ICS8535AG-21LFT [IDT]

Low Skew Clock Driver, 8535 Series, 2 True Output(s), 0 Inverted Output(s), PDSO14, 4.40 X 5 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-14;
ICS8535AG-21LFT
型号: ICS8535AG-21LFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 8535 Series, 2 True Output(s), 0 Inverted Output(s), PDSO14, 4.40 X 5 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-14

驱动 光电二极管 逻辑集成电路
文件: 总15页 (文件大小:774K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LOW SKEW, 1-TO-2 LVCMOS/LVTTL-TO-  
3.3V LVPECL CLOCK GENERATOR  
ICS8535-21  
General Description  
Features  
The ICS8535-21 is a low skew, high performance  
Two differential 3.3V LVPECL outputs  
S
IC  
1-to-2 LVCMOS/LVTTL-to-3.3V LVPECL fanout  
buffer and a member of the HiPerClockSfamily of  
High Performance Clock Solutions from IDT. The  
ICS8535-21 has two single-ended clock inputs. The  
Selectable CLK0 or CLK1 inputs for redundant and multiple  
HiPerClockS™  
frequency fanout applications  
CLK0 or CLK1 can accept the following input levels:  
LVCMOS or LVTTL  
single-ended clock input accepts LVCMOS or LVTTL input levels  
and translate them to 3.3V LVPECL levels. The clock enable is  
internally synchronized to eliminate runt clock pulses on the output  
during asynchronous assertion/deassertion of the clock enable  
pin.  
Maximum output frequency: 266MHz  
Translates LVCMOS and LVTTL levels to 3.3V LVPECL levels  
Output skew: 20ps (maximum)  
Part-to-part skew: 300ps (maximum)  
Guaranteed output and part-to-part skew characteristics make the  
ICS8535-21 ideal for those applications demanding well defined  
performance and repeatability.  
Propagation delay: 1.6ns (maximum)  
Additive phase jitter, RMS: 0.03ps (typical)  
3.3V operating supply  
0°C to 70°C ambient operating temperature  
Industrial temperature information available upon request  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
Pin Assignment  
Block Diagram  
VEE  
CLK_EN  
CLK_SEL  
1
2
14 VCC  
13 Q0  
Pullup  
CLK_EN  
D
Q
Q0  
3
4
5
6
7
12  
LE  
Pulludown  
Pulludown  
CLK0  
VEE  
11 nc  
10 Q1  
CLK0  
CLK1  
0
1
Q0  
Q0  
CLK1  
VCC  
9
8
Q1  
VCC  
Q1  
Q1  
ICS8535-21 14 Lead TSSOP  
4.40mm x 5.0mm x 0.925mm package body  
G Package  
Pulludown  
CLK_SEL  
Top View  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
1
ICS8535AG-21 REV. A FEBRUARY 24, 2009  
ICS8535-21  
LOW SKEW, 1-TO-2 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1, 5  
VEE  
Power  
Input  
Negative supply pins.  
Synchronizing clock enable. When HIGH, clock outputs follow clock input.  
When LOW, Qx outputs are forced low, Qx outputs are forced high.  
LVCMOS/LVTTL interface levels.  
2
CLK_EN  
Pullup  
Clock select input. When HIGH, selects CLK1 input.  
When LOW, selects CLK0 input. LVCMOS/LVTTL interface levels.  
3
CLK_SEL  
Input  
Pulldown  
4, 6  
7, 8, 14  
9, 10  
11  
CLK0, CLK1  
VCC  
Input  
Power  
Output  
Unused  
Output  
Pulldown Single-ended clock inputs. LVCMOS/LVTTL interface levels.  
Power supply pins.  
Q1, Q1  
nc  
Differential output pair. LVPECL interface levels.  
No connect.  
12, 13  
Q0, Q0  
Differential output pair. LVPECL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
k  
RPULLDOWN Input Pulldown Resistor  
kΩ  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
2
ICS8535AG-21 REV. A FEBRUARY 24, 2009  
ICS8535-21  
LOW SKEW, 1-TO-2 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
Function Tables  
Table 3A. Control Input Function Table  
Inputs  
Outputs  
CLK_EN  
CLK_SEL  
Selected Source  
CLK0  
Q0, Q1  
Disabled; Low  
Disabled; Low  
Enabled  
Q0, Q1  
Disabled; High  
Disabled; High  
Enabled  
0
0
1
1
0
1
0
1
CLK1  
CLK0  
CLK1  
Enabled  
Enabled  
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in Figure 1.  
In the active mode, the state of the outputs are a function of the CLK0 and CLK1 inputs as described in Table 3B.  
Enabled  
Disabled  
CLK0, CLK1  
CLK_EN  
Q0, Q1  
Q0, Q1  
Figure 1. CLK_EN Timing Diagram  
Table 3B. Clock Input Function Table  
Inputs  
Outputs  
CLK0 or CLK1  
Q0, Q1  
LOW  
Q0, Q1  
HIGH  
LOW  
0
1
HIGH  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
3
ICS8535AG-21 REV. A FEBRUARY 24, 2009  
ICS8535-21  
LOW SKEW, 1-TO-2 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
Inputs, VI  
4.6V  
-0.5V to VCC+ 0.5V  
Outputs, IO  
Continuos Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA  
93.2°C/W (0 lfpm)  
-65°C to 150°C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VCC = 3.3V 5%, TA = 0°C to 70°C  
Symbol Parameter  
VCC Positive Supply Voltage  
IEE Power Supply Current  
Test Conditions  
Minimum  
Typical  
Maximum  
3.465  
50  
Units  
V
3.135  
3.3  
mA  
Table 4B. LVCMOS/LVTTL DC Characteristics, VCC = 3.3V 5%, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VCC + 0.3  
1.3  
Units  
VIH  
Input High Voltage  
2
V
V
CLK0, CLK1  
-0.3  
Input  
Low Voltage  
VIL  
CLK_EN,  
CLK_SEL  
-0.3  
0.8  
V
CLK0, CLK1,  
CLK_SEL  
VCC = VIN = 3.465  
VCC = VIN = 3.465  
150  
5
µA  
µA  
µA  
µA  
Input  
High Current  
IIH  
CLK_EN  
CLK0, CLK1,  
CLK_SEL  
VCC = 465V, VIN = 0V  
VCC = 465V, VIN = 0V  
-5  
Input  
Low Current  
IIL  
CLK_EN  
-150  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
4
ICS8535AG-21 REV. A FEBRUARY 24, 2009  
ICS8535-21  
LOW SKEW, 1-TO-2 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
Table 4C. LVPECL DC Characteristics, VCC = 5%, TA = 0°C to 70°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCC – 1.4  
VCC – 2.0  
0.6  
Typical  
Maximum  
VCC – 0.9  
VCC – 1.7  
1.0  
Units  
µA  
Output High Current; NOTE 1  
Output Low Current; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VOL  
µA  
VSWING  
V
NOTE 1: Outputs termination with 50to VCC – 2V.  
AC Electrical Characteristics  
Table 5. AC Characteristics, VCC = 3.3V 5%, TA = 0°C to 70°C  
Parameter Symbol Test Conditions  
fMAX Output Frequency  
tPD  
Minimum Typical Maximum  
Units  
MHz  
ns  
266  
Propagation Delay; NOTE 1  
ƒ266MHz  
1.0  
1.6  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter Section;  
NOTE 2  
156.25MHz, Integration Range:  
12kHz – 20MHz  
tjit  
0.03  
ps  
tsk(o)  
tsk(pp)  
tR / tF  
odc  
Output Skew; NOTE 3, 4  
Part-to-Part Skew; NOTE 4, 5  
Output Rise/Fall Time  
Output Duty Cycle  
20  
300  
600  
55  
ps  
ps  
ps  
%
20% to 80% @ 50MHz  
300  
45  
ƒ200MHz  
All parameters measured at ƒ266MHz unless noted otherwise.  
NOTE 1: Measured from VCC/2 of the input to the differential output crossing point. The part does not add jitter.  
NOTE 2: Driving only one input clock.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at VCC/2 of the input to the differential output crossing point.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 5: Defined as skew between outputs on different devices operating at the same supply voltage and with equal load conditions.  
Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
5
ICS8535AG-21 REV. A FEBRUARY 24, 2009  
ICS8535-21  
LOW SKEW, 1-TO-2 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
Additive Phase Jitter  
The spectral purity in a band at a specific offset from the  
to the power in the fundamental. When the required offset is  
fundamental compared to the power of the fundamental is called  
the dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise power  
present in a 1Hz band at a specified offset from the fundamental  
frequency to the power value of the fundamental. This ratio is  
expressed in decibels (dBm) or a ratio of the power in the 1Hz band  
specified, the phase noise is called a dBc value, which simply  
means dBm at a specified offset from the fundamental. By  
investigating jitter in the frequency domain, we get a better  
understanding of its effects on the desired application over the  
entire time record of the signal. It is mathematically possible to  
calculate an expected bit error rate given a phase noise plot.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
1k  
10k  
100k  
1M  
10M  
100M  
Offset Frequency (Hz)  
As with most timing specifications, phase noise measurements  
have issues. The primary issue relates to the limitations of the  
equipment. Often the noise floor of the equipment is higher than  
the noise floor of the device. This is illustrated above. The device  
meets the noise floor of what is shown, but can actually be lower.  
The phase noise is dependant on the input source and  
measurement equipment.  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
6
ICS8535AG-21 REV. A FEBRUARY 24, 2009  
ICS8535-21  
LOW SKEW, 1-TO-2 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
Parameter Measurement Information  
2V  
Part 1  
Qx  
Qx  
SCOPE  
VCC  
Qx  
Part 1  
Qy  
Qy  
LVPECL  
nQx  
tsk(pp)  
VEE  
1.3V 0.165V  
-
3.3V LVPECL Output Load AC Test Circuit  
Part-to-Part Skew  
Qx  
Qx  
CLK0,  
CLK1  
Qy  
Q0, Q1  
Q0, Q1  
Qy  
tsk(o)  
tpLH  
Output Skew  
Propagation Delay  
Q0, Q1  
Q, Q1  
80%  
tF  
80%  
tR  
tPW  
VSWING  
20%  
tPERIOD  
Clock  
Outputs  
20%  
tPW  
odc =  
x 100%  
tPERIOD  
Output Duty Cycle/Pulse Width/Period  
Output Rise/Fall Time  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
7
ICS8535AG-21 REV. A FEBRUARY 24, 2009  
ICS8535-21  
LOW SKEW, 1-TO-2 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
Application Information  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
CLK Inputs  
LVPECL Outputs  
For applications not requiring the use of a clock input, it can be left  
floating. Though not required, but for additional protection, a 1kΩ  
resistor can be tied from the CLK input to ground.  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
LVCMOS Control Pins  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kresistor can be used.  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be  
used to maximize operating frequency and minimize signal  
distortion. Figures 2A and 2B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and  
clock component process variations.  
FOUT and FOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
Z
o = 50  
125Ω  
125Ω  
FOUT  
FIN  
Z
o = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
Zo = 50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
Figure 2A. 3.3V LVPECL Output Termination  
Figure 2B. 3.3V LVPECL Output Termination  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
8
ICS8535AG-21 REV. A FEBRUARY 24, 2009  
ICS8535-21  
LOW SKEW, 1-TO-2 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
Schematic Example  
Figure 3 shows a schematic example of the ICS8535-21. The  
pin. For ICS8535-21, the unused clock outputs can be left floating.  
decoupling capacitors should be physically located near the power  
Zo = 50  
Zo = 50  
+
-
VCC = 3.3V  
R2  
50  
R1  
50  
R3  
50  
U2  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VEE  
VCC  
Q0  
CLK_EN  
CLK_SEL  
CLK0  
CLK_EN  
CLK_SEL  
CLK0  
VEE  
nQ0  
nc  
Q1  
CLK1  
CLK1  
VCC  
nQ1  
VCC  
8
8535-21  
Vcco = 3.3V  
R4  
R6  
133  
133  
(U1-7)  
(U1-8)  
(U1-14)  
VCC  
Zo = 50  
Zo = 50  
+
-
C1  
C2  
C3  
C4  
.1uF  
.1uF  
.1uF  
10uf  
R5  
R7  
82.5  
82.5  
Optional Termination  
Figure 3. ICS8535-21 LVPECL Buffer Schematic Example  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
9
ICS8535AG-21 REV. A FEBRUARY 24, 2009  
ICS8535-21  
LOW SKEW, 1-TO-2 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS535-21.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8535-21 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 50mA = 173.25mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power_MAX (3.3V, with all outputs switching) = 173.25mW + 60mW = 233.25mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device.  
The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a moderate  
air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 85.5°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.233W * 85.5°C/W = 90°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type  
of board (single layer or multi-layer).  
Table 6. Thermal Resitance θJA for 48 Lead TQFP, Forced Convection  
θJA vs. Air Flow  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
146.4°C/W  
93.2°C/W  
125.2°C/W  
85.5°C/W  
112.1°C/W  
81.2°C/W  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
10  
ICS8535AG-21 REV. A FEBRUARY 24, 2009  
ICS8535-21  
LOW SKEW, 1-TO-2 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 4.  
VCC  
Q1  
VOUT  
RL  
50Ω  
VCC - 2V  
Figure 4. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage  
of VCC – 2V.  
For logic high, VOUT = VOH_MAX = VCC_MAX – 0.9V  
(VCC_MAX – VOH_MAX) = 0.9V  
For logic low, VOUT = VOL_MAX = VCO_MAX 1.7V  
(VCC_MAX – VOL_MAX) = 1.7V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOH_MAX) = [(2V - (VCC_MAX – VOH_MAX))/RL] * (VCC_MAX – VOH_MAX) =  
[(2V – 0.9V)/50] * 0.9V = 19.8mW  
Pd_L = [(VOL_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOL_MAX) = [(2V – (VCC_MAX – VOL_MAX))/RL] * (VCC_MAX – VOL_MAX) =  
[(2V – 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
11  
ICS8535AG-21 REV. A FEBRUARY 24, 2009  
ICS8535-21  
LOW SKEW, 1-TO-2 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
Reliability Information  
Table 7. θJA vs. Air Flow Table for a 14 Lead TSSOP  
θJA vs. Air Flow  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
146.4°C/W  
93.2°C/W  
125.2°C/W  
85.5°C/W  
112.1°C/W  
81.2°C/W  
Transistor Count  
The transistor count for ICS8535-21 is: 412  
Package Outline and Package Dimension  
Package Outline - G Suffix for 14 Lead TSSOP  
Table 8. Package Dimensions  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
14  
1.20  
0.15  
1.05  
0.30  
0.20  
5.10  
A1  
A2  
b
0.5  
0.80  
0.19  
0.09  
4.90  
c
D
E
6.40 Basic  
E1  
e
4.30  
4.50  
0.65 Basic  
L
0.45  
0°  
0.75  
8°  
α
aaa  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
12  
ICS8535AG-21 REV. A FEBRUARY 24, 2009  
ICS8535-21  
LOW SKEW, 1-TO-2 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
8535AG-21  
8535AG-21T  
8535AG-21LF  
8535AG-21LFT  
Marking  
8535AG21  
8535AG21  
8535A21L  
8535A21L  
Package  
14 Lead TSSOP  
14 Lead TSSOP  
Shipping Packaging  
Tube  
2500 Tape & Reel  
Tube  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
“Lead-Free” 14 Lead TSSOP  
“Lead-Free” 14Lead TSSOP  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for  
the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT  
product for use in life support devices or critical medical instruments.  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
13  
ICS8535AG-21 REV. A FEBRUARY 24, 2009  
ICS8535-21  
LOW SKEW, 1-TO-2 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
12/5/05  
6/4/07  
1
8
Features Section - added lead-free bullet.  
A
Added Recommendations for Unused Input and Output Pins.  
Ordering Information Table - added lead-free part number, marking and note.  
T9  
T9  
14  
A
13  
Ordering Information Table - added lead-free marking.  
IDT™ / ICS™ 3.3V LVPECL FANOUT BUFFER  
14  
ICS8535AG-21 REV. A FEBRUARY 24, 2009  
ICS8535-21  
LOW SKEW, 1-TO-2 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
+408 284 8200 (outside U.S.)  
#20-03 Wisma Atria  
Singapore 238877  
+65 6 887 5505  
England  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
Printed in USA  
www.IDT.com  

相关型号:

ICS8535AG-21T

LOW SKEW, 1-TO-2 LVCMOS/LVTTL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8535AG-31

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/ LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8535AG-31LF

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/ LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8535AG-31LFT

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/ LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8535AG-31T

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/ LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8535AGI-11

Low Skew Clock Driver, 4 True Output(s), 4 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS8535AGI-11LF

Low Skew Clock Driver, 4 True Output(s), 4 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS8535AGI-11LFT

Low Skew Clock Driver, 4 True Output(s), 4 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS8535AGI-31

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
IDT

ICS8535AGI-31LF

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
IDT

ICS8535AGI-31LFT

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
IDT

ICS8535AGI-31T

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
IDT