ICS8432DY-101 [IDT]

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER;
ICS8432DY-101
型号: ICS8432DY-101
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER

驱动 逻辑集成电路
文件: 总20页 (文件大小:384K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
700MHZ, DIFFERENTIAL-TO-3.3V  
LVPECL FREQUENCY SYNTHESIZER  
ICS8432-101  
GENERAL DESCRIPTION  
FEATURES  
The ICS8432-101 is a general purpose, dual out-  
Dual differential 3.3V LVPECL outputs  
ICS  
HiPerClockS™  
put Differential-to-3.3V LVPECL high frequency  
Selectable CLK, nCLK or LVCMOS/LVTTL TEST_CLK  
synthesizer and a member of the HiPerClockS™  
family of High Performance Clock Solutions from  
ICS.The ICS8432-101 has a selectable TEST_CLK  
TEST_CLK can accept the following input levels:  
LVCMOS or LVTTL  
or CLK, nCLK inputs. The TEST_CLK input accepts LVCMOS  
or LVTTL input levels and translates them to 3.3V LVPECL lev-  
els. The CLK, nCLK pair can accept most standard differen-  
tial input levels. The VCO operates at a frequency range of  
250MHz to 700MHz. The VCO frequency is programmed in  
steps equal to the value of the input differential or single ended  
reference frequency. The VCO and output frequency can be  
programmed using the serial or parallel interfaces to the con-  
figuration logic. The low phase noise characteristics of the  
ICS8432-101 makes it an ideal clock source for Gigabit Ethernet  
and SONET applications.  
CLK, nCLK pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL  
CLK, nCLK or TEST_CLK maximum input frequency: 40MHz  
Output frequency range: 25MHz to 700MHz  
VCO range: 250MHz to 700MHz  
Accepts any single-ended input signal on CLK input with  
resistor bias on nCLK input  
Parallel interface for programming counter and output  
dividers  
RMS period jitter: 5ps (maximum)  
Cycle-to-cycle jitter: 25ps (maximum)  
3.3V supply voltage  
0°C to 70°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
VCO_SEL  
CLK_SEL  
TEST_CLK  
0
32 31 30 29 28 27 26 25  
CLK  
nCLK  
1
M5  
M6  
M7  
M8  
N0  
N1  
nc  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
CLK  
TEST_CLK  
CLK_SEL  
VCCA  
ICS8432-101  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
PLL  
PHASE DETECTOR  
MR  
0
VEE  
÷1  
÷2  
÷4  
÷8  
VCO  
FOUT0  
nFOUT0  
FOUT1  
nFOUT1  
9
10 11 12 13 14 15 16  
÷ M  
1
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
CONFIGURATION  
INTERFACE  
LOGIC  
TEST  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
M0:M8  
N0:N1  
Y Package  
Top View  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
1
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
FUNCTIONAL DESCRIPTION  
event occurs. As a result, the M and N bits can be hardwired to  
NOTE: The functional description that follows describes opera-  
tion using a 25MHz clock input. Valid PLL loop divider values  
for different input frequencies are defined in the Input Frequency  
Characteristics, Table 5, NOTE 1.  
set the M divider and N output divider to a specific default state  
that will automatically occur during power-up. The TEST output  
is LOW when operating in the parallel input mode. The relation-  
ship between the VCO frequency, the input frequency and the M  
The ICS8432-101 features a fully integrated PLL and there-  
fore requires no external components for setting the loop band-  
width. A differential clock input is used as the input to the  
ICS8432-101.This input is fed into the phase detector. A 25MHz  
clock input provides a 25MHz phase detector reference fre-  
quency. The VCO of the PLL operates over a range of 250MHz  
to 700MHz. The output of the M divider is also applied to the  
phase detector.  
divider is defined as follows:  
fVCO = f x M  
IN  
The M value and the required values of M0 through M8 are  
shown in Table 3B, Programmable VCO Frequency Function  
Table. Valid M values for which the PLL will achieve lock for a  
25MHz reference are defined as 8 M 28. The frequency out  
is defined as follows: fOUT = fVCO = f x M  
IN  
N
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD is  
LOW. The shift register is loaded by sampling the S_DATA  
bits with the rising edge of S_CLOCK. The contents of the shift reg-  
ister are loaded into the M divider and N output divider when S_LOAD  
transitions from LOW-to-HIGH. The M divide and N output divide  
values are latched on the HIGH-to-LOW transition of S_LOAD. If  
S_LOAD is held HIGH, data at the S_DATA input is passed directly  
to the M divider and N output divider on each rising edge of  
S_CLOCK. The serial mode can be used to  
program the M and N bits and test bits T1 and T0. The internal  
registers T0 and T1 determine the state of the TEST output as fol-  
lows:  
The phase detector and the M divider force the VCO output  
frequency to be M times the reference frequency by adjusting  
the VCO control voltage. Note, that for some values of M (ei-  
ther too high or too low), the PLL will not achieve lock. The  
output of the VCO is scaled by a divider prior to being sent to  
each of the LVPECL output buffers. The divider provides a 50%  
output duty cycle.  
The programmable features of the ICS8432-101 support two in-  
put modes to program the PLL M divider and N output divider.  
The two input operational modes are parallel and serial. Figure1  
shows the timing diagram for each mode. In parallel mode, the  
nP_LOAD input is initially LOW. The data on inputs M0 through  
M8 and N0 and N1 is passed directly to the M divider and  
N output divider. On the LOW-to-HIGH transition of the  
nP_LOAD input, the data is latched and the M divider remains  
loaded until the next LOW transition on nP_LOAD or until a serial  
T1 T0  
TEST Output  
LOW  
0
0
1
1
0
1
0
1
S_Data, Shift Register Input  
Output of M divider  
CMOS Fout  
SERIAL LOADING  
S_CLOCK  
T1  
T0 *NULL N1  
N0  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
M0  
S_DATA  
S_LOAD  
nP_LOAD  
t
t
H
S
t
S
PARALLEL LOADING  
M, N  
M0:M8, N0:N1  
nP_LOAD  
t
t
H
S
S_LOAD  
Time  
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
*NOTE: The NULL timing slot must be observed.  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
2
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Pullup  
Description  
1
M5  
Input  
Input  
M divider inputs. Data latched on LOW-to-HIGH transistion  
of nP_LOAD input. LVCMOS / LVTTL interface levels.  
2, 3, 4  
28, 29  
30, 31, 32  
M6, M7, M8,  
M0, M1,  
M2, M3, M4  
Pulldown  
Pulldown  
Determines output divider value as defined in Table 3C,  
Function Table. LVCMOS / LVTTL interface levels.  
5, 6  
N0, N1  
Input  
7
nc  
Unused  
Power  
No connect.  
8, 16  
VEE  
Negative supply pins.  
Test output which is ACTIVE in the serial mode of operation. Output  
driven LOW in parallel mode. LVCMOS / LVTTL interface levels.  
9
TEST  
VCC  
Output  
Power  
10  
Core supply pin.  
11, 12  
13  
FOUT1, nFOUT1 Output  
VCCO Power  
FOUT0, nFOUT0 Output  
Differential output for the synthesizer. 3.3V LVPECL interface levels.  
Output supply pin.  
14, 15  
Differential output for the synthesizer. 3.3V LVPECL interface levels.  
Active High Master Reset. When logic HIGH, the internal dividers  
are reset causing the true outputs FOUTx to go low and the inverted  
17  
MR  
Input  
Pulldown outputs nFOUTx to go high. When logic LOW, the internal dividers  
and the outputs are enabled. Assertion of MR does not affect loaded  
M, N, and T values. LVCMOS / LVTTL interface levels.  
Clocks in serial data present at S_DATA input into the shift register  
on the rising edge of S_CLOCK. LVCMOS / LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge  
of S_CLOCK. LVCMOS / LVTTL interface levels.  
18  
19  
S_CLOCK  
S_DATA  
Input  
Input  
Pulldown  
Pulldown  
Controls transition of data from shift register into the dividers.  
LVCMOS / LVTTL interface levels.  
20  
21  
S_LOAD  
VCCA  
Input  
Pulldown  
Power  
Analog supply pin.  
Clock select input. Selects between differential clock input or  
TEST_CLK input as the PLL reference source. When HIGH,  
selects CLK, nCLK inputs. When LOW, selects TEST_CLK input.  
22  
CLK_SEL  
Input  
Pullup  
LVCMOS / LVTTL interface levels.  
23  
24  
25  
TEST_CLK  
CLK  
Input  
Input  
Input  
Pulldown Test clock input. LVCMOS / LVTTL interface levels.  
Pulldown Non-inverting differential clock input.  
nCLK  
Pullup  
Inverting differential clock input.  
Parallel load input. Determines when data present at M8:M0 is  
26  
nP_LOAD  
Input  
Pulldown loaded into M divider, and when data present at N1:N0 sets the  
N output divider value. LVCMOS / LVTTL interface levels.  
Determines whether synthesizer is in PLL or bypass mode.  
LVCMOS / LVTTL interface levels.  
27  
VCO_SEL  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characterisitics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
RPULLDOWN  
51  
51  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
3
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
MR nP_LOAD  
M
N
S_LOAD S_CLOCK S_DATA  
H
X
X
X
X
X
X
Reset. Forces outputs LOW.  
Data on M and N inputs passed directly to the  
M divider and N output divider. TEST output  
forced LOW.  
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the  
M divider and N output divider.  
L
L
Data Data  
Data Data  
X
X
X
L
L
L
L
L
L
X
L
L
X
H
H
H
X
X
X
X
X
X
Data  
Data  
Data  
M divider and N output divider values are latched.  
L
L
H
H
X
X
X
X
L
X
X
Parallel or serial inputs do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE  
256  
M8  
0
128  
M7  
0
64  
M6  
0
32  
M5  
0
16  
M4  
0
8
M3  
1
4
M2  
0
2
M1  
0
1
M0  
0
VCO Frequency  
(MHz)  
M Divide  
200  
225  
250  
275  
8
9
0
0
0
0
0
1
0
0
1
10  
11  
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
1
650  
675  
700  
26  
27  
28  
0
0
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
1
0
0
0
0
1
1
1
0
0
NOTE 1: These M divide values and the resulting frequencies correspond to differential input or TEST_CLK input frequency  
of 25MHz.  
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Inputs  
Output Frequency (MHz)  
N Divider Value  
N1  
0
N0  
0
Minimum  
250  
Maximum  
700  
1
2
4
8
0
1
125  
350  
1
0
62.5  
175  
1
1
31.25  
87.5  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
4
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCC  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
Inputs, V  
-0.5V to VCC + 0.5 V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θ  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
JA  
Storage Temperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
3.465  
3.465  
3.465  
120  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
3.135  
3.3  
V
mA  
mA  
ICCA  
15  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VCO_SEL, CLK_SEL, MR,  
S_LOAD, S_DATA,  
S_CLOCK, nP_LOAD,  
M0:M8, N0:N1  
2
VCC + 0.3  
V
V
V
Input  
VIH  
High Voltage  
TEST_CLK  
2
V
CC + 0.3  
0.8  
VCO_SEL, CLK_SEL, MR,  
S_LOAD, S_DATA,  
S_CLOCK, nP_LOAD,  
M0:M8, N0:N1  
-0.3  
-0.3  
Input  
VIL  
Low Voltage  
TEST_CLK  
1.3  
150  
5
V
M0-M4, M6-M8, N0, N1, MR,  
S_CLOCK, TEST_CLK,  
S_DATA, S_LOAD, nP_LOAD  
VCC = VIN = 3.465V  
µA  
µA  
µA  
Input  
IIH  
High Current  
M5, CLK_SEL, VCO_SEL  
V
CC = VIN = 3.465V  
M0-M4, M6-M8, N0, N1, MR,  
S_CLOCK, TEST_CLK,  
S_DATA, S_LOAD, nP_LOAD  
VCC = 3.465V,  
VIN = 0V  
-5  
Input  
IIL  
Low Current  
VCC = 3.465V,  
M5, CLK_SEL, VCO_SEL  
-150  
2.6  
µA  
V
V
IN = 0V  
VCC = 3.135V,  
IOH = -36mA  
Output  
VOH  
TEST  
TEST  
High Voltage  
V
CC = 3.135V,  
Output  
VOL  
0.5  
V
Low Voltage  
IOL = 36mA  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
5
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
µA  
µA  
µA  
µA  
V
CLK  
V
CC = VIN = 3.465V  
VCC = VIN = 3.465V  
CC = 3.465V, VIN = 0V  
150  
5
nCLK  
CLK  
V
-5  
-150  
IIL  
Input Low Current  
nCLK  
VCC = 3.465V, VIN = 0V  
VPP  
Peak-to-Peak Input Voltage  
Common Mode Input Voltage  
0.15  
1.3  
VCMR  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: For single ended applications, the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.6  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50 Ω to VCCO - 2V.  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
TEST_CLK; NOTE 1  
10  
10  
40  
40  
40  
MHz  
MHz  
MHz  
fIN  
Input Frequency CLK, nCLK; NOTE 1  
S_CLOCK  
NOTE 1: For the differential input and TEST_CLK frequency range, the M value must be set for the VCO to operate within  
the 250MHz to 700MHz range. Using the minimum input frequency of 10MHz, valid values of M are 25 M 70.  
Using the maximum frequency of 40MHz, valid values of M are 7 M 17.  
TABLE 6. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
MHz  
ps  
FOUT  
Output Frequency  
31.25  
700  
25  
tjit(cc)  
tjit(per)  
tsk(o)  
tR / tF  
Cycle-to-Cycle Jitter; NOTE 1  
Period Jitter, RMS  
fVCO > 350MHz  
fOUT > 100MHz  
5
ps  
Output Skew; NOTE 1, 2  
Output Rise/Fall Time  
M, N to nP_LOAD  
15  
ps  
20% to 80%  
200  
700  
ps  
5
ns  
tS  
Setup Time S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to nP_LOAD  
5
ns  
5
ns  
5
ns  
tH  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
ns  
5
47  
ns  
odc  
tPW  
Output Duty Cycle  
Output Pulse Width  
PLL Lock Time  
N > 1  
N = 1  
53  
%
tPERIOD/2 - 150  
tPERIOD/2 + 150  
1
ps  
tLOCK  
ms  
See Parameter Measurement Information section.  
NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
6
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
,
Qx  
VCCO  
nCLK  
CLK  
VEE  
VPP  
VCMR  
Cross Points  
LVPECL  
nQx  
VEE  
-1.3V 0.1ꢀ6V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
VOH  
nFOUTx  
VREF  
FOUTx  
VOL  
1σ contains ꢀ8.2ꢀ% of all measurements  
2σ contains 96.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.993ꢀꢀ% of all measurements  
σ contains (100-1.973x10-7)% of all measurements  
tcycle n  
tcycle n  
tcycle n+1  
tcycle n+1  
tjit(cc) = tcycle n – tcycle n+1  
1000 Cycles  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
PERIOD JITTER  
CYCLE-TO-CYCLE JITTER  
nFOUTx  
FOUTx  
80%  
tF  
80%  
VSWING  
20%  
Clock  
Outputs  
20%  
nFOUTy  
tR  
FOUTy  
tsk(o)  
OUTPUT SKEW  
OUTPUT RISE/FALL TIME  
nFOUTx  
FOUTx  
tPW  
tPERIOD  
tPW  
odc =  
x 100%  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
7
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
APPLICATION INFORMATION  
STORAGE AREA NETWORKS  
A variety of technologies are used for interconnection of the  
elements within a SAN. The tables below list the common  
application frequencies as well as the ICS8432-101 configurations  
used to generate the appropriate frequency.  
Table 7. Common SANs Application Frequencies  
Reference Frequency to SERDES  
(MHz)  
Crystal Frequency  
(MHz)  
Interconnect Technology  
Gigabit Ethernet  
Fibre Channel  
Clock Rate  
1.25 GHz  
125, 250, 156.25  
106.25, 53.125, 132.8125  
125, 250  
25, 19.53125  
16.6015625, 25  
25  
FC1 1.0625 GHz  
FC2 2.1250 GHz  
Infiniband  
2.5 GHz  
Table 8. Configuration Details for SANs Applications  
ICS8432-101  
ICS8432-101  
M & N Settings  
Interconnect  
Technology  
CLK, nCLK Input  
(MHz)  
Output Frequency  
to SERDES  
(MHz)  
M8 M7 M6 M5 M4 M3 M2 M1 M0 N1 N0  
25  
125  
250  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
1
1
0
1
1
0
1
1
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
1
0
1
1
1
1
1
1
0
0
1
0
0
1
0
0
0
1
25  
Gigabit Ethernet  
25  
156.25  
156.25  
53.125  
106.25  
132.8125  
125  
19.53125  
25  
Fiber Channel 1  
Fiber Channel 2  
Infiniband  
25  
16.6015625  
25  
25  
250  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS8432-101 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VCC, VCCA, and  
VCCO should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 2 illustrates how  
a 10Ω resistor along with a 10μF and a .01μF bypass  
capacitor should be connected to each VCCA pin.  
3.3V  
VCC  
.01μF  
.01μF  
10Ω  
VCCA  
10 μF  
FIGURE 2. POWER SUPPLY FILTERING  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
8
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
of R1 and R2 might need to be adjusted to position the V_REF in  
the center of the input voltage swing. For example, if the input  
Figure 3 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = V /2 is  
generated by the bias resistors R1, R2 and C1. This bias CcCircuit  
should be located as close as possible to the input pin. The ratio  
clock swing is only 2.5V and V = 3.3V, V_REF should be 1.25V  
CC  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLK  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 3. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
LVPECL OUTPUT  
TEST_CLK INPUT:  
For applications not requiring the use of the test clock, it can be  
left floating. Though not required, but for additional protection, a  
1kΩ resistor can be tied from the TEST_CLK to ground.  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
CLK/nCLK INPUT:  
For applications not requiring the use of the differential input,  
both CLK and nCLK can be left floating. Though not required,  
but for additional protection, a 1kΩ resistor can be tied from CLK  
to ground.  
LVCMOS CONTROL PINS:  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
9
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both VSWING and VOH must meet the  
VPP and VCMR input requirements. Figures 4A to 4E show interface  
examples for the HiPerClockS CLK/nCLK input driven by the most  
common driver types. The input interfaces suggested here are  
examples only. Please consult with the vendor of the driver  
component to confirm the driver termination requirements. For  
example in Figure 4A, the input termination applies for IDT  
HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
LVPECL  
Input  
nCLK  
HiPerClockS  
LVHSTL  
Input  
R1  
50  
R2  
50  
ICS  
R1  
50  
R2  
50  
HiPerClockS  
LVHSTL Driver  
R3  
50  
FIGURE 4A. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 4B. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 4E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
10  
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termination  
for LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
drive 50Ω transmission lines. Matched impedance techniques  
should be used to maximize operating frequency and minimize  
signal distortion. Figures 5A and 5B show two different layouts  
which are recommended only as guidelines. Other suitable clock  
layouts may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, termi-  
nating resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 5A. LVPECL OUTPUT TERMINATION  
FIGURE 5B. LVPECL OUTPUT TERMINATION  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
11  
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
LAYOUT GUIDELINE  
The schematic of the ICS8432-101 layout example used in this  
layout guideline is shown in Figure 6A. The ICS8432-101  
recommended PCB board layout for this example is shown in  
Figure 6B. This layout example is used as a general guideline.  
The layout in the actual system will depend on the selected  
component types, the density of the components, the density  
of the traces, and the stack up of the P.C. board.  
nCLK  
CLK  
R7  
VCC  
U1  
10  
C11  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
0.01u  
C16  
10u  
M5  
M6  
M7  
M8  
N0  
N1  
nc  
CLK  
REF_IN  
nCLK_SEL  
VDDA  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
XTAL_SEL  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
VEE  
Termination A  
Termination B  
(not shown in  
the layout)  
VCC  
8432-101  
IN+  
R1  
R3  
125  
125  
Zo = 50 Ohm  
IN+  
IN-  
IN-  
TL1  
Zo = 50 Ohm  
R2  
50  
R1  
50  
C14  
0.1u  
C15  
0.1u  
TL2  
R2  
84  
R4  
84  
R3  
50  
FIGURE 6A. SCHEMATIC OF RECOMMENDED LAYOUT  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
12  
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
The following component footprints are used in this layout  
example: All the resistors and capacitors are size 0603.  
on the rising or falling edge or excessive ring back can cause system  
failure. The trace shape and the trace delay might be restricted by  
the available space on the board and the component location.While  
routing the traces, the clock signal traces should be routed first and  
should be locked prior to routing other signal traces.  
POWER AND GROUNDING  
Place the decoupling capacitors C14 and C15 as close as possible  
to the power pins. If space allows, placing the decoupling capacitor  
at the component side is preferred. This can reduce unwanted  
inductance between the decoupling capacitor and the power pin  
generated by the via.  
• The traces with 50Ω transmission lines TL1 and TL2 at  
FOUT and nFOUT should have equal delay and run ad-  
jacent to each other. Avoid sharp angles on the clock trace.  
Sharp angle turns cause the characteristic impedance to  
change on the transmission lines.  
Maximize the pad size of the power (ground) at the decoupling  
capacitor. Maximize the number of vias between power (ground)  
and the pads.This can reduce the inductance between the power  
(ground) plane and the component power (ground) pins.  
• Keep the clock trace on same layer. Whenever possible,  
avoid any vias on the clock traces. Any via on the trace  
can affect the trace characteristic impedance and hence  
degrade signal quality.  
If V shares the same power supply with V , insert the RC filter  
CC  
R7,CCCA 11, and C16 in between. Place this RC filter as close to the  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow more space between the clock trace  
and the other signal trace.  
V
as possible.  
CCA  
• Make sure no other signal trace is routed between the  
clock trace pair.  
CLOCK TRACES AND TERMINATION  
The component placements, locations and orientations should be  
arranged to achieve the best clock signal quality. Poor clock signal  
quality can degrade the system performance or cause system failure.  
In the synchronous high-speed digital system, the clock signal is  
less tolerable to poor signal quality than other signals. Any ringing  
The matching termination resistors R1, R2, R3 and R4 should  
be located as close to the receiver input pins as possible. Other  
termination schemes can also be used but are not shown in this  
example.  
GND  
VCC  
U1  
PIN 1  
VIA  
C11  
C16  
VCCA  
R7  
Close to the input  
pins of the  
receiver  
R4  
R3  
TL1N  
C15  
C14  
TL1  
R2  
R1  
TL1, TL2 are 50 Ohm traces and  
equal length  
FIGURE 6B. PCB BOARD LAYOUT FOR ICS8432-101  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
13  
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8432-101.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8432-101 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5% = 3.465V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
·
·
Power (core) = V  
* I  
= 3.465V * 120mA = 416mW  
EE_MAX  
MAX  
CC_MAX  
Power (outputs) = 30mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power  
(3.465V, with all outputs switching) = 416mW + 60mW = 476mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = qJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 9 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.476W * 42.1°C/W = 90°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 9. THERMAL RESISTANCE θ FOR 32-PIN LQFP, FORCED CONVECTION  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
14  
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 7. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V - 2V.  
CCO  
For logic high, V = V  
= V  
0.9V  
OUT  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V ) =  
OH_MAX  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
L
L
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
15  
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
RELIABILITY INFORMATION  
TABLE 10. θ VS. AIR FLOW TABLE FOR 32 LEAD LQFP  
JA  
θ by Velocity (Linear Feet per Minute)  
JA  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8432-101 is: 3712  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
16  
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 11. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
D
9.00 BASIC  
7.00 BASIC  
5.60  
D1  
D2  
E
9.00 BASIC  
7.00 BASIC  
5.60  
E1  
E2  
e
0.80 BASIC  
0.60  
L
0.45  
0.75  
θ
0°  
7°  
ccc  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
17  
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 12. ORDERING INFORMATION  
Part/Order Number  
ICS8432DY-101  
Marking  
Package  
Shipping Packaging Temperature  
ICS8432D-101  
ICS8432D-101  
ICS8432D101L  
ICS8432D101L  
32 Lead LQFP  
tray  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS8432DY-101T  
ICS8432DY-101LF  
ICS8432DY-101LFT  
32 Lead LQFP  
1000 tape & reel  
tray  
32 Lead "Lead-Free" LQFP  
32 Lead "Lead-Free" LQFP  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
18  
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
REVISION HISTORY SHEET  
Rev  
A
Table  
Page  
1
3
Description of Change  
Features Section - added HCSL to input levels.  
Date  
7/8/03  
7/23/03  
T2  
Pin Characteristics Table - changed CIN from 4pF max. to 4pF typical.  
Absolute Maximum Ratings - changed Output rating.  
5
10  
2
Added Differential Clock Input Interface section.  
A
Test Output Table - changed last line from CMOS Fout/2 to CMOS Fout  
Changed VCO Frequency min. from 200MHz to 250MHz through data sheet.  
Updated Parallel & Serial Load Operations Diagram.  
1
2
B
B
T3C  
T6  
4
Programmable Output Divider Function Table - changed minimum values.  
AC Table - changed FOUT min. from 25MHz to 31.25MHz.  
9/5/03  
6/1/05  
6
9
1
2
6
17  
Updated LVPECL Output Termination Diagrams.  
Features Section - added Lead-Free bullet.  
Updated Fig. 1 Parallel & Serial Load Operations.  
AC Characteristics Table - deleted Note "Jitter performance using XTAL inputs".  
Ordering Information Table - added Lead-Free part number.  
T6  
T12  
9
18  
6
Added Recommendations for Unused Input and Output Pins.  
Ordering Information Table - corrected standard marking and added lead-free marking.  
LVPECL DC Characteristics Table -corrected VOH max. from VCCO - 1.0V to VCCO - 0.9V.  
Power Considerations - corrected power dissipation to reflect VOH max in Table 4D.  
B
C
7/20/06  
4/10/07  
T12  
T4D  
14-15  
IDT/ ICS700MHZ, 3.3V LVPECL FREQUENCY SYNTHESIZER  
19  
ICS8432DY-101 REV. C APRIL 10, 2007  
ICS8432-101  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
#20-03 Wisma Atria  
England  
+408 284 8200 (outside U.S.)  
Singapore 238877  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
+65 6 887 5505  
© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

ICS8432DY-101LF

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8432DY-101LF

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
IDT

ICS8432DY-101LFT

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8432DY-101LFT

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
IDT

ICS8432DY-101T

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8432DY-101T

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
IDT

ICS8432DYI-01

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8432DYI-01LF

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8432DYI-01LFT

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8432DYI-101

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8432DYI-101LF

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8432DYI-101LFT

700MHZ, DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI