ICS87339AMI-11LF [IDT]

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, ROHS COMPLIANT, MO-119, MS-013, SOIC-20;
ICS87339AMI-11LF
型号: ICS87339AMI-11LF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, ROHS COMPLIANT, MO-119, MS-013, SOIC-20

驱动 光电二极管 逻辑集成电路
文件: 总14页 (文件大小:648K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS87339I-11  
LOW SKEW,  
÷2/4,÷4/5/6,  
DIFFERENTIAL-TO-3.3V LVPECL CLOCK GENERATOR  
GENERAL DESCRIPTION  
FEATURES  
The ICS87339I-11 is a low skew, high perfor- Dual ÷2, ÷4 differential 3.3V LVPECL outputs;  
ICS  
mance Differential-to-3.3V LVPECL Clock Gen-  
erator/Divider and a member of the HiPerClockS™  
family of High Performance Clock Solutions  
from IDT. The ICS87339I-11 has one differen-  
Dual ÷4, ÷5, ÷6 differential 3.3V LVPECL outputs  
HiPerClockS™  
One differential CLK, nCLK input pair  
CLK, nCLK pair can accept the following differential  
input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
tial clock input pair. The CLK, nCLK pair can accept most  
standard differential input levels. The clock enable is  
internally synchronized to eliminate runt pulses on the  
outputs during asynchronous assertion/deassertion of the  
clock enable pin.  
Maximum clock input frequency: 1GHz  
Translates any single ended input signal (LVCMOS, LVTTL,  
GTL) to LVPECL levels with resistor bias on nCLK input  
Guaranteed output and part-to-part skew characteristics  
make the ICS87339I-11 ideal for clock distribution applica-  
tions demanding well defined performance and repeatability.  
Output skew: 35ps (maximum)  
Part-to-part skew: 385ps (maximum)  
Bank skew: Bank A - 20ps (maximum)  
Bank B - 20ps (maximum)  
Propagation delay: 2.1ns (maximum)  
LVPECL mode operating voltage supply range:  
VCC = 3V to 3.6V, VEE = 0V  
Available in both standard (RoHS5) and lead-free (RoHS 6)  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
DIV_SELA  
VCC  
nCLK_EN  
DIV_SELB0  
CLK  
nCLK  
RESERVED  
MR  
VCC  
DIV_SELB1  
DIV_SELA  
VCC  
1
2
3
4
5
6
7
8
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
QA0  
nQA0  
QA0  
nQA0  
QA1  
nQA1  
QB0  
nQB0  
QB1  
nQB1  
VEE  
D
nCLK_EN  
÷2, ÷4  
R
QA1  
nQA1  
Q
LE  
CLK  
nCLK  
9
10  
QB0  
nQB0  
ICS87339I-11  
÷4, ÷5, ÷6  
20-LeadTSSOP  
6.50mm x 4.40mm x 0.92 package body  
G Package  
QB1  
nQB1  
R
MR  
DIV_SELB0  
DIV_SELB1  
Top View  
20-Lead SOIC, 300MIL  
7.5mm x 12.8mm x 2.25mm package body  
M Package  
Top View  
87339AGI-11  
1
REV.A March 3, 2009  
ICS87339I-11  
LOW SKEW,  
÷2/4,÷4/5/6,  
DIFFERENTIAL-TO-3.3V LVPECL CLOCK GENERATOR  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 8, 20  
2
Name  
VCC  
Type  
Description  
Positive supply pins.  
Power  
Input  
nCLK_EN  
Pulldown Clock enable. LVCMOS / LVTTL interface levels. See Table 3.  
Selects divide value for Bank B outputs as described in Table 3.  
LVCMOS / LVTTL interface levels.  
3
DIV_SELB0  
Input  
Pulldown  
4
5
6
CLK  
Input  
Input  
Pulldown Non-inverting differential clock input.  
nCLK  
Pullup  
Inverting differential clock input.  
Reserve pin.  
RESERVED Reserve  
Active High Master Reset. When logic HIGH, the internal dividers are reset  
causing the true outputs Qx to go low and the inverted outputs nQx to go  
high. When logic LOW, the internal dividers and the outputs are enabled.  
LVCMOS / LVTTL interface levels.  
Selects divide value for Bank B outputs as described in Table 3.  
LVCMOS / LVTTL interface levels.  
Selects divide value for Bank A outputs as described in Table 3.  
LVCMOS / LVTTL interface levels.  
Negative supply pin.  
7
MR  
Input  
Input  
Pulldown  
9
DIV_SELB1  
Pulldown  
Pulldown  
10  
DIV_SELA  
VEE  
Input  
11  
Power  
12, 13  
14, 15  
16, 17  
18, 19  
nQB1, QB1 Output  
nQB0, QB0 Output  
nQA1, QA1 Output  
nQA0, QA0 Output  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CIN  
Input Capacitance  
Input Pullup Resistor  
4
pF  
k  
kΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
87339AGI-11  
2
REV. A March 3, 2009  
ICS87339I-11  
LOW SKEW,  
÷2/4,÷4/5/6,  
DIFFERENTIAL-TO-3.3V LVPECL CLOCK GENERATOR  
TABLE 3. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
MR nCLK_EN  
DIV_SELA  
DIV_SELB0  
DIV_SELB1 QA0, QA1 nQA0, nQA1 QB0, QB1 nQB0, nQB1  
1
X
X
X
X
LOW  
HIGH  
LOW  
HIGH  
Not  
Switching  
Not  
Switching  
Not  
Switching  
Not  
Switching  
0
1
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
÷2  
÷2  
÷2  
÷2  
÷4  
÷4  
÷4  
÷4  
÷2  
÷2  
÷2  
÷2  
÷4  
÷4  
÷4  
÷4  
÷4  
÷5  
÷6  
÷5  
÷4  
÷5  
÷6  
÷5  
÷4  
÷5  
÷6  
÷5  
÷4  
÷5  
÷6  
÷5  
NOTE: After nCLK_EN switches, the clock outputs stop switching following a rising and falling input clock edge.  
CLK  
tRR  
MR  
Q (÷n)  
FIGURE 1A. MR TIMING DIAGRAM  
Enabled  
Disabled  
CLK  
nCLK  
nCLK_EN  
QAx, QBx  
nQAx, nQBx  
FIGURE 1B. NCLK_EN TIMING DIAGRAM  
87339AGI-11  
3
REV. A March 3, 2009  
ICS87339I-11  
LOW SKEW,  
÷2/4,÷4/5/6,  
DIFFERENTIAL-TO-3.3V LVPECL CLOCK GENERATOR  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
CC  
Inputs, V  
-0.5V toVCC + 0.5 V  
I
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
20 LeadTSSOP  
20 Lead SOIC  
JA  
73.2°C/W (0 lfpm)  
46.2°C/W (0 lfpm)  
StorageTemperature,T  
-65°C to 150°C  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V 0.3V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
3.0  
3.3  
3.6  
V
105  
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 3.3V 0.3V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VCC + 0.3  
0.8  
V
V
Input Low Voltage  
-0.3  
nCLK_EN, MR,  
DIV_SELA, DIV_SELBx  
nCLK_EN, MR,  
DIV_SELA, DIV_SELBx  
IIH  
IIL  
Input High Current  
VIN = VCC = 3.6V  
150  
µA  
µA  
Input Low Current  
VIN = 0V, VCC = 3.6V  
-5  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = 3.3V 0.3V, TA = -40°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VIN = VCC = 3.6V  
VIN = VCC = 3.6V  
IN = 0V, VCC = 3.6V  
IN = 0V, VCC = 3.6V  
Minimum Typical Maximum Units  
nCLK  
CLK  
5
µA  
µA  
µA  
µA  
V
150  
nCLK  
CLK  
V
V
-150  
-5  
IIL  
Input Low Current  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: For single ended applications, the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
87339AGI-11  
4
REV. A March 3, 2009  
ICS87339I-11  
LOW SKEW,  
÷2/4,÷4/5/6,  
DIFFERENTIAL-TO-3.3V LVPECL CLOCK GENERATOR  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 3.3V 0.3V, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions  
Minimum Typical  
VCC - 1.4  
Maximum Units  
VOH  
Output High Voltage; NOTE1  
VCC - 0.9  
VCC - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VCC - 2.0  
VSWING  
Peak-to-Peak Output Voltage Swing  
0.6  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
TABLE 5. AC CHARACTERISTICS, VCC = 3.3V 0.3V, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions  
Minimum Typical Maximum Units  
fCLK  
Clock Input Frequency  
1
2.1  
35  
GHz  
ns  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
%
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 5  
CLK to Q (Diff)  
1.6  
tsk(o)  
15  
10  
10  
Bank A  
Bank B  
20  
Bank Skew;  
NOTE 3, 5  
tsk(b)  
20  
tsk(pp)  
tS  
Part-to-Part Skew; NOTE 4, 5  
385  
Setup Time  
nCLK_EN to CLK  
CLK to nCLK_EN  
350  
100  
tH  
Hold Time  
tRR  
Reset Recovery Time  
400  
tPW  
Minimum Pulse Width CLK  
Output Rise/Fall Time  
Output Duty Cycle  
550  
100  
48  
tR / tF  
odc  
20% to 80%  
600  
52  
All data taken with outputs ÷4.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points  
NOTE 3: Defined as skew within a bank of outputs and with equal load conditions.  
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
87339AGI-11  
5
REV. A March 3, 2009  
ICS87339I-11  
LOW SKEW,  
÷2/4,÷4/5/6,  
DIFFERENTIAL-TO-3.3V LVPECL CLOCK GENERATOR  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC,  
Qx  
VCCO  
nCLK  
CLK  
VPP  
VCMR  
Cross Points  
LVPECL  
VEE  
nQx  
VEE  
-1.3V 0.3V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
PART 1  
nQx  
nQx  
Qx  
Qx  
PART 2  
nQy  
nQy  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nQAx  
QAx  
80%  
tF  
80%  
VSWING  
Clock  
20%  
20%  
nQBx  
Outputs  
tR  
QBx  
tsk(b)  
OUTPUT RISE/FALL TIME  
BANK SKEW  
nCLK  
CLK  
nQAx, nQBx  
QAx, QBx  
Pulse Width  
nQAx,  
nQBx  
tPERIOD  
QAx,  
QBx  
tPW  
tPD  
odc =  
tPERIOD  
PROPAGATION DELAY  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
87339AGI-11  
6
REV. A March 3, 2009  
ICS87339I-11  
LOW SKEW,  
÷2/4,÷4/5/6,  
DIFFERENTIAL-TO-3.3V LVPECL CLOCK GENERATOR  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
of R1 and R2 might need to be adjusted to position theV_REF in  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit  
should be located as close as possible to the input pin.The ratio  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLK  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
50transmission lines. Matched impedance techniques should  
tion for LVPECL outputs.The two different layouts mentioned be used to maximize operating frequency and minimize signal  
are recommended only as guidelines.  
distortion. Figures 3A and 3B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Z
o = 50  
125  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
87339AGI-11  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
7
REV. A March 3, 2009  
ICS87339I-11  
LOW SKEW,  
÷2/4,÷4/5/6,  
DIFFERENTIAL-TO-3.3V LVPECL CLOCK GENERATOR  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING and VOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 4A to 4E show inter- For example in Figure 4A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 4A. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 4B. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiver  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 4E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
87339AGI-11  
8
REV. A March 3, 2009  
ICS87339I-11  
LOW SKEW,  
÷2/4,÷4/5/6,  
DIFFERENTIAL-TO-3.3V LVPECL CLOCK GENERATOR  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS87339I-11.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS87339I-11 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 0.3V = 3.6V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * ICC_MAX = 3.6V * 105mA = 378mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 4 * 30mW = 120mW  
Total Power_MAX (3.6V, with all outputs switching) = 378mW + 120mW = 498mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W perTable 6A below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.498W * 66.6°C/W = 118.1°C. This is below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
Table 6A. Thermal Resistance θJA for 20-pin TSSOP, Forced Convection  
θ
by Velocity (Linear Feet per Minute)  
JA  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
98.0°C/W  
66.6°C/W  
88.0°C/W  
63.5°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
Table 6B. Thermal Resistance θJA for 20-pin SOIC, Forced Convection  
θ
by Velocity (Linear Feet per Minute)  
JA  
0
200  
65.7°C/W  
39.7°C/W  
500  
57.5°C/W  
36.8°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
46.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
87339AGI-11  
9
REV. A March 3, 2009  
ICS87339I-11  
LOW SKEW,  
÷2/4,÷4/5/6,  
DIFFERENTIAL-TO-3.3V LVPECL CLOCK GENERATOR  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 5.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 5. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage ofV - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 0.9V  
OH_MAX  
CC_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 0.9V)/50] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
87339AGI-11  
10  
REV. A March 3, 2009  
ICS87339I-11  
LOW SKEW,  
÷2/4,÷4/5/6,  
DIFFERENTIAL-TO-3.3V LVPECL CLOCK GENERATOR  
RELIABILITY INFORMATION  
TABLE 7A. θJAVS. AIR FLOW TSSOP TABLE  
θ
by Velocity (Linear Feet per Minute)  
JA  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC StandardTest Boards  
Multi-Layer PCB, JEDEC StandardTest Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TABLE 7B. θJAVS. AIR FLOW SOIC TABLE  
