ICS8432DY-01T [IDT]

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-32;
ICS8432DY-01T
型号: ICS8432DY-01T
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-32

时钟 外围集成电路 晶体
文件: 总18页 (文件大小:173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
GENERAL DESCRIPTION  
FEATURES  
The ICS8432-01 is a general purpose, dual output Dual differential 3.3V LVPECLoutputs  
Crystal-to-3.3V Differential LVPECL High Fre-  
quency Synthesizer and a member of the  
HiPerClockS™ family of High Performance Clock  
Solutions from ICS. The ICS8432-01 has a select-  
Selectable crystal oscillator interface or  
LVCMOSTEST_CLK  
HiPerClockS™  
Output frequency range: 25MHz to 700MHz  
Crystal input frequency range: 14MHz to 25MHz  
VCO range: 200MHz to 700MHz  
able TEST_CLK or crystal inputs. The VCO operates at a  
frequency range of 200MHz to 700MHz. The VCO frequency  
is programmed in steps equal to the value of the input refer-  
ence or crystal frequency. The VCO and output frequency  
can be programmed using the serial or parallel interfaces to  
the configuration logic. The low phase noise characteristics  
of the ICS8432-01 make it an ideal clock source for Gigabit  
Ethernet, Fiber Channel 1 and 2, and Infiniband applications.  
Parallel or serial interface for programming counter  
and output dividers  
RMS period jitter: 4ps (maximum)  
Cycle-to-cycle jitter: 25ps (maximum)  
3.3V supply voltage  
0°C to 70°C ambient operating temperature  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
VCO_SEL  
XTAL_SEL  
TEST_CLK  
0
32 31 30 29 28 27 26 25  
XTAL1  
1
M5  
OSC  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
XTAL1  
XTAL2  
M6  
M7  
M8  
N0  
N1  
nc  
TEST_CLK  
XTAL_SEL  
VCCA  
ICS8432-01  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
PLL  
PHASE DETECTOR  
MR  
0
1
VEE  
VCO  
FOUT0  
nFOUT0  
FOUT1  
nFOUT1  
÷ N  
9
10 11 12 13 14 15 16  
÷ M  
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
CONFIGURATION  
INTERFACE  
LOGIC  
TEST  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
M0:M8  
N0:N1  
Y Package  
Top View  
8432DY-01  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 18, 2002  
1
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
FUNCTIONAL DESCRIPTION  
NOTE: The functional description that follows describes operation using a 25MHz crystal. Valid PLL loop divider values for  
different crystal or input frequencies are defined in the Input Frequency Characteristics, Table 5, NOTE 1.  
The ICS8432-01 features a fully integrated PLL and therefore requires no external components for setting the loop bandwidth.  
A fundamental crystal is used as the input to the on-chip oscillator. The output of the oscillator is fed into the phase detector.  
A 25MHz crystal provides a 25MHz phase detector reference frequency. The VCO of the PLL operates over a range of  
200MHz to 700MHz. The output of the M divider is also applied to the phase detector.  
The phase detector and the M divider force the VCO output frequency to be M times the reference frequency by adjusting the  
VCO control voltage. Note that for some values of M (either too high or too low), the PLL will not achieve lock. The output of the  
VCO is scaled by a divider prior to being sent to each of the LVPECL output buffers. The divider provides a 50% output duty cycle.  
The programmable features of the ICS8432-01 support two input modes, programmable M divider and N output divider. The  
two input operational modes are parallel and serial. Figure 1 shows the timing diagram for each mode. In parallel mode, the  
nP_LOAD input is initially LOW. The data on inputs M0 through M8 and N0 and N1 is passed directly to the M divider and  
N output divider. On the LOW-to-HIGH transition of the nP_LOAD input, the data is latched and the M divider remains loaded  
until the next LOW transition on nP_LOAD or until a serial event occurs. As a result, the M and N bits can be hardwired to set  
the M divider and N output divider to a specific default state that will automatically occur during power-up. The TEST output is  
LOW when operating in the parallel input mode. The relationship between the VCO frequency, the crystal frequency and the  
M divider is defined as follows:  
fVCO = fxtal x M  
The M value and the required values of M0 through M8 are shown in Table 3B, Programmable VCO Frequency Function Table.  
Valid M values for which the PLL will achieve lock for a 25MHz reference are defined as 8 M 28. The frequency out is  
defined as follows:  
FOUT = fVCO = fxtal x M  
N
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD is LOW. The shift register is loaded by sampling the S_DATA  
bits with the rising edge of S_CLOCK. The contents of the shift register are loaded into the M divider and N output divider when  
S_LOAD transitions from LOW-to-HIGH. The M divide and N output divide values are latched on the HIGH-to-LOW transition  
of S_LOAD. If S_LOAD is held HIGH, data at the S_DATA input is passed directly to the M divider and N output divider on each  
rising edge of S_CLOCK. The serial mode can be used to program the M and N bits and test bits T1 and T0. The internal  
registers T0 and T1 determine the state of the TEST output as follows:  
T1 T0  
TEST Output  
LOW  
0
0
1
1
0
1
0
1
S_Data  
Output of M divider  
CMOS Fout  
S
ERIAL LOADING  
S_DATA  
S_CLOCK  
S_LOAD  
T 1  
t
T0  
*
NULL N1  
N0  
M8  
M7  
M6  
M5  
M4 M3  
M2  
M1  
M0  
t
S
H
t
M0:M8, N0:N1  
nP_LOAD  
S
P
ARALLEL LOADING  
M, N  
t
t
H
Time  
FIGURE 1 - PARALLEL & SERIAL LOAD OPERATIONS  
S
*NOTE: The NULL timing slot must be observed.  
8432DY-01  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 18, 2002  
2
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Pullup  
Description  
1
M5  
Input  
Input  
M divider inputs. Data latched on LOW-to-HIGH transition of  
nP_LOAD input. LVCMOS / LVTTL interface levels.  
2, 3, 4,  
28, 29,  
30, 31, 32  
M6, M7, M8,  
M0, M1,  
M2, M3, M4  
Pulldown  
Pulldown  
Determines output divider value as defined in Table 3C,  
Function Table. LVCMOS / LVTTL interface levels.  
5, 6  
N0, N1  
Input  
7
nc  
Unused  
Power  
No connect.  
8, 16  
VEE  
Negative supply pins.  
Test output which is ACTIVE in the serial mode of operation.  
Output driven LOW in parallel mode. LVCMOS interface levels.  
9
TEST  
VCC  
Output  
Power  
Output  
Power  
Output  
10  
Positive supply pin.  
Differential output for the synthesizer.  
3.3V LVPECL interface levels.  
11, 12  
13  
FOUT1, nFOUT1  
VCCO  
Output supply pin.  
Differential output for the synthesizer.  
3.3V LVPECL interface levels.  
14, 15  
FOUT0, nFOUT0  
Master reset. Forces outputs LOW, but does not effect loaded  
M, N, and T values. LVCMOS / LVTTL interface levels.  
Clocks in serial data present at S_DATA input into the shift register  
on the rising edge of S_CLOCK.  
Shift register serial input. Data sampled on the rising edge of  
S_CLOCK.  
17  
18  
19  
MR  
Input  
Input  
Input  
Pulldown  
Pulldown  
Pulldown  
Pulldown  
S_CLOCK  
S_DATA  
Controls transition of data from shift register into the dividers.  
LVCMOS / LVTTL interface levels.  
20  
21  
S_LOAD  
VCCA  
Input  
Power  
Analog supply pin.  
Selects between crystal or test inputs as the PLL reference  
source. LVCMOS / LVTTL interface levels. Selects XTAL inputs  
when HIGH. Selects TEST_CLK when LOW.  
22  
XTAL_SEL  
Input  
Pullup  
23  
TEST_CLK  
Input  
Input  
Pulldown Test clock input. LVCMOS / LVTTL interface levels.  
Crystal oscillator inputs.  
24, 25  
XTAL1, XTAL2  
Parallel load input. Determines when data present at M8:M0 is  
Pulldown loaded into M divider, and when data present at N1:N0 sets the  
N output divider value. LVCMOS / LVTTL interface levels.  
26  
27  
nP_LOAD  
VCO_SEL  
Input  
Input  
Determines whether synthesizer is in PLL or bypass mode.  
Pullup  
LVCMOS / LVTTL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
KΩ  
KΩ  
RPULLUP  
RPULLDOWN  
51  
51  
8432DY-01  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 18, 2002  
3
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
MR nP_LOAD  
M
N
S_LOAD S_CLOCK S_DATA  
H
X
X
X
X
X
X
Reset. Forces outputs LOW.  
Data on M and N inputs passed directly to the M  
divider and N output divider. TEST output forced LOW.  
L
L
Data Data  
Data Data  
X
X
X
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the  
M divider and N output divider.  
L
L
L
L
L
X
X
H
H
X
X
X
X
Data  
Data  
L
L
L
L
H
H
H
X
X
X
X
X
X
L
L
X
Data  
X
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE  
256  
M8  
0
128  
M7  
0
64  
M6  
0
32  
M5  
0
16  
M4  
0
8
M3  
1
4
M2  
0
2
M1  
0
1
M0  
0
VCO Frequency  
(MHz)  
M Divide  
200  
225  
250  
275  
8
9
0
0
0
0
0
1
0
0
1
10  
11  
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
1
650  
675  
700  
26  
27  
28  
0
0
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
1
0
0
0
0
1
1
1
0
0
NOTE 1: These M divide values and the resulting frequencies correspond to crystal or TEST_CLK input frequency of  
25MHz.  
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Inputs  
Output Frequency (MHz)  
N Divider Value  
N1  
0
N0  
0
Minimum  
Maximum  
700  
1
2
4
8
200  
100  
50  
0
1
350  
1
0
175  
1
1
25  
87.5  
8432DY-01  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 18, 2002  
4
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCCX  
Inputs, VCC  
Outputs, VCCO  
4.6V  
-0.5V to VCC + 0.5 V  
-0.5V to VCCO + 0.5V  
Package Thermal Impedance, θJA 47.9°C/W (0 lfpm)  
Storage Temperature, TSTG -65°C to 150°C  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are  
stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC  
Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may  
affect product reliability.  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
Positive Supply Voltage  
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.465  
3.465  
3.465  
110  
V
V
VCCA  
VCCO  
IEE  
3.135  
3.3  
3.135  
3.3  
V
mA  
mA  
ICCA  
15  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VCO_SEL, XTAL_SEL, MR,  
S_LOAD, nP_LOAD, N0:N1,  
S_DATA, S_CLOCK, M0:M8  
2
VCC + 0.3  
V
V
Input  
VIH  
High Voltage  
TEST_CLK  
2
VCC + 0.3  
VCO_SEL, XTAL_SEL, MR,  
S_LOAD, nP_LOAD, N0:N1,  
S_DATA, S_CLOCK, M0:M8  
-0.3  
-0.3  
0.8  
V
Input  
VIL  
Low Voltage  
TEST_CLK  
1.3  
V
M0-M4, M6-M8, N0, N1, MR,  
S_CLOCK, TEST_CLK,  
S_DATA, S_LOAD, nP_LOAD  
V
CC = VIN = 3.465V  
150  
µA  
Input  
IIH  
High Current  
M5, XTAL_SEL, VCO_SEL  
VCC = VIN = 3.465V  
VCC = 3.465V,  
5
µA  
µA  
M0-M4, M6-M8, N0, N1, MR,  
S_CLOCK, TEST_CLK,  
S_DATA, S_LOAD, nP_LOAD  
-5  
VIN = 0V  
Input  
IIL  
Low Current  
VCC = 3.465V,  
VIN = 0V  
M5, XTAL_SEL, VCO_SEL  
TEST; NOTE 1  
-150  
2.6  
µA  
V
Output  
VOH  
High Voltage  
Output  
VOL  
TEST; NOTE 1  
0.5  
V
Low Voltage  
NOTE 1: Outputs terminated with 50to VCCO/2.  
8432DY-01  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 18, 2002  
5
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.6  
VCCO - 1.0  
VCCO - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50 to VCCO - 2V. See "Parameter Measurement Information" section,  
figure "3.3V Output Load Test Circuit".  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
TEST_CLK; NOTE 1  
14  
14  
25  
25  
50  
MHz  
MHz  
MHz  
fIN  
Input Frequency XTAL1, XTAL2; NOTE 1  
S_CLOCK  
NOTE 1: For the input crystal and TEST_CLK frequency range, the M value must be set for the VCO to operate within the  
200MHz to 700MHz range. Using the minimum input frequency of 14MHz, valid values of M are 15 M 50. Using the  
maximum frequency of 25MHz, valid values of M are 8 M 28.  
TABLE 6. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
14  
25  
70  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
TABLE 7. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
FOUT  
tjit(cc)  
tjit(per)  
tsk(o)  
tR  
Output Frequency  
25  
700  
25  
MHz  
ps  
ps  
ps  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
%
Cycle-to-Cycle Jitter; NOTE 1, 3  
Period Jitter, RMS; NOTE 1  
Output Skew; NOTE 2, 3  
Output Rise Time  
fVCO > 350MHz  
fOUT > 100MHz  
4
15  
20% to 80%  
20% to 80%  
200  
700  
700  
tF  
Output Fall Time  
200  
M, N to nP_LOAD  
5
tS  
Setup Time S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to nP_LOAD  
5
5
5
tH  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
5
48  
odc  
tPW  
Output Duty Cycle  
Output Pulse Width  
PLL Lock Time  
N > 1  
N = 1  
52  
tPERIOD/2 - 150  
tPERIOD/2 + 150  
1
ps  
ms  
tLOCK  
See Parameter Measurement Information section.  
NOTE 1: Jitter performance using XTAL inputs.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
8432DY-01  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 18, 2002  
6
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
PARAMETER MEASUREMENT INFORMATION  
VCC, VCCA, VCCO  
SCOPE  
Qx  
LVPECL  
VCC, VCCA, VCCO = 2V  
nQx  
VEE = -1.3V ± 0.135V  
3.3V OUTPUT LOAD TEST CIRCUIT  
nFOUTx  
FOUTx  
nFOUTy  
FOUTy  
tsk(o)  
OUTPUT SKEW  
80%  
80%  
VSWING  
20%  
20%  
Clock Inputs  
and Outputs  
tR  
tF  
INPUT AND OUTPUT RISE AND FALL TIME  
8432DY-01  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 18, 2002  
7
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
nFOUTx  
TEST, FOUTx  
Pulse Width  
tPERIOD  
tPW  
tPERIOD  
odc =  
odc, tPW & tPERIOD  
VOH  
V
ref  
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
Period Jitter  
nFOUTx  
FOUTx  
tcycle n+1  
tcycle n  
tjit(cc) = tcycle n tcycle n+1  
1000 Cycles  
Cycle-to-Cycle Jitter  
8432DY-01  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 18, 2002  
8
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
APPLICATIONS  
STORAGE AREA NETWORKS  
Avariety of technologies are used for interconnection of the elements within a SAN. The tables below list the common application  
frequencies as well as the ICS8432-01 configurations used to generate the appropriate frequency.  
Table 8. Common SANs Applications Frequencies  
Reference Frequency to SERDES  
(MHz)  
Crystal Frequency  
(MHz)  
Interconnect Technology  
Gigabit Ethernet  
Fibre Channel  
Clock Rate  
1.25 GHz  
125, 250, 156.25  
106.25, 53.125, 132.8125  
125, 250  
25, 19.53125  
16.6015625, 25  
25  
FC1 1.0625 GHz  
FC2 2.1250 GHz  
Infiniband  
2.5 GHz  
Table 9. Configuration Details for SANs Applications  
ICS8432-01  
ICS8432-01  
Interconnect  
Technology  
Crystal Frequency  
(MHz)  
Output Frequency  
to SERDES  
(MHz)  
M & N Settings  
M8 M7 M6 M5 M4 M3 M2 M1 M0 N1 N0  
25  
125  
250  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
1
1
0
1
1
0
1
1
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
1
0
1
1
1
1
1
1
0
0
1
0
0
1
0
0
0
1
25  
Gigabit Ethernet  
25  
156.25  
156.25  
53.125  
106.25  
132.8125  
125  
19.53125  
25  
Fiber Channel 1  
Fiber Channel 2  
Infiniband  
25  
16.6015625  
25  
25  
250  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS8432-01 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VCC, VCCA, and VCCO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 2 illustrates how  
a 10resistor along with a 10µF and a .01µF bypass  
capacitor should be connected to each VCCA pin.  
3.3V  
VCC  
.01µF  
.01µF  
10Ω  
VCCA  
10 µF  
FIGURE 2 - POWER SUPPLY FILTERING  
www.icst.com/products/hiperclocks.html  
8432DY-01  
REV. B JUNE 18, 2002  
9
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
CRYSTAL INPUT AND OSCILLATOR INTERFACE  
The ICS8432-01 features an internal oscillator that uses an  
external quartz crystal as the source of its reference frequency.  
The oscillator is a series resonant, multi-vibrator type design. This  
design provides better stability and eliminates the need for large  
on chip capacitors. Though a series resonant crystal is preferred,  
a parallel resonant crystal can be used. A parallel resonant mode  
crystal used in a series resonant circuit will exhibit a frequency  
of oscillation a few hundred ppm lower than specified. A few  
hundred ppm translates to KHz inaccuracy. In general computing  
applications, this level of inaccuracy is irrelevant. If better ppm  
accuracy is required, an external capacitor can be added to a  
parallel resonant crystal in series to pin 24. Figure 3A shows how  
to interface with a crystal.  
ICS8432-01  
XTAL2  
(Pin 25, LQFP)  
XTAL1  
(Pin 24, LQFP)  
Optional  
Figures 3A, 3B, and 3C show various crystal parameters which  
are recommended only as guidelines. Figure 3A shows how to  
interface a capacitor with an 18pF parallel resonant crystal. Fig-  
ure 3B shows the capacitor value needed for the optimum ppm  
performance over various parallel resonant crystal frequencies.  
Figure 3C shows the recommended tuning capacitance for  
various parallel resonant crystals.  
FIGURE 3A - CRYSTAL INTERFACE  
FIGURE 3B. Recommended tuning capacitance for various 18pF FIGURE 3C. Recommended tuning capacitance for various 18pF  
parallel resonant crystals.  
parallel resonant crystals.  
60  
100  
80  
60  
40  
20  
0
14.318  
50  
15.000  
40  
16.667  
19.440  
30  
20  
10  
0
20.000  
-20  
-40  
24.000  
0
10  
20  
30  
40  
50  
60  
-60  
-80  
14 15 16 17 18 19 20 21 22 23 24 25  
Crystal Frequency (MHz)  
-100  
19.44MHz  
16MHz  
Series Capacitor, C1 (pF)  
15.00MHz  
8432DY-01  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 18, 2002  
10  
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina- drive 50transmission lines. Matched impedance techniques  
tion for LVPECL outputs. The two different layouts mentioned should be used to maximize operating frequency and minimize  
are recommended only as guidelines.  
signal distortion. Figures 4Aand 4B show two different layouts  
which are recommended only as guidelines. Other suitable clock  
layouts may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECLcompatible outputs. Therefore, terminat-  
ing resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
5
2
5
Zo  
Zo  
2
FIN  
FOUT  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
Zo = 50Ω  
RTT  
1
3
2
3
2
Zo  
RTT =  
Zo  
Zo  
(VOH + VOL / VCC 2) 2  
FIGURE 4A - LVPECL OUTPUT TERMINATION  
FIGURE 4B - LVPECL OUTPUT TERMINATION  
LAYOUT GUIDELINE  
The schematic of the ICS8432-01 layout example used in this layout guideline is shown in Figure 5A. The ICS8432-01 recommended  
PCB board layout for this example is shown in Figure 5B. This layout example is used as a general guideline. The layout in the actual  
system will depend on the selected component types, the density of the components, the density of the traces, and the stacking of  
the P.C. board.  
X1  
R7  
VCC  
U1  
10  
C11  
1
24  
23  
22  
21  
20  
19  
18  
17  
0.01u  
C16  
10u  
M5  
M6  
M7  
M8  
N0  
N1  
nc  
XTAL1  
REF_IN  
nXTAL_SEL  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
REF_IN  
XTAL_SEL  
2
3
4
5
6
7
8
S_LOAD  
S_DATA  
S_CLOCK  
MR  
VEE  
Termination A  
Termination  
B (Not shown  
in the layout)  
VCC  
8432-01  
IN+  
R1  
R3  
125  
125  
Zo = 50 Ohm  
IN+  
IN-  
IN-  
TL1  
Zo = 50 Ohm  
R2  
50  
R1  
50  
C14  
0.1u  
C15  
0.1u  
TL2  
R2  
84  
R4  
84  
R3  
50  
FIGURE 5A - SCHEMATIC OF RECOMMENDED LAYOUT  
www.icst.com/products/hiperclocks.html  
8432DY-01  
REV. B JUNE 18, 2002  
11  
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
The differential 50output traces should have the  
same length.  
The following component footprints are used in this layout  
example:  
Avoid sharp angles on the clock trace. Sharp angle  
turns cause the characteristic impedance to change on  
the transmission lines.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
Place the decoupling capacitors C14 and C15, as close as pos-  
sible to the power pins. If space allows, placement of the  
decoupling capacitor on the component side is preferred. This  
can reduce unwanted inductance between the decoupling ca-  
pacitor and the power pin caused by the via.  
Keep the clock traces on the same layer. Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
Maximize the power and ground pad sizes and number of vias  
capacitors. This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the VCCA pin as possible.  
Make sure no other signal traces are routed between the  
clock trace pair.  
CLOCK TRACES AND TERMINATION  
The matching termination resistors should be located as  
close to the receiver input pins as possible.  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
trace delay might be restricted by the available space on the board  
and the component location. While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
CRYSTAL  
The crystal X1 should be located as close as possible to the pins  
24 (XTAL1) and 25 (XTAL2). The trace length between the X1  
and U1 should be kept to a minimum to avoid unwanted parasitic  
inductance and capacitance. Other signal traces should not be  
routed near the crystal traces.  
X1  
GND  
VCC  
VIA  
U1  
PIN 1  
C11  
C16  
VCCA  
R7  
Close to the input  
pins of the  
receiver  
R4  
R3  
TL1N  
C15  
C14  
TL1  
R2  
R1  
TL1, TL2 are 50 Ohm traces and  
equal length  
FIGURE 5B - PCB BOARD LAYOUT FOR ICS8432-01  
www.icst.com/products/hiperclocks.html  
8432DY-01  
REV. B JUNE 18, 2002  
12  
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8432-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8432-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 110mA = 381.2mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30.2mW = 60.4mW  
Total Power_MAX (3.465V, with all outputs switching) = 381.2mW + 60.4mW = 441.6mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA =Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 10 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.441W * 42.1°C/W = 88.6°C. This is well below the limit of 125°C  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 10. THERMAL RESISTANCE qJA FOR 32-PIN LQFP, FORCED CONVECTION  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
8432DY-01  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 18, 2002  
13  
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 6 - LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CCO  
For logic high, V = V  
= V  
– 1.0V  
OUT  
OH_MAX  
CCO_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
/R ] * (V  
Pd_H = [(V  
(V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 1V)/50) * 1V = 20.0mW  
))  
/R ] * (V  
Pd_L = [(V  
(V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50) * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
8432DY-01  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 18, 2002  
14  
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
RELIABILITY INFORMATION  
TABLE 11. θJAVS. AIR FLOW TABLE  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8432-01 is: 3712  
8432DY-01  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 18, 2002  
15  
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
PACKAGE OUTLINE -Y SUFFIX  
TABLE 12. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
q
--  
0
°
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
8432DY-01  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 18, 2002  
16  
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 13. ORDERING INFORMATION  
Part/Order Number  
ICS8432DY-01  
Marking  
Package  
32 Lead LQFP  
Count  
250 per tray  
1000  
Temperature  
0°C to 70°C  
0°C to 70°C  
ICS8432DY-01  
ICS8432DY-01  
ICS8432DY-01T  
32 Lead LQFP on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
8432DY-01  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 18, 2002  
17  
ICS8432-01  
700MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
Page  
Date  
A
T6  
T7  
6
Crystal Characteristics table, ESR row value updated from 80Max. to 70Max.  
1/10/02  
AC Characteristics table, Setup Time & Hold Time rows - moved 5ns from  
Maximum column to the Minimum column.  
A
6
1/29/02  
A
B
B
10  
6
Added 18pF description to crystal input  
2/22/02  
6/12/02  
6/18/02  
T4C  
LVPECL Characteristics table, VSWING changed from 0.950V max. to 1.0V max.  
Updated Figure 1, Parallel & Serial Load Operations  
2
8432DY-01  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 18, 2002  
18  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY