARD LAYOUT FOR ICS8432I-51  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
13  
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8432I-51.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8432I-51 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5% = 3.465V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core) = V  
* I  
= 3.465V * 145mA = 502.425mW  
EE_MAX  
MAX  
CC_MAX  
Power (outputs) = 30mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power  
(3.465V, with all outputs switching) = 502.425mW + 60mW = 562.425mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θ * Pd_total + TA  
JA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 10A below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.562W * 42.1°C/W = 108.7°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 10A. THERMAL RESISTANCE θ FOR 32-PIN LQFP, FORCED CONVECTION  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TABLE 10B. THERMAL RESISTANCE θ FOR 32-PIN VFQFN, FORCED CONVECTION  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
34.8°C/W  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
14  
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 8.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 8. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V - 2V.  
CCO  
For logic high, V = V  
= V  
– 0.9V  
OUT  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 0.9V)/50Ω) * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω) * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
15  
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
RELIABILITY INFORMATION  
TABLE 11A. θ VS. AIR FLOW TABLE FOR 32 LEAD LQFP  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TABLE 11B. θ VS. AIR FLOW TABLE FOR 32 LEAD VFQFN PACKAGE  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
34.8°C/W  
TRANSISTOR COUNT  
The transistor count for ICS8432I-51 is: 3743  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
16  
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 12A. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
17  
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
PACKAGE OUTLINE - K SUFFIX 32 LEAD VFQFN  
(Ref.)  
N & N  
Seating Plane  
(N -1)x e  
(Ref.)  
Even  
A1  
IndexArea  
L
A3  
E2  
e
2
N
N
(Ty p.)  
If N & N  
are Even  
Anvil  
Singulation  
1
2
(N -1)x e  
(Ref.)  
OR  
E2  
2
TopView  
b
e
Thermal  
Base  
A
(Ref.)  
D2  
2
D
N &N  
Odd  
0. 08  
C
Chamfer 4x  
0.6 x 0.6 max  
OPTIONAL  
D2  
C
this device.The pin count and pinout are shown on the front page.  
The package dimensions are in Table 12B below.  
NOTE: The following package mechanical drawing is a generic  
drawing that applies to any pin count VFQFN package.This draw-  
ing is not intended to convey the actual pin count or pin layout of  
TABLE 12B. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
SYMBOL  
Minimum  
Maximum  
N
A
32  
0.80  
0
1.0  
A1  
A3  
b
0.05  
0.25 Reference  
0.18  
0.30  
e
0.50 BASIC  
ND  
NE  
D
8
8
5.0  
D2  
E
1.25  
3.25  
5.0  
E2  
L
1.25  
0.30  
3.25  
0.50  
Reference Document: JEDEC Publication 95, MO-220  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
18  
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
TABLE 13. ORDERING INFORMATION  
Part/Order Number  
ICS8432BYI-51  
Marking  
Package  
Shipping Packaging  
tray  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS8432BYI-51  
ICS8432BYI-51  
ICS8432BI-51L  
ICS8432BI-51L  
ICS8432BI51  
ICS8432BI51  
ICS432BI51L  
ICS432BI51L  
32 Lead LQFP  
ICS8432BYI-51T  
ICS8432BYI-51LF  
ICS8432BYI-51LFT  
ICS8432BKI-51  
32 Lead LQFP  
1000 tape & reel  
tray  
32 Lead "Lead-Free" LQFP  
32 Lead "Lead-Free" LQFP  
32 Lead VFQFN  
1000 tape & reel  
tray  
ICS8432BKI-51T  
ICS8432BKI-51LF  
ICS8432BKI-51LFT  
32 Lead VFQFN  
2500 tape & reel  
tray  
32 Lead "Lead-Free" VFQFN  
32 Lead "Lead-Free" VFQFN  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
19  
ICS8432BYI-51 REV. A SEPTEMBER 24, 2007  
ICS8432I-51  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
#20-03 Wisma Atria  
England  
+408 284 8200 (outside U.S.)  
Singapore 238877  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
+65 6 887 5505  
© 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

ICS8432BKI-51LF

700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

ICS8432BKI-51LFT

700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

ICS8432BKI-51T

700MHZ, CYRSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

ICS8432BY-01LFT

PLL Frequency Synthesizer, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT

ICS8432BY-01T

PLL Frequency Synthesizer, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT

ICS8432BY-11

PLL Frequency Synthesizer, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT

ICS8432BY-111LFT

PLL Frequency Synthesizer, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT

ICS8432BY-111T

PLL Frequency Synthesizer, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT

ICS8432BY-11LF

PLL Frequency Synthesizer, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT

ICS8432BY-21

Clock Generator, 500MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT

ICS8432BY-21LF

Clock Generator, 500MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT

ICS8432BY-21LFT

Clock Generator, 500MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT