ICSSSTUA32866BHT [IDT]

D Flip-Flop, SSTU Series, 1-Func, Positive Edge Triggered, 25-Bit, True Output, PBGA96, 5.50 X 13.50 MM, MO-205, LFBGA-96;
ICSSSTUA32866BHT
型号: ICSSSTUA32866BHT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

D Flip-Flop, SSTU Series, 1-Func, Positive Edge Triggered, 25-Bit, True Output, PBGA96, 5.50 X 13.50 MM, MO-205, LFBGA-96

文件: 总27页 (文件大小:307K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICSSSTUA32866B  
Integrated  
Circuit  
Systems,Inc.  
25-Bit Configurable Registered Buffer for DDR2  
Pin Configuration  
Recommended Application:  
DDR2 Memory Modules  
1
2
3
4
5
6
Provides complete DDR DIMM solution with  
ICS97ULP877  
Ideal for DDR2 400,533 and 667  
A
B
C
D
E
F
Product Features:  
25-bit 1:1 or 14-bit 1:2 configurable registered buffer  
with parity check functionality  
Supports SSTL_18 JEDEC specification on data  
inputs and outputs  
Supports LVCMOS switching levels on CSR# and  
RESET# inputs  
Low voltage operation  
VDD = 1.7V to 1.9V  
Available in 96 BGA package  
Drop-in replacement for ICSSSTUA32864  
Green packages available  
G
H
J
K
L
M
N
P
R
T
FunctionalityTruthTable  
96 Ball BGA  
(Top View)  
Inputs  
Outputs  
QCS#  
Dn,  
DODT,  
DCKE  
QODT,  
QCKE  
RST#  
DCS#  
CSR#  
CK  
CK#  
Qn  
H
H
H
H
H
H
H
H
H
H
H
H
L
H
X
L
L
L
L
L
L
L
L
L
L
H
H
Q
0
Q
0
Q
0
L or H  
L or H  
L or H  
L or H  
L or H  
L or H  
L
L
L
L
L
L
H
H
H
L
L
H
X
H
H
Q
0
Q
0
Q
0
L
L
L
H
H
H
L
L
L
H
H
H
X
H
H
Q
0
Q
0
Q
0
Q
0
H
H
L
L
H
H
H
H
Q
0
H
X
H
Q
0
Q
0
Q
0
H
H
L or H  
X or  
L or H  
X or  
X or  
X or  
X or  
L
L
L
L
Floating Floating Floating Floating Floating  
1054A—01/28/05  
ICSSSTUA32866B  
Ball Assignments  
25 bit 1:1 Register  
DCKE  
D2  
PPO  
D15  
D16  
VREF  
GND  
VDD  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
VDD  
QCKE  
Q2  
NC  
A
B
C
D
E
F
Q15  
Q16  
NC  
D3  
Q3  
DODT  
D5  
QERR# GND  
QODT  
Q5  
D17  
D18  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
VREF  
Q17  
Q18  
C0  
D6  
Q6  
PAR_IN RST#  
C1  
G
H
J
CK  
DCS#  
CSR#  
D19  
QCS#  
ZOH  
Q8  
NC  
CK#  
D8  
ZOL  
Q19  
Q20  
Q21  
Q22  
Q23  
Q24  
Q25  
K
L
D9  
D20  
Q9  
D10  
D11  
D12  
D13  
D14  
D21  
Q10  
Q11  
Q12  
Q13  
Q14  
M
N
P
R
T
D22  
D23  
D24  
D25  
1
2
3
4
5
6
C0 = 0, C1 = 0  
14 bit 1:2 Registers  
D1  
PPO  
NC  
VREF  
GND  
VDD  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
VDD  
Q1A  
Q2A  
Q3A  
Q4A  
Q5A  
Q6A  
C1  
Q1B  
Q2B  
Q3B  
Q4B  
Q5B  
Q6B  
C0  
DCKE  
D2  
PPO  
NC  
VREF  
GND  
VDD  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
VDD  
QCKEA QCKEB  
A
B
C
D
E
F
A
B
C
D
E
F
D2  
D3  
D4  
D5  
D6  
Q2A  
Q3A  
Q2B  
Q3B  
NC  
D3  
NC  
QERR# GND  
DODT  
D5  
QERR# GND  
QODTA QODTB  
NC  
NC  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
VREF  
NC  
NC  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
VREF  
Q5A  
Q6A  
C1  
Q5B  
Q6B  
C0  
D6  
PAR_IN RST#  
PAR_IN RST#  
G
H
J
G
H
J
CK  
DCS#  
CSR#  
NC  
QCSA# QCSB#  
CK  
DCS#  
CSR#  
NC  
QCSA# QCSB#  
CK#  
D8  
ZOH  
Q8A  
Q9A  
Q10A  
ZOL  
Q8B  
Q9B  
Q10B  
CK#  
D8  
ZOH  
Q8A  
ZOL  
Q8B  
K
L
K
L
D9  
NC  
D9  
NC  
Q9A  
Q9B  
D10  
DODT  
D12  
D13  
DCKE  
NC  
D10  
D11  
D12  
D13  
D14  
NC  
Q10A  
Q11A  
Q12A  
Q13A  
Q14A  
Q10B  
Q11B  
Q12B  
Q13B  
Q14B  
M
N
P
R
T
M
N
P
R
T
NC  
QODTA QODTB  
NC  
NC  
Q12A  
Q13A  
Q12B  
Q13B  
NC  
NC  
NC  
NC  
QCKEA QCKEB  
NC  
1
2
3
4
5
6
1
2
3
4
5
6
Register A (C0 = 0, C1 = 1)  
Register B (C0 = 1, C1 = 1)  
1054A—01/28/05  
2
ICSSSTUA32866B  
General Description  
This 25-bit 1:1 or 14-bit 1:2 configurable registered buffer is designed for 1.7-V to 1.9-V VDD operation.  
All clock and data inputs are compatible with the JEDEC standard for SSTL_18. The control inputs are LVCMOS. All  
outputs are 1.8-V CMOS drivers that have been optimized to drive the DDR-II DIMM load. ICSSSTUA32866B operates  
from a differential clock (CK and CK#). Data are registered at the crossing of CK going high, and CK# going low.  
The C0 input controls the pinout configuration of the 1:2 pinout from A configuration (when low) to B configuration (when  
high). The C1 input controls the pinout configuration from 25-bit 1:1 (when low) to 14-bit 1:2 (when high).  
A - Pair Configuration (CO1 = 0, CI1 = 1 and CO2 = 0, CI2 = 1)  
Parity that arrives one cycle after the data input to which it applies is checked on the PAR_IN of the first register.  
The second register produces to PPO and QERR# signals. The QERR# of the first register is left floating. The  
valid error information is latched on the QERR# output of the second register. If an error occurs QERR# is latched  
low for two cycles or until Reset# is low.  
B - Single Configuration (CO = 0, C1 = 0)  
The device supports low-power standby operation. When the reset input (RST#) is low, the differential input receivers  
are disabled, and undriven (floating) data, clock and reference voltage (VREF) inputs are allowed. In addition, when  
RST# is low all registers are reset, and all outputs are forced low. The LVCMOS RST# and Cn inputs must always be  
held at a valid logic high or low level.To ensure defined outputs from the register before a stable clock has been supplied,  
RST# must be held in the low state during power up.  
In the DDR-II RDIMM application, RST# is specified to be completely asynchronous with respect to CK and CK#.  
Therefore, no timing relationship can be guaranteed between the two. When entering reset, the register will be cleared  
and the outputs will be driven low quickly, relative to the time to disable the differential input receivers. However, when  
coming out of reset, the register will become active quickly, relative to the time to enable the differential input receivers.  
As long as the data inputs are low, and the clock is stable during the time from the low-to-high transition of RST# until  
the input receivers are fully enabled, the design of the ICSSSTUA32866B must ensure that the outputs will remain  
low, thus ensuring no glitches on the output.  
The device monitors both DCS# and CSR# inputs and will gate the Qn outputs from changing states when both DCS#  
and CSR# inputs are high. If either DCS# or CSR# input is low, the Qn outputs will function normally. The RST input  
has priority over the DCS# and CSR# control and will force the outputs low. If the DCS#-control functionality is not  
desired, then the CSR# input can be hardwired to ground, in which case, the setup-time requirement for DCS# would  
be the same as for the other D data inputs. Package options include 96-ball LFBGA (MO-205CC).  
Parity and Standby Functionality Truth Table  
Inputs  
Outputs  
Sum of Inputs = H  
Rst#  
DCS#  
CSR#  
CK  
CK#  
PAR_IN  
PPO  
QERR#  
(D1 - D25)  
Even  
Odd  
Even  
Odd  
Even  
Odd  
X
H
H
H
H
H
H
H
L
L
L
X
X
X
X
L
L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H
H
L
H
H
X
PPO0 QERR0#  
PPO0 QERR0#  
H
X
X
L or H  
L or H  
X
X
X or  
X or  
X or  
X or  
X or  
Floating  
L
X or Floating  
L
H
Floating Floating Floating Floating  
1. CO = 0 and CI = 0, Data inputs are D2, D3, D5, D6, D8 - D25.  
CO = 0 and CI = 1, Data inputs are D2, D3, D5, D6, D8 - D14  
CO = 1 and CI = I, Data inputs are D1 - D6, D8 - D10, D12, D13  
2. PAR_IN arrives one clock cycle after the data to which it applies when CO = 0.  
3. PAR_IN arrives two clock cycles after the data to which it applies when CO = 1.  
4. Assume QERR# is high at the CK and CK# crossing. If QERR# is low it stays latched low for two  
clock cycles on until Rst# is low.  
1054A—01/28/05  
3
ICSSSTUA32866B  
Ball Assignment  
Electrical  
Characteristics  
Terminal Name  
Description  
GND  
VDD  
Ground  
Ground input  
1.8V nominal  
0.9V nominal  
Input  
Power supply voltage  
VREF  
ZOH  
Input reference voltage  
Reserved for future use  
Reserved for future use  
Positive master clock input  
Negative master clock input  
Configuration control inputs  
ZOL  
Input  
CK  
Differential input  
Differential input  
LVCMOS inputs  
CK  
C0, C1  
Asynchronous reset input - resets registers and disables VREF data and  
clock differential-input receivers  
RST#  
CSR#, DCS#  
D1 - D25  
DODT  
LVCMOS input  
SSTL_18 input  
SSTL_18 input  
SSTL_18 input  
SSTL_18 input  
Chip select inputs - disables D1 - D24 outputs switching when both inputs  
are high  
Data input - clock in on the crossing of the rising edge of CK and the  
falling edge of CK#  
The outputs of this register bit will not be suspended by the DCS# and  
CSR# control  
The outputs of this register bit will now be suspended by the DCS# and  
CSR# control  
DCKE  
Q1 - Q25  
QCS#  
Data ouputs that are suspended by the DCS# and CSR# control  
Data output that will not be suspended by the DCS# and CSR# control  
Data output that will not be suspended by the DCS# and CSR# control  
Data output that will not be suspended by the DCS# and CSR# control  
Partial parity out indicates off parity of inputs D1 - D25.  
1.8V CMOS  
1.8V CMOS  
1.8V CMOS  
1.8V CMOS  
1.8V CMOS  
SSTL_18 input  
QODT  
QCKE  
PPO  
PAR_IN  
Parity input arrives one clock cycle after the corresponding data input  
Output error bit-generated one clock cycle after the corresponding data  
output  
Open drain  
output  
QERR#  
1054A—01/28/05  
4
ICSSSTUA32866B  
Block Diagram for 1:1 mode (positive logic)  
RST#  
CK  
CK#  
VREF  
DCKE  
D
C1  
C1  
QCKEA  
QODTA  
R
D
DODT  
DCS#  
CSR#  
R
1D  
C1  
QCSA#  
R
D1  
0
1
1D  
Q1A  
C1  
Q1B*  
R
To 21 Other Channels  
*Note: Disabled in 1:1 configuration  
1054A—01/28/05  
5
ICSSSTUA32866B  
Block Diagram for 1:2 mode (positive logic)  
RST#  
CK  
CK#  
VREF  
DCKE  
1D  
C1  
QCKEA  
QCKEB*  
R
DODT  
DCS#  
CSR#  
1D  
QODTA  
C1  
QODTB*  
R
1D  
QCSA#  
C1  
QCSB#*  
R
D1  
0
1
1D  
Q1A  
C1  
Q1B*  
R
To 10 Other Channels  
*Note: Disabled in 1:1 configuration  
1054A—01/28/05  
6
ICSSSTUA32866B  
2. Device standard (cont'd)  
G2  
RST#  
H1  
CK  
J1  
CK#  
LPS0  
(internal node)  
D2•D3,  
D5•D6,  
D8-D25  
22  
D2•D3,  
Q2•Q3,  
D5•D6,  
D8•D25  
CE  
D
A3, T3  
22  
V
Q5•Q6,  
Q8•Q25  
REF  
CK  
Q
22  
R
D2•D3,  
D5•D6,  
D8•D25  
22  
Parity  
Generator  
G5  
C1  
1
0
0
A2  
PPO  
D
Q
1
D
R
Q
D
R
Q
CK  
CK  
CE  
CK  
R
G1  
G6  
PAR_IN  
D2  
QERR#  
C0  
CK  
0
1
2•Bit  
Counter  
R
LPS1  
(internal node)  
D
R
Q
CK  
Figure 6 — Parity logic diagram for 1:1 register configuration (positive logic); C0=0, C1=0  
1054A—01/28/05  
7
ICSSSTUA32866B  
2. Device standard (cont'd)  
G2  
RST#  
H1  
CK  
J1  
CK#  
LPS0  
(internanlode)  
D2 D3,  
D5 D6,  
D8-D14  
Q2A Q3A,  
Q5A Q6A,  
Q8A Q14A  
11  
D2 D3,  
D5 D6,  
D8 D14  
11  
11  
CE  
CK  
D
R
A3, T3  
V
REF  
Q
11  
Q2B Q3B,  
Q5B Q6B,  
Q8B Q14B  
D2 D3,  
D5 D6,  
D8 D14  
11  
Parity  
Generator  
G5  
C1  
1
0
0
A2  
PPO  
D
R
Q
1
D
R
Q
D
Q
CK  
CK  
CE  
CK  
R
G1  
G6  
PAR_IN  
D2  
QERR#  
C0  
CK  
0
1
2 Bit  
Counter  
R
LPS1  
(internal node)  
D
R
Q
CK  
Figure 7 — Parity logic diagram for 1:2 register-A configuration (positive logic); C0=0, C1=1  
Figure 7 — Parity logic diagram for 1:2 register-A configuration (positive logic); C0=0, C1=1  
1054A—01/28/05  
8
ICSSSTUA32866B  
2. Device standard (cont'd)  
G2  
RST#  
H1  
CK  
J1  
CK#  
LPS0  
(internal node)  
D1•D6,  
D8-D13  
11  
11  
Q1A•Q6A,  
Q8A•Q13A  
D1•D6,  
D8•D13  
CE  
D
A3, T3  
V
REF  
CK  
Q
11  
11  
R
Q1B•Q6B,  
Q8B•Q13B  
D1•D6,  
11  
D8•D13  
Parity  
Generator  
G5  
C1  
1
0
A2  
PPO  
D
R
Q
1
0
D
R
Q
D
Q
CK  
CK  
CE  
CK  
R
G1  
G6  
PAR_IN  
D2  
QERR#  
C0  
CK  
2•Bit  
Counter  
R
0
1
LPS1  
(internal node)  
D
R
Q
CK  
Figure 8 — Parity logic diagram for 1:2 register-B configuration (positive logic); C0=1, C1=1  
1054A—01/28/05  
9
ICSSSTUA32866B  
2. Device standard (cont'd)  
RST#  
DCS#  
CSR#  
n
n + 1  
n + 2  
n + 3  
n + 4  
CK  
CK#  
t
su  
t
t
h
act  
D1•D25  
t
, t  
pdm pdmss  
CK to Q  
Q1•Q25  
PAR_IN  
t
t
su  
h
t
pd  
CK to PPO  
PPO  
t
t
, t  
PHL PLH  
PHL  
CK to QERR#  
CK to QERR#  
Data to QERR# Latency  
QERR#  
H, L, or X  
H or L  
Figure — Timing diagram for SSTU32866 used as a single device; C0=0, C1=0;  
9
RST# Switches from L to H  
RST#  
is switched fro low to high, al data and PAR_IN inputs signals must be se and held lo for a minimum time of tACT  
After  
max, to avoid false error.  
If the data is clocked in on the n clock pulse, the QERR# output signal will be generated on the n+2 clock pulse, and it will be valid on  
the n+3 clock pulse.  
1054A—01/28/05  
10  
ICSSSTUA32866B  
2. Device standard (cont'd)  
RST#  
DCS#  
CSR#  
CK  
n
n + 1  
n + 2  
n + 3  
n + 4  
CK#  
t
t
su  
h
D1•D25  
t
, t  
CK to  
pdm pdmss  
Q1•Q25  
t
t
su  
h
PAR_IN  
PPO  
t
pd  
CK to PPO  
t
or t  
PLH  
PHL  
Data to PPO Latency  
CK to QERR#  
QERR#  
Data to QERR# Latency  
Output signal is dependent on  
the prior unknown input event  
Unknown input  
event  
H or L  
Figure 10 — Timing diagram for SSTU32866 used as a single device; C0=0, C1=0;  
RST# being held high  
If the data is clocked in on the n clock pulse, the QERR# output signal will be generated on the n+2 clock pulse, and it will be valid on  
the n+3 clock pulse. If an error occurs and the QERR# output is driven low, it stays latched low for a minimum of two clock cycles or  
until RST# is driven low.  
1054A—01/28/05  
11  
ICSSSTUA32866B  
2. Device standard (cont'd)  
RST#  
t
inact  
DCS#  
CSR#  
CK  
CK#  
D1•D25  
t
RPHL  
RST# to Q  
Q1•Q25  
PAR_IN  
t
RPHL  
RST# to PPO  
PPO  
QERR#  
t
RPLH  
RST# to QERR#  
H, L, or X  
H or L  
Figure 11 — Timing diagram fo SSTU32866 used as a single device; C0=0, C1=0;  
RST# switches from H to L  
After RST# is itched from high to low, all data and clock inputs signals must be set and held at valid logic levels (not floating) for  
sw  
a minimum time of tINACT max  
1054A—01/28/05  
12  
ICSSSTUA32866B  
2. Device standard (cont'd)  
RST#  
DCS#  
CSR#  
n
n + 1  
n + 2  
n + 3  
n + 4  
CK  
CK#  
t
su  
t
t
h
act  
D1•D14  
t
, t  
pdm pdmss  
CK to Q  
Q1•Q14  
PAR_IN  
t
t
su  
h
t
pd  
CK to PPO  
PPO  
t
t
, t  
PHL PLH  
PHL  
CK to QERR#  
CK to QERR#  
QERR#  
(not used)  
Data to QERR#  
Latency  
H, L, or X  
H or L  
Figure 12 — Timing diagram for the firs SSTU32866 (1:2 register-A configration) device used in  
pair; C0 = 0, C1 = 1; RST# switches from L to H  
After  
RST#  
is switched  
fro low to high, al data and PAR_IN inputs signals must be se and held lo for a minimum time of tACT  
max, to avoid false error  
If the data is clocked in on the n clock pulse, the QERR# output signal will be generated on the n+1 clock pulse, and it will be valid on  
the n+2 clock pulse.  
1054A—01/28/05  
13  
ICSSSTUA32866B  
2. Device standard (cont'd)  
RST#  
DCS#  
CSR#  
n
n + 1  
n + 2  
n + 3  
n + 4  
CK  
CK#  
t
t
su  
h
D1•D14  
t
, t  
pdm pdmss  
CK to Q  
Q1•Q14  
PAR_IN  
t
t
su  
h
t
pd  
CK to PPO  
PPO  
t
or t  
PLH  
PHL  
CK to QERR#  
Data to PPO  
Latency  
QERR#  
(not used)  
Data to QERR#  
Latency  
Output signal is dependent on  
the prior unknown input event  
Unknown input  
event  
H or L  
Figure 13 — Timing diagram for the firs SSTU32866 (1:2 register-A configration) device used in  
pair; C0 = 0, C1 = 1; RST# bein held high  
If the data is clocked in on the n clock pulse, the QERR# output signal will be generated on the n+1 clock pulse, and it will be valid on  
the n+2 clock pulse. If an error occurs and the QERR# output is driven low, it stays latched low for a minimum of two clock cycles or  
until RST# is driven low.  
1054A—01/28/05  
14  
ICSSSTUA32866B  
2. Device standard (cont'd)  
RST#  
t
inact  
DCS#  
CSR#  
CK  
CK#  
D1•D14  
t
RPHL  
RST# to Q  
Q1•Q14  
PAR_IN  
t
RPHL  
RST# to PPO  
PPO  
QERR#  
(not used)  
t
RPLH  
RST# to QERR#  
H, L, or X  
H or L  
Figure 14 — Timing diagram for the firs SSTU32866 (1:2 register-A configration) device used in  
pair; C0 = 0, C1 = 1; RST# switches from H to L  
RST# is switched from high to low, all data and clock inputs signals must be held at valid logic levels (not floating) for a  
After  
minimum time of tINACT max  
1054A—01/28/05  
15  
ICSSSTUA32866B  
2. Device standard (cont'd)  
RST#  
DCS#  
CSR#  
n
n + 1  
n + 2  
n + 3  
n + 4  
CK  
CK#  
t
t
t
h
su  
act  
D1•D14  
Q1•Q14  
t
, t  
pdm pdmss  
CK to Q  
t
t
su  
h
†‡  
PAR_IN  
t
pd  
CK to PPO  
PPO  
(not used)  
t
t
, t  
PHL  
CK to QERR#  
PHL PLH  
CK to QERR#  
§
QERR#  
Data to QERR# Latency  
H, L, or X  
H or L  
Figure 15 — Timing diagram for the second SSTU32866 (1:2 register-B configration) device used in  
pair; C0 = 1, C1 = 1; RST# switches from L to H  
After  
switched fro low to high, al data and PAR_IN inputs signals must be se and held lo for a minimum time of tACT  
RST#  
max, to avoid false error  
§
PAR_IN is driven from PPO of the first SSTU32866 device  
If the data is clocked in on the n clock pulse, the QERR# output signal will be generated on the n+2 clock pulse, and it will be valid on  
the n+3 clock pulse.  
1054A—01/28/05  
16  
ICSSSTUA32866B  
2. Device standard (cont'd)  
RST#  
DCS#  
CSR#  
n
n + 1  
n + 2  
n + 3  
n + 4  
CK  
CK#  
t
su  
t
h
D1 D14  
t
, t  
pdm pdmss  
CK to Q  
Q1 Q14  
PAR_IN  
t
su  
t
h
t
pd  
CK to PPO  
PPO  
t
or t  
PLH  
PHL  
CK to QERR#  
Data to PPO  
Latency  
QERR#  
(not used)  
Data to QERR#  
Latency  
Output signal is dependent on  
the prior unknown input event  
Unknown input  
event  
H or L  
Figure 16 — Timing diagram for the second SSTU32866 (1:2 register-B configration) device used in  
pair; C0 = 1, C1 = 1; RST# being held high  
PAR_IN is driven from PPO of the first SSTU32866 device  
If the data is clocked in on the n clock pulse, the QERR# output signal will be generated on the n+2 clock pulse, and it will be valid on  
the n+3 clock pulse. If an error occurs and the QERR# output is driven low, it stays latched low for a minimum of two clock cycles or  
until RST# is driven low.  
1054A—01/28/05  
17  
ICSSSTUA32866B  
2. Device standard (cont'd)  
RST#  
t
inact  
DCS#  
CSR#  
CK  
CK#  
D1•D14  
Q1•Q14  
PAR_IN  
t
RPHL  
RST# to Q  
t
RPHL  
RST# to PPO  
PPO  
(not used)  
QERR#  
t
RPLH  
RST# to QERR#  
H, L, or X  
H or L  
Figure 17 — Timing diagram for the second SSTU32866 (1:2 register-B configration) device used in  
pair; C0 = 1, C1 = 1; RST# switches from H to L  
from high to low, all data and clock input signals must be held at valid logic levels (not floating) fo a  
RST# is switched  
After  
minimum time of tINACT max  
1054A—01/28/05  
18  
ICSSSTUA32866B  
* Register Configurations  
DATA INPUT:  
DATA OUTPUT:  
CO  
CI  
D2, D3, D5, D6, D2, D3, D5, D6,  
D8 - D25 D8 - D25  
0
0
D2, D3, D5, D6, D2, D3, D5, D6,  
0
1
1
1
D8 - D14  
D8 - D14  
D1 - D6, D8 -  
D1 - D6, D8 -  
D10, D12, D13  
D10, D12, D13  
1054A—01/28/05  
19  
ICSSSTUA32866B  
Absolute Maximum Ratings  
Notes:  
Storage Temperature . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 2.5V  
Input Voltage1,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +2.5V  
Output Voltage1,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to VDD + 0.5V  
Input Clamp Current . . . . . . . . . . . . . . . . . . . . 50 mA  
Output Clamp Current . . . . . . . . . . . . . . . . . . . 50mA  
Continuous Output Current. . . . . . . . . . . . . . . 50mA  
VDD or GND Current/Pin . . . . . . . . . . . . . . . . 100mA  
1. The input and output negative voltage  
ratings may be excluded if the input  
andoutputclampratingsareobserved.  
2. This value is limited to 2.5V maximum.  
3. The package thermal impedance is  
calculated in accordance with  
JESD 51.  
Package Thermal Impedance3 . . . . . . . . . . . . . . . 36°C  
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These  
ratings are stress specifications only and functional operation of the device at these or any other conditions above those  
listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect product reliability.  
Recommended Operating Conditions  
DESCRIPTION  
PARAMETER  
VDDQ  
VREF  
VTT  
MIN  
1.7  
TYP  
1.8  
MAX  
1.9  
UNITS  
I/O Supply Voltage  
Reference Voltage  
0.49 x VDD 0.5 x VDD  
0.51 x VDD  
VREF + 0.04  
VDDQ  
Termination Voltage  
VREF - 0.04  
0
VREF  
VI  
Input Voltage  
VIH (DC)  
VIH (AC)  
VIL (DC)  
VIL (AC)  
VIH  
DC Input High Voltage  
AC Input High Voltage  
DC Input Low Voltage  
AC Input Low Voltage  
Input High Voltage Level  
Input Low Voltage Level  
Common mode Input Range  
Differential Input Voltage  
High-Level Output Current  
Low-Level Output Current  
VREF + 0.125  
VREF + 0.250  
Data Inputs  
V
VREF - 0.125  
VREF - 0.250  
RST#,  
C0, C1  
0.65 x VDDQ  
VIL  
0.35 x VDDQ  
1.125  
VICR  
0.675  
0.600  
CK, CK#  
VID  
IOH  
-8  
8
mA  
°C  
IOL  
Operating Free-Air Temperature  
TA  
0
70  
1Guaranteed by design, not 100% tested in production.  
Note: Rst# and Cn inputs must be helf at valid logic levels (not floating) to ensure proper device operation. The  
differential inputs must not be floating unless Rst# is low.  
1054A—01/28/05  
20  
ICSSSTUA32866B  
Electrical Characteristics - DC  
TA = 0 - 70°C; VDD = 1.8 +/-0.1V (unless otherwise stated)  
CONDITIONS  
SYMBOL  
PARAMETERS  
VDD  
MIN  
1.2  
-5  
TYP MAX  
-1.2  
UNITS  
V
VIK  
VOH  
VOL  
II  
II = -18mA  
IOH = -6mA  
IOL = 6mA  
1.7V  
1.7V  
1.9V  
0.5  
5
100  
All Inputs  
Standby (Static)  
VI = VDD or GND  
RESET# = GND  
VI = VIH(AC) or VIL(AC)  
RESET# = VDD  
µA  
µA  
IDD  
,
1.9V  
1.8V  
Operating (Static)  
mA  
40  
RESET# = VDD  
,
Dynamic operating  
(clock only)  
µ/clock  
MHz  
VI = VIH(AC) or VIL(AC)  
,
39  
CLK and CLK# switching  
50% duty cycle.  
IO = 0  
RESET# = VDD  
,
Dynamic Operating  
(per each data input)  
1:1 mode  
IDDD  
VI = VIH(AC) or VIL (AC)  
,
19  
35  
CLK and CLK# switching  
50% duty cycle. One data  
input switching at half  
clock frequency, 50%  
duty cycle  
µA/ clock  
MHz/data  
Dynamic Operating  
(per each data input)  
1:2 mode  
Data Inputs  
CLK and CLK#  
RESET#  
VI = VREF 350mV  
2.5  
2
3.5  
3
pF  
Ci  
V
ICR = 1.25V, VI(PP) = 360mV  
VI = VDD or GND  
2.5  
Notes:  
1 - Guaranteed by design, not 100% tested in production.  
Output Buffer Characteristics  
Output edge rates over recommended operating free-air temperature range (See figure 7)  
V
MIN  
1
DD = 1.8V 0.1V  
PARAMETER  
UNIT  
MAX  
dV/dt_r  
4
4
1
V/ns  
V/ns  
V/ns  
dV/dt_f  
1
1
dV/dt_  
1. Difference between dV/dt_r (rising edge rate) and dV/dt_f (falling edge rate)  
1054A—01/28/05  
21  
ICSSSTUA32866B  
Timing Requirements  
(over recommended operating free-air temperature range, unless otherwise noted)  
VDD = 1.8V 0.1V  
UNITS  
SYMBOL  
PARAMETERS  
MIN  
MAX  
410  
-
fclock  
tW  
Clock frequency  
-
MHz  
ns  
Pulse duration, CK, CK HIGH or LOW  
1
tACT  
Differential inputs active time (See Notes 1 and 2)  
Differential inputs inactive time (See Notes 1 and 3)  
-
-
10  
15  
ns  
ns  
tINACT  
DSR# before CK, CK#,  
CSR# high  
CSR# before CK, CK#,  
DCS# high  
tsu  
tsu  
tsu  
Setup time  
Setup time  
Setup time  
0.7  
0.7  
0.5  
ns  
ns  
ns  
DCS# before CK , CK# ,  
CSR# low  
DODT, DCKE and data before  
CK, CK#↓  
tsu  
tsu  
Setup time  
Setup time  
Hold time  
0.5  
0.5  
ns  
ns  
ns  
ns  
PAR_IN before CK , CK#  
DCS#, DODT, DCKE and Q  
after CK, CK#↓  
0.50  
0.50  
tH  
PAR_IN after CK, CK#↓  
Hold time  
1 - Guaranteed by design, not 100% tested in production.  
2 - For data signal input slew rate of 1V/ns.  
3 - For data signal input slew rate of 0.5V/ns and < 1V/ns.  
Notes:  
4 - CLK/CLK# signal input slew rate of 1V/ns.  
Switching Characteristics  
(over recommended operating free-air temperature range, unless otherwise noted)  
Measurement  
Conditions  
Symbol  
Parameter  
MIN  
MAX Units  
fmax  
Max input clock frequency  
410  
MHz  
Propagation delay, single  
bit switching  
Propagation delay  
Low to High propagation  
delay  
tPDM  
tPD  
CK to CK# QN  
1.1  
0.5  
1.2  
1.9  
1.8  
3
ns  
ns  
ns  
CK to CK# to PPO  
↑ ↓  
tLH  
CK to CK# to QERR#  
↑ ↓  
High to low propagation  
delay  
Propagation delay  
simultaneous switching  
High to low propagation  
delay  
High to low propagation  
delay  
Low to High propagation  
delay  
tHL  
tPDMSS  
tPHL  
CK to CK# to QERR#  
1
-
2.4  
2
ns  
ns  
ns  
ns  
ns  
CK to CK# QN  
Rst# to QN  
3
tPHL  
Rst# to PPO  
3
tPLH  
Rst# to QERR#  
3
2. Guaranteed by design, not 100% tested in production.  
1054A—01/28/05  
22  
ICSSSTUA32866B  
VDD  
DUT  
RL = 1000Ω  
TL=350ps, 50Ω  
TL=50Ω  
CK#  
CK  
Out  
Test Point  
CK Inputs  
CL = 30 pF  
(see Note 1)  
RL = 1000•  
Test Point  
RL = 100•  
LOAD CIRCUIT  
Test Point  
VCMOS  
RST#  
Input  
VDD  
0 V  
tact  
90%  
VID  
VDD/2  
VDD/2  
CK  
CK  
VICR  
VICR  
tinact  
tPLH  
tPHL  
IDD  
(see  
Note 2)  
10%  
VOH  
VOL  
Output  
VTT  
VTT  
VOLTAGE AND CURRENT WAVEFORMS  
INPUTS ACTIVE AND INACTIVE TIMES  
VOLTAGE WAVEFORMS – PROPAGATION DELA TIMES  
VID  
tw  
Input  
VICR  
VICR  
VOLTAGE WAVEFORMS – PULSE DURATION  
VID  
LVCMOS  
RST#  
Input  
VIH  
VIL  
VDD/2  
CK  
VICR  
tRPHL  
CK  
VOH  
VOL  
th  
tsu  
Output  
VTT  
VIH  
VIL  
Input  
VREF  
VREF  
VOLTAGE WAVEFORMS – PROPAGATION DELA TIMES  
VOLTAGE WAVEFORMS – SETUP AND HOLD TIMES  
Figure 6Parameter Measurement Information (V = 1.8 V 0.1 V)  
DD  
Notes: 1. CL incluces probe and jig capacitance.  
2. IDD tested with clock and data inputs held at VDD or GND, and Io = 0mA.  
3. All input pulses are supplied by generators having the following chareacteristics: PRR 10 MHz,  
Zo=50, input slew rate = 1 V/ns 20% (unless otherwise specified).  
4. The outputs are measured one at a time with one transition per measurement.  
5. VREF = VDD/2  
6. VIH = VREF + 250 mV (ac voltage levels) for differential inputs. VIH = VDD for LVCMOS input.  
7. VIL = VREF - 250 mV (ac voltage levels) for differential inputs. VIL = GND for LVCMOS input.  
8. VID = 600 mV  
9. tPLH and tPHL are the same as tPDM  
.
1054A—01/28/05  
23  
ICSSSTUA32866B  
VDD  
DUT  
RL = 50  
Test Point  
Out  
CL = 10 pF  
(see Note 1)  
LOAD CIRCUIT – HIGH-TO-LOW SLEW-RATE MEASUREMENT  
Output  
VOH  
80%  
20%  
dt_f  
VOL  
dv_f  
VOLTAGE WAVEFORMS – HIGH-TO-LOW SLEW-RATE MEASUREMENT  
DUT  
Out  
Test Point  
CL = 10 pF  
(see Note 1)  
RL = 50Ω  
LOAD CIRCUIT – LOW-TO-HIGH SLEW-RATE MEASUREMENT  
dt_r  
dv_r  
VOH  
80%  
20%  
Output  
VOL  
VOLTAGE WAVEFORMS – LOW-TO-HIGH SLEW-RATE MEASUREMENT  
Figure 7 — Output Slew-RateMeasurement Information (VDD = 1.8 V 0.1 V)  
Notes: 1. CL includes probe and jig capacitance.  
2. All input pulses are supplied by generators having the following characteristics: PRR 10MHz, ZO  
50, input slew rate = 1 V/ns 20% (unless otherwise specified).  
=
1054A—01/28/05  
24  
ICSSSTUA32866B  
3 Test circuits and switching waveforms (cont’d)  
3.3 Error output load circuit and voltage measurement information (V = 1.8 V 0.1 V)  
DD  
All input pulses are supplied by generators having the following characteristics: PRR 10 MHz;  
Z = 50 ; input slew rate = 1 V/ns 20%, unless otherwise specified.  
o
V
DD  
DUT  
R
= 1K  
L
Out  
Test Point  
C
= 10 pF  
L
(see Note 1)  
LOAD CIRCUIT – HIGH-TO-LOW SLEW-RATE MEASUREMENT  
(1) C includes probe and jig capacitance.  
L
Figure 28 — Load circuit, error output measurements  
LVCMOS  
RST#  
V
CC  
V
/2  
CC  
Input  
0 V  
V
t
PLH  
OH  
Output  
Waveform 2  
0.15 V  
_ _ _ _ _ _ _ _ _ _ _  
0 V  
Voltage waveforms, open-drain output low-to-high transition time with respect to reset input  
Figure 29 —  
V
I
(PP)  
Timing  
Inputs  
V
V
ICR  
ICR  
t
PHL  
_ _ _ _ _ _ _ _ _ _ _  
V
Output  
Waveform 1  
V
CC  
OL  
/2  
CC  
V
Figure 30  
Voltage waveforms, open-drain output high-to-low transition time with respect to clock inputs  
V
I
(PP)  
Timing  
Inputs  
V
ICR  
V
ICR  
t
PHL  
V
0
OH  
V
Output  
Waveform 2  
0.15 V  
Figure 31  
Voltage waveforms, open-drain output low-to-high transition time with respect to clock inputs  
1054A—01/28/05  
25  
ICSSSTUA32866B  
Test circuits and switching waveforms (cont’d)  
3.4 Partial-parity-out load circuit and voltage measurement information (V = 1.8 V ± 0.1 V)  
DD  
All input pulses are supplied by generators having the following characteristics: PRR 10 MHz;  
Z = 50 input slew rate = 1 V/ns ± 20%, unless otherwise specified.  
o
DUT  
Out  
Test Point  
5 pF  
C
=
L
R
L
1 k  
=
(see Note A)  
(1) CL includes probe and jig capacitance.  
Figure 32 — Partial-parity-out load circuit,  
CK  
V
V
V
ICR  
ICR  
i(p-p)  
V
CK  
t
t
PHL  
PLH  
OH  
V
OUTPUT  
TT  
V
OL  
002aaa375  
VTT = VDD/2  
tPLH an tPHL are the same as tPD  
.
V
I(PP) = 600 mV  
Figure 33 — Partial-parity-out voltage waveforms; propagation delay times with respect to clock inputs  
LVCMOS RST#  
V
IH  
INPUT  
V
/2  
DD  
V
V
V
IL  
t
PHL  
OH  
OL  
OUTPUT  
V
TT  
002aaa376  
VTT = VDD/2  
tPLH an tPHL are the same as tPD  
.
V
V
IH = VREF + 250 mV (AC voltage levels for differential inputs. VIH = VDD for LVCMOS inputs.  
IL = VREF 250 mV (A voltag levels) for differential inputs. VIL = VDD for LVCMOS inputs.  
Figure 34 — Partial-parity-out voltage waveforms; propagation delay times with respect to reset input  
1054A—01/28/05  
26  
ICSSSTUA32866B  
C
Seating  
Plane  
Numeric Designations  
for Horizontal Grid  
A1  
b
REF  
T
3 2 1  
4
A
B
C
D
Alpha Designations  
for Vertical Grid  
(Letters I, O, Q & S  
not used)  
D
d TYP  
D1  
- e - TYP  
TOP VIEW  
E
c
REF  
TYP  
- e -  
h
TYP  
E1  
0.12  
C
ALL DIMENSIONS IN MILLIMETERS  
----- BALL GRID -----  
Max.  
REF. DIMENSIONS  
D
E
T
e
HORIZ  
VERT  
TOTAL  
d
h
b
c
Min/Max  
Min/Max  
Min/Max  
13.50 Bsc  
11.50 Bsc  
5.50 Bsc  
5.00 Bsc  
1.30/1.50  
/1.20  
0.80 Bsc  
0.65 Bsc  
6
6
16  
16  
96  
96  
0.40/0.50  
0.38/0.48  
0.25/0.41  
0.27/0.37  
0.75  
0.875  
0.75  
0.875  
Note: Ball grid total indicates maximum ball count for package. Lesser quantity may be used.  
* Source Ref.: JEDEC Publication 95,  
MO-205  
10-0055C  
Ordering Information  
ICSSSTUA32866Bz(LF)T  
Example:  
ICS XXXX y z (LF) T  
Designation for tape and reel packaging  
Lead Free (Optional)  
Package Type  
H = LFBGA (standard size: 5.5 x 13.50)  
HM = TFBGA (reduced size: 5.0 x 11.50)  
Revision Designator (will not correlate with datasheet revision)  
Device Type  
Prefix  
ICS = Standard Device  
1054A—01/28/05  
27  

相关型号:

ICSSSTUA32S869B

14-Bit Configurable Registered Buffer for DDR2
ICSI

ICSSSTUA32S869BH

Interface Circuit
IDT

ICSSSTUA32S869BH-T

Interface Circuit
IDT

ICSSSTUAF32865A

25-BIT CONFIGURABLE REGISTERED BUFFER FOR DDR2
IDT

ICSSSTUAF32865AHLF

Bus Driver, PBGA160
IDT

ICSSSTUAF32865AHLFT

25-BIT CONFIGURABLE REGISTERED BUFFER FOR DDR2
IDT

ICSSSTUAF32866B

25-BIT CONFIGURABLE REGISTERED BUFFER FOR DDR2
IDT

ICSSSTUAF32866BHLF

Bus Driver, PBGA96
IDT

ICSSSTUAF32866BHLFT

25-BIT CONFIGURABLE REGISTERED BUFFER FOR DDR2
IDT

ICSSSTUAF32866C

25-BIT CONFIGURABLE REGISTERED BUFFER FOR DDR2
IDT

ICSSSTUAF32866CHLF

Bus Driver, CMOS, PBGA96
IDT

ICSSSTUAF32866CHLFT

25-BIT CONFIGURABLE REGISTERED BUFFER FOR DDR2
IDT