ICS85356AGILFT [IDT]

Low Skew Clock Driver, 85356 Series, 2 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20;
ICS85356AGILFT
型号: ICS85356AGILFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 85356 Series, 2 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20

驱动 光电二极管 逻辑集成电路
文件: 总15页 (文件大小:1109K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2:1, Differential-to-3.3V Dual LVPECL/ECL  
Clock Multiplexer  
ICS85356I  
DATA SHEET  
General Description  
Features  
The ICS85356I is a dual 2:1 Differential-to-LVPECL  
Multiplexer. The device has both common select and  
individual select inputs. When COM_SEL is logic High,  
the CLKxx input pairs will be passed to the output.  
When COM_SEL is logic Low, the output is  
High speed differential muliplexer. The device can be configured  
as a 2:1 multiplexer  
S
IC  
HiPerClockS™  
Dual 3.3V LVPECL outputs  
Selectable differential CLKx/nCLKx input pairs  
Differential CLKx/nCLKx pairs can accept the following interface  
determined by the setting of the SEL0 pin for channel 0 and the  
SEL1 pin for Channel 1.  
levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL  
Output frequency: 900MHz (typical)  
The differential input has a common mode range that can accept  
most differential input types such as LVPECL, LVDS, LVHSTL,  
SSTL, and HCSL. The ICS85356I can therefore be used as a  
differential translator to translate almost any differential input type to  
LVPECL. It can also be used in ECL mode by setting VCC = 0V and  
Translates any single-ended input signal to 3.3V LVPECL levels  
with resistor bias on nCLKx input  
Output skew: 75ps (typical)  
Propagation delay: 1.15ns (typical)  
V
EE to -3.0V to - 3.8V.  
LVPECL mode operating voltage supply range:  
VCC = 3V to 3.8V, VEE = 0V  
The ICS85356I adds negligible jitter to the input clock and can  
operate at high frequencies in excess of 900MHz thus making  
it ideal for use in demanding applications such as SONET,  
Fibre Channel, 1 Gigabit/10 Gigabit Ethernet.  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -3V to -3.8V  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Block Diagram  
Pin Assignment  
Pulldown  
CLK0A  
CLK0A  
nCLK0A  
nc  
1
2
20  
19  
VCC  
Q0  
0
Pullup  
nCLK0A  
Q0  
3
4
18  
17  
nQ0  
SEL0  
Pulldown  
Pullup  
CLK0B  
CLK0B  
nQ0  
CLK0B  
1
nCLK0B  
CLK1A  
nCLK1A  
5
6
7
16 COM_SEL  
15  
14  
13  
SEL1  
VCC  
Pullup  
SEL0  
COM_SEL  
SEL1  
Q1  
nc  
CLK1B  
nCLK1B  
8
Pulldown  
Pullup  
9
10  
12 nQ1  
11  
VEE  
ICS85356I  
Pulldown  
Pullup  
CLK1A  
0
1
nCLK1A  
20-Lead SOIC  
7.5mm x 12.8mm x 2.3mm package body  
M Package  
Q1  
Pulldown  
Pullup  
CLK1B  
CLK1B  
nQ1  
Top View  
ICS85356I  
20-Lead TSSOP  
6.5mm x 4.4mm x 0.92mm package body  
G Package  
Top View  
ICS85356AMI REVISION B MAY 10, 2010  
1
©2010 Integrated Device Technology, Inc.  
ICS85356I Data Sheet  
2:1, DIFFERENTIAL-TO-3.3V LVPECL/ECL CLOCK MULTIPLEXER  
Table 1. Pin Descriptions  
Number  
Name  
VCC  
Type  
Description  
14, 20  
Power  
Input  
Positive supply pins.  
1
2
CLK0A  
nCLK0A  
nc  
Pulldown  
Non-inverting differential clock input.  
Inverting differential clock input.  
No connect.  
Input  
Pullup  
3, 8  
Unused  
4
CLK0B  
Input  
Pulldown  
Non-inverting differential clock input.  
5
6
nCLK0B  
CLK1A  
nCLK1A  
CLK1B  
nCLK1B  
VEE  
Input  
Input  
Input  
Input  
Input  
Power  
Output  
Input  
Pullup  
Pulldown  
Pullup  
Inverting differential clock input.  
Non-inverting differential clock input.  
Inverting differential clock input.  
7
9
Pulldown  
Pullup  
Non-inverting differential clock input.  
Inverting differential clock input.  
10  
11  
Negative supply pin.  
12, 13  
15, 17  
nQ1,Q1  
Differential output pair. LVPECL interface levels.  
Clock select inputs. LVCMOS/LVTTL interface levels.  
Pullup  
SEL1, SEL0  
16  
Input  
Pulldown  
Common select input. LVCMOS/LVTTL interface levels.  
Differential output pair. LVPECL interface levels.  
COM_SEL  
nQ0,Q0  
18, 19  
Output  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
k  
RPULLDOWN Input Pulldown Resistor  
kΩ  
Function Tables  
Table 3. Control Input Function Table  
Inputs  
Outputs  
COM_SEL  
SEL1  
SEL0  
Q0  
CLK0A  
nQ0  
Q1  
nQ1  
0
0
0
0
1
0
0
1
1
x
0
1
0
1
x
nCLK0A  
nCLK0B  
nCLK0A  
nCLK0B  
nCLK0B  
CLK1A  
CLK1A  
CLK1B  
CLK1B  
CLK1B  
nCLK1A  
nCLK1A  
nCLK1B  
nCLK1B  
nCLK1B  
CLK0B  
CLK0A  
CLK0B  
CLK0B  
ICS85356AMI REVISION B MAY 10, 2010  
2
©2010 Integrated Device Technology, Inc.  
ICS85356I Data Sheet  
2:1, DIFFERENTIAL-TO-3.3V LVPECL/ECL CLOCK MULTIPLEXER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
Inputs, VI  
4.6V  
-0.5V to VCC+ 0.5V  
Outputs, IO  
Continuos Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA  
20 Lead SOIC  
20 Lead TSSOP  
46.2°C/W (0 lfpm)  
73.2°C/W (0 lfpm)  
Storage Temperature, TSTG  
-65°C to 150°C  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VCC = 3.3V 0.3V; VEE = 0V, TA = -40°C to 85°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
V
Positive Supply Voltage  
Power Supply Current  
3.0  
3.3  
3.6  
40  
IEE  
mA  
Table 4B. LVCMOS/LVTTL DC Characteristics, VCC = 3.3V 0.3V; VEE = 0V, TA = -40°C to 85°C  
Symbol  
VIH  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
V
Input High Voltage  
Input Low Voltage  
2
VCC + 0.3  
VIL  
-0.3  
0.8  
5
V
SEL0, SEL1  
COM_SEL  
SEL0, SEL1  
COM_SEL  
VCC = VIN = 3.6V  
µA  
µ
Input  
High Current  
IIH  
V
CC = VIN = 3.6V  
150  
VCC = 3.6V, VIN = 0V  
VCC = 3.6V, VIN = 0V  
-150  
-5  
µA  
µ
Input  
Low Current  
IIL  
ICS85356AMI REVISION B MAY 10, 2010  
3
©2010 Integrated Device Technology, Inc.  
ICS85356I Data Sheet  
2:1, DIFFERENTIAL-TO-3.3V LVPECL/ECL CLOCK MULTIPLEXER  
Table 4C. Differential DC Characteristics, VCC = 3.3V 0.3V; VEE = 0V, TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
CLK0A, CLK0B,  
CLK1A, CLK1B  
VCC = VIN = 3.6V  
150  
µA  
Input  
High Current  
IIH  
nCLK0A, nCLK0B,  
nCLK1A, nCLK1B  
VCC = VIN = 3.6V  
VCC = 3.6V, VIN = 0V  
VCC = 3.6V, VIN = 0V  
5
µA  
µA  
µA  
CLK0A, CLK0B,  
CLK1A, CLK1B  
-5  
Input  
Low Current  
IIL  
nCLK0A, nCLK0B,  
nCLK1A, nCLK1B  
-150  
VPP  
Peak-to-Peak Voltage; NOTE 1  
0.15  
1.0  
V
V
VCMR  
Common Mode Range; NOTE 1, 2  
VEE + 0.5  
VCC – 0.85  
NOTE 1: VIL should not be less than -0.3V  
NOTE 2: Common mode voltage is defined as VIH.  
Table 4D. LVPECL DC Characteristics, VCC = 3.3V 0.3V; VEE = 0V, TA = -40°C to 85°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCC – 1.4  
VCC – 2.0  
0.6  
Typical  
Maximum  
VCC – 0.9  
VCC – 1.7  
1.0  
Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs termination with 50to VCC – 2V.  
AC Electrical Characteristics  
Table 5. AC Characteristics, VCC = 3.3V 0.3V; VEE = 0V, TA = -40°C to 85°C  
Symbol  
fMAX  
Parameter  
Test Conditions  
Minimum  
0.85  
Typical  
900  
Maximum  
Units  
MHz  
ns  
Output Frequency  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 3  
Output Rise/Fall Time  
Output Duty Cycle Skew  
ƒ 900MHz  
1.15  
75  
1.45  
150  
580  
100  
tsk(o)  
tR / tF  
tODC  
ps  
20% to 80%  
200  
ps  
ps  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions  
NOTE: All parameters measured at ƒ 622MHz, unless otherwise noted.  
NOTE: This part does not add measurable jitter.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: This parameter is defined according with JEDEC Standard 65.  
ICS85356AMI REVISION B MAY 10, 2010  
4
©2010 Integrated Device Technology, Inc.  
ICS85356I Data Sheet  
2:1, DIFFERENTIAL-TO-3.3V LVPECL/ECL CLOCK MULTIPLEXER  
Parameter Measurement Information  
2V  
V
CC  
nCLKxA,  
nCLKxB  
SCOPE  
Qx  
VCC  
VPP  
VCMR  
Cross Points  
CLKxA,  
CLKxB  
LVPECL  
nQx  
VEE  
V
EE  
-1.3V ꢀ.3V  
LVPECL Output Load AC Test Circuit  
Differential Input Level  
nQx  
nQx  
nQꢀ, nQ1  
8ꢀ%  
tF  
8ꢀ%  
VSWING  
2ꢀ%  
2ꢀ%  
nQy  
Qꢀ, Q1  
tR  
nQy  
tsk(o)  
Output Skew  
Output Rise/Fall Time  
nCLKxA,  
nCLKxB  
nCLKxA,  
nCLKxB  
CLKxA,  
CLKxB  
CLKxA,  
CLKxB  
nQꢀ, nQ1  
nQꢀ, nQ1  
Qꢀ, Q1  
tpLH  
Qꢀ, Q1  
tPD  
tpHL  
tsk(odc) = tpLH - tpHL  
Propagation Delay  
Output Duty Cycle Skew  
ICS85356AMI REVISION B MAY 10, 2010  
5
©2010 Integrated Device Technology, Inc.  
ICS85356I Data Sheet  
2:1, DIFFERENTIAL-TO-3.3V LVPECL/ECL CLOCK MULTIPLEXER  
Application Information  
Wiring the Differential Input to Accept Single-Ended Levels  
Figure 1 shows how a differential input can be wired to accept single  
ended levels. The reference voltage VREF = VCC/2 is generated by  
the bias resistors R1 and R2. The bypass capacitor (C1) is used to  
help filter noise on the DC bias. This bias circuit should be located as  
close to the input pin as possible. The ratio of R1 and R2 might need  
to be adjusted to position the VREF in the center of the input voltage  
swing. For example, if the input clock swing is 2.5V and VCC = 3.3V,  
R1 and R2 value should be adjusted to set VREF at 1.25V. The values  
below are for when both the single ended swing and VCC are at the  
same voltage. This configuration requires that the sum of the output  
impedance of the driver (Ro) and the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination at  
the input will attenuate the signal in half. This can be done in one of  
two ways. First, R3 and R4 in parallel should equal the transmission  
line impedance. For most 50applications, R3 and R4 can be 100.  
The values of the resistors can be increased to reduce the loading for  
slower and weaker LVCMOS driver. When using single-ended  
signaling, the noise rejection benefits of differential signaling are  
reduced. Even though the differential input can handle full rail  
LVCMOS signaling, it is recommended that the amplitude be  
reduced. The datasheet specifies a lower differential amplitude,  
however this only applies to differential signals. For single-ended  
applications, the swing can be larger, however VIL cannot be less  
than -0.3V and VIH cannot be more than VCC + 0.3V. Though some  
of the recommended components might not be used, the pads  
should be placed in the layout. They can be utilized for debugging  
purposes. The datasheet specifications are characterized and  
guaranteed by using a differential signal.  
Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels  
Recommendations for Unused Input and Output Pins  
Inputs:  
Inputs:  
CLK/nCLK Inputs  
LVPECL Outputs  
For applications not requiring the use of the differential input, both  
CLK and nCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to ground.  
All unused LVPECL outputs can be left floating. We recommend that  
there is no trace attached. Both sides of the differential output pair  
should either be left floating or terminated.  
Control Pins  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
ICS85356AMI REVISION B MAY 10, 2010  
6
©2010 Integrated Device Technology, Inc.  
ICS85356I Data Sheet  
2:1, DIFFERENTIAL-TO-3.3V LVPECL/ECL CLOCK MULTIPLEXER  
Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both VSWING and VOH must meet the  
VPP and VCMR input requirements. Figures 2A to 2F show interface  
examples for the CLK/nCLK input driven by the most common  
driver types. The input interfaces suggested here are examples  
only. Please consult with the vendor of the driver component to  
confirm the driver termination requirements. For example, in Figure  
2A, the input termination applies for IDT open emitter LVHSTL  
drivers. If you are using an LVHSTL driver from another vendor,  
use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
Zo = 50Ω  
nCLK  
Differential  
Input  
nCLK  
LVPECL  
Differential  
R1  
R2  
LVHSTL  
50Ω  
50Ω  
Input  
R1  
50Ω  
R2  
50Ω  
IDT  
LVHSTL Driver  
R2  
50Ω  
Figure 2A. CLK/nCLK Input Driven by an  
IDT Open Emitter LVHSTL Driver  
Figure 2B. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
R4  
Zo = 50Ω  
125Ω  
125Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100  
nCLK  
nCLK  
Zo = 50Ω  
Differential  
Input  
LVPECL  
Receiver  
LVDS  
R1  
R2  
84Ω  
84Ω  
Figure 2C. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
Figure 2D. CLK/nCLK Input Driven by a  
3.3V LVDS Driver  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120Ω  
120Ω  
Zo = 50Ω  
Zo = 60Ω  
Zo = 60Ω  
*R3  
*R4  
33Ω  
33Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
nCLK  
Differential  
Input  
SSTL  
Differential  
Input  
HCSL  
R1  
50Ω  
R2  
50Ω  
R1  
120Ω  
R2  
120Ω  
*Optional – R3 and R4 can be 0Ω  
Figure 2E. CLK/nCLK Input Driven by a  
3.3V HCSL Driver  
Figure 2F. CLK/nCLK Input Driven by a  
2.5V SSTL Driver  
ICS85356AMI REVISION B MAY 10, 2010  
7
©2010 Integrated Device Technology, Inc.  
ICS85356I Data Sheet  
2:1, DIFFERENTIAL-TO-3.3V LVPECL/ECL CLOCK MULTIPLEXER  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be used  
to maximize operating frequency and minimize signal distortion.  
Figures 3A and 3B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and clock  
component process variations.  
The differential outputs are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
R3  
R4  
3.3V  
125  
125Ω  
3.3V  
3.3V  
3.3V  
Z
o = 50Ω  
Z
o = 50Ω  
+
_
+
_
Input  
LVPECL  
Zo = 50Ω  
LVPECL  
Input  
Zo = 50Ω  
R1  
50Ω  
R2  
50Ω  
R1  
84Ω  
R2  
84Ω  
VCC - 2V  
1
RTT =  
* Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
Figure 3A. 3.3V LVPECL Output Termination  
Figure 3B. 3.3V LVPECL Output Termination  
ICS85356AMI REVISION B MAY 10, 2010  
8
©2010 Integrated Device Technology, Inc.  
ICS85356I Data Sheet  
2:1, DIFFERENTIAL-TO-3.3V LVPECL/ECL CLOCK MULTIPLEXER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS85356I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85356I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 0.3V = 3.6V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.6V * 40mA = 144mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power_MAX (3.6V, with all outputs switching) = 144mW + 60mW = 204mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 83.2°C/W per Table 6B below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.204W * 73.2°C/W = 99.9°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (single layer or multi-layer).  
Table 6A. Thermal Resistance θJA for 20 Lead SOIC, Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
46.2°C/W  
65.7°C/W  
39.7°C/W  
57.5°C/W  
36.8°C/W  
NOTE: Most modern PCB design use multi-layered boards. The data in the second row pertains to most designs.  
Table 6B. Thermal Resistance θJA for 20 Lead TSSOP, Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
98.0°C/W  
66.6°C/W  
88.0°C/W  
63.5°C/W  
NOTE: Most modern PCB design use multi-layered boards. The data in the second row pertains to most designs.  
ICS85356AMI REVISION B MAY 10, 2010  
9
©2010 Integrated Device Technology, Inc.  
ICS85356I Data Sheet  
2:1, DIFFERENTIAL-TO-3.3V LVPECL/ECL CLOCK MULTIPLEXER  
3. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the LVPECL output pair.  
LVPECL output driver circuit and termination are shown in Figure 4.  
VCC  
Q1  
VOUT  
RL  
50Ω  
VCC - 2V  
Figure 4. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage of  
VCC – 2V.  
For logic high, VOUT = VOH_MAX = VCC_MAX – 0.9V  
(VCC_MAX – VOH_MAX) = 0.9V  
For logic low, VOUT = VOL_MAX = VCC_MAX 1.7V  
(VCC_MAX – VOL_MAX) = 1.7V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOH_MAX) = [(2V – (VCC_MAX – VOH_MAX))/RL] * (VCC_MAX – VOH_MAX) =  
[(2V – 0.9V)/50] * 0.9V = 19.8mW  
Pd_L = [(VOL_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOL_MAX) = [(2V – (VCC_MAX – VOL_MAX))/RL] * (VCC_MAX – VOL_MAX) =  
[(2V – 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
ICS85356AMI REVISION B MAY 10, 2010  
10  
©2010 Integrated Device Technology, Inc.  
ICS85356I Data Sheet  
2:1, DIFFERENTIAL-TO-3.3V LVPECL/ECL CLOCK MULTIPLEXER  
Reliability Information  
Table 7A. θJA vs. Air Flow Table for a 20 Lead SOIC, Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
46.2°C/W  
65.7°C/W  
39.7°C/W  
57.5°C/W  
36.8°C/W  
NOTE: Most modern PCB design use multi-layered boards. The data in the second row pertains to most designs.  
Table 7B. θJA vs. Air Flow Table for a 20 Lead TSSOP, Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
98.0°C/W  
66.6°C/W  
88.0°C/W  
63.5°C/W  
NOTE: Most modern PCB design use multi-layered boards. The data in the second row pertains to most designs.  
Transistor Count  
The transistor count for ICS85356I is: 446  
ICS85356AMI REVISION B MAY 10, 2010  
11  
©2010 Integrated Device Technology, Inc.  
ICS85356I Data Sheet  
2:1, DIFFERENTIAL-TO-3.3V LVPECL/ECL CLOCK MULTIPLEXER  
Package Outlines and Package Dimensions  
Package Outline - G Suffix for 20 Lead TSSOP  
Package Outline - M Suffix for 20 Lead SOIC  
Table 7A. Package Dimensions  
All Dimensions in Millimeters  
Table 7B. Package Dimensions for 20 Lead SOIC  
300 Millimeters  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
Symbol  
Minimum  
Maximum  
N
A
20  
N
A
A1  
A2  
B
C
D
E
20  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
2.65  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
0.10  
2.05  
0.33  
0.18  
12.60  
7.40  
2.55  
0.51  
0.32  
13.00  
7.60  
c
D
E
6.40 Basic  
E1  
e
4.30  
4.50  
e
1.27 Basic  
0.65 Basic  
H
h
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
7°  
L
0.45  
0°  
0.75  
8°  
α
L
aaa  
0.10  
α
Reference Document: JEDEC Publication 95, MO-153  
Reference Document: JEDEC Publication 95, MS-013, MS-119  
ICS85356AMI REVISION B MAY 10, 2010  
12  
©2010 Integrated Device Technology, Inc.  
ICS85356I Data Sheet  
2:1, DIFFERENTIAL-TO-3.3V LVPECL/ECL CLOCK MULTIPLEXER  
Ordering Information  
Table 8. Ordering Information  
Part/Order Number  
85356AMI  
85356AMIT  
85356AMILF  
85356AMILFT  
85356AGI  
85356AGIT  
85356AGILF  
85356AGILFT  
Marking  
85356AMI  
85356AMI  
85356AMILF  
85356AMILF  
ICS85356AGI  
ICS85356AGI  
ICS85356AGIL  
ICS85356AGIL  
Package  
20 lead SOIC  
20 lead SOIC  
Shipping Packaging  
Tube  
1000 Tape & Reel  
Tube  
1000 Tape & Reel  
Tube  
2500 Tape & Reel  
Tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
“Lead-Free” 20 Lead SOIC  
“Lead-Free” 20 Lead SOIC  
20 Lead TSSOP  
20 Lead TSSOP  
“Lead-Free” 20 Lead TSSOP  
“Lead-Free” 20 Lead TSSOP  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without  
additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support  
devices or critical medical instruments.  
ICS85356AMI REVISION B MAY 10, 2010  
13  
©2010 Integrated Device Technology, Inc.  
ICS85356I Data Sheet  
2:1, DIFFERENTIAL-TO-3.3V LVPECL/ECL CLOCK MULTIPLEXER  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
7
13  
Added Differential Clock Input Interface section.  
Ordering Information Table - added Lead Free part number.  
Updated data sheet format.  
A
10/7/04  
T2  
T4D  
2
4
8-9  
13  
Pin Characteristics Table - changed CIN 4pF max, to 4pF typical.  
LVPECL DC Characteristics Table - corrected VOH max. from VCC - 1.0V to VCC - 0.9V.  
Power Considerations - corrected power dissipation to reflect VOH max in Table 4D.  
Ordering Information Table - added ICS85356AMI lead-free part/order number and lead-free  
note.  
B
B
4/11/07  
2/14/08  
T9  
3
5
6
7
9
Absolute Maximum Ratings - added TSSOP Package Thermal Impedance.  
Parameter Measurement Information - corrected Output Duty Cycle Skew diagram.  
Added Recommendations for Unused Input/Output Pins section.  
Updated Differential Clock Input Interface section.  
Power Considerations - updated Junction Temperature calculation to worst case ambient  
temperature.  
Updated datasheet format.  
T1  
T5  
2
Pin Description Table - corrected nCLKx and SELx pins from Pulldown to Pullup. Made error  
when converting the datasheet format.  
AC Characteristics Table - added thermal note.  
Updated Wiring the Differential Input to Accept Single-ended Levels.  
Updated Figures 3A and 3B.  
4
6
8
B
5/10/10  
T8  
13  
Ordering Information Table - deleted “ICS” prefix for Part/Order column. Added LF marking  
for SOIC, deleted “ICS” from marking for non-LF SOIC.  
Updated Header/Footer of datasheet.  
ICS85356AMI REVISION B MAY 10, 2010  
14  
©2010 Integrated Device Technology, Inc.  
ICS85356I Data Sheet  
2:1, DIFFERENTIAL-TO-3.3V LVPECL/ECL CLOCK MULTIPLEXER  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
San Jose, California 95138  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2009. All rights reserved.  

相关型号:

ICS85356AGIT

2:1, DIFFERENTIAL-TO-3.3V DUAL LVPECL / ECL CLOCK MULTIPLEXER
ICSI

ICS85356AGLF

Low Skew Clock Driver, 1 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS85356AGT

Low Skew Clock Driver, 1 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS85356AM

Low Skew Clock Driver, PDSO20, SOIC-20
IDT

ICS85356AMI

2:1, DIFFERENTIAL-TO-3.3V DUAL LVPECL / ECL CLOCK MULTIPLEXER
ICSI

ICS85356AMILF

Low Skew Clock Driver, 2 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, SOIC-20
IDT

ICS85356AMILFT

Low Skew Clock Driver, 2 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, SOIC-20
IDT

ICS85356AMIT

2:1, DIFFERENTIAL-TO-3.3V DUAL LVPECL / ECL CLOCK MULTIPLEXER
ICSI

ICS85356I

2:1, DIFFERENTIAL-TO-3.3V DUAL LVPECL / ECL CLOCK MULTIPLEXER
ICSI

ICS85357-01

4:1 OR 2:1 DIFFERENTIAL-TO-3.3V LVPECL / ECL CLOCK MULTIPLEXER
ICSI

ICS85357-01T

Clock Driver, PDSO20
IDT

ICS85357-11

4:1 OR 2:1, CRYSTAL OSCILLATOR-TO-3.3V LVPECL / ECL MULTIPLEXER
ICSI