IDT49C3466PQF [IDT]

Error Detection And Correction Circuit, 49C Series, 64-Bit, CMOS, PQFP208, PLASTIC, QFP-208;
IDT49C3466PQF
型号: IDT49C3466PQF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Error Detection And Correction Circuit, 49C Series, 64-Bit, CMOS, PQFP208, PLASTIC, QFP-208

先进先出芯片 逻辑集成电路
文件: 总28页 (文件大小:443K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.3V 64-BIT FLOW-THRU  
ERROR DETECTION  
IDT49C3466  
AND CORRECTION UNIT  
Integrated Device Technology, Inc.  
FEATURES:  
DESCRIPTION:  
• 64-bit wide Flow-thruEDC™  
The IDT49C3466 64-bit Flow-thruEDC is a high-speed  
error detection and correction unit that ensures data integrity  
in memorysystems. Theflow-thruarchitecture,withseparate  
system and memory data buses, is ideally suited for pipelined  
memory systems.  
• Separate System and Memory Data Input/Output Buses  
• — Error Detect Time: 20ns  
— Error Correct Time: 22ns  
• Corrects all single bit errors; Detects all double bit errors  
and some multiple bit errors  
• Configurable 16-deep bus read/write FIFOs with flags  
• Simultaneouscheckbitgenerationandcorrectionofmemory  
data  
• Supports partial word writes on byte boundaries  
• Low noise output  
Implementing a modified Hamming code, the  
IDT49C3466 corrects all single bit hard and soft errors, and  
detects all double bit errors. The read/write FIFOs can store  
up to sixteen words. FIFO full and empty flags indicate  
whether additional data can be written to or read from the  
EDC.  
• Sophisticated error diagnostics and error logging  
• Parity generation on system data bus  
• VCC = 3.3V ±0.3V  
Check bit generation for partial word writes on byte bound-  
aries is supported on the IDT49C3466.  
Diagnostic features include a check bit register, syndrome  
registers, a four bit error counter which logs up to 15 errors,  
andanerrordataregisterwhichstoresthecompleteerrordata  
word. Parity can be generated and checked on the system  
bus by the IDT49C3466.  
• 208-pin Plastic Quad Flatpack  
SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM  
DIAGNOSTIC  
& STATUS  
REGISTERS  
MD  
CHK-BIT  
LATCH  
CHECK-BIT  
COMPARATOR &  
SYNDROME  
GENERATOR &  
ERROR  
ERR  
CBI0-7  
MERR  
MD  
CHECK-BIT  
GENERATOR  
READ BUFFER  
16 WORDS BY  
64  
DETECTOR  
M
U
X
M
U
X
MD  
LATCH  
IN  
ERROR  
CORRECT  
MD  
LATCH  
OUT  
SD0-63  
WRITE BACK PATH  
MD0-63  
SD  
LATCH  
IN  
B
Y
T
E
SD  
LATCH  
OUT  
M
U
X
WRITE  
BUFFER  
16 WORDS BY  
72  
M
U
X
SD  
SD  
CHK-BIT  
LATCH  
CHECK-BIT  
GENERATOR  
CBSYN0-7  
PARITY  
GENERATE &  
PARITY CHECK  
PARITY  
P0-7  
3268 drw 01  
The IDT logo is a registered trademark and Flow-thruEDC is a trademark of Integrated Device Technology Inc.  
COMMERCIAL TEMPERATURE RANGE  
JULY 1998  
©1998 Integrated Device Technology, Inc.  
11.9  
DSC-9038/-1  
1
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
C h e c k B i t I n j e c t i o n M o d e  
M U X  
BYTE MUX  
MUX  
MUX  
M U X  
M U X  
D E M U X  
WBFF  
WBEF  
M U X  
3268 drw 02  
11.9  
2
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
PIN CONFIGURATION  
157  
156  
208  
1
GND  
MD54  
MD53  
MD52  
MD51  
MD50  
MD49  
MD48  
MD47  
MD46  
MD45  
MD44  
MD43  
MD42  
MD41  
MD40  
MD39  
MD38  
MD37  
MD36  
MD35  
MD34  
MD33  
MD32  
SDOLE  
MOE  
GND  
SD46  
SD45  
SD44  
BE5  
P5  
SD43  
SD42  
SD41  
SD40  
SD39  
SD38  
SD37  
SD36  
BE4  
GND  
P4  
SD35  
SD34  
SD33  
SD32  
PERR  
MCLK  
MDOLE  
RS1  
MEN  
GND  
RS_0  
SDILE  
SCLK  
SOE  
PQ208-2  
MDILE  
MD31  
GND  
MD30  
MD29  
MD28  
MD27  
MD26  
MD25  
MD24  
MD23  
MD22  
MD21  
MD20  
GND  
MD19  
MD18  
MD17  
MD16  
MD15  
MD14  
MD13  
MD12  
MD11  
MD10  
VCC  
SD31  
SD30  
SD29  
SD28  
BE3  
P3  
SD27  
SD26  
SD25  
SD24  
SD23  
SD22  
SD21  
SD20  
BE2  
P2  
SD19  
SD18  
SD17  
SD16  
105  
104  
GND  
52  
53  
PQFP  
Top View  
3268 drw 03  
11.9  
3
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
PIN DESCRIPTION  
Pin Name  
SD0-63  
I/O  
Description  
I/O  
SystemDataBus:isabidirectional64-bitbusinterfacingtothesystemorCPU. WhenSystemOutput  
Enable, SOE, isHIGHorByteEnable, BE0-7, isLOW, datacanbeinput. WhenSystemOutputEnable,  
SOE, is LOW and Byte Enable, BE0-7, is HIGH, the SD bus output drivers are enabled.  
MD0-63  
I/O  
Memory Data Bus: is a bidirectional 64-bit bus interfacing to the memory. During a read cycle, (MOE  
HIGH) memory data is input for error detection and correction. Data is output on the Memory Data  
Bus, when MOE is LOW.  
CBI0-7  
I
Check Bit Inputs: interface to the check bit memory.  
CBSYN0-7  
O
Check Bit/Syndrome Output: When MOE is LOW the generated check bits are output. When  
CBSEL is HIGH and MOE is HIGH, the syndrome bits are output. The bus is tristated when MOE =  
1 and CBSEL = 0.  
P0-7  
I/O  
Parityforbytes0to7: ThesepinsareparityinputswhenthecorrespondingByteEnable(BE)isLOW  
orSOEis HIGH, and are used to generate the parity error signal (PERR). These pins are outputs when  
the corresponding Byte Enable (BE) is HIGH and SOE is LOW.  
Control Inputs  
SOE  
I
I
System Output Enable: enables system data bus output drivers if the corresponding Byte Enable  
(BE0-7) is HIGH.  
BE0-7  
Byte Enable: is used along with SOE, to enable the System Data outputs for a particular byte. For  
example, if BE1 is HIGH, the System data outputs for byte 1 (SD8-15) are enabled. The BE0-7 pins also  
control the byte mux. If a particular BE is HIGH during a memory read cycle, that byte is fed back to  
thememorydatabus. Thisisusedduringpartialwordwriteoperationsandwritingcorrecteddataback  
to memory.  
MOE  
I
Memory Output Enable: when LOW, enables the output buffers of the memory data bus (MD) and  
CBSYN bus. It also controls the CBSYN mux. When LOW, checkbits are selected, when HIGH,  
syndrome is selected.  
MDILE  
MDOLE  
SDOLE  
SDILE  
I
I
I
I
I
Memory Data Input Latch Enable: on the HIGH-to-LOW transition, latches MD and CBI in MD input  
latch and MD check bit latch respectively. The latches are transparent when MDILE is HIGH.  
Memory Data Output Latch Enable: latches data in the MD output latch on the LOW-to-HIGH  
transition of MDOLE. When MDOLE is LOW, the MD output latch is transparent.  
System Data Output Latch Enable: latches data in the SD output latch and the SD checkbit latch  
on the LOW-to-HIGH transition of SDOLE. The latch is transparent when SDOLE is LOW.  
System Data Input Latch Enable: latches SD in the SD input latch on the HIGH-to-LOW transition.  
When SDILE is HIGH, the SD input latch is transparent.  
WBSEL  
Write FIFO Select: when HIGH, the write FIFO is selected. When WBSEL is LOW, the SD input latch  
is selected.  
WBEN  
I
I
WriteFIFOEnable:whenLOW,allowsSDdatatobewrittentothewriteFIFOontheSCLKrisingedge.  
WBREN  
Write FIFO Read Enable: when LOW, allows data to be read from the the write FIFO on MCLK rising  
edge.  
RS0-1  
I
Reset and Select pins (read and write FIFO FIFOs)  
RS1  
0
0
1
1
RS0  
0
1
0
1
Function  
Reset 16-deep FIFO or first 8-deep FIFO  
Reset second 8-deep FIFO  
Select 16-deep FIFO or first 8-deep FIFO  
Select second 8-deep FIFO  
3268 tbl 01  
11.9  
4
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
PIN DESCRIPTION (Continued)  
Pin Name  
RBSEL  
I/O  
Description  
I
Read FIFO Select: when HIGH, read FIFO is selected (data goes through read FIFO, not MD output  
latch). When LOW, the MD output latch is selected.  
RBEN  
RBREN  
CBSEL  
MEN  
I
I
I
I
Read FIFO Enable: when LOW, allows data to be written into the read FIFO on the LOW-to-HIGH  
transition of the memory clock.  
Read FIFO Enable: when LOW, allows data to be read from the read FIFO on the LOW-to-HIGH  
transition of SCLK  
Checkbit Syndrome Output Enable: Controls the CBSYN output buffer.When HIGH, the buffer is  
enabled. When CBSEL is LOW, MOE controls the buffer.  
Mode Enable Input: when LOW, SD0-15 is loaded into the EDC mode register on the LOW-to-HIGH  
transitionoftheSCLK.ThispinmustbeheldLOWfortheentireSCLKHIGHperiod,asshowninFigure  
4.  
Clock Inputs  
MCLK  
I
I
I
Memory Clock: on the LOW-to-HIGH transition of MCLK, memory data is written to the read FIFO  
when RBEN is LOW. Data is read from the write FIFO when WBREN is LOW, on the LOW-to-HIGH  
transition of MCLK.  
SCLK  
System Clock: on the LOW-to-HIGH transition of the SCLK, data is read from the read FIFO when  
RBREN is LOW. Data on the system data bus is written into the write FIFO when WBEN is LOW on  
the LOW-to-HIGH transition of SCLK. Clocks data into mode register when MEN is LOW.  
SYNCLK  
Syndrome Clock: Used to load diagnostic registers. When an error occurs, Error Counter is  
incremented on the rising SYNCLK edge (up to 15 errors). On the first error after a diagnostic reset,  
SYNCLK rising edge clocks data into Check Bit, Syndrome, Error Type and Error Data registers. One  
of the syndrome registers has new data clocked in on every SYNCLK rising edge.  
Status Outputs  
WBEF  
O
Write FIFO Empty Flag: when LOW, indicates that the write FIFO is empty. After a reset, the WBEF  
goes LOW.  
WBFF  
RBEF  
O
O
WriteFIFOFullFlag:whenLOW, indicatesthatthewriteFIFOisfull. Afterareset,WBFFgoesHIGH.  
Read FIFO Empty Flag: when LOW, indicates that the read FIFO is empty. After a reset, the RBEF  
goes LOW.  
RBHF  
O
Read FIFO Half-full Flag: when LOW, indicates that there are eight or more data words (in the 16-  
deepconfiguration)orfourormoredatawords(inthedual8-deepconfiguration)inthereadFIFO. The  
flag will return HIGH when less than eight (or four) data words are in the FIFO.  
RBFF  
ERR  
O
O
O
Read FIFO Full Flag: when LOW, indicates that the read FIFO is full. After a reset, RBFFgoes HIGH.  
Error Flag: when ERR is LOW, a data error is indicated. The ERR is not latched internally.  
MERR  
Multiple Error Flag: when MERRis LOW, a multiple data error is indicated. The MERRis not latched  
internally.  
PERR  
O
Parity Error Flag: when LOW, indicates a parity error on the system data bus input.  
Power Supply  
VCC  
P
P
Power Supply Voltage.  
GND  
Ground.  
3268 tbl 02  
11.9  
5
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
DETAILED DESCRIPTION —  
(1, 2)  
64-BIT MODIFIED HAMMING CODE - CHECKBIT ENCODING CHART  
Generated  
Participating Data Bits  
Checkbits  
CB0  
Parity  
0
1
X
X
2
X
X
3
4
5
6
7
8
X
X
9
10  
11  
12  
X
13  
14  
15  
Even (XOR)  
Even (XOR)  
Odd (XNOR)  
Odd (XNOR)  
Even (XOR)  
Even (XOR)  
Even (XOR)  
Even (XOR)  
X
X
X
X
X
CB1  
X
X
X
X
X
X
X
X
CB2  
X
X
X
X
X
X
X
X
X
X
CB3  
X
X
X
X
X
X
X
X
CB4  
X
X
X
X
X
X
CB5  
X
X
X
X
CB6  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
CB7  
3268 tbl 03  
Generated  
Checkbits  
CB0  
Participating Data Bits  
Parity  
16  
17  
X
18  
X
19  
20  
21  
22  
23  
24  
X
25  
26  
27  
28  
X
29  
30  
31  
Even (XOR)  
Even (XOR)  
Odd (XNOR)  
Odd (XNOR)  
Even (XOR)  
Even (XOR)  
Even (XOR)  
Even (XOR)  
X
X
X
X
X
CB1  
X
X
X
X
X
X
X
X
X
X
X
CB2  
X
X
X
X
X
X
X
X
X
CB3  
X
X
X
X
X
X
X
CB4  
X
X
X
X
X
X
X
X
X
CB5  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
CB6  
CB7  
X
3268 tbl 04  
Generated  
Checkbits  
CB0  
Participating Data Bits  
Parity  
32  
X
33  
X
34  
35  
36  
X
37  
38  
X
39  
40  
41  
42  
X
43  
44  
X
45  
46  
47  
Even (XOR)  
Even (XOR)  
Odd (XNOR)  
Odd (XNOR)  
Even (XOR)  
Even (XOR)  
Even (XOR)  
Even (XOR)  
X
X
X
CB1  
X
X
X
X
X
X
X
CB2  
X
X
X
X
X
X
X
X
X
X
X
X
X
CB3  
X
X
X
X
X
X
X
X
X
X
X
X
CB4  
X
X
X
X
X
X
X
X
CB5  
X
X
X
X
X
X
X
X
CB6  
X
X
X
X
X
CB7  
X
X
3268 tbl 05  
Generated  
Checkbits  
CB0  
Participating Data Bits  
Parity  
48  
X
49  
X
50  
51  
52  
X
53  
54  
X
55  
56  
57  
58  
X
59  
60  
X
61  
62  
63  
Even (XOR)  
Even (XOR)  
Odd (XNOR)  
Odd (XNOR)  
Even (XOR)  
Even (XOR)  
Even (XOR)  
Even (XOR)  
X
X
X
CB1  
X
X
X
X
X
X
X
CB2  
X
X
X
X
X
X
X
X
X
X
X
X
CB3  
X
X
X
X
X
X
X
X
CB4  
X
X
X
X
X
X
X
X
CB5  
X
X
X
X
X
X
X
X
X
X
X
X
CB6  
CB7  
X
X
X
X
X
X
X
X
NOTES:  
3268 tbl 06  
1. The table indicates the data bits participating in the checkbit generation. For example, checkbit CB0 is the Exclusive-OR function of the 64 data input bits  
marked with an X.  
2. The checkbit is generated as either an XOR or an XNOR of the 64 data bits noted by an “X” in the table.  
11.9  
6
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
DETAILED DESCRIPTION —  
(1)  
64-BIT SYNDROME DECODE TO BIT-IN-ERROR  
HEX  
S7  
0
0
0
0
0
1
0
0
0
1
2
0
0
1
0
3
0
0
1
1
4
0
1
0
0
5
0
1
0
1
6
0
1
1
0
7
0
1
1
1
8
1
0
0
0
9
1
0
0
1
A
1
0
1
0
B
1
0
1
1
C
1
1
0
0
D
1
1
0
1
E
1
1
1
0
F
1
1
1
1
S6  
Syndrome  
Bits  
S5  
S4  
HEX S3 S2 S1 S0  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
*
C0  
C1  
T
C4 C5  
T
C6  
T
T
M
34  
T
T
M
56  
T
62 C7  
T
M
50  
T
T
M
40  
T
46  
T
T
M
M
T
M
T
T
2
M
T
T
30  
M
T
1
T
T
T
T
14  
M
T
T
T
T
T
2
T
T
T
3
18  
T
8
M
T
M
T
M
T
M
T
24  
T
4
C2  
T
T
15  
T
35  
T
57  
T
51  
T
41  
T
M
T
T
3
31  
T
5
19  
20  
T
9
M
M
T
63  
M
T
M
M
T
47  
M
T
25  
26  
T
6
T
10  
T
T
T
T
T
T
T
4
T
7
M
C3  
T
M
M
T
36  
37  
T
58  
59  
T
52  
53  
T
42  
43  
T
M
M
T
T
T
5
M
M
T
8
T
T
T
T
T
T
T
9
21  
22  
T
11  
12  
T
M
33  
T
M
M
T
M
49  
T
M
M
T
27  
28  
T
A
T
T
T
T
T
T
T
6
T
B
17  
T
M
T
38  
T
60  
T
54  
T
44  
T
1
T
7
M
T
C
23  
T
13  
T
M
T
M
T
M
T
M
T
T
29  
T
D
M
16  
T
M
M
T
39  
M
T
61  
M
T
55  
M
T
45  
M
T
M
0
T
T
M
M
M
E
F
T
T
T
T
T
T
T
M
M
32  
M
48  
M
T
M
T
NOTES:  
3268 tbl 07  
1. Thetableindicatesthedecodingoftheeightsyndromebitstoidentifythebit-in-errorforasingle-biterror,orwhetheradoubleortriple-biterrorwasdetected.  
The all-zero case indicates no error detected.  
* = No errors detected  
# = The number of the single data bit-in-error  
T = Two errors detected  
M = Three or more detected  
C# = The number of the single checkbits in error  
partial word write or byte merge is discussed later. Here it is  
IDT49C3466 OPERATION  
assumed that all 64 bits are being written. Consequently,  
The EDC is involved in two types of operation — memory  
BE0-7 must all be LOW.  
reads and memory writes. With the IDT49C3466, both these  
The data is fed to the SD Checkbit generator where  
can be accomplished by utilizing either of two possible data  
appropriate checkbits are generated. Both system data and  
paths — one incorporating the FIFO and the other without the  
thegenerated checkbitscanbe latchedbypullingthe SDOLE  
FIFO. These operations are treated separately below.  
signal HIGH. Asserting MOE enables the MD output buffer  
Memory Write  
and data is output to the Memory Data (MD) bus. CBSEL (=1)  
or MOE(=0) need to be asserted to enable the CBSYN output  
buffer and output checkbits on CBSYN0-7.  
The involvement of the EDC in this type of operation is  
relatively minimalsince itdoesnot callfor anyerrorchecking.  
It only generates the check bits associated with each 64-bit  
wide data word. The EDC can be in generate-detect or normal  
mode for this operation.  
When a write operation is performed, it must be ensured  
that the SD output buffer (enabled by SOE and BE0-7) is  
disabledsothatnoattemptismadetosimultaneouslytransfer  
read data onto the System Data (SD) Bus.  
When the write FIFO is selected (WBSEL = 1), instead of  
asserting SDILE, WBEN is asserted and data is clocked into  
the write FIFO on the rising edge of SCLK. WBFFis asserted  
when the WFIFO is full and this inhibits further write attempts  
(see section on "Clock Skew" and "R/W FIFO Operation at  
Boundaries") to the WFIFO. When WBREN is asserted, data  
can be clocked out of the write FIFO on the rising edge of  
MCLK. WBEFis asserted when the WFIFO is empty and this  
inhibits further read attempts (see section on "Clock Skew")  
from the WFIFO.  
When the write FIFO (WFIFO) is bypassed (WBSEL  
LOW), datapassesthroughtheSDLatchIn. Tolatchdata, the  
SDILE signal should be pulled LOW. The special case of a  
11.9  
7
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
BEn = 0 => Path A  
BEn = 1 => Path B  
MD  
LATCH  
OUT  
MD BUS  
64  
PATH B  
64  
SD  
BYTE  
MUX  
64  
LATCH OUT  
PATH A  
SD  
LATCH IN  
64  
M
U
X
64  
64  
64  
WRITE BUFFER  
WBSEL  
BE0-7  
M
U
X
8
3268 drw 04  
Figure 1. Byte Merge  
Memory Read  
Clock Skew  
A skew between the read and write clocks, as specified by  
During a memory read, data and the corresponding input  
checkbits are read from the MD bus and CBI0-7, respectively. tskew, is recommended. This specification is not a stringent  
The memory and checkbit data may both be latched as they one, in the manner of setup and hold times, but is important in  
come in (MD Latch In and MD Checkbit latch) by the MDILE preempting latencies at FIFO boundaries. For example –  
signal. Memory data is sent to the MD checkbit generator When a word is written to an empty FIFO, there is a finite delay  
(where checkbits corresponding to the input data are gener- before the FIFO is recognized as no longer being empty and  
ated)andtotheerrorcorrectcircuitry.Thegeneratedcheckbits hence allowing a read from the same FIFO. Similarly when a  
are X-ORed with the input checkbits to produce the syndrome wordisreadfromafullFIFO,thereisadelaybeforeawrite can  
word. This is sent to the error correction circuitry which successfully be attempted. The tskew specification accounts  
generates the corrected data (normal mode). The corrected for these cases. During cycles other than on full/empty FIFO  
data is output to the SD bus via either of two data paths. When boundaries, the clock skew is not required and the device  
RBSEL is LOW, data flows through MD Latch Out. Pulling functions correctly even when the reads and writes occur  
MDOLE HIGH latches this data. The output buffer is enabled simultaneously. IfthetskewspecificationisignoredandSCLK  
by asserting SOE(=0) and BE0-7 (=1). Corrected data can be and MCLK were permanently tied together, there is an extra  
written back to memory by enabling the MD output buffer. In cycle latency in the cases mentioned above. Clock skew  
order to ensure selection of the write back path (Path B in violation is illustrated in Figure 13.  
figure 1) at the byte mux, BEO-7 should be all 1's while  
WBSEL = 0. If WBSEL = 1, buffered BEO-7 from the output FIFO Write Latency  
of the write FIFO controls the byte mux.  
The first data written to either of the (read or write) FIFOs,  
If the read FIFO (RFIFO) is selected (RBSEL HIGH), data after the FIFO is reset, suffers a single clock latency. Data that  
is clocked into the FIFO (Read_FIFO Write) when RBEN is is set-up with respect to the first clock is ignored and the data  
LOW, on the rising edge of MCLK. RBFFis asserted when the that is set-up with respect to the second clock edge after the  
RFIFO is full and this inhibits further write attempts to the reset, is stored as the first data in the FIFO (Refer to Figures  
RFIFO (see section on "Clock Skew" and "R/W FIFO opera- 9and10).Theempty-flagisdeassertedafterthissecondclock  
tion at Boundaries"). Data is clocked out of the FIFO edge and 15 more data words (in a 16 deep configuration) can  
(Read_FIFO Read) when RBREN is LOW on the rising edge be written to the FIFO after this.  
of SCLK. RBEFis asserted when the RFIFO is empty and this  
inhibits further read attempts (see section on "Clock Skew") "dummy" or "set-up" clock edge before the actual write to the  
from the RFIFO. FIFO. The dummy write clock can be provided any time after  
Note: In case of multiple error SD should be ignored in correct reset and before the next buffer write operation takes place.  
The latency can be reduced or eliminated by providing a  
mode.  
The latency described here (shown in Figures 10 and 13)  
occurs only after a FIFO reset. In other cases where the FIFO  
becomes empty there is no latency.  
11.9  
8
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
R/W FIFO Operation At Boundaries  
overwritten and the FIFO output changes from AA to the data  
just written, namely QQ.  
In the 49C3466 the write pointer is incremented on every  
FIFO write. Similarly the read pointer is incremented on every  
FIFO read. In most cases on a FIFO read, the last data read  
remains at the output of the FIFO, until the read pointer is  
further incremented. On the last (the write that fills the FIFO)  
FIFO write after the FIFO read, however, this last read data is  
overwrittenbythe16thwritefollowingtheemptyconditionand  
consequently the data at the FIFO output is liable to change.  
The situation is depicted in the diagram below.  
This operation needs to be taken into account in the design  
of the system. In case of a burst operation where FIFO data  
is output at a much slower rate than the rate at which data is  
input and the full flag is expected to inhibit further writes, the  
user cannot expect the FIFO output to remain static through  
the 16th write of the burst. If this is a requisite to the design,  
the FIFO output should be latched. In the case of the write  
FIFO this can be accomplished on-chip by latching the FIFO  
WP  
FIFO  
(empty)  
reset  
RP  
WP  
WRITE1  
(data = AA)  
FIFO  
RP  
WP  
READ1  
(data = AA)  
FIFO  
(empty)  
RP  
WP  
No READs  
(data = AA)  
WRITE1  
(data = BB)  
FIFO  
RP  
WP  
WRITE2  
(data =CC)  
No READs  
(data = AA)  
FIFO  
RP  
WP  
WRITE15  
(data = PP)  
No READs  
(data = AA)  
FIFO  
RP  
WP  
WRITE16  
(data = QQ)  
FIFO  
(full)  
No READs  
(data = QQ)  
Figure 2. R/W FIFO Operation  
The diagram in figure 2 progresses from the FIFO output in the SD output latch. For the read FIFO, the FIFO  
initialization(reset) through a sequence of write operations. output must be latched externally to accomplish the same  
After the first write, a read is executed which establishes the thing, since there is no latch on-chip following the FIFO. If this  
data at the FIFO output(AA). On the last write to the FIFO(the cannotbedoneandthesituationdescribedaboveisexpected  
write that fills the FIFO), the location of the last read data is to occur in normal operation, the write must be inhibited one  
cycle before the FIFO becomes full.  
11.9  
9
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
Partial Word Write/Byte Merge  
MODE REGISTER CONFIGURATION  
Writing a word shorter than 64 bits to memory is treated  
as a special case. The checkbits generated for a data word  
shorter than 64 bits and written to a particular memory location  
differ from the checkbits that would be generated by the entire  
64-bit data word at the same location. Hence, the byte merge  
operation requires reading of the contents of the memory  
location to be written to, merging the byte/bytes being written  
(from SD side) with the other component bytes previously at  
that memory location (from MD side), generating a checkbit  
word for this composite word and writing both the composite  
data word and the generated checkbits to memory. The BEn  
bits supplied by the user determine the bytes that come from  
SD and those that come from MD, as illustrated in Figure 1.  
15  
7
6
5
4
3
2
0
UNUSED RMODE PSEL  
RWBD  
CLEAR EDCM0-2  
EDCM2 EDCM1 EDCM0  
OPERATION  
ERROR-DATA OUTPUT MODE  
DIAGNOSTIC-OUTPUT MODE  
GENERATE-DETECT MODE  
NORMAL MODE  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
CHECKBIT-INJECTION MODE  
RMODE  
OPERATION  
0
NOP  
1
READ MODE REGISTER ON SD BUS  
RWBD  
OPERATION  
EDC Modes  
0
1
DUAL FIFOS (8)  
SINGLE FIFO (16)  
The IDT49C3466 has 5 modes of operation. Refer to table  
below for a description of the modes.  
The Error Data Output mode is useful for memory initial-  
ization as described below. In Checkbit Injection mode, the  
MD Checkbit Latch is loaded with data from the System Bus.  
This serves to verify the functioning of the EDC. Any discrep-  
ancy between the injected checkbits and generated checkbits  
should result in assertion of the ERR, MERR signals.  
These modes and certain other features such as clear,  
buffer configuration, etc., can be selected by appropriately  
loading the Mode Register. The Mode Register can be written  
to by asserting MEN. Then SD0-15 is clocked into the mode  
register on the rising edge of SCLK.  
CLEAR  
OPERATION  
NOP  
CLEAR ALL DIAGNOSTIC REGISTERS  
0
1
PSEL  
OPERATION  
EVEN PARITY  
ODD PARITY  
0
1
3268drw 05  
OPERATING MODE DESCRIPTION  
Mode  
Description  
MODE 0  
Error-Data Output Mode: This mode allows the uncorrected data captured from an error event by the Error-Data  
Register to be read by the system for diagnostic purposes. The Error-Data Register is cleared by setting the mode  
register "'clear"-bit.  
MODE 1  
Diagnostic-Output Mode: In this mode, contents of latch and five internal registers are read by the system for  
diagnostic and error logging purposes. Internal data paths allow output from the CBI LATCH to be read directly by the  
system bus for diagnostic purposes. The contents of the internal diagnostic checkbit register, syndrome registers, error  
count register and error-type register are also output on the SD bus.  
MODE 2  
MODE 3  
MODE 4  
Generate-Detect Mode: (Detect-Only) The EDC performs checkbit generation during a memory write, and performs  
error detection only during a memory read.  
Normal Mode: The EDC performs checkbit generation during memory writes and error detection and correction during  
memory reads.  
Checkbit-Injection Mode: In this mode, the checkbit latch is loaded with desired 8-bit data from the SD bus.This eight  
bit data passes through SD Latch in or write FIFO to the MD check bit latch. By inserting various checkbit values,  
correct functioning of the EDC can be verified “on-board”. The rest of the operation is similar to regular memory  
reads. The EDC compares the injected checkbits against the internally generated checkbits. Any discrepancy in the  
injected checkbits and the internally generated checkbits will cause the ERR / MERR to go LOW.  
3268 tbl 08  
Memory Initialization  
Memory initialization involves clearing all memory data locations and writing the corresponding checkbits (checkbits  
corresponding to all zero data = $0C) to checkbit memory. This can be done using the 49C3466 to first create an "all-zero-  
data" source. This is done by setting the CLEAR bit in the mode register. This clears all diagnostic registers. Then this data  
can be written back to memory in the Error-Data output (Mode 0) mode. In order to wrap the all-zero data back to the MD bus,  
BE0-7 should be high and WBSEL =0.  
11.9  
10  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
CLEAR  
MODE BIT 0  
Diag. Regs.  
Error Data Regs.  
SYNCLK  
64  
BE0-7  
WFIFO  
BE0-7  
WBSEL  
Fig 3. Memory Initialization using Diagnostic Output/Error Data Output Mode  
DIAGNOSTIC OUTPUT DATA FORMAT  
TO SD BUS  
10  
6 5  
4
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11  
9
8
7
3 2 1 0  
37 36 35 34 33 32 31  
Error  
Checkbit  
(from checkbit latch)  
Error  
Count  
Syndrome  
(on 1st error)  
Checkbit  
(on 1st error only)  
Syndrome  
(on every error)  
Type  
(on  
1st  
error  
only)  
* Bit #28 = 1 If "Error" condition  
FROM DIAGNOSTIC REGISTERS  
Bit #29 = 1 If "Multiple bit Error" condition  
3268 drw 06  
Diagnostics  
The diagnostic ability of the IDT49C3466 rests on a set of  
6 registers that provide error logging information. These  
include the checkbit register, error count register, error type  
register, 2 syndrome registers and the error data register.  
Data is clocked into each of these registers by SYNCLK. The  
error data register, checkbit register, error type register and  
one of the syndrome registers are reloaded only in the case of  
the first error after a clear. The other syndrome register and  
the error count register are reloaded on every error condition  
SYNCLK edge. The contents of the Error Data register can be  
readonlyinErrorDataOutputmode.Thecontentsoftheother  
diagnostic registers as well as the checkbit latch can be read  
in Diagnostic Output mode.  
CONDITION  
OUTPUT  
LOADED  
BY  
DIAG.  
REGISTER  
CHECKBIT  
SYNCLK  
SYNCLK ↑  
ONLY ON 1st  
ERROR  
SD8-15  
SYNDROME  
(On 1st ERR)  
ONLY ON 1st  
ERROR  
SD16-23  
ERR CNT  
SYNCLK ↑  
ON EVERY  
ERROR (Up to  
15 ERRORS)  
SD24-27  
ERR TYPE  
SYNCLK ↑  
SYNCLK ↑  
ONLY ON 1st  
ERROR  
SD28-29  
SD30-37  
Parity  
The IDT49C3466 provides a parity check and generation  
facility. On a memory read the EDC generates parity bits for  
each data byte and outputs the parity byte on the parity bus,  
P0-7. During a memory write, parity is checked by comparing  
the parity bits input on P0-7 and the parity bits generated from  
theinputdataword. Adiscrepancybetweenthesetwocauses  
thePERRflagtobeasserted. Inthecaseofpartialwordwrites,  
the PERR flag is based on the parity bits Px and data bytes  
input on SD bus.  
SYNDROME  
(On every  
ERROR)  
ON EVERY  
ERROR  
11.9  
11  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
ABSOLUTE MAXIMUM RATINGS(1)  
CAPACITANCE (TA = +25°C, f = 1.0 MHz)  
Symbol  
Parameter(1)  
Input  
Conditions  
Typ. Unit  
Symbol  
Rating  
Commercial  
Unit  
(2)  
(3)  
(4)  
CIN  
VIN = 0V  
5
pF  
V
V
V
TERM  
TERM  
TERM  
Terminal Voltage with  
Respect to GND  
–0.5 to +4.6  
V
Capacitance  
Output  
Terminal Voltage with  
Respect to GND  
–0.5 to +4.6  
V
V
COUT  
VOUT = 0V  
7
pF  
Capacitance  
Terminal Voltage with  
Respect to GND  
–0.5 to  
NOTE:  
1. This parameter is sampled and not 100% tested.  
3268 tbl 10  
V
CC + 0.5  
T
STG  
Storage Temperature  
DC Output Current  
–65 to +150  
30  
°C  
I
OUT  
mA  
3268 tbl 09  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-  
INGSmaycausepermanentdamagetothedevice. Thisisastressrating  
only and functional operation of the device at these or any other condi-  
tions above those indicated in the operational sections of this specifica-  
tion is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
2. Vcc terminals.  
3. Input terminals.  
4. Output and I/O terminals.  
11.9  
12  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE  
The following conditions apply unless otherwise specified:  
Commercial: TA = 0°C to +70°C, VCC = 3.3V ±0.3V  
Symbol  
Parameter  
Test Conditions(1)  
Min.  
Typ.(2)  
Max. Unit  
VIH  
Input HIGH Level (Input pins)  
Guaranteed Logic HIGH Level  
2.0  
3.6  
VCC+0.5  
0.8  
V
Input HIGH Level (I/O pins)  
Input LOW Level  
2.0  
VIL  
Guaranteed Logic LOW Level  
–0.5  
V
(Input and I/O pins)  
IIH  
Input HIGH Current  
VCC = Max.  
VCC = Max.  
VI = VCC  
±1  
±1  
±1  
±1  
IIL  
Input LOW Current  
VI = GND  
VO = VCC  
VO = GND  
IOZH  
IOZL  
IOS  
High Impedance Output Current  
(3-State Output pins)  
Short Circuit Current(4)  
µA  
VCC = Max.(3)  
VOUT = 0V  
mA  
V
VOH  
VOL  
VH  
Output HIGH Voltage  
VCC = Min.  
VIN = VIH or VIL  
VCC = Min.  
IOH = –1mA  
IOL = 4mA  
2.4(5)  
3.0  
0.3  
100  
0.5  
Output LOW Voltage  
V
VIN = VIH or VIL  
Input Hysteresis on input control lines  
mV  
3268 tbl 11  
NOTES:  
1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.  
2. Typical values are at Vcc = 3.3V, +25°C ambient.  
3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.  
4. This parameter is guaranteed but not tested.  
5. VOH = VCC –0.6V at rated current.  
POWER SUPPLY CHARACTERISTICS  
The following conditions apply unless otherwise specified:  
Commercial: TA = 0°C to +70°C, VCC = 3.3V ±0.3V  
Symbol  
Parameter  
Test Conditions(1)  
Min. Typ.(2) Max.  
Unit  
ICCQC  
Quiescent Power Supply Current VIN = VCC, or VIN = GND  
VCC = Max.  
3.0  
1.5  
15  
100  
mA  
ICCQT  
ICCD  
Quiescent Power Supply Current  
TTL Input Levels  
VIN = VCC –0.6  
VCC = Max.  
µA/  
Input  
Dynamic Power Supply Current  
VIN = VCC, or VIN = GND  
mA  
VCC = Max. f = 10MHz Correct Mode  
NOTES:  
3268 tbl 12  
1. For conditions shown as Min. or Max., use appropriate Vcc value.  
2. Typical values are at VCC = 3.3V, +25°C ambient temperature.  
11.9  
13  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
AC PARAMETERS  
PROPAGATION DELAY TIMES  
Description  
To Output  
Number  
Parameter  
From Input(1)  
Max.  
Unit  
GENERATE (WRITE) PARAMETERS  
Without Write FIFO:  
1
tBC  
BEn  
BEn  
Pxin  
SDin  
SDin  
SDin  
CBSYN (chkbit)  
MDOUT  
20  
16  
10  
22  
22  
16  
ns  
ns  
ns  
ns  
ns  
ns  
2
tBM  
tPPE  
tSC  
3
PERR  
4
CBSYN (chkbit)  
MDout  
5
tSM  
tSPE  
6
PERR  
With Write FIFO:  
7
8
9
tMC  
MCLK (Lo-Hi)  
MCLK (Lo-Hi)  
WBSEL  
CBSYN (chkbit)  
MDout  
25  
25  
18  
ns  
ns  
ns  
tMMD  
tWBSEL  
MDout  
DETECT (READ) PARAMETERS  
Without Read FIFO:  
10  
tWYC  
tME  
SYNCLK (Lo-Hi)  
CBSYN (syndr)  
ERR  
16  
20  
22  
13  
13  
ns  
ns  
ns  
ns  
ns  
11  
MDin  
MDin  
CBI  
12  
tMME  
tCE  
MERR  
13  
ERR  
14  
tCME  
CBI  
MERR  
With Read FIFO:  
15  
16  
tSSD  
SCLK (Lo-Hi)  
RBSEL  
SDout  
SDout  
22  
18  
ns  
ns  
tRBSEL  
CORRECT (READ) PARAMETERS  
Without Read FIFO:  
17  
tCS  
tMP  
tMS  
CBI  
SDout  
Pxout  
SDout  
20  
22  
22  
ns  
ns  
ns  
18  
MDin  
MDin  
19  
With Read FIFO:  
20  
tSP  
SCLK (Lo-Hi)  
Pxout  
22  
ns  
3268 tbl 13  
NOTE:  
*
PRELIMINARY.  
1. (Lo-Hi) indicates LOW-to-HIGH transition and vice versa.  
11.9  
14  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
PROPAGATION DELAY TIMES  
FROM LATCH ENABLES  
Description  
Number  
21  
Parameter  
tMLE  
From Input(1)  
MDILE (Lo-Hi)  
MDILE (Lo-Hi)  
MDILE (Lo-Hi)  
MDILE (Lo-Hi)  
MDOLE (Hi-Lo)  
MDOLE (Hi-Lo)  
SDILE (Lo-Hi)  
SDILE (Lo-Hi)  
SDOLE (Hi-Lo)  
SDOLE (Hi-Lo)  
To Output  
ERR  
Max.  
16  
18  
24  
22  
18  
18  
20  
20  
12  
15  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
22  
tMLME  
tMLP  
MERR  
23  
Px (Detect Mode)  
SDout (Detect Mode)  
SDout  
24  
tMLS  
25  
tMOLS  
tMOLP  
tSLC  
26  
Px  
27  
CBSYN (chkbit)  
MDout  
28  
tSLM  
29  
tSOLC  
tSOLM  
CBSYN (chkbit)  
MDout  
30  
3268 tbl 14  
NOTE:  
PRELIMINARY.  
1. (Lo-Hi) indicates LOW-to-HIGH transition and vice versa.  
R/W FIFO TIMES  
Description  
To Output  
Number  
Parameter  
From Input(1)  
RS1 (Hi-Lo)  
Min.  
Max.  
Unit  
31  
tRSF  
EF (Hi-Lo)/FF (Lo-Hi)  
16  
ns  
during SCLK LOW  
32  
33  
34  
35  
39  
tSKEW1  
tSKEW2  
tEF  
RCLK (Lo-Hi)  
(SCLK or MCLK)  
WCLK (Lo-Hi)  
(SCLK or MCLK)  
10  
10  
15  
15  
15  
ns  
ns  
ns  
ns  
ns  
WCLK (Lo-Hi)  
(SCLK or MCLK)  
RCLK (Lo-Hi)  
(SCLK or MCLK)  
R/WCLK (Lo-Hi)  
(SCLK or MCLK)  
EF  
FF  
HF  
tFF  
R/WCLK (Lo-Hi)  
(SCLK or MCLK)  
tHFF  
R/WCLK (Lo-Hi)  
(SCLK or MCLK)  
3268 tbl 15  
NOTE:  
PRELIMINARY.  
1. (Lo-Hi) indicates LOW-to-HIGH transition and vice versa.  
11.9  
15  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
BYTE MERGE TIMES  
Description  
Number  
36  
Parameter  
tSCM  
From Input(1)  
SCLK (Lo-Hi)  
MDOLE (Hi-Lo)  
RBSEL  
To Output  
MDout  
Max.  
25  
Unit  
ns  
37  
tMDM  
MDout  
18  
ns  
38  
tRBM  
MDout  
23  
ns  
3268 tbl 16  
NOTE:  
PRELIMINARY.  
*
1. (Lo-Hi) indicates LOW-to-HIGH transition and vice versa.  
ENABLE AND DISABLE TIMES  
Description  
To Output  
Number  
40  
Parameter  
tBESZx  
tBESxZ  
tBEPZx  
tBEPxZ  
tSEPZx  
tSEPxZ  
tCECZx  
tCECxZ  
tMEMZx  
tMEMxZ  
tSESZx  
tSESxZ  
From Input(1)  
BEN = High  
Low  
Min.  
Max.  
22  
22  
15  
15  
14  
14  
12  
10  
22  
18  
16  
20  
Unit  
SDout  
*
ns  
41  
Hi-Z  
*
42  
BEN = High  
Low  
Pout  
ns  
ns  
ns  
ns  
ns  
43  
Hi-Z  
*
44  
SOE = Low  
High  
Pout  
45  
Hi-Z  
*
46  
MOE = Low  
High  
CBSYN  
MDout  
SDout  
47  
Hi-Z  
*
48  
MOE = Low  
High  
49  
Hi-Z  
*
50  
SOE = Low  
High  
51  
Hi-Z  
NOTES:  
3268 tbl 17  
*
PRELIMINARY.  
1. (High-Z) indicates high impedence.  
2. * indicates delay to both edges.  
11.9  
16  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
SET-UP AND HOLD TIMES  
Description  
Number  
52  
Parameter  
tCMLS  
From Input(1)  
CBI Set-up  
CBI Hold  
To Output  
Min.  
2
Unit  
ns  
ns  
ns  
ns  
1ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
before MDILE =  
after MDILE =  
before MDILE =  
after MDILE =  
before MDOLE =  
after MDOLE =  
before MDOLE =  
before MDOLE =  
after MDOLE =  
after MDOLE =  
before MCLK =  
after MCLK =  
Hi-Lo  
Hi-Lo  
Hi-Lo  
Hi-Lo  
Lo-Hi  
Lo-Hi  
Lo-Hi  
Lo-Hi  
Lo-Hi  
Lo-Hi  
Lo-Hi  
Lo-Hi  
Hi-Lo  
Hi-Lo  
Lo-Hi  
Lo-Hi  
Lo-Hi  
Lo-Hi  
Lo-Hi  
Lo-Hi  
Lo-Hi  
Lo-Hi  
Lo-Hi  
Lo-Hi  
Lo-Hi  
Lo-Hi  
Lo-Hi  
53  
tCMLH  
tMMLS  
tMMLH  
tCMOLS  
tCMOLH  
tMMOLS  
tMMOLS  
tMMOLH  
tMMOLH  
tMMCS  
tMMCH  
tSSLS  
6
54  
MDIN Set-up  
MDIN Hold  
2
55  
6
56  
CBI Set-up (Correct)  
CBI Hold (Correct)  
MDIN Set-up (Detect)  
MDIN Set-up (Correct)  
MDIN Hold (Detect)  
MDIN Hold (Correct)  
MDIN Set-up  
10  
2
57  
58a  
58b  
59a  
59b  
60  
10  
10  
4
4
10  
4
61  
MDIN Hold  
62  
SDIN Set-up  
before SDILE =  
after SDILE =  
before SCLK  
5
63  
tSSLH  
SDIN Hold  
3
64  
tSSCS  
SDIN Set-up  
2
65  
tSSCH  
SDIN Hold  
after SCLK  
6
66  
tSSOLS  
tSSOLH  
tSCSD  
SDIN Set-up  
before SDOLE =  
after SDOLE =  
before SDOLE =  
before SDOLE =  
before S/M CLK =  
after S/M CLK =  
R/WCLK =  
8
67  
SDIN Hold  
0
68  
SCLK (Lo-Hi)  
14  
14  
4
69  
tMCSD  
tENS  
MCLK (Lo-Hi)  
70  
R/W FIFO Enable Set-up  
R/W FIFO Enable Hold  
RS1 (Lo-Hi)  
71  
tENH  
4
72  
tRSS  
6
73  
tMODS  
tMODH  
tMENS  
tMENH  
Mode Data Set-up  
Mode Data Hold  
Mode Enable Set-up  
Mode Enable Hold  
before SCLK =  
after SCLK =  
4
74  
4
75  
before SCLK =  
after SCLK =  
4
76  
4
77  
78  
tMSDS  
tMSDH  
MDIN Set-Up  
MDIN Hold  
before SDOLE =  
after SDOLE =  
Lo-Hi  
Lo-Hi  
22  
0
ns  
ns  
93  
94  
tBSCS  
tBSCH  
BE Set-up  
BE Hold  
before SCLK =  
after SCLK =  
Lo-Hi  
Lo-Hi  
1
6
ns  
ns  
DIAGNOSTIC SET-UP AND HOLD TIMES  
79  
80  
tCSCS  
tMSCS  
tMLSCS  
tCSCH  
tMSCH  
tMLSCH  
CBI Set-up  
4
10  
10  
6
ns  
ns  
ns  
ns  
ns  
ns  
MDIN Set-up  
before SYNCLK =  
After SYNCLK=  
Lo-Hi  
Lo-Hi  
81  
MDILE = Lo-Hi Set-up  
CBI Hold  
82  
83  
MDIN Hold  
6
84  
MDILE = Lo-Hi Hold  
6
3268 tbl 18  
NOTE:  
*
PRELIMINARY.  
1. (Lo-Hi) indicates LOW-to-HIGH transition and vice versa.  
11.9  
17  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
MINIMUM PULSE WIDTH  
Description  
Number  
86  
Parameter  
tRS  
From Input(1)  
Condition  
Min.  
6
Unit  
ns  
Min. RS1 LOW time  
to reset buffers  
87  
tMLE  
Min. MDILE HIGH time  
Min. MDOLE LOW time  
Min. SDILE HIGH time  
Min. S/MCLK HIGH time  
Min. SYNCLK HIGH time  
Min. SDOLE LOW time  
to strobe new data  
to strobe new data  
to strobe new data  
to clock in new data  
to clock in new data  
to clock in new data  
MD, CBI = Valid  
6
ns  
88  
tMDOLE  
tSLE  
SD = Valid  
EN signal LOW  
6
ns  
89  
6
ns  
90  
tCLK  
6
ns  
91  
tSYNCLK  
tSDOLE  
6
ns  
92  
6
ns  
3268 tbl 19  
NOTE:  
*
PRELIMINARY.  
11.9  
18  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
1V/ns  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V  
1.5V  
See Figure 15  
2617 tbl 21  
SD0-15  
SDin (Mode)  
t
MODH  
t
MODS  
SCLK  
t
MENH  
t
MENS  
MEN  
3268 drw 07  
Figure 4. Mode Enable Timing  
WBSEL  
SOE  
write  
SCLK  
(WCLK)  
tSSCS  
tSSCH  
SD0-63  
SDin  
tENH  
tENS  
WBEN  
t
FF  
t
FF  
WBFF  
tSKEW1  
read  
MCLK  
(RCLK)  
3268 drw 08  
WBREN  
Figure 5. WFIFO Write Timing (Write Cycle)  
11.9  
19  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
read  
MCLK  
(RCLK)  
tENH  
tENS  
______  
WBREN  
tEF  
tEF  
_____  
WBEF  
WBSEL  
tMCSD  
______  
SDOLE  
t MEMxZ  
____  
MOE  
tMMD  
t MEMZx  
MDout D1  
MD0-63  
tCECZx  
tMC  
Valid Checkbits out  
CBSYN0-7  
tSKEW2  
write  
SCLK  
(WCLK)  
3268 drw 09  
Figure 6. WFIFO Read and Checkbit Generate Timing (Write Cycle)  
11.9  
20  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
RBSEL  
____  
MOE  
tMEMxZ  
MD0-63  
CBI0-7  
MDin  
MDout  
t MMLH  
t MMLS  
Checkbits in  
tCMLS  
tCMLH  
MDILE  
tMMCS  
t MMCH  
write  
MCLK  
(WCLK)  
tENH  
tENS  
_____  
RBEN  
tFF  
_____  
RBFF  
tSKEW1  
SCLK  
(RCLK)  
read  
3268 drw 10  
Figure 7. RFIFO Write Timing (Read Cycle)  
11.9  
21  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
read  
SCLK  
(RCLK)  
tENH  
tENS  
______  
RBREN  
tEF  
_____  
RBEF  
tEF  
write  
MCLK  
(WCLK)  
tSKEW2  
RBSEL  
tSSD  
____  
SOE  
tSESZx  
BE0-7  
SD0-6  
tBESZx  
SDout (corrected data)  
tSEPZx  
tBEPZx  
P0-7  
Parity out  
3268 drw 11  
Figure 8. RFIFO Read Timing (Read Cycle)  
11.9  
22  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
RS1  
t RS  
tRSS  
WCLK  
(SCLK / MCLK)  
t RSF  
dummy write  
__  
EF  
tRSF  
__  
FF  
3268 drw 12  
Figure 9. FIFO (WFIFO/RFIFO) Reset Timing  
DATA  
(SD/MD)  
dataxx  
data1  
tSSCS  
tSSCH  
dummy write  
write  
WCLK  
(SCLK/MCLK)  
tENS  
BUFFER ENABLE  
_____ _____  
(WBEN/ RBEN)  
tRSF  
FIFO RESET  
(RS1)  
tEF  
BUFFER  
EMPTY FLAG  
_____ ____  
(WBEF/ RBEF)  
3268 drw 13  
Figure 10. FIFO (WFIFO/RFIFO) Write Latency Timing  
11.9  
23  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
Valid BE0-7  
BE0-7  
SOE  
SDin Dy  
SD0-63  
t
SSCS  
t
SSCH  
SDILE  
SDOLE  
external tristate  
MDin Dx  
MDout Dxy  
MD0-63  
t
MEMXZ  
t
MEMZX  
MOE  
t
MMOEmin  
1
t
MDILE  
t
MMOLS  
MMOLH  
MDOLE  
RBSEL  
WBSEL  
3268 drw 14  
Figure 11. Partial Word Write/Byte Merge Timing  
NOTE:  
1. tMMOE is not a propagation delay. For partial word write operations tMMOE MIN= tMDM.  
11.9  
24  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
tBM  
Valid BE0-7  
BE0-7  
tSESXZ  
SOE  
SD  
Data xx  
tSSCS  
tSSCH  
read  
data  
dummy  
write  
write  
data  
SCLK  
MCLK  
tENS  
tENH  
WBEN  
tENS  
tENH  
WBREN  
tCSM = tMMD  
WBSEL  
MD  
tMMCS  
tMMCH  
Data yy  
Merged Data xx+yy  
RBEN  
tENH  
tENS  
tENS  
tENH  
RBREN  
RBSEL  
tMEMXZ  
MOE  
3268 drw 15  
Figure 12. Partial Word Write/Byte Merge Timing using both RFIFO and WFIFO  
11.9  
25  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
invalid data  
SD0-63  
SDin 1  
SDin 2  
dummy write  
t SSCS  
tSSCH  
SCLK  
(WCLK)  
1
2
tRSS  
RS1  
tRSF  
tEF  
_____  
WBEF  
MCLK  
(RCLK)  
1
ignored  
(no skew)  
_____  
WBREN  
3268 drw 16  
Figure 13. Write FIFO Write Timing with Clock Skew Violation  
tMSCH  
MD0-63  
CB0-7  
MDin  
tMSCS  
tCSCH  
CBin  
tCSCS  
MDILE  
tMLSCH  
tMLSCS  
SYNCLK  
tSYNCLK  
3268 drw 17  
Figure 14. Diagnostic Timing  
11.9  
26  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
TEST CIRCUITS AND WAVEFORMS  
TEST CIRCUITS FOR ALL OUTPUTS  
SWITCH POSITION  
Test  
Switch  
6V  
Open Drain  
Disable Low  
Enable Low  
Disable High  
Enable High  
All Other tests  
V
CC  
Open  
GND  
6V  
500  
500Ω  
V OUT  
GND  
V
IN  
Pulse  
Generator  
D.U.T.  
Open  
2617 tbl 20  
50pF  
DEFINITIONS:  
CL= Load capacitance: includes jig and probe capacitance.  
RT = Termination resistance: should be equal to ZOUT of the Pulse  
Generator.  
R
T
C
L
3268 drw 18  
SET-UP, HOLD AND RELEASE TIMES  
PULSE WIDTH  
3V  
DATA  
1.5V  
INPUT  
0V  
3V  
1.5V  
0V  
LOW-HIGH-LOW  
PULSE  
t
H
tSU  
1.5V  
1.5V  
TIMING  
INPUT  
tW  
ASYNCHRONOUS CONTROL  
t
REM  
PRESET  
3V  
1.5V  
0V  
CLEAR  
HIGH-LOW-HIGH  
PULSE  
ETC.  
SYNCHRONOUS CONTROL  
PRESET  
3V  
1.5V  
0V  
CLEAR  
tSU  
t
H
CLOCK ENABLE  
ETC.  
3268 drw 20  
3268 drw 19  
PROPAGATION DELAY  
ENABLE AND DISABLE TIMES  
ENABLE  
DISABLE  
3V  
1.5V  
0V  
3V  
SAME PHASE  
CONTROL  
INPUT  
1.5V  
0V  
INPUT TRANSITION  
t
PLH  
t
t
PHL  
PHL  
t
PZL  
tPLZ  
V
OH  
OUTPUT  
3V  
1.5V  
3V  
1.5V  
OUTPUT  
NORMALLY  
LOW  
SWITCH  
6V  
V
OL  
t
PLH  
0.3V  
0.3V  
V
OL  
3V  
1.5V  
0V  
t
PZH  
tPHZ  
OPPOSITE PHASE  
INPUT TRANSITION  
V
OH  
OUTPUT  
NORMALLY  
HIGH  
SWITCH  
GND  
1.5V  
0V  
0V  
3268 drw 21  
3268 drw 22  
NOTES:  
1. Diagram shown for input Control Enable-LOW and input Control Disable-  
HIGH.  
2. Pulse Generator for All Pulses: Rate 1.0MHz; tF 2.5ns; tR 2.5ns.  
3. If VCC is below 3V, input voltage swings should be adjusted not to exceed  
VCC.  
11.9  
27  
IDT49C3466 Flow-thruEDC™  
ERROR DETECTION AND CORRECTION UNIT  
COMMERCIAL TEMPERATURE RANGE  
ORDERING INFORMATION  
IDT 49C466  
Device Type  
XX  
Package  
PQF  
Plastic Quad Flatpack  
49C3466 3.3V 64-Bit Flow-thru™ EDC  
3268 drw 23  
11.9  
28  

相关型号:

IDT49C401AC

Bit-Slice Processor, CMOS, CDIP64
IDT

IDT49C401ACB

Bit-Slice Processor, CMOS, CDIP64
IDT

IDT49C401C

Bit-Slice Processor, CMOS, CDIP64
IDT

IDT49C401CB

Bit-Slice Processor, CMOS, CDIP64
IDT

IDT49C402AFF

Bit-Slice Processor, 16-Bit, CMOS, CQFP68, FP-68
IDT

IDT49C402AFFB

Microprocessor Slice
ETC

IDT49C402AG84

Bit-Slice Processor, 16-Bit, CMOS, CPGA84, CAVITY-UP, PGA-84
IDT

IDT49C402AG84B

Microprocessor Slice
ETC

IDT49C402APG

Bit-Slice Processor, CMOS, PPGA68
IDT

IDT49C402APQF

Bit-Slice Processor, 16-Bit, CMOS, PQFP80, PLASTIC, QFP-80
IDT

IDT49C402AQEB

Microprocessor Slice
ETC

IDT49C402AXCB

Bit-Slice Processor, CMOS, CDIP68
IDT