θ
by Velocity (Linear Feet per Minute)  
0
JA  
200  
65.7°C/W  
500  
57.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
46.2°C/W  
39.7°C/W  
36.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS87339I-11 is: 1745  
Compatible with MC10EP139, MC100EP139  
87339AGI-11  
11  
REV. A March 3, 2009  
ICS87339I-11  
LOW SKEW,  
÷2/4,÷4/5/6,  
DIFFERENTIAL-TO-3.3V LVPECL CLOCK GENERATOR  
PACKAGE OUTLINE - G SUFFIX FOR 20 LEAD TSSOP  
PACKAGE OUTLINE - M SUFFIX FOR 20 LEAD SOIC  
TABLE 8B. PACKAGE DIMENSIONS  
TABLE 8A. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Millimeters  
SYMBOL  
Minimum  
Maximum  
MIN  
MAX  
N
A
20  
N
A
20  
--  
2.65  
--  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
B
0.10  
2.05  
0.33  
0.18  
12.60  
7.40  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
2.55  
0.51  
0.32  
13.00  
7.60  
C
D
E
c
D
E
6.40 BASIC  
0.65 BASIC  
e
1.27 BASIC  
E1  
e
4.30  
4.50  
H
h
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
8°  
L
0.45  
0°  
0.75  
8°  
L
α
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-013, MO-119  
Reference Document: JEDEC Publication 95, MO-153  
87339AGI-11  
12  
REV. A March 3, 2009  
ICS87339I-11  
LOW SKEW,  
÷2/4,÷4/5/6,  
DIFFERENTIAL-TO-3.3V LVPECL CLOCK GENERATOR  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS87339AGI-11  
Marking  
Package  
Shipping Packaging  
Tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS87339AI11  
ICS87339AI11  
ICS7339AI11L  
ICS7339AI11L  
ICS87339AMI-11  
ICS87339AMI-11  
ICS7339AI11L  
ICS7339AI11L  
20 lead TSSOP  
ICS87339AGI-11T  
ICS87339AGI-11LF  
ICS87339AGI-11LFT  
ICS87339AMI-11  
20 lead TSSOP  
2500 Tape & Reel  
Tube  
20 Lead "Lead-Free" TSSOP  
20 Lead "Lead-Free" TSSOP  
20 lead SOIC  
2500 Tape & Reel  
Tube  
ICS87339AMI-11T  
ICS87339AMI-11LF  
ICS87339AMI-11LFT  
20 lead SOIC  
1000 Tape & Reel  
Tube  
20 Lead "Lead-Free" SOIC  
20 Lead "Lead-Free" SOIC  
1000 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial  
and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by  
IDT. IDT reserves the right to change any circuitry or specifications without notice.IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
87339AGI-11  
13  
REV. A March 3, 2009  
ICS87339I-11  
LOW SKEW,  
÷2/4,÷4/5/6,  
DIFFERENTIAL-TO-3.3V LVPECL CLOCK GENERATOR  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Date  
1
2
Pin Assignment - changed pin 6, "nc" to "reserved".  
Pin Description table - corrected pin 6 to read reserved to coordinate with Pin  
Assignment.  
A
T1  
3/10/05  
1
13  
Features section - corrected Output skew and Part-to-Part skew bullets.  
Ordering Information table - added Lead-Free note.  
A
A
4/12/05  
T9  
T9  
13  
Ordering Information table - added Lead-Free markings  
12/19/07  
87339AGI-11  
14  
REV. A March 3, 2009  

相关型号:

ICS87339AMI-11LFT

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, ROHS COMPLIANT, MO-119, MS-013, SOIC-20
IDT

ICS8733BY-01

PLL Based Clock Driver, 2 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8733BY-01LFT

PLL Based Clock Driver, 2 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8733BY-01T

PLL Based Clock Driver, 2 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS8733Y-01

PLL Based Clock Driver, 2 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT

ICS8733YT-01

PLL Based Clock Driver, 2 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT

ICS8733YT-01LF

PLL Based Clock Driver, 2 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026, LQFP-32
IDT

ICS8735-01

1:5 DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR
ICSI

ICS8735-21

700MHz, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR
IDT

ICS87354AMI

-2.5V/ 3.3V LVPECL CLOCK GENERATOR
ETC

ICS87354AMILF

Low Skew Clock Driver, 87354 Series, 1 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, ROHS COMPLIANT, MS-012, SOIC-8
IDT

ICS87354AMILFT

Low Skew Clock Driver, 87354 Series, 1 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, ROHS COMPLIANT, MS-012, SOIC-8
IDT