ICS873991-147 [IDT]

LOW VOLTAGE, LVCMOS/LVPECL-TO LVPECL/ECL CLOCK GENERATOR; 低电压, LVCMOS / LVPECL -TO LVPECL / ECL时钟发生器
ICS873991-147
型号: ICS873991-147
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

LOW VOLTAGE, LVCMOS/LVPECL-TO LVPECL/ECL CLOCK GENERATOR
低电压, LVCMOS / LVPECL -TO LVPECL / ECL时钟发生器

时钟发生器
文件: 总17页 (文件大小:307K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
LOW VOLTAGE, LVCMOS/LVPECL-TO LVPECL/ECL  
CLOCK GENERATOR  
ICS873991-147  
GENERAL DESCRIPTION  
FEATURES  
Fourteen differential 3.3V LVPECL/ECL outputs  
Selectable differential LVPECL or REF_CLK inputs  
The ICS873991-147 is a low voltage, low skew, 3.3V  
ICS  
LVPECL or ECL Clock Generator and a member of  
the HiPerClockS™ family of High Performance  
Clock Solutions from IDT. The ICS873991-147 has  
two selectable clock inputs. The PCLK, nPCLK pair  
HiPerClockS™  
PCLK, nPCLK can accept the following input levels:  
LVPECL, CML, SSTL  
can accept an LVPECL input and the REF_CLK pin can accept  
a LVCMOS or LVTTL input. This device has a fully integrated  
PLL along with frequency configurable outputs. An external  
feedback input and output regenerates clocks with “zero de-  
lay”.  
REF_CLK accepts the following input levels:  
LVCMOS, LVTTL  
Input clock frequency range: 6.25MHz to 125MHz  
Maximum output frequency: 500MHz  
VCO range: 200MHz to 1GHz  
The four independent banks of outputs each have their own  
output dividers, which allow the device to generate a multitude  
of different bank frequency ratios and output-to-input frequency  
ratios. The output frequency range is 25MHz to 500MHz and  
the input frequency range is 6.25MHz to 125MHz.The PLL_SEL  
input can be used to bypass the PLL for test and system debug  
purposes. In bypass mode, the input clock is routed around the  
PLL and into the internal output dividers.  
Output skew: 70ps (typical)  
Cycle-to-cyle jitter: 35ps (typical)  
LVPECL mode operating voltage supply range:  
VCC = 3.135V to 3.465V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -3.465V to -3.135V  
The ICS873991-147 also has a SYNC output which can be  
used for system synchronization purposes. It monitors Bank A  
and Bank C outputs for coincident rising edges and signals a  
pulse per the timing diagrams in this data sheet. This feature is  
used primarily in applications where Bank A and Bank C are  
running at different frequencies, and is particularly useful when  
they are running at non-integer multiples of each other.  
0°C to 70°C ambient operating temperature  
Available in lead-free (RoHS 6) package  
Industrial temperature available upon request  
PIN ASSIGNMENT  
Example Applications:  
1. Line Card Multiplier: Multiply 19.44MHz from a back-plane  
to 77.76MHz on the line card ASIC and Serdes.  
39 38 37 36 35 34 33 32 31 30 29 28 27  
nQB3 40  
2. Zero Delay Buffer: Fan out up to thirteen 100MHz copies  
from a reference clock to multiple processing units on an  
embedded system.  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
QC1  
QB3 41  
nQC1  
QC0  
VCCO  
42  
nQA0 43  
QA0 44  
nQC0  
VCCO  
QD1  
ICS873991-147  
52-Lead LQFP  
10mm x 10mm x 1.4mm  
package body  
nQA1 45  
QA1 46  
nQD1  
QD0  
nQA2 47  
QA2 48  
Y package  
Top View  
nQD0  
VCCO  
QFB  
nQA3 49  
QA3 50  
SYNC_SEL 51  
VCO_SEL 52  
nQFB  
VCCA  
1
2
3
4
5
6
7 8 9 10 11 12 13  
The Preliminary Information presented herein represents a product in pre-production.The noted characteristics are based on initial product characterization  
and/or qualification.Integrated DeviceTechnology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.  
IDT/ ICSLVPECL/ECL CLOCK GENERATOR  
1
ICS873991AY-147 REV. A AUGUST 10, 2007  
ICS873991-147  
LOW VOLTAGE, LVCMOS/LVPECL-TO-LVPECL/ECL CLOCK GENERATOR  
PRELIMINARY  
BLOCK DIAGRAM  
Pulldown  
VCO_SEL  
Pulldown  
PLL_EN  
QA0  
Pulldown  
REF_SEL  
nQA0  
Pulldown  
REF_CLK  
QA1  
nPCLK  
nQA1  
PCLK  
QA2  
PHASE  
DETECTOR  
VCO  
nQA2  
QA3  
EXT_FB  
LPF  
nQA3  
nEXT_FB  
QB0  
nQB0  
Pulldown  
MR  
QB1  
nQB1  
FREQUENCY  
GENERATOR  
QB2  
nQB2  
Pulldown  
FSEL_0:3  
QB3  
SYNC  
nQB3  
QC0  
Pulldown  
FSEL_FB0:2  
nQC0  
QC1  
nQC1  
QC2  
nQC2  
QD0  
nQD0  
Pulldown  
SYNC_SEL  
QD1  
nQD1  
QFB  
nQFB  
IDT/ ICSLVPECL/ECL CLOCK GENERATOR  
2
ICS873991AY-147 REV. A AUGUST 10, 2007  
ICS873991-147  
LOW VOLTAGE, LVCMOS/LVPECL-TO-LVPECL/ECL CLOCK GENERATOR  
PRELIMINARY  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
VEE  
Power  
Negative supply pin.  
Active High Master Reset. When logic HIGH, the internal dividers are  
reset causing the true outputs (Qx) to go low and the inverted outputs  
(nQx) to go high. When logic LOW, the internal dividers and the outputs  
are enabled. LVCMOS/LVTTL interface levels.  
PLL enable pin. When logic LOW, PLL is enabled. When logic HIGH,  
PLL is in bypass mode. LVCMOS/LVTTL interface levels.  
2
MR  
Input Pulldown  
Input Pulldown  
3
4
PLL_EN  
Selects between the different reference inputs as the PLL reference  
REF_SEL  
Input Pulldown source. When logic LOW, selects PCLK/nPCLK. When logic HIGH,  
selects REF_CLK. LVCMOS/LVTTL interface levels.  
5
6
7
FSEL_FB2  
FSEL_FB1  
FSEL_FB0  
Input Pulldown Feedback frequency select pins. LVCMOS/LVTTL interface levels.  
8
9
REF_CLK  
PCLK  
Input Pulldown Reference clock input. LVCMOS/LVTTL interface levels.  
Input Pulldown Non-inverting differential LVPECL clock input.  
Pullup/  
10  
nPCLK  
Input  
Inverting differential LVPECL clock input. VCC/2 default when left floating.  
Core supply pin.  
Pulldown  
11  
12  
VCC  
Power  
EXT_FB  
Input Pulldown Non-inverting external feedback input.  
Pullup/  
13  
14  
nEXT_FB  
VCCA  
Input  
Power  
Output  
Power  
Inverting external feedback input. VCC/2 default when left floating.  
Pulldown  
Analog supply pin.  
15  
16  
nQFB  
QFB  
Differential feedback output pair. LVPECL Interface levels.  
17, 22, 30, 42  
18, 19  
VCCO  
Output supply pins.  
nQD0, QD0 Output  
nQD1, QD1 Output  
nQC0, QC0 Output  
nQC1, QC1 Output  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
20, 21  
23, 24  
25, 26  
27  
33  
36  
39  
FSEL3  
FSEL2  
FSEL1  
FSEL0  
Input Pulldown Frequency select pins. LVCMOS/LVTTL interface levels.  
28, 29  
31, 32  
34, 35  
37, 38  
40, 41  
43, 44  
45, 46  
47, 48  
49, 50  
nQC2, QC2 Output  
nQB0, QB0 Output  
nQB1, QB1 Output  
nQB2, QB2 Output  
nQB3, QB3 Output  
nQA0, QA0 Output  
nQA1, QA1 Output  
nQA2, QA2 Output  
nQA3, QA3 Output  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
SYNC output select pin. When LOW, the SYNC otuput follows the  
51  
52  
SYNC_SEL Input Pulldown timing diagram (page 5). When HIGH, QD output follows QC output  
LVCMOS/LVTTL interface levels..  
VCO_SEL  
Input Pulldown Selects VCO range. LVCMOS/LVTTL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
IDT/ ICSLVPECL/ECL CLOCK GENERATOR  
3
ICS873991AY-147 REV. A AUGUST 10, 2007  
ICS873991-147  
LOW VOLTAGE, LVCMOS/LVPECL-TO-LVPECL/ECL CLOCK GENERATOR  
PRELIMINARY  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CIN  
Input Capacitance  
4
pF  
kΩ  
kΩ  
RPULLDOWN Input Pulldown Resistor  
51  
51  
RPULLup  
Input Pullup Resistor  
TABLE 3A. SELECT PIN FUNCTION TABLE  
Inputs  
TABLE 3B. FEEDBACK CONTROL FUNCTION TABLE  
Inputs  
Outputs  
Outputs  
FSEL_FB2 FSEL_FB1 FSEL_FB0  
QFB  
÷2  
FSEL3 FSEL2 FSEL1 FSEL0 QAx QBx QCx  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
÷ 2  
÷ 2  
÷ 2  
÷ 2  
÷ 2  
÷ 2  
÷ 2  
÷ 2  
÷ 2  
÷ 2  
÷ 4  
÷ 4  
÷ 4  
÷ 6  
÷ 6  
÷ 8  
÷ 2  
÷ 2  
÷ 4  
÷ 2  
÷ 6  
÷ 4  
÷ 4  
÷ 6  
÷ 2  
÷ 8  
÷ 4  
÷ 6  
÷ 6  
÷ 6  
÷ 8  
÷ 8  
÷ 2  
÷ 4  
÷ 4  
÷ 6  
÷ 6  
÷ 6  
÷ 8  
÷ 8  
÷ 8  
÷ 8  
÷ 6  
÷ 6  
÷ 8  
÷ 8  
÷ 8  
÷ 8  
÷4  
÷6  
÷8  
÷8  
÷16  
÷24  
÷32  
TABLE 3C. INPUT CONTROL FUNCTION TABLE  
Control Input Pin  
PLL_EN  
Logic 0  
Enables PLL  
fVCO  
Logic 1  
Bypasses PLL  
fVCO/2  
VCO_SEL  
REF_SEL  
MR  
Selects PCLK/nPCLK  
---  
Selects REF_CLK  
Resets outputs  
Match QC Outputs  
SYNC_SEL  
Selects outputs  
IDT/ ICSLVPECL/ECL CLOCK GENERATOR  
4
ICS873991AY-147 REV. A AUGUST 10, 2007  
ICS873991-147  
LOW VOLTAGE, LVCMOS/LVPECL-TO-LVPECL/ECL CLOCK GENERATOR  
PRELIMINARY  
1:1 Mode  
QA  
QC  
SYNC (QD)  
2:1 Mode  
QA  
QC  
SYNC (QD)  
3:1 Mode  
QA  
QC  
SYNC (QD)  
3:2 Mode  
QA  
QC  
SYNC (QD)  
4:3 Mode  
QA  
QC  
SYNC (QD)  
FIGURE 1. TIMING DIAGRAMS  
IDT/ ICSLVPECL/ECL CLOCK GENERATOR  
5
ICS873991AY-147 REV. A AUGUST 10, 2007  
ICS873991-147  
LOW VOLTAGE, LVCMOS/LVPECL-TO-LVPECL/ECL CLOCK GENERATOR  
PRELIMINARY  
ABSOLUTE MAXIMUM RATINGS  
NOTE: Stresses beyond those listed under Absolute Maximum  
Ratings may cause permanent damage to the device. These rat-  
ings are stress specifications only. Functional operation of prod-  
uct at these conditions or any conditions beyond those listed in  
the DC Characteristics or AC Characteristics is not implied. Ex-  
posure to absolute maxi-mum rating conditions for extended pe-  
riods may affect product reliability.  
Supply Voltage% V  
4.6V  
CC  
Inputs% V  
-0.ꢀV to VCC + 0.ꢀ V  
I
Outputs% IO  
Continuous Current  
Surge Current  
ꢀ0mA  
100mA  
Package Thermal Impedance% θ  
63.7°C/W (0 mps)  
-6ꢀ°C to 1ꢀ0°C  
JA  
Storage Temperature% T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V ꢀ5% VEE = 0V% TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.13ꢀ  
Typical  
3.3  
Maximum Units  
VCC  
VCCA  
VCCO  
ICC  
Core Supply Voltage  
3.46ꢀ  
3.46ꢀ  
3.46ꢀ  
1ꢀ0  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
Output Supply Current  
3.13ꢀ  
3.3  
3.13ꢀ  
3.3  
V
mA  
mA  
mA  
ICCA  
ICCO  
1ꢀ  
9ꢀ  
TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V ꢀ5% VEE = 0V% TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
PLL_EN% VCO_SEL%  
REF_SEL% SYNC_SEL%  
FSEL_FB0:FSEL_FB2%  
FSEL0:FSEL3% MR  
2
2
V
CC + 0.3  
V
V
V
VIH  
Input High Voltage  
REF_CLK  
VCC + 0.3  
0.8  
PLL_EN% VCO_SEL%  
REF_SEL% SYNC_SEL%  
FSEL_FB0:FSEL_FB2%  
FSEL0:FSEL3% MR  
-0.3  
-0.3  
-ꢀ  
VIL  
Input Low Voltage  
REF_CLK  
1.3  
V
IIH  
IIL  
Input High Current  
Input Low Current  
VCC = VIN = 3.46ꢀV  
1ꢀ0  
µA  
µA  
VIN = 0V% VCC = 3.46ꢀV  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V ꢀ5% VEE = 0V% TA = 0°C TO 70°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
Minimum Typical Maximum Units  
PCLK  
VCC = VIN = 3.46ꢀV  
1ꢀ0  
µA  
µA  
µA  
µA  
V
nPCLK  
PCLK  
V
CC = VIN = 3.46ꢀV  
VCC = 3.46ꢀV% VIN = 0V  
CC = 3.46ꢀV% VIN = 0V  
-ꢀ  
-1ꢀ0  
IIL  
Input Low Current  
nPCLK  
V
VPP  
Peak-to-Peak Input Voltage  
0.3  
1
VCC  
VCMR  
VOH  
Common Mode Input Voltage; NOTE 1  
Output High Voltage; NOTE 2  
Output Low Voltage; NOTE 2  
VEE + 1.ꢀ  
VCC - 1.4  
VCC - 2.0  
0.6  
V
VCC - 0.9  
VCC - 1.7  
1
V
VOL  
V
VSWING  
Peak-to-Peak Output Voltage Swing  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: Outputs terminated with ꢀ0Ω to VCCO - 2V. .  
IDT/ ICSLVPECL/ECL CLOCK GENERATOR  
6
ICS873991AY-147 REV. A AUGUST 10, 2007  
ICS873991-147  
LOW VOLTAGE, LVCMOS/LVPECL-TO-LVPECL/ECL CLOCK GENERATOR  
PRELIMINARY  
TABLE 5. PLL INPUT REFERENCE CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
tR / tR Input Rise/Fall Time  
Test Conditions  
Minimum Typical Maximum Units  
REF_CLK  
3
ns  
Feedback ÷ 6  
Feedback ÷ 8  
Feedback ÷ 16  
Feedback ÷ 24  
Feedback ÷ 32  
Feedback ÷ 4  
Feedback ÷ 6  
Feedback ÷ 8  
Feedback ÷ 16  
Feedback ÷ 24  
Feedback ÷ 32  
66.66  
50  
166.67  
125  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Reference Frequency  
VCO_SEL = 0  
25  
62.5  
41.67  
31.25  
100  
16.66  
12.5  
50  
fREF  
33.33  
25  
66.66  
50  
Reference Frequency  
VCO_SEL = 1  
12.5  
8.33  
6.25  
25  
25  
16.66  
12.5  
75  
fREFDC  
Reference Input Duty Cycle  
NOTE: These parameters are guaranteed by design, but are not tested in production.  
TABLE 6. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
QA, QB, QC  
QD  
500  
400  
200  
MHz  
MHz  
MHz  
fMAX  
Output Frequency  
SYNC_SEL = 1  
SYNC_SEL = 0  
QD; NOTE 1  
Static Phase Offset;  
NOTE 2, 3  
t(Ø)  
PCLK, nPCLK  
170  
ps  
tsk(o)  
tsk(w)  
tjit(cc)  
Output Skew; NOTE 4, 5  
70  
TBD  
35  
ps  
ps  
Multiple Frequency Skew; NOTE 5, 6  
Cycle-to-Cycle Jitter; NOTE 5  
ps  
PLL_SEL = 0  
PLL_SEL = 1  
0.4  
1.0  
480  
10  
GHz  
MHz  
ms  
ns  
fVCO  
PLL VCO Lock Range; NOTE 7  
200  
tLOCK  
tR / tF  
odc  
PLL Lock Time  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
0.5  
50  
All parameters measured at fMAX unless noted otherwise.  
NOTE 1: SYNC output (QD when SYNC_SEL = 0) operation guaranteed to 800MHz maximum VCO frequency.  
NOTE 2: Defined as the time difference between the input reference clock and the average feedback input signal  
when the PLL is locked and the input reference frequency is stable.  
NOTE 3: Static phase offset is specified for an input frequency of 50MHz with feedback in ÷8.  
NOTE 4: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 6: Defined as skew across banks of outputs switching in the same direction operating at different frequencies  
with the same supply voltages and equal load conditions. Measured at VCCO/2.  
NOTE 7: When VCO_SEL = 0, the PLL will be unstable with feedback configurations of ÷2, ÷4 and some ÷6.  
When VCO_SEL = 1, the PLL will be unstable with a feedback configuration of ÷2.  
IDT/ ICSLVPECL/ECL CLOCK GENERATOR  
7
ICS873991AY-147 REV. A AUGUST 10, 2007  
ICS873991-147  
LOW VOLTAGE, LVCMOS/LVPECL-TO-LVPECL/ECL CLOCK GENERATOR  
PRELIMINARY  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
Qx  
VCC  
,
VCCA, VCCO  
nPCLK  
PCLK  
LVPECL  
VPP  
VCMR  
Cross Points  
nQx  
VEE  
-1.3V -0.165V  
VEE  
OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVELS  
nQx  
Qx  
nQFB,  
nQAx:nQDx  
QFB,  
QAx:QDx  
nQy  
tcycle n  
tcycle n+1  
Qy  
tjit(cc) = tcycle n – tcycle n+1  
1000 Cycles  
tsk(o)  
CYCLE-TO-CYCLE JITTER  
OUTPUT SKEW  
nPCLK  
PCLK  
VOH  
VOL  
nQxx  
Qxx  
nQFB,  
nQAx:nQDx  
VOH  
VOL  
nQyy  
Qyy  
QFB,  
QAx:QDx  
t(Ø)  
tsk(ω)  
MULTIPLE FREQUENCY SKEW  
STATIC PHASE OFFSET  
nQFB,  
nQAx:nQDx  
80ꢀ  
80ꢀ  
QFB,  
QAx:QDx  
VSWING  
20ꢀ  
tPW  
tPERIOD  
Clock  
20ꢀ  
Outputs  
tF  
tR  
tPW  
odc =  
x 100ꢀ  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
OUTPUT RISE/FALL TIME  
IDT/ ICSLVPECL/ECL CLOCK GENERATOR  
8
ICS873991AY-147 REV. A AUGUST 10, 2007  
ICS873991-147  
LOW VOLTAGE, LVCMOS/LVPECL-TO-LVPECL/ECL CLOCK GENERATOR  
PRELIMINARY  
APPLICATIONS INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS873991-147 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VCC, VCCA and VCCO  
should be individually connected to the power supply plane  
through vias, and bypass capacitors should be used for each  
pin. To achieve optimum jitter performance, power supply iso-  
lation is required. Figure 2 illustrates how a 10Ω resistor along  
with a 10μF and a 0.01μF bypass capacitor should be con-  
nected to each VCCA pin.  
3.3V  
VCC  
.01μF  
10Ω  
VCCA  
.01μF  
10μF  
FIGURE 2. POWER SUPPLY FILTERING  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 3 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = V /2 is  
generated by the bias resistors R1, R2 and C1. This bias CcCircuit  
should be located as close as possible to the input pin. The ratio  
of R1 and R2 might need to be adjusted to position the V_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V and V = 3.3V, V_REF should be 1.25V  
CC  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
PCLK  
nPCLK  
C1  
0.1u  
R2  
1K  
FIGURE 3. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
IDT/ ICSLVPECL/ECL CLOCK GENERATOR  
9
ICS873991AY-147 REV. A AUGUST 10, 2007  
ICS873991-147  
LOW VOLTAGE, LVCMOS/LVPECL-TO-LVPECL/ECL CLOCK GENERATOR  
PRELIMINARY  
LVPECL CLOCK INPUT INTERFACE  
The PCLK/nPCLK accepts LVPECL, CML, SSTL and other  
differential signals. Both VSWING and VOH must meet the VPP and  
VCMR input requirements. Figures 4A to 4E show interface  
examples for the HiPerClockS PCLK/nPCLK input driven by  
the most common driver types. The input interfaces suggested  
here are examples only. If the driver is from another vendor,  
use their termination recommendation. Please consult with the  
vendor of the driver component to confirm the driver termination  
requirements.  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R1  
50  
R2  
50  
Zo = 50 Ohm  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
R1  
100  
nPCLK  
nPCLK  
Zo = 50 Ohm  
HiPerClockS  
HiPerClockS  
PCLK/nPCLK  
PCLK/nPCLK  
CML Built-In Pullup  
FIGURE 4A. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN OPEN COLLECTOR CML DRIVER  
FIGURE 4B. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A BUILT-IN PULLUP CML DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
R3  
84  
R4  
84  
C1  
C2  
Zo = 50 Ohm  
Zo = 50 Ohm  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
nPCLK  
HiPerClockS  
Input  
LVPECL  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
R3  
1K  
R4  
1K  
C1  
C2  
LVDS  
PCLK  
R5  
100  
nPCLK  
Zo = 50 Ohm  
HiPerClockS  
PCLK/nPCLK  
R1  
1K  
R2  
1K  
FIGURE 4E. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
IDT/ ICSLVPECL/ECL CLOCK GENERATOR  
10  
ICS873991AY-147 REV. A AUGUST 10, 2007  
ICS873991-147  
LOW VOLTAGE, LVCMOS/LVPECL-TO-LVPECL/ECL CLOCK GENERATOR  
PRELIMINARY  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
PCLK/nPCLK INPUTS  
OUTPUTS:  
LVPECL OUTPUTS  
For applications not requiring the use of a differential input, both  
the PCLK and nPCLK pins can be left floating. Though not  
required, but for additional protection, a 1kΩ resistor can be tied  
from PCLK to ground.  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
LVCMOS CONTROL PINS  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termination  
for LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
drive 50Ω transmission lines. Matched impedance techniques  
should be used to maximize operating frequency and minimize  
signal distortion. Figures 5A and 5B show two different layouts  
which are recommended only as guidelines. Other suitable clock  
layouts may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, termi-  
nating resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 5A. LVPECL OUTPUT TERMINATION  
FIGURE 5B. LVPECL OUTPUT TERMINATION  
IDT/ ICSLVPECL/ECL CLOCK GENERATOR  
11  
ICS873991AY-147 REV. A AUGUST 10, 2007  
ICS873991-147  
LOW VOLTAGE, LVCMOS/LVPECL-TO-LVPECL/ECL CLOCK GENERATOR  
PRELIMINARY  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS873991-147.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS873991-147 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5% = 3.465V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core) = V  
* I  
= 3.465V * 150mA = 519.75mW  
EE_MAX  
MAX  
CC_MAX  
Power (outputs) = 30mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 14 * 30mW = 420mW  
Total Power  
(3.465V, with all outputs switching) = 519.75mW + 420mW = 939.75mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 1 meter per second and a multi-layer board, the appropriate value is 55.5°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.940W * 55.5°C/W = 122.2°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 7. THERMAL RESISTANCE θ FOR 52-PIN LQFP FORCED CONVECTION  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
63.7°C/W  
55.5°C/W  
52.4°C/W  
IDT/ ICSLVPECL/ECL CLOCK GENERATOR  
12  
ICS873991AY-147 REV. A AUGUST 10, 2007  
ICS873991-147  
LOW VOLTAGE, LVCMOS/LVPECL-TO-LVPECL/ECL CLOCK GENERATOR  
PRELIMINARY  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V - 2V.  
CCO  
For logic high, V = V  
= V  
– 0.9V  
OUT  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT/ ICSLVPECL/ECL CLOCK GENERATOR  
13  
ICS873991AY-147 REV. A AUGUST 10, 2007  
ICS873991-147  
LOW VOLTAGE, LVCMOS/LVPECL-TO-LVPECL/ECL CLOCK GENERATOR  
PRELIMINARY  
RELIABILITY INFORMATION  
TABLE 8. θ VS. AIR FLOW TABLE FOR 52 LEAD LQFP  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
63.7°C/W  
55.5°C/W  
52.4°C/W  
TRANSISTOR COUNT  
The transistor count for ICS873991-147 is: 5969  
IDT/ ICSLVPECL/ECL CLOCK GENERATOR  
14  
ICS873991AY-147 REV. A AUGUST 10, 2007  
ICS873991-147  
LOW VOLTAGE, LVCMOS/LVPECL-TO-LVPECL/ECL CLOCK GENERATOR  
PRELIMINARY  
PACKAGE OUTLINE - Y SUFFIX FOR 52 LEAD LQFP  
TABLE 9. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BCC  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
52  
--  
--  
1.60  
0.15  
1.45  
0.38  
0.20  
A1  
A2  
b
0.05  
1.35  
0.22  
0.09  
--  
1.40  
0.32  
c
--  
D
12.00 BASIC  
10.00 BASIC  
7.80 Ref.  
12.00 BASIC  
10.00 BASIC  
7.80 Ref.  
0.65 BASIC  
--  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
IDT/ ICSLVPECL/ECL CLOCK GENERATOR  
15  
ICS873991AY-147 REV. A AUGUST 10, 2007  
ICS873991-147  
LOW VOLTAGE, LVCMOS/LVPECL-TO-LVPECL/ECL CLOCK GENERATOR  
PRELIMINARY  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
873991AY-147LF  
873991AY-147LFT  
Marking  
Package  
Shipping Packaging Temperature  
ICS873991A147L  
ICS873991A147L  
52 Lead "Lead-Free" LQFP  
52 Lead "Lead-Free" LQFP  
tray  
0°C to 70°C  
0°C to 70°C  
500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial  
applications. Any other applications such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional  
processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical  
instruments.  
IDT/ ICSLVPECL/ECL CLOCK GENERATOR  
16  
ICS873991AY-147 REV. A AUGUST 10, 2007  
ICS873991-147  
LOW VOLTAGE, LVCMOS/LVPECL-TO-LVPECL/ECL CLOCK GENERATOR  
PRELIMINARY  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
#20-03 Wisma Atria  
England  
+408 284 8200 (outside U.S.)  
Singapore 238877  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
+65 6 887 5505  
© 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

ICS873991AY-147LF

LOW VOLTAGE, LVCMOS/LVPECL-TO LVPECL/ECL CLOCK GENERATOR
IDT

ICS873991AY-147LFT

LOW VOLTAGE, LVCMOS/LVPECL-TO LVPECL/ECL CLOCK GENERATOR
IDT

ICS873991AYLF

PLL Based Clock Driver, 873991 Series, 13 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-52
IDT

ICS873991AYLFT

PLL Based Clock Driver, 873991 Series, 13 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-52
IDT

ICS873991AYT

PLL Based Clock Driver, 873991 Series, 13 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS873995AYLF

PLL Based Clock Driver, 873995 Series, 6 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026, TQFP-48
IDT

ICS873995AYLFT

PLL Based Clock Driver, 873995 Series, 6 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026, TQFP-48
IDT

ICS873996AY

PLL Based Clock Driver, 873996 Series, 6 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1 MM HEIGHT, MS-026ABC-HD, TQFP-48
IDT

ICS873996AYLF

PLL Based Clock Driver, 873996 Series, 6 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026ABC-HD, TQFP-48
IDT

ICS873996AYT

PLL Based Clock Driver, 873996 Series, 6 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1 MM HEIGHT, MS-026ABC-HD, TQFP-48
IDT

ICS873S02BMILF

Low Skew Clock Driver, 873 Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, ROHS COMPLIANT, MS-013, MO-19, SOIC-20
IDT

ICS873S02BMILFT

Low Skew Clock Driver, 873 Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, ROHS COMPLIANT, MS-013, MO-19, SOIC-20
IDT